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A POSTERIORI ERROR ESTIMATES FOR STABILISED MIXED
FINITE ELEMENT METHODS FOR A NONLINEAR ELLIPTIC PROBLEM∗

MARíA GONZÁLEZ† AND HIRAM VARELA†

Abstract. In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic
boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics.
The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising
from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional
unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a
posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally
efficient. Finally, we include several numerical experiments that confirm the theoretical results.
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1. Introduction. In this paper we consider a nonlinear elliptic problem of second order in
divergence form. This kind of problems appear in the modeling of a wide range of phenomena,
such as steady heat conduction, magnetostatics, or the minimal surface problem, among others.
Mixed formulations for this kind of problems are sometimes treated through the inversion of
the constitutive equation using the implicit function theorem (see, for instance, [17, 18, 15]).
When the constitutive equation is not explicitly invertible, one can introduce additional un-
knowns, like in the expanded mixed finite element method [7, 8] and the dual-dual formulation
from [12].

In this work we consider as starting point the variational formulation proposed in [12].
There, two compatibility (inf-sup) conditions between the discrete spaces are required in order
to ensure that the corresponding Galerkin scheme is well-posed. Augmented formulations
based on adding residual terms of least-squares type for the variational formulation (see, for
instance, [16, 4] and the references therein) will allow us to avoid this requirement.

In order to improve the convergence behaviour of the discrete solution, one can apply
adaptive methods based on a posteriori error estimates. In this respect, Araya et al. [2] proposed
a reliable a posteriori error estimate that depends on the solution of a local linear boundary
value problem for the dual-dual method presented in [12]. Moreover, for specific finite element
subspaces of Raviart-Thomas type, the authors provide a fully explicit a posteriori error
estimate that uses some reasonable approximation of the exact finite element solution. More
recently, Garralda et al. [11] derived reliable and efficient a posteriori error estimators for the
same Galerkin scheme.

The aim of the present paper is to introduce and analyse an adaptive augmented dual-
mixed method for the nonlinear elliptic problem considered in [12]. We show that the new
continuous and discrete augmented variational problems are well posed and that a Céa-type
estimate holds. We also derive optimal rates of convergence. We obtain a simple a posteriori
error indicator which is reliable and locally efficient and show some numerical experiments
that support the theoretical results.

The paper is organised as follows. The model problem is described in Section 2. The
new augmented variational formulation is presented and analysed in Section 3. The associated
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discrete problem is discussed in Section 4. Then an a posteriori error analysis of residual type
is developed in Section 5. Finally, several numerical experiments are presented in Section 6,
and conclusions are drawn in Section 7.

In what follows, we employ the usual notations for Lebesgue and Sobolev spaces. More-
over, C, with or without subscripts, denotes a generic constant independent of the discretisation
parameter that may take different values at different occurrences.

2. Model problem. We consider a bounded and simply connected domain Ω ⊂ R2 with
a Lipschitz continuous boundary Γ. Given the functions f ∈ L2(Ω), g ∈ H1/2(Γ), and
k : Ω× [0,+∞)→ R, the problem reads:

Find u ∈ H1(Ω) such that

(2.1)

{
−∇ · (k(·, |∇u|)∇u) = f in Ω ,

u = g on Γ,

where | · | denotes the Euclidean norm. This kind of problem appears, for instance, in steady
heat conduction and magnetostatics (see [22] and the references therein).

In what follows, we assume that k ∈ C1(Ω × [0,+∞)) and that there exists positive
constants k1 and k2 such that

(2.2) k1 ≤ k(x, s) + s
∂k

∂s
(x, s) ≤ k2 , ∀ (x, s) ∈ Ω× [0,+∞) .

We remark that by integrating (2.2) in [0, t] for t > 0, we obtain

k1 ≤ k(x, s) ≤ k2 , ∀ (x, s) ∈ Ω× [0,+∞) .

Some examples of functions k satisfying the assumption (2.2) can be found, for example,
in [22].

In the next lemma we collect some well-known results that will be used in the following.
LEMMA 2.1. Assume that k satisfies (2.2). Then there exists positive constants C0, C1,

and α such that for all t, s, z ∈ [L2(Ω)]2,∣∣∣ ∫
Ω

(k(·, |t|)t− k(·, |s|)s) · z
∣∣∣ ≤ C0 ‖t− s‖[L2(Ω)]2‖z‖[L2(Ω)]2 ,(2.3) ∣∣∣ ∫

Ω

k(·, |t|)t · z
∣∣∣ ≤ C1(1 + ‖t‖[L2(Ω)]2)‖z‖[L2(Ω)]2 ,(2.4) ∫

Ω

(k(·, |t|)t− k(·, |s|)s) · (t− s) ≥ α ‖t− s‖2[L2(Ω)]2 .(2.5)

Proof. See, for instance, [22].
In the next section we recall the dual-dual mixed variational formulation studied in [12]

and analyse a new augmented variational formulation for problem (2.1).

3. Augmented dual-mixed variational formulation. We follow [2] (see also [12]) and
introduce t = ∇u and σ = k(·, |t|)t in Ω as further unknowns. Then the first equation of
problem (2.1) can be rewritten as

−∇ · σ = f, in Ω .

We denote by H(∇·,Ω) := {τ ∈ [L2(Ω)]2 : ∇ · τ ∈ L2(Ω)} and consider the dual-mixed
variational formulation introduced in [2, 12]:
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Find (t,σ, u) ∈ [L2(Ω)]2 ×H(∇·,Ω)× L2(Ω) such that

(3.1)



∫
Ω

k(·, |t|)t · s−
∫

Ω

σ · s = 0,

−
∫

Ω

τ · t−
∫

Ω

u∇ · τ = −〈τ · n, g〉,

−
∫

Ω

v∇ · σ =

∫
Ω

f v,

for all (s, τ , v) ∈ [L2(Ω)]2 × H(∇·,Ω) × L2(Ω), where n is the unit outward normal to
Γ and 〈·, ·〉 denotes the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the
L2(Γ)-inner product. We remark that the variational formulation (3.1) has a twofold saddle
point structure. The corresponding solvability result can be found in [12, Theorem 4.1].

Now, let us denote V = H1
0 (Ω) if g = 0 or V = H1(Ω) if g 6= 0. Then we assume that

the solution u ∈ V , and we consider the following residual identities:

(3.2)
ξ1

∫
Ω

(σ − k(·, |t|)t) · τ = 0 , ξ2

∫
Ω

∇ · σ∇ · τ = −ξ2
∫

Ω

f ∇ · τ ,

ξ3

∫
Ω

(∇u− t) · (∇v + s) = 0 , ξ4

∫
Γ

u v = ξ4

∫
Γ

g v ,

where ξ1, ξ2, and ξ3 are positive constants and ξ4 is a positive constant if g 6= 0 or ξ4 = 0 if
g = 0.

Subtracting the second equation in (3.1) from the first one and adding the third equation
and the residual identities in (3.2), we obtain the following augmented dual-mixed variational
formulation of problem (2.1):

Find (t,σ, u) ∈ X := [L2(Ω)]2 ×H(∇·,Ω)× V such that

(3.3) A((t,σ, u), (s, τ , v)) = F (s, τ , v) , ∀(s, τ , v) ∈ X ,

where A : X ×X → R is the nonlinear form defined by

A((t,σ, u), (s, τ , v)) :=

∫
Ω

k(·, |t|)t · s−
∫

Ω

σ · s +

∫
Ω

τ · t

+

∫
Ω

u∇ · τ −
∫

Ω

v∇ · σ + ξ1

∫
Ω

(σ − k(·, |t|)t) · τ

+ ξ2

∫
Ω

∇ · σ∇ · τ + ξ3

∫
Ω

(∇u− t) · (∇v + s) + ξ4

∫
Γ

u v ,

and F : X → R is the linear functional defined by

F (s, τ , v) := 〈τ · n, g〉+

∫
Ω

f v − ξ2
∫

Ω

f ∇ · τ + ξ4

∫
Γ

g v .

Here we endow X with its natural norm:

‖(s, τ , v)‖X := ‖s‖[L2(Ω)]2 + ‖τ‖H(∇·,Ω) + ‖v‖H1(Ω) .

In the next two lemmas, we establish some properties of the nonlinear form A(·, ·).
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LEMMA 3.1. The nonlinear form A : X ×X → R is Lipschitz continuous and bounded
in X , that is, there exists positive constants K and Cb such that

|A((t,σ, u), (r, δ, w))−A((s, τ , v), (r, δ, w))| ≤ K ‖(t,σ, u)− (s, τ , v)‖X ‖(r, δ, w)‖X ,

for all (t,σ, u), (s, τ , v), (r, δ, w) ∈ X , and

|A((t,σ, u), (s, τ , v))| ≤ Cb (1 + ‖(t,σ, u)‖X) ‖(s, τ , v)‖X ,

for all (t,σ, u), (s, τ , v) ∈ X .
Proof. Let (t,σ, u), (s, τ , v), (r, δ, w) ∈ X . Then, by applying the Cauchy-Schwarz

inequality and inequality (2.3) with z = r and z = δ, we obtain that A is Lipschitz continuous
in X with a constant

K = max(C0, ξ1, 4, ξ1C0, ξ2, 2ξ3, ξ4) .

On the other hand, using (2.4) and the Cauchy-Schwarz inequality, we have that A is
bounded with

Cb := max(4, ξ1, ξ2, 4ξ3, ξ1C1, C1, c
2
t ξ4) ,

where ct is the constant of the trace inequality.
LEMMA 3.2. Assume

(3.4) ξ1 ∈
(

0,
α

2k2
2

)
, ξ2 > 0 , ξ3 ∈

(
0,
α

2

)
, and ξ4

{
= 0 , if g = 0 ,

> 0 , if g 6= 0 .

Then the nonlinear form A : X × X → R is strongly monotone in X , that is, there exists
α̃ > 0 such that for all (t,σ, u), (s, τ , v) ∈ X ,

A((t,σ, u), (t,σ, u)− (s, τ , v))−A((s, τ , v), (t,σ, u)− (s, τ , v))

≥ α̃ ‖(t,σ, u)− (s, τ , v)‖2X .

Proof. Let (t,σ, u), (s, τ , v) ∈ X . Then, we use the definition of A(·, ·), (2.5), and that

(3.5) ‖k(·, |t|)t− k(·, |s|)s‖[L2(Ω)]2 ≤ 2k2 ‖t− s‖[L2(Ω)]2 .

We also apply Young’s inequality to obtain

2k2ξ1‖t− s‖[L2(Ω)]2‖σ − τ‖[L2(Ω)]2 ≤
ε

2
‖t− s‖2[L2(Ω)]2 +

2k2
2ξ

2
1

ε
‖σ − τ‖2[L2(Ω)]2

for any ε > 0. Then, by taking ε = α, we deduce that

A((t,σ, u), (t,σ, u)− (s, τ , v))−A((s, τ , v), (t,σ, u)− (s, τ , v))

≥ (
α

2
− ξ3) ‖t− s‖2[L2(Ω)]2 + ξ1 (1− 2k2

2ξ1
α

) ‖σ − τ‖2[L2(Ω)]2

+ ξ2 ‖∇ · (σ − τ )‖2L2(Ω) + ξ3 ‖∇(u− v)‖2[L2(Ω)]2 + ξ4 ‖u− v‖2L2(Γ) .

So, taking the parameters ξ1, ξ2, ξ3, and ξ4 as described in (3.4), we arrive at the desired
result. When g = 0, we use the usual Poincaré inequality; when g 6= 0, we use the generalized
Poincaré inequality:

‖∇w‖2L2(Ω) + ‖w‖2L2(Γ) ≥ CP ‖w‖2H1(Ω) , ∀w ∈ H1(Ω).
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REMARK 3.3. The constant α̃ depends on the stabilization parameters ξ1, ξ2, ξ3, and ξ4.
Indeed, as can be seen from the proof of Lemma 3.2,

α̃ := min

(
α

2
− ξ3,

ξ1
2

(1− 2k2
2ξ1
α

), ξ2, (ξ3 + ξ4)CP

)
.

In the next lemma we establish the boundedness of the linear form F (·).
LEMMA 3.4. The linear form F : X → R is bounded: for all (s, τ , v) ∈ X , there holds

|F (s, τ , v)| ≤ (‖g‖H1/2(Γ) + ξ4‖g‖L2(Γ) + (1 + ξ2)‖f‖L2(Ω))‖(s, τ , v)‖X .

Proof. Apply the Cauchy-Schwarz inequality and the trace inequality

‖τ · n‖H−1/2(Γ) ≤ ‖τ‖H(∇·,Ω), ∀τ ∈ H(∇·,Ω) .

Now, we can state the main result of this section.
THEOREM 3.5. Assume that the parameters ξ1, ξ2, ξ3, and ξ4 satisfy (3.4). Then the

variational problem (3.3) has a unique solution (t,σ, u) ∈ X .
Proof. The result is a consequence of Lemmas 3.1, 3.2, and 3.4.

4. Discrete problem. From now on, let us assume that Ω is a polygonal domain, let
h be a positive parameter, and let Sh ⊂ [L2(Ω)]2, Hh ⊂ H(∇·,Ω), and Vh ⊂ V be finite-
dimensional subspaces. We define Xh := Sh ×Hh × Vh. Then we consider the Galerkin
scheme associated to the variational problem (3.3):

Find (th,σh, uh) ∈ Xh such that

(4.1) A((th,σh, uh), (sh, τh, vh)) = F (sh, τh, vh) , ∀(sh, τh, vh) ∈ Xh .

THEOREM 4.1. Assume ξ1, ξ2, ξ3, and ξ4 satisfy (3.4). Then the discrete problem (4.1)
has a unique solution (th,σh, uh) ∈ Xh. Moreover, there exists C > 0, independent of h,
such that

(4.2) ‖(t,σ, u)− (th,σh, uh)‖X ≤ C inf
(sh,τh,vh)∈Xh

‖(t,σ, u)− (sh, τh, vh)‖X .

Proof. Since Xh ⊂ X , the result is a consequence of Lemmas 3.1, 3.2, and 3.4.
Let {Th}h>0 be a shape-regular family of triangulations of Ω in the sense of [9] made

up of triangles. For any triangle T ∈ Th and integer m ≥ 0, we denote by Pm(T ) the space
of polynomials of total degree at most m on T , and, given an integer l ≥ 0, we denote by
RT l(T ) := [Pl(T )]2 ⊕ [x]Pl(T ) the local Raviart-Thomas space of order l + 1 (cf. [19]),
where x is a generic vector of R2. We then define the finite element spaces

Sh := {sh ∈ [L2(Ω)]2 : (sh)|T ∈ [Pm(T )]2 , ∀T ∈ Th} ,(4.3)
Hh := {τh ∈ H(∇·,Ω) : (τh)|T ∈ RT l(T ) , ∀T ∈ Th} ,(4.4)

Vh := {vh ∈ V ∩ C0(Ω) : (vh)|T ∈ Pm+1(T ) , ∀T ∈ Th} .(4.5)
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We have the following rate of convergence result.
THEOREM 4.2. Let (t,σ, u) ∈ X and (th,σh, uh) ∈ Xh be the unique solutions

to problems (3.3) and (4.1), respectively. Assume that t ∈ [Hδ(Ω)]2, σ ∈ [Hδ(Ω)]2 with
∇ · σ ∈ Hδ(Ω) and u ∈ Hδ+1(Ω). Then there exists C > 0, independent of h, such that

‖(t,σ, u)− (th,σh, uh)‖X
≤ C hβ

(
‖t‖[Hδ(Ω)]2 + ‖σ‖[Hδ(Ω)]2 + ‖∇ · σ‖Hδ(Ω) + ‖uh‖Hδ+1(Ω)

)
,

with β := min(δ,m+ 1, l + 1).
Proof. Use the Céa estimate (4.2) and the approximation properties of the finite element

subspaces (4.3)–(4.5).

5. A posteriori error analysis. In this section, we derive a residual a posteriori error
indicator for the Galerkin scheme (4.1) with the discrete spaces Sh, Hh, and Vh defined
by (4.3), (4.4), and (4.5), respectively.

Let (t,σ, u) ∈ X be the solution of the variational problem (3.3) and (th,σh, uh) be the
solution of the discrete problem (4.1). Using the strong monotonicity of the nonlinear form
A(·, ·), we have that

(5.1) α̃ ‖(t− th,σ − σh, u− uh)‖X ≤ sup
(s,τ,v)∈X
(s,τ ,v)6=0

Rh(s, τ , v)

‖(s, τ , v)‖X
,

where the residual Rh is defined by

Rh(s, τ , v) := F (s, τ , v)−A((th,σh, uh), (s, τ , v)) , ∀ (s, τ , v) ∈ X .

From the definitions of F and A(·, ·), we can write

(5.2) Rh(s, τ , v) = R1(s) +R2(τ ) +R3(v) ,

with

R1(s) :=

∫
Ω

(σh − k(·, |th|)th) · s− ξ3
∫

Ω

(∇uh − th) · s ,

R2(τ ) := 〈τ · n, g − uh〉Γ − ξ2
∫

Ω

(f +∇ · (σh))∇ · τ

+

∫
Ω

(∇uh − th) · τ − ξ1
∫

Ω

(σh − k(·, |th|)th) · τ ,

R3(v) :=

∫
Ω

(f +∇ · (σh))v − ξ3
∫

Ω

(∇uh − th) · ∇v + ξ4

∫
Γ

(g − uh)v .

Then, using the Cauchy-Schwarz inequality, we obtain that

|R1(s)| ≤
(
‖σh − k(·, |th|)th‖[L2(Ω)]2 + ξ3‖∇uh − th‖[L2(Ω)]2

)
‖s‖[L2(Ω)]2 ,

∀ s ∈ [L2(Ω)]2 .
(5.3)

Next, we boundR2(τ ), for τ ∈ H(∇·,Ω). In order to deal with the term on the boundary,
we consider a quasi-Helmholtz decomposition of τ ∈ H(∇·,Ω). From [6, Lemma 5.1] we
know that there exists χ ∈ H1(Ω), φ ∈ [H1(Ω)]2, and a positive constant c such that

τ = curl(χ) + φ
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and

(5.4) ‖χ‖H1(Ω) + ‖φ‖[H1(Ω)]2 ≤ c ‖τ‖H(∇·,Ω) .

We remark that ∇ · τ = ∇ · φ in Ω.
Now, let Ih be the Clément interpolation operator (cf. [10]), and let Πl

h be the Raviart-
Thomas interpolation operator (cf. [19]). Then we define χh := Ih(χ) and

τh := curl(χh) + Πl
hφ .

We remark that

∇ · (τ − τh) = (I − P lh)∇ · τ ,

where P lh : L2(Ω)→ Vh is the L2-orthogonal projector. We write

(5.5) R2(τ ) = R2(τ − τh) = R̃2(τ ) + R̂2(φ) + R̄2(χ) ,

where

R̃2(τ ) = −ξ2
∫

Ω

(f +∇ · σh)(I − P lh)∇ · τ ,

R̂2(φ) = 〈(I −Πl
h)φ · n, g − uh〉Γ +

∫
Ω

(∇uh − th) · (I −Πl
h)φ

− ξ1
∫

Ω

(σh − k(·, |th|)th) · (I −Πl
h)φ ,

R̄2(χ) = 〈curl(χ− χh) · n, g − uh〉Γ +

∫
Ω

(∇uh − th) · curl(χ− χh)

− ξ1
∫

Ω

(σh − k(·, |th|)th) · curl(χ− χh) .

Next, we bound the terms in the decomposition (5.5). First, by applying the Cauchy-Schwarz
inequality, we have

(5.6) |R̃2(τ )| ≤ ξ2 ‖f +∇ · σh‖L2(Ω)‖∇ · τ‖L2(Ω) ,

where we used that I − P lh is a projection. On the other hand, we can write

R̂2(φ) =
∑

e∈E(Γ)

∫
e

((I −Πl
h)φ · n)(g − uh)

+
∑
T∈Th

∫
T

(∇uh − th − ξ1(σh − k(·, |th|)th)) · (I −Πl
h)φ .

Using the Cauchy-Schwarz inequality and the approximation properties of the Raviart-Thomas
interpolation operator Πl

h, we obtain

|R̂2(φ)| ≤ c
( ∑
e∈E(Γ)

he‖g − uh‖2L2(e) +
∑
T∈Th

h2
T (‖∇uh − th‖2[L2(T )]2

+ ξ2
1‖σh − k(·, |th|)th‖[L2(T )]2)2

)1/2

‖φ‖[H1(Ω)]2

≤ c
( ∑
e∈E(Γ)

he‖g − uh‖2L2(e) +
∑
T∈Th

h2
T (‖∇uh − th‖2[L2(T )]2

+ ξ2
1‖σh − k(·, |th|)th‖[L2(T )]2)2

)1/2

‖τ‖H(∇;Ω) ,

(5.7)
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where in the last inequality we used (5.4).
Moreover, assuming g ∈ H1(Γ),

|R̄2(χ)| ≤ C
( ∑
e∈E(Γ)

he‖
d

ds
(g − uh)‖2L2(e) +

∑
T∈Th

(
‖∇uh − th‖2[L2(T )]2

+ ξ2
1 ‖σh − k(·, |th|)th‖2[L2(T )]2

))1/2

‖τ‖H(∇·,Ω) ,

(5.8)

where E(Γ) denotes the set of edges of the triangulation Th contained in Γ, he denotes the
length of an edge e ∈ E(Γ), and d

ds denotes the tangential derivative.
From (5.6), (5.7), and (5.8),

|R2(τ )|

≤ C
( ∑
T∈Th

(
ξ2
2‖f +∇ · σh‖2L2(T ) + ‖∇uh − th‖2[L2(T )]2

+ ξ2
1 ‖σh − k(·, |th|)th‖2[L2(T )]2

)
+

∑
e∈E(Γ)

he
(
‖g − uh‖2L2(e) + ‖ d

ds
(g − uh)‖2L2(e)

))1/2

‖τ‖H(∇·,Ω) .

(5.9)

Finally, using the orthogonality property and the approximation properties of the Clément
interpolation operator (see, for instance, [4]) yields

|R3(v)| ≤ C
( ∑
T∈Th

(
h2
T ‖f +∇ · σh‖2L2(T ) + ξ2

3‖∇uh − th‖2[L2(T )]2

)
+ ξ2

4

∑
e∈E(Γ)

he‖g − uh‖2L2(e)

)1/2

‖v‖H1(Ω).
(5.10)

Then we define on any triangle T ∈ Th the following a posteriori error indicator:

θ2
T := ‖∇uh − th‖2[L2(T )]2 + ‖f +∇ · σh‖2L2(T ) + ‖σh − k(·, |th|)th‖2[L2(T )]2

+
∑

e∈E(T )∩E(Γ)

he(‖g − uh‖2L2(e) + ‖ d
ds

(g − uh)‖2L2(e)) ,
(5.11)

whereE(T ) denotes the set of edges of T . We also define the global a posteriori error indicator
θ with

θ2 :=
∑
T∈Th

θ2
T .

From the previous results, we have the following theorem.
THEOREM 5.1. Assume g ∈ H1(Γ). Then there exists a positive constant Crel, indepen-

dent of h, such that

‖(t− th,σ − σh, u− uh)‖X ≤ Crel θ .

Proof. The result follows from inequality (5.1), the decomposition (5.2), the triangle
inequality, and the bounds (5.3), (5.9), and (5.10) together with the definition of θ with
Crel := C α̃−1 max(1, ξ1, ξ2, ξ3, ξ4) (C is independent of h and the stabilisation parameters).
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Let us now prove the local efficiency of the a posteriori error indicator θT . Given
e ∈ E(Γ), we denote by ψe the usual edge-bubble function and by L : C(e) → C(Te) the
extension operator as defined in [20]. We also recall the following lemma from [20].

LEMMA 5.2. Given m ∈ N ∪ {0}, there exist positive constants C2 and C3 depending
only on m and the shape regularity of the triangulations such that for each T ∈ Th and
e ∈ E(T ),

‖p‖2L2(e) ≤ C2 ‖ψ1/2
e p‖2L2(e) , ∀ p ∈ Pm(e) ,(5.12)

‖ψ1/2
e L(p)‖2L2(T ) ≤ C3 he ‖p‖2L2(e) , ∀ p ∈ Pm(e) .(5.13)

Proof. See [20, Lemma 4.1].
THEOREM 5.3. Assume that g is piecewise polynomial on Γ. Then there exists a positive

constant Ceff, independent of h and T , such that for all T ∈ Th,

Ceff θT ≤ ‖(t− th,σ − σh, u− uh)‖[L2(T )]2×H(∇·,T )×H1(T ) .

Proof. Let T ∈ Th. We first use that t = ∇u, f = −∇ · σ, and σ = k(·, |t|)t in Ω and
the triangle inequality to obtain

‖∇uh − th‖2[L2(T )]2 ≤ 2‖∇(uh − u)‖2[L2(T )]2 + 2‖t− th‖2[L2(T )]2 ,

‖f +∇ · σh‖2L2(T ) = ‖∇ · (σh − σ)‖2L2(T ),

‖σh − k(·, |th|)th‖2[L2(T )]2 ≤ 2‖σh − σ‖2[L2(T )]2 + 8 k2
2 ‖t− th‖2[L2(T )]2 ,

(5.14)

where in the last inequality we used (3.5).
In order to bound the first boundary term, we proceed as in [3, Lemma 3.7] and use the

following discrete trace inequality (see [1, Theorem 3.10]):

‖v‖2L2(e) ≤ Ct (h−1
e ‖v‖2L2(T ) + he|v|2H1(T )) , ∀ v ∈ H1(T ) ,

where T is any triangle such that e ∈ E(T ). Then we obtain

(5.15) he ‖g − uh‖2L2(e) ≤ Ct
(
‖u− uh‖2L2(Te)

+ h2
Te |u− uh|

2
H1(Te)

)
,

where Te is the triangle having e as an edge.
Finally, to bound the second term on the boundary, we proceed as in [3, Lemma 3.9]. Let

χe := d
ds (g− uh) on e. Then, using (5.12), the extension operator L, and integrating by parts,

we have that

||χe||2L2(e) ≤ C2 ||ψ1/2
e χe||2L2(e) = C2

∫
∂Te

ψe L(χe)∇(u− uh) ·T

= C2

∫
Te

curl(ψeL(χe)) · ∇(u− uh) ,

where T denotes the tangent vector. Applying the Cauchy-Schwarz inequality, an inverse
inequality, and inequality (5.13), we obtain

||χe||2L2(e) ≤ C2 |ψeL(χe)|H1(Te) |u− uh|H1(Te)

≤ C2C h
−1
e ||ψeL(χe)||L2(Te) |u− uh|H1(Te)

≤ C4 h
−1/2
e ||χe||L2(e) |u− uh|H1(Te) ,
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where C4 := C2CC3 depends only on m and the shape regularity of the triangulations.
Therefore,

(5.16) he ‖
d

ds
(g − uh)‖2L2(e) ≤ C4 |u− uh|2H1(Te)

,

and the local efficiency follows from inequalities (5.14), (5.15), and (5.16) with
Ceff = max(2 + 8k2

2, Ct + C4).

6. Numerical experiments. In this section, we provide some numerical experiments that
confirm the theoretical results from the previous sections. We have implemented an adaptive
algorithm based on the a posteriori error indicator θT defined in (5.11) in a FreeFem++
code [13] and tested it for several examples. The adaptive algorithm reads as follows:

1. Start with a coarse mesh Th.
2. Solve the Galerkin scheme (4.1) for the current mesh Th.
3. Compute θT for each triangle T ∈ Th.
4. Consider a stopping criterion and decide to finish or go to the next step.
5. Use the adaptmesh FreeFem++ function to build a new mesh Th and go to step 2.

We start the adaptive algorithm with a coarse mesh. Then, in every adaptive step, we
rebuild the mesh and control its shape-regularity by bounding the gradient of the mesh size
function; for more details, see [5]. The Galerkin scheme (4.1) is a nonlinear algebraic system,
which is solved by means of Newton’s method. We consider the finite element spaces Sh, Hh,
and Vh defined in (4.3)–(4.5) for m = 0 and l = 0, so that for a smooth solution the expected
rate of convergence is 1.

In what follows, N stands for the total number of degrees of freedom (DOF) of the
Galerkin scheme (4.1). We consider the individual errors

e(u) := ‖u− uh‖H1(Ω) , e(t) := ‖t− th‖[L2(Ω)]2 , e(σ) := ‖σ − σh‖H(∇·,Ω)

and define the total error

etotal :=
(
e(u)2 + e(t)2 + e(σ)2

)1/2
.

We denote by rtotal the experimental rate of convergence; for the uniform refinement, rtotal
is defined by

rtotal :=
log(etotal/e

′
total)

log(h/h′)
,

where etotal and e′total are the total errors for two consecutive triangulations with mesh sizes
h and h′, respectively. For the adaptive refinement,

rtotal := −2
log(etotal/e

′
total)

log(N/N ′)
,

where N and N ′ denote the corresponding DOF of each triangulation. Finally, we denote by
Iθ the effectivity index with respect to θ, Iθ := etotal/θ.

We consider four examples. First, we test the robustness of the adaptive algorithm with
respect to the stabilisation parameters ξ1, ξ2, ξ3, and ξ4. Then we consider two academic
examples with a known solution. In Example 2, the solution has a singularity close to a
boundary point. In Example 3, the solution has a singularity close to a line. Finally, in
Example 4, we apply the adaptive algorithm to solve a magnetostatic problem. In all cases, we

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

716 M. GONZALEZ AND H. VARELA

102 103 104 105

Degrees of Freedom

101

102

T
o
ta

l 
E

rr
o
r

 
1
 = 10

-4

 
1
 = 10

-3

 
1
 = 10

-2

 
1
 = 10

-1

 C dof
-1/2

2
 = 1; 

3
 = 1/8; 

4
 = 1

103 104 105 106

Degrees of Freedom

101

102

T
o
ta

l 
E

rr
o
r

 
2
 = 10

-2

 
2
 = 10

-1

 
2
 = 10

0

 
2
 = 10

1

 
2
 = 10

2

 C dof
-1/2

1
 = 1/8; 

3
 = 1/8; 

4
 = 1

103 104 105 106

Degrees of Freedom

101

102

103

T
o
ta

l 
E

rr
o
r

 
3
 = 10

-4

 
3
 = 10

-3

 
3
 = 10

-2

 
3
 = 10

-1

 
3
 = 0.24

 C dof
-1/2

1
 = 1/8; 

2
 = 1; 

4
 = 1

103 104 105 106

Degrees of Freedom

101

102

T
o
ta

l 
E

rr
o
r

 
4
 = 10

-2

 
4
 = 10

-1

 
4
 = 10

0

 
4
 = 10

1

 
4
 = 10

2

 C dof
-1/2

1
 = 1/8; 

2
 = 1; 

3
 = 1/8

FIG. 6.1. Example 1: Sensitivity of the adaptive method with respect to the stabilisation parameters.

choose as initial guess in the Newton’s method the solution of the corresponding linearized
problem; Newton’s method requires 4 iterations to attain a relative tolerance of 10−9.

EXAMPLE 1. In order to test the sensitivity of the error indicator with respect to the
stabilisation parameters, we consider Ω = (−1, 1)2 \ [0, 1]2 and take k(x, s) = s+1

s+2 . We
choose f and g so that the exact solution is u(x, y) = (x− 1.1)−1, (x, y) ∈ Ω. In this case,
the values of the stabilisation parameters that ensure strong monotonicity of the nonlinear
form are ξ1 ∈ (0, 1

4 ), ξ2 > 0, ξ3 ∈ (0, 1
4 ), and ξ4 > 0. We made four experiments. In each

experiment, we fixed the value of three stabilisation parameters and vary the remaining one.
The results are presented in Figure 6.1. As can be seen from these graphs, in all cases optimal
rates of convergence are attained independently of the values of the stabilisation parameters.
However, we remark that convergence is affected as the stabilisation parameter ξ3 gets smaller
and smaller.

EXAMPLE 2. We let Ω = (0, 1)× (0, 1) be the unit square and choose f and g so that the
exact solution is u(x, y) = (2.1−x− y)−1/3 . We remark that the solution u has a singularity
close to the boundary point (1, 1). We take k(x, s) = 2 + 1

s+1 and choose ξ1 = 1/18,
ξ2 = 1, ξ3 = 1/2, and ξ4 = 1. In Tables 6.1 and 6.2 we provide the DOF, the individual
and total errors, the experimental rates of convergence, the a posteriori error indicators, and
the effectivity indices for the uniform and adaptive refinements, respectively. We appreciate
that the adaptive refinement algorithm shows better convergence properties than the uniform
refinement algorithm (see also Figure 6.2). Moreover, the efficiency indices are very close to
1. In Figure 6.3 we depict the different terms that make up the indicator θ with respect to the
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TABLE 6.1
Example 2, uniform refinement: Individual and total errors, experimental rates of convergence, a posteriori

error indicators and effectivity indices.

N N−1/2 e(u) e(t) e(σ) etotal rtotal θ Iθ

195 7.161E-02 3.992E-01 2.694E-01 7.154E+00 7.171E+00 — 8.111E+00 1.1312
579 4.156E-02 2.131E-01 1.350E-01 5.369E+00 5.375E+00 0.416 5.523E+00 1.0275
2069 2.198E-02 1.068E-01 6.591E-02 3.239E+00 3.241E+00 0.730 3.270E+00 1.0090
7357 1.166E-02 5.386E-02 3.427E-02 1.730E+00 1.732E+00 0.885 1.746E+00 1.0081

30069 5.767E-03 2.712E-02 1.798E-02 8.819E-01 8.825E-01 0.994 8.776E-01 0.9945
117659 2.915E-03 1.357E-02 9.247E-03 4.432E-01 4.435E-01 0.993 4.409E-01 0.9942
458119 1.477E-03 6.777E-03 4.681E-03 2.219E-01 2.220E-01 0.977 2.226E-01 1.0028

TABLE 6.2
Example 2, adaptive refinement: Individual and total errors, experimental rates of convergence, a posteriori

error indicators and effectivity indices.

N N−1/2 e(u) e(t) e(σ) etotal rtotal θ Iθ

195 7.161E-02 3.992E-01 2.694E-01 7.154E+00 7.171E+00 — 8.111E+00 1.1312
397 5.019E-02 9.480E-02 9.703E-02 3.078E+00 3.081E+00 2.377 3.099E+00 1.0059
757 3.635E-02 5.294E-02 7.065E-02 1.358E+00 1.361E+00 2.533 1.366E+00 1.0039
1379 2.693E-02 3.931E-02 5.488E-02 8.673E-01 8.699E-01 1.492 8.821E-01 1.0140
2705 1.923E-02 2.838E-02 4.021E-02 6.229E-01 6.249E-01 0.982 6.349E-01 1.0160
5389 1.362E-02 2.105E-02 2.861E-02 4.482E-01 4.496E-01 0.955 4.549E-01 1.0116

10595 9.715E-03 1.438E-02 2.029E-02 3.173E-01 3.182E-01 1.023 3.211E-01 1.0088
21391 6.837E-03 1.030E-02 1.446E-02 2.241E-01 2.248E-01 0.989 2.275E-01 1.0121
41407 4.914E-03 7.007E-03 1.006E-02 1.563E-01 1.567E-01 1.092 1.586E-01 1.0119
84861 3.433E-03 5.075E-03 7.277E-03 1.122E-01 1.125E-01 0.923 1.138E-01 1.0115

165147 2.461E-03 3.557E-03 5.029E-03 7.812E-02 7.836E-02 1.087 7.917E-02 1.0103
338177 1.720E-03 2.529E-03 3.604E-03 5.587E-02 5.604E-02 0.936 5.664E-02 1.0106
656523 1.234E-03 1.755E-03 2.511E-03 3.884E-02 3.896E-02 1.096 3.935E-02 1.0100

DOF. We denote

θ2
1 :=

∑
T∈Th

‖∇uh − th‖2[L2(T )]2 ,

θ2
2 :=

∑
T∈Th

‖f +∇ · σh‖2L2(T ) ,

θ2
3 :=

∑
T∈Th

‖σh − k(·, |th|)th‖2[L2(T )]2 ,

θ2
4 :=

∑
e∈E(Γ)

he

(
‖g − uh‖2L2(e) + ‖ d

ds
(g − uh)‖2L2(e)

)
.

We observe that the second term, which represents the residual in the equilibrium equation, is
the dominating one. Finally, in Figure 6.4, we plot the initial mesh and some adapted meshes.
We observe that the meshes are highly refined around the corner (1, 1).

EXAMPLE 3. We let Ω = (−1, 1)× (−1, 1) and choose f and g so that the exact solution
is u(x, y) = (x− 1.1)−1 . In this case, the solution u has a singularity around the line x = 1.
We take k(x, s) = 2 + 1

s+1 and choose ξ1 = 1/18, ξ2 = 1, ξ3 = 1/2, and ξ4 = 1. In
Tables 6.3 and 6.4 we present the DOF, the individual and total errors, the experimental rates
of convergence, the a posteriori error indicators, and the effectivity indices for the uniform
and adaptive refinements, respectively. As in the previous example, the adaptive refinement
algorithm shows better convergence properties than the uniform refinement algorithm (see
also Figure 6.5), and the efficiency indices are again very close to 1. In this case, as can be
seen from Figure 6.6, the residual in the equilibrium equation is again the dominating term
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FIG. 6.2. Example 2: Error and indicator vs. DOFs for uniform and adaptive refinements.
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FIG. 6.3. Example 2: Terms of the indicator vs. DOFs for adaptive refinement.

in θ. In Figure 6.7, we display the initial mesh and some adapted meshes. In this case, the
adaptive algorithm refines the meshes around the line x = 1, that is, close to the singularity of
the solution.

EXAMPLE 4. Inspired by [14], we tested the method proposed in this paper on an example
regarding a direct current motor. Let Ω =

⋃
j Ωj represent the cross-section of a motor (see

Figure 6.8), with Ωj being materials with different magnetic properties.
Direct current motors have inside a permanent magnet. In Figure 6.8 the permanent

magnet corresponds to the two pieces named N and S, which stand for north pole and south
pole, respectively. The motor is mounted inside an outer housing (O.H.) of ferromagnetic
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FIG. 6.4. Example 2 (from top left to bottom right): Initial mesh (195 DOF) and intermediate adapted meshes
with 1379, 10595, and 84861 DOF, respectively.

material. The core element is the rotor, a star-shaped piece with twelve branches, also made of
ferromagnetic material. Between every two adjacent branches there is a winding, denoted as
Ji, i = 1, . . . , 12. The rest of the domain is composed of air. The central circle represents the
axis of rotation and is not included in the domain.

We solve the boundary value problem (2.1) with f = S +
∂Hy
∂x −

∂Hx
∂y in each subdomain

Ωj , where S represents the z-component of the current density, H = (Hx, Hy, 0)t repre-
sents the magnetization of the permanent magnets, and u is the z-component of the vector
potential A. The function k(x, s) represents the inverse of the magnetic permeability; we
take k(x, s) := 200 + 5000

1+0.05 s2 in the ferromagnetic material and k(x, s) := 8× 105m/H
elsewhere. We apply homogeneous Dirichlet boundary conditions (g = 0) and take the same
parameters as in [14]: the outer housing has an external diameter of 50mm. The windings
J1 and J7 have no current density (S = 0), J2, J3, J4, J5, and J6 have a current density
S = −375Acm−2, and for J8, J9, J10, J11, and J12, the current density is S = 375Acm−2.
The magnets have a radial permanent magnetic field of 0.4T .

In this case, we take the following values for the stabilisation parameters: ξ1 = 1/4,
ξ2 = 1, ξ3 = 1/4, and ξ4 = 0. For the adaptive meshing routine, we started from an initial
mesh of 27 328 degrees of freedom. The algorithm generates a new mesh with 236 614 degrees
of freedom after 4 iterations. The initial and final meshes can be seen in Figure 6.9. For each
individual mesh, the corresponding nonlinear problem is solved by means of Newton’s method
with a stopping criterion based on the relative error with a tolerance of 10−9. Newton’s method
converged after 5 iterations.

The magnetic equipotential lines are represented in Figure 6.10. They consist of closed
lines that go from the core’s central circle to the outer housing, passing through the branches
and both permanent magnets, following radial directions. The main goal of the outer housing
is exactly to allow for the magnetic lines to close therein. The magnetic line density is higher
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FIG. 6.5. Example 3: Error and indicator vs. DOFs for uniform and adaptive refinements.
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FIG. 6.6. Example 3: Terms of the indicator vs. DOFs for adaptive refinement.

in those branches closer to the permanent magnets, and in some areas of the outer housing
where they are forced to pass through. This higher density represents a higher error, which is
detected by the error indicator, and the mesh density is adjusted accordingly, as can be seen in
comparison with Figure 6.10. Finally, Figure 6.11 displays the values of the error indicator
versus the degrees of freedoms comparing adaptive and uniform refinement.
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TABLE 6.3
Example 3, uniform refinement: Individual and total errors, experimental rates of convergence, a posteriori

error indicators and effectivity indices.

N N−1/2 e(u) e(t) e(σ) etotal rtotal θ Iθ

375 5.164E-02 1.554E+01 1.635E+01 3.272E+02 3.281E+02 — 3.491E+02 1.0641
867 3.396E-02 7.026E+00 9.565E+00 2.435E+02 2.438E+02 0.429 2.449E+02 1.0047

2557 1.978E-02 2.961E+00 4.937E+00 1.500E+02 1.501E+02 0.700 1.502E+02 1.0004
9317 1.036E-02 1.305E+00 2.484E+00 8.155E+01 8.160E+01 0.879 8.130E+01 0.9963
34293 5.400E-03 6.136E-01 1.247E+00 4.186E+01 4.188E+01 0.962 4.197E+01 1.0022

134347 2.728E-03 2.991E-01 6.252E-01 2.108E+01 2.109E+01 0.990 2.112E+01 1.0015
530109 1.373E-03 1.481E-01 3.129E-01 1.056E+01 1.056E+01 0.997 1.064E+01 1.0068

TABLE 6.4
Example 3, adaptive refinement: Individual and total errors, experimental rates of convergence, a posteriori

error indicators and effectivity indices.

N N−1/2 e(u) e(t) e(σ) etotal rtotal θ Iθ

375 5.164E-02 1.554E+01 1.635E+01 3.272E+02 3.281E+02 — 3.491E+02 1.0641
2199 2.132E-02 4.923E+00 7.785E+00 2.425E+02 2.426E+02 0.341 2.421E+02 0.9980
4161 1.550E-02 2.132E+00 3.118E+00 1.101E+02 1.101E+02 2.477 1.098E+02 0.9969
7253 1.174E-02 1.679E+00 2.530E+00 7.488E+01 7.494E+01 1.386 7.505E+01 1.0014
13093 8.739E-03 1.126E+00 1.716E+00 5.547E+01 5.551E+01 1.017 5.569E+01 1.0033
25077 6.315E-03 9.695E-01 1.425E+00 4.106E+01 4.110E+01 0.925 4.122E+01 1.0031
47657 4.581E-03 6.179E-01 9.129E-01 2.981E+01 2.983E+01 0.998 2.993E+01 1.0034
95323 3.239E-03 5.070E-01 7.459E-01 2.135E+01 2.137E+01 0.962 2.145E+01 1.0036

186505 2.316E-03 3.079E-01 4.594E-01 1.523E+01 1.524E+01 1.008 1.529E+01 1.0035
375619 1.632E-03 2.443E-01 3.738E-01 1.074E+01 1.075E+01 0.996 1.079E+01 1.0034
736783 1.165E-03 1.480E-01 2.290E-01 7.621E+00 7.626E+00 1.020 7.643E+00 1.0022

FIG. 6.7. Example 3 (from top left to bottom right): Initial mesh (375 DOF) and intermediate adapted meshes
with 4161, 25077, and 95323 DOF.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

722 M. GONZALEZ AND H. VARELA

FIG. 6.8. Example 4: Cross section of the simulated direct current motor. O.H.: outer housing, Ji: wirings, N:
permanent magnet north pole, S: permanent magnet south pole.

7. Conclusions. We propose a new adaptive stabilised Galerkin scheme to solve a
nonlinear problem with a Lipschitz continuous and strongly monotone operator. We show
that the discrete augmented methods is well-posed and that a Céa-type estimate holds. We
also derive a rate of convergence result when globally continuous piecewise polynomials are
used to approximate the primary unknown, piecewise polynomials are used to approximate its
gradient, and Raviart-Thomas elements are used to approximate the nonlinear flux. We develop
an a posteriori error analysis of residual type and obtain an a posteriori error indicator which
is reliable and locally efficient. Finally, we provide some numerical experiments that support
the theoretical results, including the application of the adaptive algorithm to the computation
of the magnetic field in a direct current motor.
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FIG. 6.9. Example 4: Initial mesh with 27 328 DOF and final adapted mesh after 4 iterations with 236 614 DOF.
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