
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 55, pp. 687–705, 2022.
Copyright © 2022, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol55s687

PORTING AN AGGREGATION-BASED
ALGEBRAIC MULTIGRID METHOD TO GPUS∗

ABDESELAM EL HAMAN ABDESELAM†, ARTEM NAPOV†, AND YVAN NOTAY†

Abstract. We present a hybrid GPU-CPU version of the AGMG software, a popular algebraic multigrid (AMG)
solver which implements an aggregation-based AMG method. With the new implementation, the solution stage runs
on a GPU, except operations on the coarsest grid, which are executed on a CPU. To maximize the speedup, two
novel features are introduced. On the one hand, `1-Jacobi smoothing is combined with polynomial acceleration (or
polynomial smoothing), leading to improved performance compared with standard `1-Jacobi smoothing, while not
requiring to compute eigenvalue estimates as standard polynomial smoothing does. On the other hand, besides the
K-cycle used in standard AGMG, we introduce the relaxed W-cycle, which tends to combine the advantages of the
K-cycle and the standard W-cycle. Numerical results show that the new implementation inherits the robustness of
the original AGMG software, while bringing significant speedups on GPUs. A comparison with AmgX, a reference
AMG solver from NVIDIA, suggests that the presented hybrid GPU-CPU version of AGMG is more robust and often
significantly faster in the solution stage.

Key words. multigrid, linear systems, iterative methods, AMG, preconditioning, parallel computing, GPU

AMS subject classifications. 65F10, 65N22, 65Y05, 65Y10

1. Introduction. We present a hybrid GPU-CPU version of the algebraic multigrid
(AMG) method from the AGMG [17] software package for the iterative solution of large
sparse systems of linear equations

Ax = b,

where A is an n× n matrix, x is the vector of unknowns, and b is the right-hand side vector,
both being of dimension n. AMG methods are the methods of choice for systems arising
from the discretization of scalar elliptic PDEs [5, 26]. In particular, they often exhibit optimal
convergence properties in that the number of iterations is bounded independently of the mesh
size, and, unlike geometric multigrid methods, they are of black-box type.

The use of graphics processing units (GPUs) is increasingly popular in scientific com-
puting [8, 12, 25]. Porting well-established numerical methods to GPUs is therefore an
important research topic. In this regard, several works focus on the development of AMG
solvers for GPUs, e.g., [9] discusses strategies and experiences for porting to GPUs the solvers
from the hypre software, including AMG solvers [11, 30], while in [16] the AmgX1 solver
from NVIDIA is presented, a reference solver specifically developed for GPUs. Further,
block-asynchronous smoothers are studied in [2].

Here, we consider the portage to GPUs of the AMG method implemented in the AGMG
software [17]. As any multigrid method, it is based on the recursive use of a two-grid
method, which itself is a combination of a smoother, typically a greedy iterative method, and
a coarse-grid correction, which amounts to solving a related but smaller (or coarser) system.
A multigrid method is obtained when the coarser system is in turn solved approximately with
one or few iterations of the multigrid method, implying thus its recursive use. The iterative

∗Received October 3, 2021. Accepted May 9, 2022. Published online on August 23, 2022. Recommended by
Maya Neycheva. This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 824158. It also benefited from the support of the Fonds de Recherche
Scientifique-FNRS (Belgium) under grant No J.0084.16.

†Université Libre de Bruxelles, Service de Métrologie Nucléaire (C.P. 165-84), 50 Av. F.D. Roosevelt, B-1050
Brussels, Belgium ({Abdeselam.El.Haman.Abdeselam, Yvan.Notay, Artem.Napov}@ulb.be).
Yvan Notay is Research Director of the Fonds de la Recherche Scientifique–FNRS.

1https://github.com/NVIDIA/AMGX

687

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol55s687
https://github.com/NVIDIA/AMGX

ETNA
Kent State University and

Johann Radon Institute (RICAM)

688 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

scheme used for this approximate solution defines the multigrid cycle. The recursion stops for
the coarsest (bottom) system, for which a different solver is used.

The resulting set of progressively smaller systems forms the multigrid hierarchy, and in
AMG methods such a hierarchy is constructed based solely on the system matrix, implying
the black-box nature. The hierarchy construction corresponds to the setup phase, whereas the
subsequent use of the hierarchy in the solution process is referred to as the solve phase.

In this work we focus on the solve phase of the considered AMG solver. On the one hand,
when several linear systems have to be solved with the same system matrix, the setup stage is
performed only once, and its cost is amortized over multiple solves. Hence, accelerating the
setup phase is relatively less important, especially when hundreds or thousands of solves are
needed as may occur when solving fluid problems with a pressure-correction technique.

On the other hand, a straightforward porting of the AGMG setup phase to GPU may
do more harm than good. This is related to the specific design of the AGMG setup stage:
the corresponding aggregation scheme [14] aims at building aggregates with guaranteed
quality [13], which makes the associated AMG solver particularly robust. However, the
resulting design is sequential by nature, and it seems hard to obtain a decent level of GPU
parallelism without compromising the quality of the aggregates and, ultimately, robustness.
Therefore, in the version presented here, the setup phase is still ran on CPUs with standard
AGMG.

We now briefly recall the main ingredients of the AGMG solve phase. Regarding the
smoothing iterations, AGMG, like most AMG methods, uses a simple Gauss-Seidel method.
The coarse-grid correction is of aggregation type, while the multigrid recursion is based on
the K-cycle [24], which amounts to 2 multigrid iterations on the coarse level combined with
Krylov subspace acceleration. Krylov subspace acceleration is also used at the fine-grid level,
the AMG method being used as a preconditioner for the flexible conjugate gradient (FCG)
method [18] in the case where the system matrix is symmetric and positive definite (SPD) and
by the GCR method [7] otherwise. Finally, the bottom-level solver is a sparse direct solver.

Each of the above mentioned ingredients induces some difficulties on GPUs, leading us
to propose significant changes in the solve phase. Firstly, the Gauss-Seidel iterative method is
not adapted to parallel architectures, hence we developed a specific smoother that combines
`1-Jacobi smoothing [4] and polynomial acceleration [1, 10, 30]. To the best of our knowledge,
such a combination is considered here for the first time.

Secondly, the K-cycle requires the computation of dot products, which may be suboptimal
on GPUs [29]. This leads us to propose a relaxed W-cycle, which aims at preserving the
robustness of the K-cycle, while avoiding dot product computation.

Finally, sparse direct solvers are not efficient on GPUs, and more generally, the size of the
coarsest system is typically too small to make a reasonable usage of GPUs capabilities. This
leads us to transfer the coarsest system on the CPU, using thus a CPU bottom-level solver.
While a straightforward choice would then consist in using a sparse direct solver, we observe
that even better results are obtained using instead a single iteration of the standard (CPU)
version of AGMG. Since the setup and the bottom solve are performed on the CPU, while
the remaining runs on the GPU, we resort to the “hybrid GPU-CPU” qualification for the
presented method.

Numerical results show that with the adaptations mentioned above, the presented approach
preserves the robustness of the standard AGMG software while exhibiting considerable
speedup in the solve phase. The comparison with AmgX reveals that this latter is less robust
and often slower in the solve phase when using coarsening by aggregation, that is, a technology
similar to the one used in AGMG. On the other hand, the solve phase with AmgX may be
faster when using classical AMG coarsening [26], but this variant appears overall even less

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 689

robust. These latter results give an additional argument in favor of keeping the quality-based
aggregation scheme on the CPU, since this scheme represents the most significant conceptual
difference between the aggregation-based version of AmgX and the presented approach.

Eventually, let us point out that, for the sake of clarity, this work is focused on SPD
systems. On the one hand, in this case, we can provide theoretical foundations to the original
ingredients presented here, i.e., the polynomial acceleration of `1-Jacobi smoothing and the
relaxed W-cycle. On the other hand, for this case, we have a comprehensive test suite inherited
from previous works [14, 15, 20], allowing us to challenge the robustness of the solver but
also the efficiency of the GPU implementation, as the matrices in this suite exhibit quite
diverse connectivity patterns, some associated with low-order discretizations and/or regular
meshes and some with higher-order discretizations (up to fourth-order finite elements) and/or
unstructured meshes.

In the numerical experiments, we focus on linear systems from scalar elliptic PDEs, which
form the main class of applications of the AGMG software. Of course, solving such systems
is fast enough on CPUs. Obtaining further speedup thanks to GPUs is nevertheless useful in
several contexts. When linear systems are solved repeatedly during a simulation process (e.g.,
because of time stepping), the total amount of time spent in the linear system solver can be
large even though the time spent in solving each individual system is reasonable. On the other
hand, numerical simulations are more and more performed interactively by engineers who
dynamically adapt parameters based on the obtained results; in such cases, having the answer
in, say, 1 second instead of 10 has a significant impact on the user’s experience.

The remainder of this paper is organized as follows. In Section 2 we detail the porting
of the solve phase to GPUs and discuss the key modifications brought to achieve a proper
parallelism. The results of numerical experiments are reported in Section 3 and conclusions
are drawn in Section 4.

2. Porting. For SPD systems, AGMG implements the FCG method with multigrid
preconditioning. In the hybrid GPU-CPU version, we use a variant of the FCG algorithm as
described in [23], which minimizes the number of synchronization points. Besides operations
associated with the preconditioner, the needed operations are sparse matrix-vector products
for which we use functions from the cuSPARSE library, and vector operations, for which we
use functions from the cuBLAS library.

On the other hand, the multigrid preconditioning amounts to the recursive application of
Algorithm 1 given below, which is initially called at the fine-grid level k = 1 with A1 equal to
the system matrix A and r1 equal to the current residual of the linear system. This algorithm
involves the parameters τ (k)

i , i = 1, 2, 3. As discussed in Section 2.2, computing them via
some dot products gives the K-cycle, selecting uniformly τ (k)

i = 1 gives the standard W-cycle,
whereas the relaxed W-cycle is obtained using uniformly τ (k)

i = τ for some 1 < τ < 2. How
the algorithm navigates between the levels is further illustrated in Figure 2.1.

Pre- and post-smoothing iterations (steps 1 and 7) are discussed in Section 2.1. In between,
the residual is transferred to the coarser level k + 1 (step 3) by multiplying by the transpose
of the prolongation matrix Pk computed during the setup phase. At the coarse level, an
approximate solution of the coarse system (with the matrix Ak+1 also defined during setup) is
computed (step 4) using in general two iterations with the same multigrid preconditioner at
that level, which is therefore called recursively. The recursion is stopped when one reaches
level L, where a bottom-level solver is called; its choice is further discussed in Section 2.3.
The correction computed on the coarse level k + 1 is afterward prolongated at level k (step 5)
by multiplying by the prolongation matrix Pk.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

690 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

Algorithm 1 Multigrid as a preconditioner at level k (k ≥ 1); K- or (relaxed) W-cycle.
Calling sequence: zk = MGprec(rk, k).
Data: matrix Ak, smoother Mk, prolongation Pk, matrix Ak+1

Algorithm:
1: Pre-smoothing:

x
(0)
k = 0

x
(µ+1)
k = x

(µ)
k + ω

(µ)
k Mk(rk −Ax(µ)

k), µ = 1, . . . , νk

z
(1)
k = x

(νk)
k

2: Compute new residual: r̃k = rk −Ak z(1)
k .

3: Restrict residual: rk+1 = PTk r̃k.
4: Compute an approximate solution x̃k+1 to Ak+1 xk+1 = rk+1:

if k + 1 = L:
Bottom-level solver: x̃k+1 = BLS (Ak+1, rk+1)

else:
ck+1 = MGprec(rk+1, k + 1)
vk+1 = Ak+1 ck+1

r̃k+1 = rk+1 − τ (k+1)
1 vk+1

dk+1 = MGprec(r̃k+1, k + 1)

x̃k+1 = τ
(k+1)
2 ck+1 + τ

(k+1)
3 dk+1

5: Prolongate coarse-grid correction: z(2)
k = Pkx̃k+1.

6: Compute new residual: r̄k = r̃k −Ak z(2)
k .

7: Post-smoothing:

x̃
(0)
k = 0

x̃
(µ+1)
k = x̃

(µ)
k + ω

(µ)
k Mk(r̄k −Ax̃(µ)

k), µ = 1, . . . , νk

z
(3)
k = x̃

(νk)
k

8: zk = z
(1)
k + z

(2)
k + z

(3)
k

Regarding the GPU implementation of the operations in Algorithm 1, first note that, as
discussed in Section 2.1, the matrices Mk are in fact diagonal. Hence, except for restriction
(step 3) and prolongation (step 5), all operations are straightforwardly ported using cuBLAS
for vector operations and cuSPARSE for matrix-vector products with the matrices Ak.

The restriction and prolongation operations (steps 3 and 5) were implemented with
custom kernels. Let us first recall that with aggregation-based AMG, Pk are Boolean matrices
with at most one nonzero entry per row, whereas, with algorithms using successive pairwise
aggregations [14, 20], there exits a known and tight upper bound for the number of nonzero
entries per column according to the number of performed pairwise passes. That said, both
restriction and prolongation were implemented in a similar manner assigning a thread per
variable of the coarser grid, i.e., per column in the matrix Pk ; for each such variable j on the
coarser grid, one just needs to store the list of associated fine-grid unknowns, i.e., the list of
row indexes i for which (Pk)ij = 1.

In the following sections we discuss the differences introduced in Algorithm 1 compared
with what is used in standard AGMG. Namely, the smoothing is discussed in Section 2.1, the
multigrid cycles are considered in Section 2.2, and the bottom-level solver is addressed in

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 691

= GPU = CPU

Level 1

Level 2

Level 3

Level 4 (bottom)

S1

S2

R1

S3

R2

B

R3

S3

P3

B

R3

S3

P3

S2

P2

S3

R2

B

R3

S3

P3

B

R3

S3

P3

S2

P2

S1

P1

FIG. 2.1. Levels traversal of Algorithm 1 in the case of L = 4 levels. Sk stands for smoothing and related
operations at level k (steps 1–2, 6–8), Rk stands for the restriction operation (step 3), Pk stands for the prolongation
operation (step 5), and B stands for the bottom-level solve; as discussed in Section 2.3, this latter is performed on the
CPU.

Section 2.3.

2.1. Smoother. Gauss-Seidel iterations are the smoothers of choice for sequential AMG
methods [5]. They require no additional parameters while often exhibiting attractive smoothing
properties. AGMG uses as default one forward Gauss-Seidel sweep for pre-smoothing and
one backward sweep for post-smoothing.

Nevertheless, Gauss-Seidel iterations are not convenient for a parallel implementation.
Richardson and damped Jacobi iterations are much more suitable to run on GPUs. However,
they require a damping parameter which depends on the largest eigenvalue of the system matrix
(Richardson) or on the largest eigenvalue of the system matrix preconditioned by its diagonal
(Jacobi). For the set of test problems considered in Section 3, these largest eigenvalues with
diagonal preconditioning range from 2 to 3.4, so that it seems difficult to fix a uniform value
for the damping parameter that could be both robust and near optimal in all cases.

Therefore, in this work, we opt for a `1-Jacobi smoothing [4], which amounts to using,
for the matrix Ak = (a

(k)
ij),

(2.1) Mk = diag

1
/ n∑
j=1

|a(k)
ij |

 .

Standard `1-Jacobi smoothing uses no relaxation, i.e., steps 1 and 7 are implemented with
ω

(µ)
k = 1. Observe that

‖Mk Ak‖∞ = max
i

n∑
j=1

|a(k)
ij |∑n

j=1 |a
(k)
ij |

= 1 .

Hence, if Ak is SPD, the eigenvalues of Mk Ak are in the interval (0, 1], implying that these
standard `1-Jacobi smoothing iterations are always convergent. Note also that if the fine-grid
matrix A is SPD, then the used coarsening scheme ensures that the matrices Ak are SPD at
every level.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

692 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

In comparison, standard Jacobi smoothing uses M (Jac)
k = ωJac diag

(
1/a

(k)
ij

)
, where

ωJac is a damping parameter. For scalar elliptic PDEs, low-order finite difference or finite
element discretizations often lead to matrices satisfying

∑n
j=1 |aij | ≈ 2 aii; this is because off-

diagonal entries are nonnegative while the row-sum is zero everywhere except near boundaries.
Then, there is no significant difference between `1-Jacobi and standard Jacobi smoothing with
ωJac = 1/2. Moreover, if `1-Jacobi smoothing is combined with relaxation or polynomial
acceleration (see below), then again similar results can be obtained using standard Jacobi
smoothing, adapting the relaxation parameters in a straightforward way. However, for higher-
order discretizations, there is a significant difference between `1-Jacobi and standard Jacobi
smoothing, with the main consequence that the largest eigenvalue of M (Jac)

k Ak changes from
problem to problem. Therefore, just finding a value ωJac that would be robust and close to
optimal in all cases seems out of reach. A fortiori, using polynomial acceleration with fixed
parameter sets as explained below is not possible with standard Jacobi smoothing.

Indeed, here we further exploit the fact that the eigenvalues of Mk Ak are known to be
in the interval (0, 1] to combine `1-Jacobi smoothing with polynomial acceleration. That is,
we apply the Chebyshev iterative method (see for instance [3]) to the system Ak xk = rk
preconditioned with the matrix Mk. This may also be seen as combining `1-Jacobi smoothing
and polynomial smoothers [4], a combination considered here seemingly for the first time.
Note, however, that optimizing the weights for the standard Jacobi smoother via Cheby-
shev polynomials is considered in some early works under the name of “multi-stage Jacobi
smoothing” [6, 27].

In Algorithm 1, the polynomial acceleration is reflected by using relaxation factors
ω

(µ)
k 6= 1 at steps 1 and 7. Consider, e.g., the first of these steps. The error e(µ)

k = A−1
k rk−x(µ)

k

satisfies, after νk smoothing iterations,

(2.2) e
(νk)
k = Πνk

µ=1(I − ω(µ)
k MkAk) e

(0)
k .

It means that an eigenmode of Mk Ak associated with the eigenvalue λi is damped by a factor
of

(2.3) Πνk
µ=1 (I − ω(µ)

k λi) = pνk(λi) ,

where pνk is a polynomial of degree νk such that pνk(0) = 1. The smoothing scheme is most
efficient when this damping is maximized for all high-frequency modes. A rule of thumb
defines these as those associated with eigenvalues in the interval [aλmax, λmax], where λmax

is the largest eigenvalue of MkAk and a a fixed fraction, e.g., a = 0.3 or a = 0.25 [4]. Then,
given the number of smoothing steps νk, one selects the polynomial that provides optimal
damping for the eigenvalues in the corresponding interval, and this fixes the ω(µ)

k , which
are the inverses of the roots of this polynomial. Such optimal polynomials are known to be
Chebyshev polynomial [3], whose roots are given by

(2.4)
(
ω

(µ)
k

)−1

=
λmax

2

(
(1− a) cos

(
(2µ−1)Π

2νk

)
+ 1 + a

)
, µ = 1, . . . , νk .

A further nice property of these polynomials is that the iteration remains convergent for
positive eigenvalues below the lower end aλmax of the selected interval. Hence, the smoothing
scheme is relevant as long as λmax is not underestimated.

With classical polynomial smoothing as in [4], this estimation of λmax is crucial and
requires additional preprocessing. However, here we combine this approach with `1-Jacobi
smoothing for which one knows that the largest eigenvalue is at most 1 and practically equal to
this value. Hence, using λmax = 1 is both safe and practically optimal. It remains thus only to

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 693

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

deg. 1 Cheb.

deg. 1
deg. 2 Cheb.

deg. 2

FIG. 2.2. Factor (2.3) for λi ∈ [a, 1] with a = 0.25, for degree 1 and 2 polynomials with Chebyshev
acceleration (ω(µ)

k given by (2.4)), and without it (ω(µ)
k = 1).

select the fraction a. We found that the results were not much sensitive to its value and overall
best with a = 0.25, which we therefore used uniformly in all experiments reported below.

Regarding the number of smoothing steps, standard AGMG uses a single step for both pre-
and post-smoothing. However, Gauss-Seidel is a better smoother than `1-Jacobi, and using
more smoothing steps might therefore be a sensible option. Regarding the inner levels (k > 1:
all levels but the fine-grid one), it turns out that using more than ν1 = 1 smoothing steps
hardly improves the number of iterations needed by the solver. Note that even with a single
step, and thus a polynomial of degree 1, there is a significant difference between the standard
`1-Jacobi iteration and its polynomially accelerated version, in which ω(1)

k = 2
1.25 = 8

5 ; see
also Figure 2.2 for a sketch of the polynomial.

At fine-grid levels, however, we found that the results are overall better using ν1 = 2
steps for both pre- and post-smoothing (and thus degree-2 polynomials; see Figure 2.2). The
main reason is that smoothing iterations at fine-grid levels are among those operations for
which GPUs provide the highest speedup. Hence, it is worth performing more such operations
if this helps to save on operations on the coarser grids, for which the speedup is lower. Also, it
has been observed that ν1 = 2 at the fine-grid level has more impact on the number of solver
iterations than using νk = 2 in coarser levels (i.e, for k = 2, . . . , L− 1).

In Table 2.1 we illustrate the benefit of the smoothing strategy proposed here compared
with standard approaches by reporting the number of iterations with several alternative strate-
gies for a sample of our tests problems presented in Section 3. In all cases we ran the same
code except for the smoothing; see Section 3 for the details of the experimental setting and
the problem description. The number of smoothing iterations was the same in all cases, that
is, as written above, 2 pre- and 2 post-smoothing steps at the fine-grid level, and 1 pre- and 1
post-smoothing step at all other levels.

In the last two columns we compare `1-Jacobi smoothing with and without polynomial
acceleration; that is, the proposed method that uses ω(µ)

k defined by (2.4) with λmax = 1 is
compared with the standard method obtained by setting ω(µ)

k = 1 for all k. One sees that
the polynomial acceleration brings a significant benefit in most cases, although the standard
method is already robust.

On the other hand, in the first three columns we report the results obtained with standard
polynomial smoothing as presented in [4]. This approach may also be described by (2.2) in
which one uses Mk = I and ω(µ)

k defined in (2.4) with λmax set to the largest eigenvalue of

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

694 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

TABLE 2.1
Number of iterations for AGMG with the K-cycle using standard polynomial smoothing [4] (with different values

of the a parameter) or `1-Jacobi smoothing with (poly. acc.) or without (standard) polynomial acceleration.

std. polynomial smoother `1-Jacobi smoother
Problem size a = 0.16 a = 0.25 a = 0.30 standard poly. acc.
MOD2D S1 14 14 14 17 13

S2 14 15 15 17 14

S3 14 15 15 18 14

JUMP2D S1 283 284 271 28 24

S2 n.c. n.c. n.c. 33 28

S3 n.c. n.c. n.c. 35 28

MOD3D S1 12 15 12 13 10

S2 21 19 17 14 10

S3 15 15 15 14 11

SPHERE1 S1 107 109 110 13 12

S2 n.c. n.c. n.c. 11 10

S3 n.c. n.c. n.c. 11 10

Ak. Thus, as additional preprocessing, the method requires the numerical assessment of the
largest eigenvalue of the matrix at each level. We present the results for several values of the
parameter a according to the discussion in [4] (0.16 is used as an approximation of 1/6).

The results are relatively similar to those obtained with our approach for the model
problems MOD2D and MOD3D. This is to be expected because for such problems the Mk

defined by (2.1) do not differ much from a constant diagonal, hence both approaches are close
to each other; the main advantage of the `1-Jacobi smoother being that λmax does not need to
be computed. However, standard polynomial smoothing appears significantly less robust as
it essentially fails on problems JUMP2D and SPHERE1, which are from PDEs with jumping
coefficients (see Section 3). Of course, convergence can likely be restored by using more
smoothing steps, especially at the coarse levels, the word “polynomial” suggesting to use more
than one step. We did not pursue in this direction since polynomially accelerated `1-Jacobi
smoothing seems anyway definitely more cost effective in the context of AGMG.

2.2. Multigrid cycles. Standard AGMG uses the K-cycle [24], which is known to be
robust [14, 20]. It is obtained using Algorithm 1 with τ (k+1)

i , i = 1, 2, 3, computed as
a function of dot products involving the iteration vectors ck+1, vk+1, etc.; see [20] for
algorithmic details. Five dot products are needed to compute all three parameters, hence, if
L ≥ 3, then each application of the multigrid preconditioner at the fine-grid level requires
globally 5 (2L−2−1) dot products. Such operations are not very efficient on GPUs [29], which
may suggest to use the standard W-cycle instead. With this, one uses τ (k)

i = 1 throughout,
hence no dot product is computed besides those needed at the fine-grid level by the FCG
algorithm.

However, the standard W-cycle appears significantly less robust, and using it instead of
the K-cycle leads in most cases to an unacceptable increase of the number of iterations [20].
Therefore, motivated by the analysis presented below, we consider the relaxed W-cycle, in
which one sets uniformly τ (k)

i = τ for some fixed 1 < τ < 2 ; since τ is fixed, here again no
dot product computation is needed.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 695

To see why this can be useful, consider thus τ (k)
i = τ , i = 1, 2, 3, for some fixed

τ , let Gk be the matrix such that MGprec(rk, k) = Gkrk, and let Bk be the matrix such
that step 4 of Algorithm 1 amounts to x̃k+1 = Bk+1rk+1. One sees that, if k < L, then
Bk = 2τGk − τ2GkAkGk. Since Bk is symmetric and Ak is SPD, it follows that BkAk is
similar to a symmetric matrix. Hence, its eigenvalues are real, and one may verify that its
largest and smallest eigenvalues satisfy

(2.5) σ(GkAk) ⊂ [λk, 1] ⇒
{
λmax(BkAk) ≤ 1

λmin(BkAk) ≥ min
(
2 τ λk − τ2λ2

k, 2 τ − τ2
)
.

Let now GTG
k be the matrix corresponding to the two-grid version of the preconditioner

at level k. That is, the matrix such that MGTG
prec(rk, k) = GTG

k rk, where MGTG
prec() stands for

a non-recursive version of Algorithm 1 in which step 4 is exchanged for x̃k+1 = A−1
k+1rk.

Because we use the same scheme for pre- and post-smoothing with an SPD smoother, it is
known that (see, e.g., [22, 28])

(2.6) λmax(GTG
k Ak) = 1 and λmin(GTG

k Ak) = λTGk > 0 .

On the other hand, Theorem 2.2 in [19] tells us that

λmax(Gk−1Ak−1) ≤ λmax(GTG
k−1Ak−1) ·max (λmax(BkAk), 1) ,

λmin(Gk−1Ak−1) ≥ λmin(GTG
k−1Ak−1) ·min (λmin(BkAk), 1) .

Combining this with (2.5) and (2.6), one deduces that, for k < L,

σ(GkAk) ⊂ [λk, 1] ⇒ σ(Gk−1Ak−1) ⊂ [λk−1, 1]

with

(2.7) λk−1 = λTGk−1 min
(
2 τ λk − τ2λ2

k, 2 τ − τ2
)
.

This allows us to estimate the eigenvalues of G1A1 by following a recursion bottom to top,
and the larger the final value λ1, the better the preconditioner. Note that λL−1 = λTGL−1 if
the bottom-level solver is a direct solver; otherwise, λL−1 may be estimated using again [19,
Theorem 2.2].

Consider now the effect of τ in (2.7). Clearly, one needs τ < 2, otherwise 2 τ − τ2

is negative. On the other hand, choosing τ < 1 yields a less favorable estimate than for
τ = 1. However, selecting τ = 1 as the standard W-cycle does not seem very wise as well
since this minimizes 2 τ λk − τ2λ2

k over 1 ≤ τ < 2. One sees that increasing τ yields a
smaller value for λk−1 as long as 2 τ − τ2 does not become too small. In fact, the best would
be to balance the two terms in the minimum of the right-hand side of (2.7). This is what
the AMLI-cycle implements [28], but this requires to compute τ level by level based on the
eigenvalue estimates.

With the relaxed W-cycle, we propose a simpler approach that uses a fixed value of τ .
The following theorem details the conditions under which the recursion (2.7) yields a bound
on λ1 independent of the number of levels L.

THEOREM 2.1. Assume 1 ≤ τ < 2, and let λTG be such that 0 < λTG ≤ λTGk < 1 for
k = 1, . . . , L− 2.

(1) If

λTG ≥ 1

τ2
and λTG (2τ − τ2) ≤ λmin(GL−1AL−1) < 1 ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

696 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

then the recursion (2.7) yields

1 > λk ≥ λTG (2τ − τ2) for all k = L− 2, . . . , 1.

(2) If

1

2 τ
< λTG <

1

τ2
and λTG − (λTG− 1

τ)2

λTG
≤ λmin(GL−1AL−1) < 1 ,

then the recursion (2.7) yields

1 > λk ≥
1

τ

(
2− 1

τλTG

)
for all k = L− 2, . . . , 1.

Proof. We proceed by induction. We also use the fact that a ≥ x ≥ b implies the
inequality 2x− x2 ≥ min(2a− a2, 2b− b2).

(1): 1 > λk ≥ λTG (2τ − τ2) holds for k < L − 1 by induction, whereas it hold for
k = L − 1 by assumption. With 1 > λTG ≥ 1

τ2 , it implies τ > τλk ≥ 2 − τ ; therefore,
2 τ λk−(τλk)2 ≥ 2 τ −τ2, from which one sees that (2.7) yields 1 > λk−1 ≥ λTG (2τ−τ2).

(2): τ > τ λk ≥ 2 − 1
λTG τ

holds for k < L − 1 by induction, whereas it holds for

k = L− 1 because τ
(
λTG − (λTG− 1

τ)2

λTG

)
= 2− 1

λTG τ
. It implies that

2(τ λk)− (τ λk)2 ≥ min
(

1
τ λTG

(
2− 1

τ λTG

)
, 2 τ − τ2

)
= 1

τ λTG

(
2− 1

τ λTG

)
,

where the last equality follows from 1 ≤ τ < 1
τ λTG

< 2 ; one sees thus that (2.7) yields
1 > λk−1 ≥ 1

τ

(
2− 1

τ λTG

)
as claimed.

If τ = 1, then the condition λTG > 1
2 corresponds to the one obtained in [19] for the

optimality of the W-cycle. Using τ > 1 leads to significantly weaker (i.e., more favorable)
conditions. In particular, for any λTG > 1

4 one may find a τ > 1 such that the resulting
multigrid cycle is optimal (at least, if λmin(GL−1AL−1) ≥ λTG); this is the same condition as
for the AMLI-cycle [28]. Moreover, it is not necessary to have formally a bound independent
of the number of levels since in practice there are not that many levels, especially with the
GPU implementation. On the one hand, we use the aggregation algorithm from [14] with
three passes of pairwise aggregation, which is relatively aggressive. On the other hand, as
discussed in the next section, we stop the recursion when there is still a relatively large number
of unknowns at the coarsest level.

Overall, the numerical results show that the best results were obtained setting the parameter
τ = τ

(k+1)
1,2,3 = 1.75, and this value has been used uniformly in all experiments reported below.

In Table 2.2 we compare the so-defined relaxed W-cycle with the standard W-cycle; see
Section 3 for the details of the experimental setting and the problem description. One sees that
the relaxation brings a significant improvement at virtually no cost, and it helps to maintain
a nearly constant number of iteration as the problem size increases. The relaxed W-cycle is
compared with the K-cycle in Section 3.

2.3. Bottom-level solver. Standard AGMG uses a sparse direct solver as a bottom-level
solver. However, to the best of our knowledge, the current implementation of sparse direct
solvers is not efficient enough on GPUs. Moreover, the coarsest level has relatively few
unknowns, hence the potential of GPU acceleration is significantly more limited than at the
fine-grid level. Therefore, here the bottom-level solver is implemented on the CPU rather
than on the GPU, as illustrated in Figure 2.1: the residual restricted at the coarsest level L is
transferred from GPU to CPU, then the bottom-level solve is applied on the CPU, and the
approximate solution is transferred back to GPU memory.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 697

TABLE 2.2
Number of iterations for the standard and relaxed W-cycle.

W-cycle
Problem size standard relaxed
MOD2D S1 23 15

S2 28 15

S3 31 15

JUMP2D S1 41 25

S2 58 30

S3 74 32

MOD3D S1 15 11

S2 17 12

S3 20 12

SPHERE1 S1 12 12

S2 13 11

S3 15 10

For this CPU bottom-level solver we could use a sparse direct solver as does standard
AGMG, but, inspired by [23], we obtained even better results using the standard (CPU version)
AGMG, that is, the bottom-level solver consists in one application of the sequential AGMG
preconditioner.

This turns out to be cost effective for three reasons. Firstly, despite one application of
sequential AGMG only provides a relatively rough approximation of the exact solution, the
numerical experiments show that the number of FCG iterations is practically not affected.

Secondly, even though the number of unknowns at the coarsest level is relatively small,
one such application remains significantly cheaper than one solve with the triangular factors of
a pre-computed sparse LU factorization, and the influence on the overall cost is not negligible
because the use of the K- or of the relaxed W-cycle entails that one needs 2L−2 bottom-level
solves per call to the preconditioner at the fine-grid level.

Finally, using AGMG implies that the time is proportional to the number of involved
unknowns, whereas the time needed by direct solvers grows more than linearly. This allows
us to increase up to nc = 5000, which is the threshold for the number of the coarse-grid
unknowns below which the bottom level is reached, while with a sparse direct solver a smaller
value would be needed. In this way, the total number of levels is often smaller, implying less
calls to the bottom-level solver, whereas one avoids to deal on the GPU with intermediate
levels having too few unknowns for an efficient GPU acceleration.

3. Numerical results. Numerical experiments were performed with linear systems aris-
ing from finite difference (FD) or finite element (FE) discretizations of the second-order scalar
elliptic boundary value problem

−∇

(
D∇u

)
= f in Ω ⊂ Rd,

u = g0 on ΓD,

∂u

∂n
= g1 on ΓN = ∂Ω\ΓD,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

698 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

TABLE 3.1
Problem sizes and sparsity of the associated system matrices.

S1 S2 S3
Problem n

106

nnz(A)
n

n
106

nnz(A)
n

n
106

nnz(A)
n

ANI2D, BFE, 0.4 5.0 3.2 5.1 25 5.0
JUMP2D, MOD2D
LSHAPE1 0.3 7.0 1.3 7.0 5.1 7.0
LSHAPE2 0.3 11.4 1.3 11.5 5.1 11.5
LSHAPE3 0.7 16.9 2.9 17.0 11.5 17.0
LSHAPE4 1.3 23.4 5.1 23.5 – –
ANI3Da.b, JUMP3D, 0.5 6.9 4.02 7.0 33 7.0
MOD3D
SPHERE1 0.008 12.5 0.06 15.0 0.5 15.2
SPHERE2 0.06 28.3 0.5 28.8 – –
SPHERE3 0.2 48.3 1.7 47.4 – –
SPHERE4 0.5 74.8 – – – –

in two (d = 2) or three (d = 3) dimensions. We briefly describe the test problems below,
treating separately two- and three-dimensional problems (2D and 3D, respectively); more
details can be found in [20] for problems discretized on Cartesian grids, whereas the other
problems are similar to those considered in [14, 15]. Note that all discretizations using
Cartesian grids correspond to a unit square (2D) or a unit cube (3D).

The 2D problems include
• five-point FD discretization of constant coefficient problems with coefficient D =

(1, εy) on a Cartesian grid; we consider εy = 1 (MOD2D) and εy = 10−2 (ANI2D);
• five-point FD discretization of a piecewise-constant coefficient problem on a Cartesian

grid (JUMP2D) ;
• bilinear FE discretization of a constant coefficient problem with anisotropic coeffi-

cient D = (1, 10−2) on a Cartesian grid (BFE);
• FE discretization using Pk Lagrangian finite elements on an unstructured L-shaped

mesh with simplex size progressively decreased near the reentering corner in such
a way that the mesh size in its neighborhood is about 103 times smaller; the orders
k = 1, . . . , 4 correspond to LSHAPE1, . . . , LSHAPE4.

Regarding the 3D problems, they include
• seven-point FD discretization of constant coefficient problems in 3D with coefficient
D = (1, εy, εz); we consider εy, εz = 1 (MOD3D), εy = 1, εz = 0.07 (ANI3Da),
and εx = εy = 0.07 (ANI3Db);

• seven-point FD discretization of a piecewise-constant coefficient problem on a Carte-
sian grid (JUMP3D);

• FE discretization using Pk Lagrangian finite elements on the unit cube with D = 1
everywhere except within a small sphere of radius 2/5 at the center of the domain,
where D = 103 ; the grid is unstructured and quasi-uniform; the orders k = 1, . . . , 4
correspond to SPHERE1, . . ., SPHERE4.

Each problem comes in (at most) 3 different sizes that are given in Table 3.1.
Two variants of the hybrid GPU-CPU version of AGMG are considered: one using a

K-cycle and the other one using a relaxed W-cycle with relaxation parameter τ = 1.75 ; see
Section 2.2 for details. Besides this, we use the method as described in the previous section,
thus with a Chebyshev-accelerated `1-Jacobi smoother (Section 2.1) and a standard AGMG on

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 699

TABLE 3.2
Solve time and number of iterations for the sequential CPU version of AGMG (CPUseq), multithreaded CPU

version (6 threads) of AGMG (CPUmth), and the presented hybrid GPU-CPU version (GPU), as well as the speedup
(CPUmth

GPU) of the GPU version over the multithreaded one. All variants use the K-cycle.

Solve (ms) Speedup Number of iterations

Problem size CPUseq CPUmth GPU CPUmth
GPU CPUseq CPUmth GPU

JUMP2D S1 536. 229. 75. 3.05 23 41 24

S2 6090. 3230. 458. 7.05 26 49 28

S3 52100. 30300. 2620. 11.6 27 56 28

MOD3D S1 375. 114. 29. 3.93 10 11 10

S2 3350. 1080. 143. 7.55 10 11 10

S3 30600. 9560. 1230. 7.77 11 11 11

LSHAPE3 S1 1620. 430. 99. 4.34 14 16 13

S2 6650. 1960. 287. 6.83 14 17 14

S3 30800. 8680. 1010. 8.59 16 18 14

SPHERE1 S1 10. 8. 7. 1.14 8 10 12

S2 116. 31. 22. 1.41 11 10 10

S3 1060. 293. 76. 3.86 10 10 10

the CPU as bottom-level solver (Section 2.3). The setup is performed with standard AGMG,
thus using quality-based multiple pairwise aggregation [14], with in this case npass = 3 passes
(i.e., aggregates of size at most 8). The coarsest level is reached if the number of coarse
unknowns is below 5000.

Both variants are used as preconditioners for the FCG method, with the zero vector as
initial approximation; the iterations are stopped when the relative residual error is below
10−6. The results were obtained on a single-processor unit (Intel i7-7800X at 4GHz, with
16GB RAM) with a RTX 2080 Ti GPU (11GB RAM). All computation were done in double
precision.

First, we report in Table 3.2 the results for the hybrid GPU-CPU version of AGMG
based on the K-cycle along with those of the latest (sequential and multithreaded) versions of
AGMG [21] running on the CPU; the multithreaded versions is run with 6 threads (optimal
for a 6-core processor). For the sake of brevity, only a subset of the results is presented with
two problems of each kind (2D and 3D; structured and unstructured); the results for other test
problems are similar. Regarding the number of iterations, we note that it is essentially the same
for the hybrid GPU-CPU version and the sequential CPU version and even sometimes slightly
larger for this latter version. This illustrates the effectiveness of the Chebyshev-accelerated
`1-Jacobi smoother as proposed in Section 2.1, since the major difference between both solvers
from the algorithmic viewpoint is precisely in the smoothing scheme. On the other hand,
the number of iterations of the multithreaded version is higher for some problems. This is
because the parallelisation of this latter is different from that of the hybrid GPU-CPU version.
Regarding the reported speedups of the GPU version over the multithreaded one, they mainly
indicate for the considered machine a typical performance improvement from transferring the
computation to GPU.

We now report on the comparison of the considered method with AmgX, a GPU only
solver by NVIDIA [16]. Two configurations of AmgX are considered, referred to as aggre-

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

700 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

TABLE 3.3
Setup time for AGMG (sequential, on CPU), solve time, and number of iterations for the hybrid GPU-CPU

version of AGMG (AGMG-GPU) and AmgX applied to the 2D problems; “Agg” refers to the aggregation configuration
and “Cls” to the classical one; n.c. means that the solver did not converge in 300 iterations.

Setup Solve Number of iterations
AGMG-GPU AmgX AGMG-GPU AmgX

Problem K-cycle W-cycle Agg Cls K-cycle W-cycle Agg Cls
ANI2D S1 187. 68. 57. 172. 43. 23 24 159 39

S2 2120. 363. 373. 1127. 200. 25 30 199 41

S3 20600. 2220. 2650. 8959. 1445. 26 32 216 44

BFE S1 299. 74. 74. 105. – 23 28 98 n.c.

S2 3070. 455. 524. 887. – 27 33 165 n.c.

S3 26200. 3200. 3740. 7412. – 30 36 193 n.c.

JUMP2D S1 212. 75. 65. 103. 195. 24 25 107 42

S2 2350. 458. 469. 788. 172. 28 30 176 45

S3 22300. 2620. 2790. 6818. 1428. 28 32 216 48

MOD2D S1 213. 47. 44. 85. 43. 13 15 89 39

S2 2300. 213. 222. 644. 172. 14 15 140 41

S3 21900. 1280. 1280. 4996. 1297. 14 15 159 45

LSHAPE1 S1 211. 17. 19. 17. 25. 5 6 17 25

S2 832. 52. 57. 61. 73. 6 7 23 30

S3 3200. 183. 199. 329. 276. 7 8 39 38

LSHAPE2 S1 322. 47. 51. 59. – 13 15 55 n.c.

S2 1290. 131. 138. 216. – 13 15 76 n.c.

S3 4990. 401. 389. 796. – 14 15 81 n.c.

LSHAPE3 S1 998. 99. 107. 139. – 13 15 57 n.c.

S2 4020. 287. 289. 564. – 14 15 80 n.c.

S3 16100. 1010. 1100. 2214. – 14 16 82 n.c.

LSHAPE4 S1 2330. 252. 268. – – 15 17 n.c. n.c.

S2 9480. 819. 824. – – 16 17 n.c. n.c.

gation and classical. For the aggregation configuration, we select the option that provides
aggregates of size 4. For the classical configuration we use classical AMG coarsening, where
the vertices of the coarser grid are connected if they are directly or indirectly connected in
the finer grid (“distance-2” graph or “D2 interpolation”). Further, for the latter configuration,
aggressive coarsening is used at the 2 finest levels to avoid systematically running out of
memory for the largest problems. Both configurations use AMG as a preconditioner for the
FCG method and the block Jacobi smoother with ω = 2

3 . These configurations are similar to
the “standard” configuration provided with AmgX, and these options have been chosen as they
give overall better results (lower running times) than alternatives.

The results are given in Table 3.3 for the 2D problems and in Table 3.4 for the 3D
problems, and they are also illustrated with bar diagrams in Figures 3.1, 3.2, 3.3, and 3.4 (one
figure per problems kind: 2D and 3D, structured and unstructured).

Comparing first the results for the K-cycle and the relaxed W-cycle variants, we note that
their performance is quite similar. If the number of iterations is the same or close, as typically

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 701

3.59 · 105 3.24 · 106 2.50 · 107

Mod2D

1.40

2.80

4.20

5.60

13 14

14

15 15

15

39 41

45

89

140

159
AmgX aggregation

AmgX classical

AGMG W-cycle

AGMG K-cycle

3.61 · 105 3.24 · 106 2.50 · 107

Jump2D

2.00

4.00

6.00

8.00

24
28

28

25
30

32

42 45

48

107
176

216

3.61 · 105 3.24 · 106 2.50 · 107

Ani2D

2.60

5.20

7.80

10.40

23 25

26

24 30

32

39 41

44

159
199

216

3.59 · 105 3.24 · 106 2.50 · 107

BFE

2.20

4.40

6.60

8.80

16
16

16

17
17

18

98
165

193

Convergence not reached

Execution time (s) vs. Problem size in 2D

FIG. 3.1. Results for structured 2D problems in GPU timing. The number on top of each bar is the number of
iterations.

4.93 · 105 4.02 · 106 3.25 · 107

Mod3D

1.14

2.28

3.42

4.56

10 10

11

11 12

12

26 29

30

39
58

72

AmgX aggregation

AmgX classical

AGMG W-cycle

AGMG K-cycle

5.25 · 105 4.15 · 106 3.30 · 107

Ani3Da

1.56

3.12

4.68

6.24

11 11

11

13 13

14

30 3260
88

97

4.93 · 105 4.02 · 106 3.25 · 107

Jump3D

1.26

2.52

3.78

5.04

11 12

12

12 12

13

29 30

32

46
68

78

5.25 · 105 4.15 · 106 3.30 · 107

Ani3Db

0.68

1.36

2.04

2.72

16
16

16

17
17

18

29
32

55

81

Out of memory

Execution time (s) vs. Problem size in 3D

FIG. 3.2. Results for structured 3D problems in GPU timing. The number on top of each bar is the number of
iterations.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

702 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

3.23 · 105 1.29 · 106 5.14 · 106

Lshape1

1.98

3.96

5.94

7.92

5 6 76 7 825 30 3817
23

39

AmgX aggregation

AmgX classical

AGMG W-cycle

AGMG K-cycle

3.19 · 105 1.28 · 106 5.13 · 106

Lshape2

1.14

2.28

3.42

4.56

13 13
14

15 15
15

55
76

81

7.20 · 105 2.88 · 106 1.15 · 107

Lshape3

1.56

3.12

4.68

6.24

13 14

14

15 15

16

57
80

82

1.28 · 106 5.13 · 106

Lshape4

0.24

0.48

0.72

0.96

15

16

17

17

Convergence not reached

Execution time (s) vs. Problem size in 2D

FIG. 3.3. Results for unstructured 2D problems in GPU timing. The number on top of each bar is the number of
iterations.

8.40 · 103 6.55 · 104 5.17 · 105

Sphere1

0.02

0.04

0.06

0.08

12

10

10

12

11

10

11

12

19

14

24

31

AmgX aggregation

AmgX classical

AGMG W-cycle

AGMG K-cycle

6.55 · 104 5.17 · 105

Sphere2

0.04

0.08

0.12

0.16

10

10

10

11

24

33

2.19 · 105 1.74 · 106

Sphere3

0.68

1.36

2.04

2.72

11

12

11

12

31

264

5.17 · 105

Sphere4

0.08

0.16

0.23

0.31
1414

Convergence not reached

Execution time (s) vs. Problem size in 3D

FIG. 3.4. Results for unstructured 3D problems in GPU timing. The number on top of each bar is the number of
iterations.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 703

TABLE 3.4
Setup time for AGMG-GPU (sequential, on CPU), solve time, and number of iterations for the hybrid GPU-CPU

version of AGMG (AGMG-GPU) and AmgX applied to the 3D problems; “Agg” refers to the aggregation configuration
and “Cls” to the classical one; n.c. means that the solver did not converge in 300 iterations; o.o.m. means that the
solver run out of memory. Both setup and solve time are represented in milliseconds.

Setup Solve Number of iterations
AGMG-GPU AmgX AGMG-GPU AmgX

Problem K-cycle W-cycle Agg Cls K-cycle W-cycle Agg Cls
ANI3Da S1 418. 57. 58. 88. 44. 11 13 60 30

S2 4460. 250. 286. 613. 208. 11 13 88 32

S3 49900. 1740. 2130. 5239. – 11 14 97 o.o.m.

ANI3Db S1 435. 56. 56. 89. 41. 16 17 55 29

S2 4390. 270. 280. 718. 216. 16 17 81 32

S3 47400. 2070. 2300. – – 16 18 o.o.m. o.o.m.

JUMP3D S1 331. 37. 39. 65. 36. 11 12 46 29

S2 3420. 194. 185. 474. 182. 11 12 68 30

S3 39800. 1400. 1500. 4218. 1516. 12 13 78 32

MOD3D S1 332. 29. 29. 53. 31. 10 11 39 26

S2 3360. 143. 167. 392. 171. 10 11 58 29

S3 39000. 1230. 1320. 3838. 1397. 11 12 72 30

SPHERE1 S1 11. 7. 7. 6. 3. 12 12 14 11

S2 107. 22. 24. 14. 16. 10 11 24 12

S3 932. 76. 72. 55. 29. 10 10 31 19

SPHERE2 S1 163. 23. 20. 15. – 10 10 24 n.c.

S2 1500. 102. 108. 70. – 10 11 33 n.c.

SPHERE3 S1 815. 71. 64. 45. – 11 11 31 n.c.

S2 6830. 365. 358. 2286. – 12 12 264 n.c.

SPHERE4 S1 2670. 266. 265. – – 14 14 n.c. n.c.

is the case for unstructured problems, the relaxed W-cycle variant is slightly faster as it does
not perform any dot product computation. However, for most problems, the K-cycle variant
requires slightly less iterations, which is often enough to compensate for a slightly slower
multigrid cycle. Further, both variants are robust in that the number of iterations remains
under 40 for the relaxed W-cycle variant, while it does not exceed 30 for the K-cycle one. The
number of iterations is also hardly affected by the problem size.

This robustness is even more striking when comparing with the considered AmgX config-
urations. Regarding the aggregation configuration, we note that it is typically slower, which is
due to a large number of iterations required in order to reach convergence (whereas the time
per iteration is actually typically smaller than that of the hybrid GPU-CPU version of AGMG).
This number of iterations often increases dramatically with the problem size. Regarding the
classical configuration of AmgX, its performance is comparable to the hybrid GPU-CPU
version of AGMG, and it is even significantly faster for some problems. However, despite two
levels of aggressive coarsening, it runs out of memory for some problems, while exhibiting
slow convergence or lack of it for some others, as it is the case, for instance, for 2D and 3D
FE discretizations of order 2 and higher.

4. Conclusions. We have presented an aggregation-based AMG method for hybrid GPU-
CPU architectures. The distinctive features of the method are the Chebyshev-accelerated

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

704 A. EL HAMAN ABDESELAM, Y. NOTAY, AND A. NAPOV

`1-Jacobi smoother, an optional use of the relaxed W-cycle as an alternative to the standard
K-cycle that avoids dot products, and an AMG-based bottom-level solver that runs on the
CPU. Other features include the quality-based aggregation coarsening, which is recursively
used during the setup stage on the CPU to build the multigrid hierarchy.

Numerical experiments with an AGMG-based implementation have revealed that the
resulting solver inherits the robustness of the standard sequential AGMG, while its solution
stage runs up to 12 times faster than its multithreaded counterpart. A comparison with AmgX,
a GPU-based AMG code from NVIDIA, further indicates that the presented implementation is
significantly more robust. This superior robustness leads to a faster solution stage for most of
the problems for which one of the AmgX configurations does converge.

Incidentally, our results show that Chebyshev-accelerated `1-Jacobi smoothing can out-
perform both standard polynomial smoothing and standard `1-Jacobi smoothing and also that
the relaxed W-cycles can be significantly faster than the standard W-cycle.

Acknowledgments. We thank Siham Boukhris for extensive and fruitful discussions. We
also thank Frank Hülsemann and two anonymous referees for their useful comments.

REFERENCES

[1] M. ADAMS, M. BREZINA, J. HU, AND R. TUMINARO, Parallel multigrid smoothing: polynomial versus
Gauss-Seidel, J. Comput. Phys., 188 (2003), pp. 593–610.

[2] H. ANZT, S. TOMOV, M. GATES, J. DONGARRA, AND V. HEUVELINE, Block-asynchronous multigrid
smoothers for GPU-accelerated systems, Procedia Comput. Sci., 9 (2012), pp. 7–16.

[3] O. AXELSSON, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
[4] A. H. BAKER, R. D. FALGOUT, T. V. KOLEV, AND U. M. YANG, Multigrid smoothers for ultraparallel

computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864–2887.
[5] W. L. BRIGGS, V. E. HENSON, AND S. MCCORMICK, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia,

2000.
[6] E. DICK AND K. RIEMSLAGH, Multi-staging of Jacobi relaxation to improved smoothing properties of

multigrid methods for steady Euler equations, J. Comput. Appl. Math., 50 (1994), pp. 241–254.
[7] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for nonsymmetric

systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.
[8] E. ALERSTAM, T. SVENSSON, AND S. ANDERSSON-ENGELS, Parallel computing with graphics process-

ing units for high-speed Monte Carlo simulation of photon migration, J. Biomed. Optics, 13 (2008),
Art. 060504, 3 pages.

[9] R. D. FALGOUT, R. LI, B. SJÖGREEN, L. WANG, AND U. M. YANG, Porting hypre to heterogeneous
computer architectures: strategies and experiences, Parallel Comput., 108 (2021), Art. 102840, 12 pages.

[10] P. GHYSELS, P. KŁOSIEWICZ, AND W. VANROOSE, Improving the arithmetic intensity of multigrid with the
help of polynomial smoothers, Numer. Linear Algebra Appl., 19 (2012), pp. 253–267.

[11] V. E. HENSON AND U. M. YANG, BoomerAMG: A parallel algebraic multigrid solver and preconditioner,
Appl. Num. Math., 41 (2002), pp. 155–177.

[12] D. C. JESPERSEN, Acceleration of a CFD code with a GPU, Sci. Programm., 18 (2010), pp. 193–201.
[13] A. NAPOV AND Y. NOTAY, Algebraic analysis of aggregation-based multigrid, Numer. Linear Algebra Appl.,

18 (2011), pp. 539–564.
[14] , An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34 (2012),

pp. A1079–A1109.
[15] , Algebraic multigrid for moderate order finite elements, SIAM J. Sci. Comput., 36 (2014), pp. A1678–

A1707.
[16] M. NAUMOV, M. ARSAEV, P. CASTONGUAY, J. COHEN, J. DEMOUTH, J. EATON, S. LAYTON,

N. MARKOVSKIY, I. REGULY, N. SAKHARNYKH, V. SELLAPPAN, AND R. STRZODKA, AmgX: a
library for GPU accelerated algebraic multigrid and preconditioned iterative methods, SIAM J. Sci.
Comput., 37 (2015), pp. S602–S626.

[17] Y. NOTAY, AGMG software and documentation. http://agmg.eu
[18] Y. NOTAY, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[19] , Convergence analysis of perturbed two-grid and multigrid methods, SIAM J. Numer. Anal., 45 (2007),

pp. 1035–1044.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://agmg.eu

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS 705

[20] , An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010), pp. 123–
146.
http://etna.ricam.oeaw.ac.at/vol.37.2010/pp123-146.dir/pp123-146.pdf

[21] , User’s guide for AGMG, 2010. http://agmg.eu
[22] , Algebraic theory of two-grid methods, Numer. Math. Theory Methods Appl., 8 (2015), pp. 168–198.
[23] Y. NOTAY AND A. NAPOV, A massively parallel solver for discrete Poisson-like problems, J. Comput. Phys.,

281 (2015), pp. 237–250.
[24] Y. NOTAY AND P. S. VASSILEVSKI, Recursive Krylov-based multigrid cycles, Numer. Linear Algebra Appl.,

15 (2008), pp. 473–487.
[25] J. D. OWENS, M. HOUSTON, D. LUEBKE, S. GREEN, J. E. STONE, AND J. C. PHILLIPS, GPU computing,

Proc. IEEE, 96 (2008), pp. 879–899.
[26] K. STÜBEN, An introduction to algebraic multigrid, in Multigrid, U. Trottenberg, C. W. Oosterlee, and

A. Scüller, eds., Academic Press, London, 2001, pp. 413–532.
[27] K. STÜBEN AND U. TROTTENBERG, Multigrid methods: fundamental algorithms, model problem analysis

and applications, in Multigrid Methods (Cologne, 1981), W. Hackbusch and U. Trottenberg, eds., vol. 960
of Lecture Notes in Math., Springer, Berlin, 1982, pp. 1–176.

[28] P. S. VASSILEVSKI, Multilevel Block Factorization Preconditioners, Springer, New York, 2008.
[29] H. WANG AND Y. YANG, Descent methods for elastic body simulation on the GPU, ACM Trans. Graph., 35

(2016), Art. 212, 10 pages.
[30] U. M. YANG, Parallel algebraic multigrid methods—high performance preconditioners, in Numerical Solution

of Partial Differential Equations on Parallel Computers, A. M. Bruaset and A. Tveito, eds., vol. 51 of
Lecture Notes in Comput. Sci Eng., Springer, Berlin, 2006, pp. 209–236.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.37.2010/pp123-146.dir/pp123-146.pdf
http://agmg.eu

