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Abstract. A parametric model order reduction (MOR) approach for simulating high-dimensional models
arising in financial risk analysis is proposed on the basis of the proper orthogonal decomposition (POD) approach to
generate small model approximations for high-dimensional parametric convection-diffusion reaction partial differential
equations (PDE). The proposed technique uses an adaptive greedy sampling approach based on surrogate modeling to
efficiently locate the most relevant training parameters, thus generating the optimal reduced basis. The best suitable
reduced model is procured such that the total error is less than a user-defined tolerance. The three major errors
considered are the discretization error associated with the full model obtained by discretizing the PDE, the model
order reduction error, and the parameter sampling error. The developed technique is analyzed, implemented, and
tested on industrial data of a puttable steepener under the two-factor Hull-White model. The results illustrate that the
reduced model provides a significant speedup with excellent accuracy over a full model approach, demonstrating its
potential for applications to the historical or Monte Carlo Value-at-Risk calculations.
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1. Introduction. Investors use risk analysis to determine whether to undertake a particu-
lar venture, the plausible return, and how to mitigate potential losses of an activity. The risk
analysis of financial instruments often requires the valuation of such instruments under a wide
range of future market scenarios. A suitable valuation function takes these market scenarios
as input parameters and determines the fair value of financial instruments. Examples of such
risk analysis tasks are the calculation of the Value-at-Risk (VaR) or the expected shortfall to
estimate worst-case scenarios of financial holdings. Package retail investments and insurance
products (PRIIPs) are the packaged instruments that are offered to retail investors. In order
to make PRIIPs from different manufacturers more comparable concerning their risks and
returns, the European regulation (EU) 1286/2014 requires manufacturers of PRIIPs to supply
key information documents (KIDs) to possible retail investors that are easy to read and to
understand [17]. The commission delegated regulation (EU) 2017/653 formulates the details
of how the risk and the possible returns of a PRIIP have to be calculated [18]. There are four
different categories of PRIIPs. In this paper, we concentrate on category 3 instruments, for
which at least 10 000 market data scenarios have to be generated, and the PRIIP has to be
valuated under these scenarios.

In our approach, the financial instruments are evaluated via the dynamics of short-rate
models [11], based on convection-diffusion-reaction partial differential equations (PDE). The
choice of the short-rate model depends on the underlying financial instrument. Some of
the prominent financial models are the one-factor Hull-White model [26], the shifted Black-
Karasinski model [8], and the two-factor Hull-White model [28]. These models are calibrated
based on market data like yield curves that generate a high-dimensional parameter space [11].
To perform the risk analysis, the financial model needs to be solved for such a high-dimensional

∗Received October 27, 2021. Accepted April 26, 2022. Published online on May 16, 2022. Recommended by
Khalide Jbilou. This project has received funding from the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant Agreement No. 765374.
†MathConsult GmbH, Altenbergerstraße 69, A-4040 Linz, Austria.
‡Institut für Mathematik, MA 4-5, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, Germany

(jadhav@math.tu-berlin.de)

469

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol55s469


ETNA
Kent State University and

Johann Radon Institute (RICAM)

470 A. BINDER, O. JADHAV, AND V. MEHRMANN

parameter space, and this requires efficient algorithms. For instruments with high complexity
and long-time horizons, computing times of minutes for a single valuation are not unusual.

Thus, in a previous paper [7], we have established a parametric model order reduction
(MOR) approach based on a variant of the proper orthogonal decomposition approach, which
significantly reduces the overall computation time [6, 13]. This MOR approach is computa-
tionally feasible [23] as it determines low-dimensional linear (or affine) subspaces [44, 57] via
a truncated singular value decomposition (SVD) of a snapshot matrix [53] that is computed by
simulating the full model obtained by discretizing the PDE for a small number of pre-selected
training parameter values. The question of how to select these parameters is often the most
challenging part of the process. Our previous work [7] has established greedy algorithms to
determine the training parameters more efficiently. The adaptive greedy approach searches the
entire parameter space efficiently using a surrogate model and determines the best suitable
training parameters. The principal component regression technique has been used to construct
the surrogate model.

This paper provides a detailed error analysis of the model order reduction framework.
We have considered the hierarchical framework to perform the error analysis that starts by
considering the solution of the partial differential equation as the true solution. We then
discretize the underlying PDE to generate the full model and project it on a reduced basis
to obtain the reduced model. Each stage described here is associated with some numerical
error. Three major numerical errors considered are the discretization error associated with
the full model, the model order reduction error, and the sampling error associated with the
sampling algorithms. The total error associated with the model order reduction framework
is the sum of these three significant errors. Our approach aims to minimize the total error
such that it is less than the user-defined tolerance generating the suitable reduced model. We
define a discretization error estimator based on estimating the exact solution of the PDE,
which is higher-order accurate than the underlying numerical solution [48]. The method is
known as Richardson extrapolation [45], which uses a sequence of solutions to estimate the
discretization error and can be applied to almost any type of discretization approach as well
as to both local and global quantities [49]. The discretization error is mainly governed by
the choice of the grid size, so we present an approach to select an optimal grid based on the
developed error estimator.

The model order reduction error is composed of the projection error associated with the
proper orthogonal decomposition approach and how well the reduced model approximates
the full model [33]. Both the projection error and the reduced model error depend on the
dimension of the reduced basis. We present an algorithm to select an optimal reduced
dimension that minimizes the projection error and the reduced model error. To obtain a
reduced basis, we have to compute a singular value decomposition of the snapshot matrix,
which is a computationally costly task. Recent research has shown that the randomized
singular value decomposition is a good alternative, and it is noticeably faster than the basic
SVD for some applications [36, 42, 56]. Thus, we use the randomized truncated singular value
decomposition, developed in [24], in the adaptive greedy sampling approach to determine the
reduced basis. The sampling algorithm used to obtain the training parameters to construct a
reduced basis introduces a sampling error. In the adaptive greedy sampling, the projection
error due to the principal component analysis (PCA) and the prediction error of the surrogate
model form the total sampling error. We analyze the projection error due to the PCA in a
similar sense to the projection error of the POD, while the mean square error of prediction is
used to assess the quality of the surrogate model.

We also perform a sensitivity analysis for these errors to find out about the relative
contribution of each error to the total error [51]. It provides useful insight into which error
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contributes most to the variability of the model output [14]. The sensitivity analysis assists in
improving the model output by selecting the proper grid size, reduced dimension, and training
parameters. It also helps to allocate computational resources efficiently as more computational
effort could be spent on the most sensitive parameters.

In a previous paper, we have considered a numerical example of a floater with caps and
floors under the one-factor Hull-White model [7]. However, there are more complicated
instruments, e.g., steepeners whose coupons depend on the difference between the two interest
rates [1]. For such instruments, we need to consider a multi-factor model. We solve a numerical
example of the puttable steepener with caps and floors using the two-factor Hull-White model
in this paper.

2. Model order reduction. In an affine one-factor model, the forward rates f(t, T1),
f(t, T2) at two different tenors T1, T2 are perfectly correlated, i.e., their correlation coefficient
is one, which is unrealistic [9]. This perfect correlation only allows parallel shifts of the yield
curves. However, we often noticed the yield curve steepening where short-term rates are low
and the long-term rates are high [11]. Also, for instruments like steepeners [2], where coupons
depend on the difference between two rates, we need to consider a multi-factor model like the
two-factor Hull-White model. The two-factor model overcomes these drawbacks by adding a
stochastic disturbance to the drift term. In the two-factor Hull-White model, the short rate r is
assumed to satisfy the following stochastic differential equation [27]

dr(t) = (θ(t) + u(t)− α(t)r(t))dt+ σ1(t)dW1(t),

du(t) = −b(t)u(t) + σ2(t)dW2(t),

where α, b, σ1, σ2 > 0, and W1,W2 are two Brownian motions under the risk neutral measure
such that

dW1(t)dW2(t) = γdt,

where −1 ≤ γ ≤ 1 is the correlation coefficient. To evaluate the underlying financial
instrument, we use the partial differential equation for the two-factor Hull-White model and
then solve it using appropriate boundary conditions and known terminal conditions. Consider
a financial instrument V (t, r(t), u(t)) contingent on the stochastic interest rate movement r(t).
The two-factor Hull-White PDE is then given as [27]

(2.1)

∂V

∂t
+ (θ(t) + u− α(t)r)

∂V

∂r
− b(t)u∂V

∂u

+
1

2
σ2

1(t)
∂2V

∂r2
+

1

2
σ2

2(t)
∂2V

∂u2
+ γσ1(t)σ2(t)

∂V

∂r∂u
− rV = 0,

and the deterministic function θ(t) is chosen to fit the simulated yield curves. However, the reg-
ulation does not provide a methodology for obtaining the parameters α(t), b(t), σ1(t), σ2(t).
Thus, considering them as constants should lead to more robust results than time-dependent
parameters [1]. We consider the resulting robust two-factor Hull-White model with parameters
α, b, σ1, σ2 > 0 as positive constants and only the parameter θ(t) as time-dependent. Our re-
sults can, however, be extended to the more general case. According to the PRIIPs regulations,
we have to perform at least s = 10 000 yield curve simulations. We construct a simulated
yield curve matrix

Y =

y11 · · · y1m

...
...

...
ys1 · · · ysm

 ∈ Rs×m,
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which is then used to calibrate the parameter θ(t). The calibration based on s = 10 000
different simulated yield curves generates s different piecewise constant parameters θ`(t),
which change their values θ`,i only at the m tenor points. We incorporate these in a matrix

Θ =

θ11 · · · θ1m

...
...

...
θs1 · · · θsm

 .
A detailed procedure for the yield curve simulation and the calibration of θ(t) based on
simulated yield curves is described in [7, 38], respectively. We have applied a finite element
method to solve the PDE (2.1) numerically; for more details see [1]. This discretization is a
parametric high-dimensional model of the form

(2.2) A(ρ`(t))V
n−1 = B(ρ`(t))V

n,

with given terminal vector V T and matrices A(ρ`) ∈ RM×M and B(ρ`) ∈ RM×M . Here
ρ = {α, b, σ1, σ2, γ, θ(t)} is the group of model parameters. We call this the full model (FM)
for the model reduction procedure. We solve (2.2) by propagating backward in time. Here
again ` = 1, . . . , s = 10 000, m is the total number of tenor points, and we need to solve this
system at each time step n with appropriate boundary conditions and a known terminal value
for the underlying instrument. Altogether, we have a parameter space P of size 10 000×m to
which we now apply model reduction.

To perform the parametric model reduction for system (2.2), we employ Galerkin projec-
tion onto a low-dimensional subspace via

V̄ n = QV nd ,

where the columns of Q ∈ RM×d represent the reduced basis with d�M , V nd being a vector
of reduced coordinates, and V̄ n ∈ RM the solution in the nth time step obtained using the
reduced model. For the Galerkin projection we require that the residual of the reduced state

(2.3) pn(V nd , ρ`) = A(ρ`)QV
n−1
d −B(ρ`)QV

n
d ,

is orthogonal to the reduced basis matrix Q, i.e.,

(2.4) QT pn(V nd , ρ`) = 0,

so that by multiplying pn(V nd , ρ`) with QT , we get

(2.5)
QTA(ρ`)QV

n−1
d = QTB(ρ`)QV

n
d ,

Ad(ρ`)V
n−1
d = Bd(ρ`)V

n
d ,

where Ad(ρ`) ∈ Rd×d and Bd(ρ`) ∈ Rd×d are the parameter-dependent reduced matrices.
We obtain the Galerkin projection matrix Q in (2.4) based on a proper orthogonal de-

composition (POD) approach, which generates an optimal-order orthonormal basis Q in the
least-squares sense that is independent of the parameter space P , and we do this by the method
of snapshots. The snapshots are nothing but the state solutions obtained by simulating the
full model for selected parameter groups. We assume that we have a training set of parameter
groups ρ1, . . . , ρk ∈ [ρ1, ρs]. We compute the solutions of the full model for this training set
and combine them in a snapshot matrix V̂ = [V (ρ1), V (ρ2), . . . , V (ρk)]. The POD method
solves (see [21])

POD(V̂ ) := argmin
Q

1

k

k∑
j=1

‖Vj −QQTVj‖2,
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for an orthogonal matrix Q ∈ RM×d via a truncated singular value decomposition

V̂ = ΦΣΨT =

k∑
i=1

Σiφiψ
T
i ,

where φi and ψi are the left and right singular vectors of the matrix V̂ , respectively, and Σi
are the singular values. The truncated SVD computes only the first k columns of the matrix Φ.
The detailed error analysis of the model order reduction and the randomized truncated singular
value decomposition is explained in Section 3.2. We choose only d out of k POD modes to
construct Q = [φ1 · · ·φd], which minimizes the projection error (3.18)

εPOD =
1

k

k∑
j=1

‖Vj −
∑̀
k=1

(Vjφk)φk‖2 =

k∑
`=d+1

Σ2
` .

We summarize the procedure of selecting the dimension d of the reduced basis in Algorithm 5.
It is evident that the quality of the reduced model strongly depends on the selection of

parameter groups ρ1, . . . , ρk that are used to compute the snapshots. Hence, it is essential
to introduce an efficient sampling technique for the parameter space. We could consider
standard sampling techniques, like uniform sampling or random sampling [31]. However,
these techniques may neglect vital regions within the parameter space. As an alternative,
a greedy sampling method has been suggested in the framework of model order reduction.
The greedy sampling technique selects the parameters that maximize the error between the
reduced model and the full model. Further, the reduced basis is obtained using these selected
training parameters. The relative error calculation is expensive as it requires the full model
solution, so instead, the residual error associated with the reduced model (2.3) is used as an
error estimator. However, it is not reasonable to compute an error estimator for the entire
parameter space. This means that one has to select a pre-defined parameter set as a subset
of the high-dimensional parameter space to train the greedy sampling algorithm. We usually
select this pre-defined subset randomly. A random selection may neglect the crucial parameters
within the parameter space. Thus, to surmount this problem, we implemented an adaptive
greedy sampling approach. The algorithm chooses the most suitable parameters adaptively
using an optimized search based on surrogate modeling. This approach evades the cost of
computing the error estimator for each parameter within the parameter space and instead uses
a surrogate model to locate the training parameter set. We have built the surrogate model using
the principal component regression technique. See [7] for detailed sampling algorithms and
their implementation. This paper aims to study the numerical errors that arise during different
stages of the model order reduction approach.

3. Error analysis. In most cases, the exact solutions of mathematical models are un-
known, and they incorporate some modeling errors. We have no other way to compute
approximate solutions and to analyze them. However, approximate solutions contain some
numerical errors. It is necessary to reduce these numerical errors as much as possible to
improve the level of accuracy of the numerical solutions. Our mathematical model is a partial
differential equation with appropriate boundary conditions and a known terminal condition.
To solve this system, we have designed an approximate solution by discretizing the PDE and
thus committing a discretization error. Using model reduction based on the POD leads to a
projection error, which depends on the excluded singular values while generating the reduced
basis. In order to know how well the reduced model approximates the full model, we have to
determine the model order reduction error. In this work, the training parameters are chosen
based on either the classical greedy sampling or the adaptive greedy sampling approaches.
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Thus, we also have to consider a sampling error associated with the sampling algorithms as
well.

Figure 3.1 displays the model hierarchy for obtaining the reduced model with associated
errors in each stage. Usually, the formulated mathematical model is not an exact representation
of the underlying phenomenon but subjects to many simplifying assumptions. In this paper, we
assume the solution of the partial differential equation as the true solution, i.e., the modeling
error εm will be neglected.

Real Phenomenon

εm ⇒Modeling error

Partial differential equation, M

εh ⇒ Discretization error

Discretized model, Mh

A(ρs(t))V
n−1 = B(ρs(t))V

n, V (T ) = VT

εRM ⇒ Reduced model error

Reduced model, Md
h

Ad(ρs)V
n−1
d = Bd(ρs)V

n
d

εPOD := POD error
εsamp. := Sampling error

FIG. 3.1. A model hierarchy showing errors arising in the analysis of the mathematical model.

Let V be the exact solution for the mathematical model M. Let Vh be the solution
obtained using the discretized modelMh with mesh size h. Then the approximate solution
Vh encompasses the discretization error

εh =
‖V − Vh‖
‖V ‖

.

Furthermore, the reduced modelMd
h of dimension d is obtained (2.5). Let the V̄ be the result

obtained from the reduced model. The reduced model error can then be given as

εRM =
‖Vh − V̄ ‖
‖Vh‖

.
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The result obtained using the reduced model encloses the total numerical error, and based on
that, we can write the final output equation with numerical errors

(3.1) ‖V − V̄ ‖ ≈ ‖V − Vh‖+ ‖Vh − V̄ ‖.

The reduced model is obtained based on the proper orthogonal decomposition approach, which
induces a projection error εPOD. The total model order reduction error εd is then the sum of a
projection error εPOD and a reduced model error εRM

εd ≈ εRM + εPOD.

We use a sampling approach to select the most relevant parameters. This produces a reasonably
accurate reduced basis, but the sampling algorithms contribute to an additional sampling error.
Thus, the total simulation error εT can be estimated by the discretization error εh, a sampling
error εsamp and the model order reduction error εd as

(3.2) εT ≈ εm + εh + εRM + εPOD + εsamp.

We aim to generate the reduced model and to solve the financial instrument for the entire
parameter space such that the cost function (3.3) is minimized. This total error depends on
the grid size h, the reduced dimension d, and the quality of the training parameters c used to
obtain the reduced basis. We optimize these variables such that the total error εT is less than
the user-defined tolerance etol, i.e.,

min
{h,d,c}

εh + εd + εsamp,(3.3)

εT ≤ etol.

Another important issue is to know the contribution and the effect of each defined error on
the total error (3.2). Sensitivity analysis enables identifying the errors that have the most
significant influence on the model output. The sensitivity approach presented in Section 3.4
ranks the numerical errors according to their contribution to the total error and helps to
efficiently allocate the computational resources. The extra computational effort can be spent
on the cost parameters most sensitive to the final output at the expense of the computational
cost required to obtain the least sensitive parameters.

3.1. Discretization of the PDE. For the discretization of the PDE, we use a finite-dimen-

sional grid
(∏sd

k=1[rk, uk]

)
× [0, T ] in sd spatial dimensions and one temporal dimension.

The simulation time [0, T ] is divided into N equal intervals [tn, tn−1], where n = 1, . . . , N .
We consider an implicit time-stepping scheme. To obtain an optimal solution of the discrete
model, one must determine the best suitable time step and the grid size. We implement an
adaptive time-stepping scheme to achieve the optimal time step that solves the model at the
desired accuracy but with low computational cost while the grid size is selected such that the
discretization error is less than a specified user-defined tolerance. We have a PDE of the form

∂V

∂t
= L(r, u)V,

where L(r, u) is a linear differential operator containing all spatial derivatives. The idea is to
obtain the optimal time step ∆topt such that it minimizes the relative error between the exact
solution V and the solution obtained using the time step ∆topt

εt = ‖V − Vh(∆topt)‖.
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Assuming the numerical method used is of order p in time, the exact value of the PDE is V ,
and the approximated value is Vh(∆t) with the time step ∆t, the error for the approximation
is given as [55]

V = Vh(∆t)− C∆tp+1 −O(∆tp+2).

By neglecting the higher-order terms we can approximately determine the value of the constant
C as

(3.4) C =
Vh(∆t)− V

∆tp+1
.

Let Vh(K∆t) be the solution obtained using the time step K∆t

(3.5) V = Vh(K∆t)− CKp+1∆tp+1 −O(∆tp+2).

Considering a time discretization scheme of order p = 1 and substituting (3.5) into (3.4), we
get

(3.6) C =
Vh(K∆t)− Vh(∆t)

∆t2(K2 − 1)
.

We calculate ∆topt such that the relative error εt is less than the user-defined tolerance

εt = ‖V − Vh(∆topt)‖ ≤ ettol,

where

Vh(∆topt) = V + C∆t2opt +O(∆t3opt).

Thus, we get the relative error estimate ε̂t by substituting C (3.6) as

‖V − Vh(∆topt)‖ ≈
(

∆t2opt
∆t2

)
‖Vh(∆t)− Vh(K∆t)‖

K2 − 1
= ε̂t.

To determine the optimal step size we set ε̂t = ettol, which yields

(3.7) ∆t2opt ≈
ettol∆t

2(K2 − 1)

‖Vh(∆t)− Vh(K∆t)‖
.

Since the roundoff or iterative convergence errors that arise while solving the system of linear
equations are negligible compared to the discretization error, we can neglect them [35]. The
adaptive time-stepping strategy aims to find the time step that will achieve the desired accuracy
at a relatively low cost [5, 16]. Thus, we have to determine the largest possible time step that
satisfies (3.7). An automatic time step control can be executed using the optimal time step
∆topt, as shown in Algorithm 1. The step size controller is designed on the assumption that
the largest possible step size should be selected. If ∆topt > ∆t, then we can say that we have
a good estimation of the solution that satisfies the user-defined tolerance. Thus, the algorithm
runs until the optimal step size ∆topt becomes larger than the step size ∆t. It is important
to note that we have to select the time step such that all key time points are achievable, i.e.,
coupon dates, put dates, or valuation dates.

We also need a discretization error estimator based on estimating the exact solution for the
differential equation; see [48]. We use the Richardson extrapolation approach that estimates
the exact solution using the formal rate of convergence of a discretization method and two
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Algorithm 1: Automatic time step control.
Input : Full modelMh, maximum time step ∆tmax, ettol, K.
Output : ∆topt.
Solve the full model with the time step ∆tmax and store the result in Vh(∆tmax).
∆topt = 0, ∆t = 1.
while ∆topt < ∆t do

Compute a smaller step size ∆t = ∆tmax/K.
Solve the full model with the time step ∆t and store the result in Vh(∆t).

Compute an optimal time step ∆topt =
√

ettol∆t
2(K2−1)

‖Vh(∆t)−Vh(∆tmax)‖ .
Increment K = round(∆t/∆topt) + 1.

end
Set ∆topt = ∆t.

or three different solutions on systematically refined meshes [49]. One would argue that the
computation of multiple simulations in the asymptotic range of the full model increases the
computational burden. However, the main advantage of the Richardson approach is that it
can be used as a post-processing technique and can be applied to any discretization method
(e.g., finite element or finite difference). It estimates the total error, including locally generated
errors and those transported from other regions of the domain; see also [3, 34, 43].

Consider a discretization error as

εh =

∣∣∣∣Vh − VV

∣∣∣∣,
where V is the exact solution of the mathematical model and Vh is a solution obtained on a
grid spacing h using a discretized model. In the case of a two-dimensional system, we have

h =

[
1

E

E∑
i=1

A
(e)
i

]1/2

,

where E is the number of elements and A(e)
i is the area of ith element. For a smooth enough

solution with no discontinuities, we can expand the numerical solution Vh using Taylor
expansion

Vh = V + ξph
p + ξp+1h

p+1 + ξp+2h
p+2 + · · · ,

which leads to the discretization error

εh = |Vh − V | = ξph
p + ξp+1h

p+1 + ξp+2h
p+2 + · · · =

∑
p=Pf

ξph
p ≈ ξpfhpf := ε̄h

by neglecting higher-order terms. Here pf is the formal order of accuracy determined by the
preferred discretization scheme and is the first term in the series. To accurately estimate the
discretization error ε̄h, Richardson extrapolation demands that all other sources of numerical
errors (e.g., round-off error, iterative convergence errors) are negligible compared to the
discretization error [35].

Consider a grid refinement index g as the ratio of coarse to fine mesh size. It typically is
recommended (see, e.g., [12]) to use the grid refinement ratio between 1.5 to 2 as it allows to
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distinguish the discretization error from other error sources.

g =
hcoarse

hfine
> 1.

Let hfine = h and hcoarse = gh. Then the discretization error estimator is [48]

(3.8) ε̄h =
|Vh − V |

V
=

1

(gp − 1)

∣∣∣∣Vh − VghVh

∣∣∣∣.
To access the confidence in the discretization error estimate, it is necessary to define the
observed order of accuracy p̂ [48]. The requirement of the reliability of the discretization
error estimate is that the solutions are in the range of asymptotic convergence. To demonstrate
that the asymptotic range for different solutions has been achieved, we must have at least
three different discretized solutions with three different mesh sizes. We further calculate the
observed order using these discretized solutions over a range of meshes. According to [12],
when the observed order of accuracy is equal to the formal order of accuracy, we can have
a high degree of confidence in the error estimator. We can determine the observed order of
accuracy as follows. Consider three different mesh sizes h1, h2, and h3 such that

g12 =
h2

h1
> 1, g23 =

h3

h2
> 1.

Let h1 = h. Then h2 = g12h and h3 = g23g12h. Using the formal power series

V1 = V + ξph
p + ξp+1h

p+1 + · · · ,(3.9)

V2 = V + ξpg
p
12h

p + ξp+1g
p+1
12 hp+1 + · · · ,(3.10)

V3 = V + ξp(g23g12)php + ξp+1(g23g12)p+1hp+1 + · · ·(3.11)

and subtracting (3.10) from (3.11) and (3.9) from (3.10) and setting p̂ ≈ p, we obtain

V3 − V2 = ξp̂h
p̂(gp̂23g

p̂
12 − g

p̂
12) +O(hp̂+1),(3.12)

V2 − V1 = ξp̂h
p̂(gp̂12 − 1) +O(hp̂+1).(3.13)

Dividing (3.12) by (3.13) and neglecting higher order terms we have

V3 − V2

V2 − V1
=
gp̂23g

p̂
12 − g

p̂
12

gp̂12 − 1
,

V3 − V2

gp̂23 − 1
= gp̂12

(
V2 − V1

gp̂12 − 1

)
.

We can then determine p̂ by an iterative process

(3.14) p̂k+1 =

ln

[
(g12

p̂k − 1)

(
V3−V2

V2−V1

)
+ g12

p̂k

]
ln(g12g23)

,

where an initial guess for p̂ is the formal order of accuracy. Algorithm 2 shows the procedure
to compute the observed order of accuracy. We consider it converged when the variation in
two subsequent p̂k+1 and p̂k is not significant. Substituting p = p̂ and g = g12 in (3.8) leads
to a discretization error estimate [48]

(3.15) ε̄h =
1

(gp̂12 − 1)

∣∣∣∣V1 − V2

V1

∣∣∣∣.
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Algorithm 2: Algorithm to estimate the observed order of accuracy.
Input : V1, V2, V3, p̂1 = pf .
Output : p̂.
Set p̂1 = pf .
∆V = (V3 − V2)/(V2 − V1).
k = 1.
while ∆p̂ < 10−3 do

Compute (3.14): p̂k+1 = ln

[
(g12

p̂k − 1)∆V + g12
p̂k

]/
ln(g12g23).

∆p = p̂k+1 − p̂k.
end
Set p̂ = p̂k.

When the observed order of accuracy p̂ matches the formal order of accuracy pf , we have high
confidence that this error estimate is accurate. However, it may happen that the observed order
of accuracy does not match the formal order of accuracy [43], in which case the error estimator
is not reliable. This may be due to the failure of obtaining the solutions within the asymptotic
range or the lack of additional information. Also, the implemented boundary conditions and
the terminal/initial conditions change the observed order of accuracy. However, we can fix
this problem by converting the error estimator into an epistemic uncertainty estimator [48].
Epistemic uncertainties are different from random or aleatory uncertainties, as epistemic
uncertainties arise due to the lack of knowledge.

A grid convergence index (GCI) measures how far the computed value is away from the
asymptotic numerical value. The GCI converts the error estimate into an error or uncertainty
band, which is appropriate when one does not have a high degree of confidence in the error
estimate. A small value of the GCI indicates that the computation is within the asymptotic
range [47]. The GCI for the fine grid solution is given as [46]

(3.16) GCI =
Fs

gp̂12 − 1

∣∣∣∣V1 − V2

V1

∣∣∣∣,
where

• Fs = 3 if the observed order of accuracy is calculated using two different solutions.
• Fs = 1.25 if the observed order of accuracy is calculated using three different

solutions and when the formal order agrees with the observed order within 10%.
We cannot ensure that the approximate solution via Richardson extrapolation approximates
the exact solution of the mathematical model well. Thus, it is beneficial to use a safety factor
to avoid the failure of the designed error estimator. For the first case, one cannot guarantee
that the solution obtained with only two grid sizes is within the asymptotic range. Thus, it is
recommended to use the GCI with caution. In [48] a safety factor of 3 is suggested. In the
second case, if the formal order of accuracy matches the observed order of accuracy, then it is
recommended to use a safety factor of 1.5. In this paper, when p̂ agrees pf within 10%, then
the factor of safety of 1.25 is used.

Algorithm 3 shows the steps to obtain the suitable full model dimension. The algorithm
is initiated by a reasonably moderate grid size hinit1 . We construct two new grid sizes h2, h3

based on the grid refinement ratios g12, g23. Furthermore, a full model is solved for h1, h2, h3

to determine the observed order of accuracy p̂. Once we calculate p̂, the algorithm computes
the discretization error estimator ε̄h and tests it against the user-defined tolerance ehtol. The
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algorithm is terminated if ε̄h < ehtol; otherwise, it refines h1, and the process repeats itself until
convergence or after K iterations, and the last grid size is used to construct the full model.

Algorithm 3: Algorithm to select the full model dimension.

Input : Initial step size hinit1 , ehtol, g12, g23 > 1.3.
Output : h1.
Set h1 = hinit1 .
for i = 1, . . . ,K do

Solve the full model with a grid size h1 and store the result in V1.
Compute h2 = g12h1 and h3 = g23g12h1.
Solve the full model with grid sizes h2 and h3 and store the results in V2 and V3,
respectively.

Calculate p̂ using Algorithm 2.
Compute the discretization error estimator given by (3.15) ε̄h = |V1−V2|

V1(gp̂12−1)
.

if ε̄h < ehtol then
Break.

end
Refine the mesh and choose a finer grid size h1.

end

3.2. Model order reduction error. For the model reduction procedure, we have used
a snapshot-based POD method, which represents the PDE solution in the space spanned by
a reduced basis. The reduced basis is obtained by a linear combination of the snapshots
generated by solving the full model for some training parameters.

Let X be the Hilbert space given with an inner product (·, ·)X and a norm ‖ · ‖X . Let
V1, V2, . . . , Vk ∈ X be the snapshots obtained by solving the full model. We consider the span
of the snapshots {Vj}kj=1

V = span{V1, . . . , Vk}

provided at least one of them is non-zero. Let {φi}di=1 denote an orthonormal basis of V with
d = dim(V). The goal of POD is to identify the most important characteristics of an ensemble
of snapshots. We can represent each (block) column of the snapshot matrix as

(3.17) Vj =

d∑
i=1

(Vj , φi)Xφi, for j = 1, . . . , k.

The POD approach obtains a reduced basis such that for every ` ∈ {1, . . . , d}, the mean square
error between the snapshot Vj and the corresponding lth partial sum of (3.17) is minimized on
average via

min
{φi}`i=1

1

k

k∑
j=1

‖Vj −
∑̀
k=1

(Vj , φi)Xφi‖2,

where

(φi, φj) = δij =

{
1, if i = j,

0, if i 6= j,
for 1 ≤ i ≤ `, 1 ≤ j ≤ i.
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The reduced basis {φi}di=1 is obtained by computing a truncated singular value decomposition
of the snapshot matrix V̂ [21]

V̂ =

k∑
i=1

Σiφiψi, V̂ = ΦΣΨT .

Let Σ1 ≥ Σ2 ≥ · · ·Σk > 0 denote the singular values and φ1, φ2, . . . , φk ∈ Rn the left
singular vectors of V̂ . The reduced basis Q then consists of d left singular vectors, where the
dimension d is chosen such that it minimizes the projection error εPOD [33]

(3.18) εPOD =
1

k

k∑
j=1

‖Vj −
d∑
k=1

(Vjφk)φk‖2 =

k∑
`=d+1

Σ2
` .

This error characterizes the ability of the snapshot data to be represented in a low-dimensional
space. The goal of reduced modeling is to select the best suitable snapshots and to reduce the
POD error. We use the error estimator εPOD to choose the dimension d of the reduced basis in
Algorithm 5. Furthermore, in order to test how well the reduced model approximates the full
model, we define an error between the full model and the reduced model

εRM =

√∑N
n=1 ‖Vn − V̄n‖22√∑N

n=1 ‖Vn‖22
,

where V is the solution obtained using the full model and V̄ is the result obtained using the
reduced model.

The quality of the reduced basis Q depends on V̂ = [V1(ρ1), v2(ρ2), . . . , Vk(ρk)], which
depend on the training parameter set {ρ1, ρ2, . . . , ρk}. In [7], a classical and an adaptive
greedy sampling approach is presented for efficiently locating the training parameter set. We
use an a posteriori residual error estimator (2.3) ε = ‖p(·, ρ)‖ to monitor the convergence
of the classical greedy sampling algorithm and to terminate the training procedure. In the
adaptive greedy sampling approach, the algorithm constructs an error model ε̄RM based on
the available data Ep from the residual errors {εbef,aft

i }Imax
i=1 and the reduced model errors

{εbef,aft
RM,i }

Imax
i=1 and uses this error model to monitor the convergence of the algorithm. Here

the superscripts “bef” and “aft” indicate the error values obtained before and after updating
the reduced basis.

For this approach, one full model is solved for an optimal parameter group ρI at each
iteration i of the classical and the adaptive greedy procedures. The solution obtained for ρI is
then stored as Vi(ρI), and the snapshot matrix V̂ = [V`(ρI)]

i
`=1 is updated,

V̂` = [V1(ρ1
I), V2(ρ2

I), . . . , V`(ρ
`
I)] ∈ RM×(T×i), ` = 1, . . . , i,

where T is the maturity. Now we consider the span of these snapshots

V` = span{V1(ρ1
I), V2(ρ2

I), . . . , V`(ρ
`
I)}

and obtain the reduced basis by computing its truncated singular value decomposition. At
each greedy iteration, a new reduced basis Qi is obtained of dimension d, and the projection
error based on (3.18) is

εAG,CG
POD =

1

i× T

i×T∑
i=1

‖Vi(ρI)−
d∑
k=1

(Vi(ρI)φk)φk‖22 =

i×T∑
`=d+1

Σ2
` ,
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which is the sum of squares of the neglected singular values.
The computation of the SVD of an m×n matrix has an overall computational complexity

of O(mn2) [22], so for the matrix V̂ ∈ RM×(T×i) this amounts to

O(M(T × i)2) = O(MT 2i2).

After i iterations, the computational complexity due to the series of SVDs for the snapshot
matrix will be

O(

i∑
`=1

M × (T × i)2) = O(MT 2i3).

We see that the complexity increases substantially with each proceeding iteration, which
motivates us to implement a truncated SVD approach. Recent studies have shown that
randomized algorithms in some applications [19, 24] yield an incredible speedup. It is
proposed to compute a truncated singular value decomposition using randomized algorithms in
the following two steps. The approach starts by computing an approximate basis G ∈ RM×k
with k orthonormal columns for the range of V̂ such that

V̂ ≈ GGT V̂ , ‖V̂ −GGT V̂ ‖ < εtol,

where k < T × i and εtol is some specified tolerance. In the second step the matrix G is used
to compute the truncated SVD of the matrix V̂ . Let Ṽ = GT V̂ ∈ Rk×(T×i) be the reduced
matrix determined from V̂ . Now we compute the SVD of the reduced matrix

Ṽ = GT V̂ = Φ̃Σ̃Ψ̃T ,

which leads to a substantial speedup. Multiplying both sides by G, we get

GGT V̂ = GΦ̃Σ̃Ψ̃T , V̂ ≈ GΦ̃Σ̃Ψ̃T .

Considering Φ = GΦ̃, we get our left singular vector matrix, which we can use to obtain a
reduced basis.

We can achieve an even higher speedup by incorporating the economy-sized (compact)
SVD of the matrix Ṽ , which removes extra rows or columns of zeros from the diagonal matrix
of singular values and the columns in either Φ̃ or Ψ̃. Removing these zeros and columns can
improve execution time and reduces storage requirements without compromising the accuracy
of the decomposition. The SVD determines the rank k of a matrix as the number of nonzero
singular values of a matrix Ṽ ∈ Rk×T×i. Then its compact SVD reads

Ṽ = Φ̃Σ̃Ψ̃T .

The left and right singular vector matrices are Φ̃ ∈ Rk×k and Ψ̃ ∈ R(T×i)×k. Thus, the
desired left singular matrix is Φ = GΦ̃ ∈ RM×k, which we use to obtain the reduced basis Q.
We obtain the orthonormal matrix G with as few columns as possible such that

‖V̂ −GGT V̂ ‖ < εtol,

where εtol is some tolerance and ‖ · ‖ is the L2-norm. The range of G is a k-dimensional
subspace that represents most of the action of V̂ , and we select k as small as possible. We can
use the SVD to decide the dimension k. Let Σj be the jth singular value of the matrix V̂ . For
each j ≥ 0,

min
rank(GGT V̂ )≤j

‖V̂ −GGT V̂ ‖ = Σj+1,
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where the columns of G are the k dominant singular vectors of V̂ . The number of singular
values of V̂ that exceeds the tolerance εtol makes the minimal rank k.

We obtain G through a randomized method. Draw k Gaussian random vectors
Ĝ = [ĝ1, . . . , ĝk] ∈ R(T×i)×k, and project them onto the image of the matrix V̂ such that

y` = V̂ ĝ`, ` = 1, . . . , k, Y = V̂ Ĝ.

We find the orthonormal basis of the matrix Y ∈ RM×k, which is nothing but our desired
matrix G, using a Gram-Schmidt-like algorithm or QR factorization. We can determine G
adaptively using the error ‖(I −GGT )V̂ ‖. We obtain some information about this error by
calculating ‖(I −GGT )V̂ ĝ‖. For k Gaussian random vectors, [24] gives an a posteriori error
estimator as

(3.19) ‖V̂ −GGT V̂ ‖ ≤ 10

√
2

π
max

i=1,...,k
‖(I −GGT )V̂ ĝi‖.

This error estimate can be combined with any method for constructing an approximate basis

Algorithm 4: GSorth() Algorithm to obtain the orthonormal matrix G.

Input : Snapshot matrix V̂ .
Output : G.
Draw Gaussian random vectors {ĝi}ki=1.
for i = 1, . . . , k do

yi = V̂ ĝi.
end
Initiate empty G matrix G0 = [ ].
for j = 1, . . . , n do

Overwrite yj = (I −Gj−1G
T
j−1)yj .

end
gj =

yj
‖yj‖ .

Set Gj = [Gj−1 gj ].
Draw a new Gaussian random vector ĝj+k.
Compute yj+k = (I −GjGTj )V̂ ĝj+k.
for i = j + 1, j + 2, . . . , (j + k − 1) do

yi = yi − gj(gj , yi).
end
if max{‖yj‖, ‖yj+1‖ . . . , ‖yj+k‖} < ε/(10

√
2/π) then

Break.
end
G = Gj .

for the range of Y ; see [24] for more details. The adaptive algorithm combined with Gram-
Schmidt orthonormalization is given in Algorithm 4. The algorithm is initiated by drawing
k Gaussian random vectors of length T × i and computes the orthonormal set of vectors
{g1, . . . , gk} that form the matrix G. We stop the procedure once the largest value in a set
{‖yi‖}i+ki is less than ε/(10

√
2/π) as given by equation (3.19).

We use the randomized singular value decomposition in the greedy sampling approach to
determine the reduced basis, as shown in Algorithm 5. The algorithm constructs a snapshot
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matrix V̂ composed of full model solutions for each optimal parameter group at the ith
iteration. It then selects k Gaussian random vectors and obtains the matrix G, using the
function GSorth(). A low-dimensional matrix Ṽ is constructed using the newly obtained G

Algorithm 5: Algorithm to obtain a reduced basis using a randomized singular
value decomposition.

Input : Snapshot matrix V̂ , edtol.
Output : Q.
Construct a snapshot matrix V̂ = {V (ρ`)}i` at ith iteration.
Obtain G using ’GSorth’ function defined in Algorithm 4.
Compute Ṽ = GT V̂ .
Compute a compact singular value decomposition of Ṽ = Φ̃Σ̃Ψ̃.
Set Φ = GΦ̃.
Choose a parameter group ρtest for testing.
Solve the full model for ρtest and store result in V .
Σ̃ = [Σ̃1, . . . , Σ̃k].
for j = 1, . . . , length(diag(Σ̃)) do

Compute εPOD =
∑k
`=j+1 Σ̃2

` .
Solve the reduced model for ρtest for store result in V̄ .

Compute εRM =

√∑N
n=1 ‖Vn−V̄n‖22√∑N

n=1 ‖Vn‖22
.

Compute εd = εRM + εPOD.
if εd < edtol then

d = j
Break.

end
end
Q = [φ1, . . . , φd].

with only k columns. The algorithm computes a compact SVD of Ṽ and sets Φ = GΦ̃ to
obtain a reduced basis Q. Finally, the dimension of a reduced basis is selected that minimizes
the projection error and the reduced model error.

3.3. Sampling error. To design a surrogate model and to locate the training parameters,
we have used principal component regression. There are two errors associated with the
principal component regression model, i.e., a projection error due to the principal component
analysis and an error of prediction for the surrogate model.

Let us first discuss the projection error. PCA reduces the problem of estimating m
coefficients to the more straightforward problem of determining p coefficients by selecting
a few relevant principal components. It is a technique for projecting multi-dimensional data
onto a low-dimensional subspace with minimal loss of variance. We determine the projection
error associated with the PCA in a similar sense to the POD. At the kth iteration we have
a data matrix P̂k = [ρ1, . . . , ρck ] composed of ck parameter groups. To build the surrogate
model, we compute an SVD of the matrix P̂k,

P̂k = Φ̂Σ̂Ψ̂T ,
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where the columns of P̂kΨ̂ are principal components. We use only p principal components to
construct a fairly accurate surrogate model. Similar to (3.18), the projection error associated
to PCA, if only p principal components are used, is

εPCA =
1

m

m∑
j=1

‖P̂k(:, j)−
p∑
k=1

(P̂k(:, j), φk)φk‖2 =

m∑
`=p+1

Σ̂2
` .

In order to obtain a satisfactory regression model, we aim to reduce the projection error and
select the principal components accordingly.

In the following, we discuss the mean squared error of prediction, which estimates the
quality of the regression model, i.e., the surrogate model. The error estimators for surrogate
models are analyzed on independent test data. It may happen that the test set is not large
enough, as in our case, during the start of the greedy iteration. If ck is not much larger than
m, then the model may give weak predictions due to the risk of over-fitting for the parameter
groups which are not used in the model training. In such situations, the error estimators are
designed on the learning data where leave-one-out cross-validation is an elegant choice. As
we have a data set with ck observations, the leave-one-out cross-validation approach trains the
model on ck − 1 data points, and the test data contain one observation. We repeat this process
ck times and compute the mean square error. The major advantage of this approach is that
it has far less bias as we use the entire data for training. However, the computational cost of
one full leave-one-out cross-validation is high, and it may produce inconsistent and varying
results [58]. Additionally, it tends to have high variance and generates very different estimates
if repeated with different initial samples of data from the same distribution.

K-fold cross-validation is an alternative advocated to circumvent these drawbacks [20].
This technique involves randomly dividing the data set into K subsets known as folds of
approximately equal size. One fold is kept for testing, and the model is trained on the
remaining K− 1 folds. The process repeats for K iterations each time with K− 1 folds as the
training set and the Kth fold as a test set. As we repeat the process K times, we get K errors
per each fold, which are then used to compute the mean square error of prediction. The K-fold
cross-validation is computationally more efficient than the leave-one-out cross-validation as
we repeat the process only for K iterations instead of ck iterations.

Let L = [P̂k, ε̂] ∈ Rck×(m+1) be a learning data matrix consisting of ck parameter
groups and error estimator values at the kth iteration of the adaptive greedy algorithm. Here,
P̂k = [ρ1, . . . , ρck ] ∈ Rck×m, and ε̂ = [ε1, . . . , εck ] ∈ Rck×1. Let the datasetL be partitioned
into K groups or folds L1, . . . , LK such that Li ∩ Lj = ∅ for any i 6= j. Without loss of
generality, we suppose that ck is a multiple of K, where ck denotes the size of the dataset L.
The size of each fold is then ck/K. We train our surrogate model ε̄ on L \ LK , i.e., for all
data available in the matrix L except for those in LK , while the data set LK is used as a test
set. After K iterations, we take the sum of errors and calculate its mean to get MSEPK−CV.
The K-fold cross-validation error is then given as [40]

(3.20) MSEPK−CV =
1

ck

K∑
k=1

ck/K∑
i∈LK
i=1

(ε̄(ρi)− εi)2,

where the inner sum is calculated over theKth fold. According to [20], the bias of MSEPK−CV

isO(K − 1)−1c−1
k . In K-fold cross-validation, the surrogate model is trained on L \LK data

instead of all L. It can be expected that this surrogate model may be inferior as compared to the
model trained on all data L. Thus, it is suggested to use the adjusted K-fold cross-validation
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to avoid this problem. The adjustment is [40]

(3.21) MSEPadj. = MSEPapp. −
1

ck

K∑
k=1

1

K

ck−ck/K∑
i 6∈LK
i=1

(ε̄(ρi)− εi)2,

where MSEPapp. is called the apparent MSEP or mean squared error of calibration (MSEC),
which uses the whole learning data L as a test set. The second term of (3.21) is calculated
as follows. In contrast to (3.20), instead of testing the model trained on the excluded data
set Lk, we test it on the training data set L \ Lk itself. After K iterations, we compute the
mean by dividing the sum of K errors by ck, which is nothing but the second term of (3.21).
The adjustment is then the difference between the apparent error and the error calculated by
training and testing the model on the L \ LK data. In short, this adjustment considers the
errors associated with the K folds, which are not used for the training purpose during the
K-fold cross-validation. The apparent MSEP is given as

(3.22) MSEPapp. =
1

ck

ck∑
i=1

(ε̄(ρi)− εi)2.

Thus, the adjusted K-fold cross validation error estimate is

(3.23)

MSEPK−CVadj. = MSEPK−CV + MSEPadj.,

=
1

ck

K∑
k=1

ck/K∑
i∈LK
i=1

(ε̄(ρi)− εi)2 +
1

ck

ck∑
i=1

(ε̄(ρi)− εi)2

− 1

ck

K∑
k=1

1

K

ck−ck/K∑
i 6∈LK
i=1

(ε̄(ρi)− εi)2.

We can now define the total sampling error associated with the PCR technique as a summation
of the projection error and the adjusted K-fold cross-validation error

(3.24) εsamp = εPCA + MSEPK−CVadj..

Algorithm 6 presents a methodology to obtain a suitable surrogate model that minimizes the
sampling error. It starts by computing a projection error εPCA associated with the PCA. The
surrogate model ε̄ is then constructed using j = p principal components. To assess the quality
of the surrogate model, we determine the cross-validation error. The data set L is divided into
K folds. We train the designed surrogate model on all data available in the matrix L except
for those in Lk. Furthermore, the algorithm evaluates the surrogate model on the omitted
data Lk, then computes errors, and subsequently determines the K-fold cross-validation error.
MSEPK−CV is then adjusted and added to εPCA to get the sampling error εsamp. If the
sampling error is less than the user-defined tolerance esamptol , then the algorithm terminates.
Finally, we use the surrogate model built using j = p principal components as explained in [7].

3.4. Sensitivity analysis. In the previous sections, we addressed the errors εh, εPOD,
εRM, εsamp associated with each stage of the model order reduction approach. This section
presents a sensitivity analysis for these errors that provides quantitative information regarding
the relative contribution of each error to the model output. Sensitivity analysis can be helpful
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Algorithm 6: Algorithm to estimate the sampling error.

Input : L = [P̂k, ε̂], e
samp
tol , K.

Output : εsamp (3.24).
Compute an SVD of the matrix P̂k = Φ̂Σ̂Ψ̂T .
Let Σ̂ = [Σ̂1, . . . , Σ̂k].
for j = 1, . . . , length(diag(Σ̂)) do

Compute εPCA =
∑k
`=j+1 Σ̂2

` .
Build a surrogate model ε̄ using p = j principal components.
Divide L into K random folds.
for k = 1, . . . ,K do

Train the surrogate model on L \ Lk data.
Solve the trained model on Lk data set.
Compute squared errors

∑ck/K
i∈LK
i=1

(ε̄(ρi)− εi)2.

end
Compute (3.20) MSEPK−CV.
Compute (3.22) MSEPapp.
Compute (3.21) MSEPadj .
Compute (3.23) MSEPK−CVadj..
Compute (3.24) εsamp = εPCA + MSEPK−CVadj..
if εsamp < esamptol then

p = j.
Break.

end
end

in various situations, including forecasting as well as identifying where improvements or
adjustments are needed in a process [14]. Such information helps to improve the model output
by selecting the appropriate grid size h, the reduced dimension d, and the optimal sampling
parameters c. The sensitivity indices rank the numerical errors according to their contribution
to the total error. We can use this ranking to allocate the computational resource efficiently.
More computational resources could be provided to the most sensitive parameters [35].

In general, there are two types of sensitivity analyses, i.e., local and global [10, 14]. The
local sensitivity analysis evaluates changes in the output with respect to the variations in a
single factor by keeping other factors constant [30]. Such a sensitivity is often evaluated
through gradients or partial derivatives of the output functions at these factors. The main
limitation of the local sensitivity analysis is that it evaluates the factors one at a time and does
not consider the interactions and simultaneous changes in all factors [51]. Global sensitivity
analysis overcomes this drawback by quantifying the importance of all factors and their
interactions to the model output. It provides an overall influence of factors on the output in
contrast to a local view of partial derivatives as in local sensitivity analysis.

It is easy and computationally feasible to compute the local sensitivity of deterministic
errors such as the discretization error by computing the norm of the first-order factor in a
Taylor series expansion or the partial derivative using finite differences [14]. For stochastic
errors like the sampling error, it is more appropriate to compute the change in the output
with respect to the variations in inputs [35]. However, this creates a difficulty in comparing
the relative contributions of the deterministic errors versus the stochastic errors. Thus, it is
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necessary to propose an approach that can be applied to both types of errors.
There are different local and global sensitivity analysis methods, such as the one-at-a-

time (OAT) approach [10], the automatic differentiation technique (AD) [15], variance-based
sensitivity analysis (the Sobol method) [37, 51], and Fourier amplitude sensitivity analysis
(FAST) [39]. The local sensitivity analysis approaches like OAT and AD calculate the first-
order partial derivatives of the outputs with respect to small changes in the inputs. In AD,
a computationally efficient computer code automatically evaluates the partial derivatives
and can be applied without having detailed knowledge of the algorithm implemented in the
model. However, the technique may be limited to specific computer languages and requires
specific libraries, and the accuracy for sensitivity results depends on the numerical method
used in the AD software. Both the Sobol method and the FAST method are variance-based
sensitivity analysis techniques capable of computing first-order (local) and global sensitivity
indices. The main difference between these two approaches is the underlying algorithm in the
multi-dimensional integration of the sensitivity indices. The FAST approach uses a pattern-
search technique based on a sinusoidal function, while the Sobol approach uses a Monte
Carlo technique to determine the sensitivities. The disadvantage of the FAST approach is that
it demands specific sampling and may perform poorly for discrete inputs and models with
discontinuities. Among the discussed techniques, the Sobol method is one of the most powerful
techniques being model-independent and robust, and it considers interactions between different
input factors. However, it may become computationally intensive if there are many input
factors as it uses Monte Carlo techniques. In our case, the number of input factors (numerical
errors) is small, which eases the computational burden. Moreover, [35] showed that the
variance-based sensitivity analysis approach could be applied considering both deterministic
and stochastic numerical errors. Thus, in this work, we use the Sobol method to perform the
sensitivity analysis.

Consider a model output Y depending on some input factors (X1, . . . , Xp)

Y = f(X1, . . . , Xp).

Now, the variance-based first-order effect of Xi is [37]

(3.25) VarXi

(
EX∼i

(Y |Xi)
)
, i = 1, . . . , p,

where Xi is the ith factor and X∼i is the (p− 1)-dimensional space composed of all factors
except Xi. The inner expectation operator means that the mean of Y is taken over all possible
values of X∼i while the factor Xi is kept fixed. VarXi

(·) shows that the variance is taken over
all possible values of Xi. Using the law of total variance, we can write [41]

(3.26) Var(Y ) = VarXi

(
EX∼i(Y |Xi)

)
+ EXi

(
VarX∼i(Y |Xi)

)
,

by normalizing

(3.27) 1 =
VarXi

(
EX∼i

(Y |Xi)
)

Var(Y )
+

EXi

(
VarX∼i(Y |Xi)

)
Var(Y )

,

where the first-order (local) sensitivity index for the factorXi is given by the first term of (3.27)

(3.28) Si =
VarXi

(
EX∼i(Y |Xi)

)
Var(Y )

.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ERROR ANALYSIS OF A MOR FRAMEWORK FOR FINANCIAL RISK ANALYSIS 489

Here Si is a normalized index as VarXi

(
EX∼i(Y |Xi)

)
varies from zero to Var(Y ), and it

measures the first-order effect of Xi on the output Y . EXi

(
VarX∼i

(Y |Xi)
)

is the resid-
ual [51]. It is necessary to note that a low value of the first-order sensitivity index does not
mean that the factor is not important. It might make a more significant contribution to the
output by interactions with other factors. Thus, the total sensitivity index is necessary, which
considers the main effect of the factor and the effect of its interactions with other factors on the
output. In the sensitivity analysis framework, a functional decomposition of the total variance
Var(Y ) is referred to as functional analysis of variance (ANOVA) and given as [54]

(3.29) Var(Y ) =

p∑
i=1

Vari(Y ) +

p∑
i<j

Varij(Y ) + · · ·+ Var1,...,p(Y ),

where

Vari(Y ) = VarXi

(
EX∼i(Y |Xi)

)
,

Varij(Y ) = VarXi,Xj

(
EX∼i,j (Y |Xi, Xj)

)
−Vari(Y )−Varj(Y ),

Varijk(Y ) = VarXi,Xj ,Xk

(
EX∼i,j,k

(Y |Xi, Xj , Xk)
)
−Vari(Y )−Varj(Y )−Vark(Y )

−Varij(Y )−Varik(Y )−Varjk(Y ),

...

Var1,...,p = Var(Y )−
p∑
i=1

Vari(Y )−
∑

1≤i<j≤p

Varij(Y )− · · ·

−
∑

1≤i1<···<ip−1≤p

Vari1,...,ip−1.

The first-order sensitivity index (3.28) can then be obtained from the first p terms of the
decomposition (3.29) as

Si =
Vari(Y )

Var(Y )
.

The other terms of the decomposition can be interpreted as the higher-order sensitivity indices.
The second-order index Sij represents the effect of interactions of the factors Xi and Xj on
the output

Sij =
Varij(Y )

Var(Y )
,

and so on up to order p. Therefore, for p factors, we have 2p − 1 sensitivity indexes. Based on
the decomposition (3.29), [25, 52] introduced the so-called total indices or total effects as

STi
= Si +

∑
j 6=i

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + · · · =
∑
`#i

S`,

where #i denotes all the indices associated with the factor Xi. The total sensitivity is derived
using the expressions in (3.29) as [51]

STi = 1− VarX∼i
(EXi

(Y |X∼i))
Var(Y )

.
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Using the law of total variance, similar to (3.25) and (3.26), we can write the total variance of
Y by exchanging Xi and X∼i as

(3.30) Var(Y ) = VarX∼i

(
EXi(Y |X∼i)

)
+ EX∼i

(
VarXi(Y |X∼i)

)
.

Dividing (3.30) by Var(Y )

1 =
VarX∼i

(
EXi

(Y |X∼i)
)

Var(Y )
+

EX∼i

(
VarXi

(Y |X∼i)
)

Var(Y )
,

we obtain

STi
= 1− VarX∼i

(EXi
(Y |X∼i))

Var(Y )
=

EX∼i

(
VarXi

(Y |X∼i)
)

Var(Y )
.

3.4.1. Calculation of Sobol indices. The methodology to determine the local and global
Sobol indices with a single simulation is presented in [51]. Consider two independent sampling
matrices X̄ and X̂ to compute the values of the output Y corresponding to different input
factors X1, . . . , Xp,

X̄ =

X̄11 · · · X̄1p

...
...

...
X̄n1 · · · X̄np


n×p

, X̂ =

X̂11 · · · X̂1p

...
...

...
X̂n1 · · · X̂np


n×p

,

where n is the sample size and p is the number of input factors. Then each row of the matrices
X̄ and X̂ is a one-parameter sample set. We introduce a new matrix X̄i

X̂
whose columns are

taken from the matrix X̄ except the ith column which is from the matrix X̂ .

X̄i
X̂

=


X̄11 X̄12 · · · X̂1i · · · X̄1p

...
...

...
...

...
...

...
...

...
...

...
...

X̄n1 X̄n2 · · · X̂ni · · · X̄np


n×p

.

Based on these matrices X̄, X̂ , and X̄i
X̂

, we determine the local sensitivity and the global
sensitivity indices as follows. We obtain a variance of Y as in [41]:

(3.31) Var(Y ) = E(Y 2) + E2(Y ).

Applying (3.31) to VarXi

(
EX∼i

(Y |Xi)
)

, we get

VarXi

(
EX∼i

(Y |Xi)
)

=

∫
E2
X∼i

(Y |Xi)dXi −
(∫

EX∼i
(Y |Xi)dXi

)2

.

From [50] we then have

(3.32)

∫
E2
X∼i

(Y |Xi)dXi =

∫ ∫
f(X̂1, . . . , X̂p)× f(X̄1, . . . , X̂i, . . . , X̄p)dX̂dX̄∼i,

=
1

n

n∑
`=1

f(X̂)`f(X̄i
X̂

)`,
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and

(3.33)
(∫

EX∼i
(Y |Xi)dXi

)2

= f2(X) =
1

n

n∑
`=1

f(X̄)`f(X̂)`.

Using (3.32) and (3.33), we define the local sensitivity index as [51]

Si =
VarXi

(
EX∼i

(Y |Xi)
)

Var(Y )
=

1
n

∑n
`=1 f(X̂)`

(
f(X̄i

X̂
)` − f(X̄)`

)
Var(Y )

.

The global sensitivity index STi
is derived in a similar way (see [32, 51]) as

STi
=

EX∼i

(
VarXi

(Y |X∼i)
)

Var(Y )
=

1
2n

∑n
`=1

(
f(X̄)` − f(X̄i

X̂
)`

)
Var(Y )

,

where f(X̄), f(X̂), and f(X̄i
X̂

) are the model output results using the parameter sample

values from the matrices X̄, X̂ , and X̄i
X̂

, respectively.
The independent distribution of each numerical error is determined as follows. The

discretization error εh depends on the grid size h used to construct the full model. We sample
different grid sizes with an appropriate grid refinement ratio and construct different full models.
We further calculate the discretization error associated with each model and use generated
samples to construct the distribution for εh.

Similar to the discretization error, the projection error εPOD and the reduced model error
εRM can be regulated by varying the reduced dimension d. We have to solve the full model
for some training parameter groups to construct the snapshot matrix in order to generate the
reduced basis. Before obtaining the distributions of the projection error and the reduced model
error, the full model dimension and the number of training parameters are fixed. We construct
the reduced models with different reduced dimensions and obtain the corresponding errors
εPOD and εRM. These error samples are then used to construct the desired distributions.

The training parameters used to construct the surrogate model govern its quality. We
randomly sample the parameter groups that initiate the adaptive algorithm (parameter set P̂0)
as well as vary the cardinality of the set P̂ . The first few samples of the surrogate model error
are obtained by randomly sampling the parameter set P̂0 while keeping the cardinality of P̂
constant. Later on, the cardinality of P̂ is varied while P̂0 is fixed by specifying the particular
seed number.

The obtained samples are then randomly separated into two matrices X̄ and X̂ . Each col-
umn of the matrices X̄ or X̂ represents the distribution of one numerical error, while each row
describes a set of model factors, i.e., in this case, the numerical error {εh, εPOD, εRM, εsamp}.
The total error (3.1) presented in Section 3 is then used as a model output to perform the
sensitivity analysis based on the generated sample data.

3.5. Model hierarchy and stopping criteria. We now use the described techniques to
calculate the financial risk associated with an invested product. Underlying risk factors such
as interest rates have a direct influence on the invested asset. Interest rate risk arises when
unanticipated developments shift the yield curve or change its shape. Thus, to calculate the
financial risk, the instrument is evaluated for several thousand different simulated yield curves.
One can consider these simulated yield curves as different scenarios. The financial instruments
are evaluated via the dynamics of short-rate modelsM, based on the convection-diffusion-
reaction partial differential equations (2.1). The choice of the short-rate model depends on the
underlying financial instrument. The model hierarchy simplifies the process of obtaining a
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Parameter space P
(of N scenarios),
instrument, etol

Model selection:
PDE

Discretization
εh ≤
ehtol

refine

Classical greedy
sampling

POD:
RB with ` pa-
rameter groups

Reduced model

εd ≤
edtol

Adaptive greedy
sampling

StopModel order
reduction

Solve N − `
scenarios using RM

Sort 10 000 values
Compute Vfav,
Vmod and Vunfav

Stop

false

true

false

true

FIG. 3.2. Model hierarchy for model order reduction.

reduced model and is depicted in Figure 3.2. It starts by discretizing the partial differential
equation using either the finite difference method or the finite element method. The discretized
model is the full modelMh. To obtain a reduced modelMd

h, we compute a reduced basis
via the POD approach along with the classical or adaptive greedy sampling. Finally, the full
model is projected onto the reduced basis to get the reduced model. The above-described
steps finally lead to the desired reduced model. However, it may happen that the user does not
have enough knowledge or background about these methods to obtain the optimal reduced
model. Thus, the user prefers an automatic approach that produces a reduced model whose
error is below a user-defined tolerance. We describe the methodology to obtain a reduced
model as a black box for which the user is only required to provide inputs and gets the desired
output. The black box method automatically selects the partial differential equation according
to the underlying financial instrument, generates the discretized model, obtains the training
parameters, generates the desired reduced basis, and produces a reduced model with the
desired user-defined tolerance. Yield curves and a financial instrument are fed as inputs to the
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black box, which outputs the scenario results. The procedure is illustrated in Figure 3.2. This
approach also yields a well-defined stopping criteria as follows.

Consider a parameter space P ∈ RN×m (of scenarios N ) for which the underlying
financial instrument is to be solved using an appropriate short-rate modelM. Let ` ∈ P ⊂ N
be the number of training parameters selected using a sampling algorithm. Now, these `
parameters are used to obtain the reduced modelMd

h with the total error εT ≤ εh+εd+εsamp.

REMARK 3.1. The stopping criteria to valuate an underlying financial instrument withN
scenarios states that when εT ≤ etol, where etol is the user-defined tolerance, only ` scenarios
need to be evaluated using the full modelMh, while the remaining N − ` scenarios can be
evaluated using the reduced modelMd

h. We employ the ` scenarios with the full modelMh

to obtain the reduced basis and the remaining scenarios N − ` using the reduced modelMd
h.

The results obtained for all scenarios are then sorted into favorable Vfav , moderate Vmod, and
unfavorable Vunfav performance scenarios.

4. Numerical example. Steepeners are financial instruments where the cashflows depend
on differences in the evolution of two different reference rates with different tenors in one
currency [1]. We consider a callable/puttable steepener instrument whose coupons depend on
the difference between two constant maturity swap (CMS) rates, i.e., CMS10−CMS2 [11].
Table 4.1 shows the properties of a puttable steepener. A puttable steepener gives the right to
the investor to claim an early redemption on certain dates (typically coupon dates) for a price
fixed (typically the nominal value) in the term sheet of the bond. These early exercise dates
are before the maturity of the bond. In short, a put is an option that gives the right to a buyer
to sell the underlying asset at an agreed price at some time. The selling price is known as the
strike price. The payoff of an option is its value at the time of its exercise. Consider K as the
strike price of a put option and an underlying instrument with a value V and maturity T . The
payoff of the put option is

PV =

{
K − V, if V < K,

0, if V ≥ K.

PV = max(K − V, 0) = (K − V )+.

Table 4.1 shows that the interest rate is capped at 3.0% p.a. and floored at 0.0% p.a. The cap

TABLE 4.1
Numerical example of a puttable steepener.

Maturity 10 years
Currency EURO
Coupon frequency Annually
Coupons:
Year 1 to Year 3 4% fix
Year 4 to Year 10 CMS10 - CMS2
Cap rate, CR 3.0 % p.a.
Floor rate, FR 0.0 % p.a.

is nothing but an upper limit on the interest rate for a floating interest rate instrument, while
the floor sets a lower limit on the interest rate. The coupon rate from the fourth year until
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maturity is

(4.1)
coupon rate = min(coupon cap,max(coupon floor,CMS10− CMS2)),

= min(3.0%,max(0.0%, coupon floor,CMS10− CMS2)).

We solve the puttable steepener example using the two-factor Hull-White model. The partial
differential equation is discretized using the finite element method to obtain the full model,
which is further approximated to achieve the reduced model. The model parameters are
σ1 = 0.0035, σ2 = 0.008, γ = 0.65, α = 0.75, b = 0.04. We have computed the model
parameter θ` as explained in [38]. The yield curve simulation is the first step to compute the
model parameters. Based on the yield curve simulation procedure described in [7], we have
performed the bootstrapping process for the recommended holding period and the intermediate
holding period, i.e., for ten years and five years, respectively. The collected historical data has
21 tenor points and 1306 observation periods as follows (D: Day, M: Month, Y: Year):

m =: {1D, 3M, 6M, 1Y, 2Y, 3Y, . . . , 10Y, 12Y, 15Y, 20Y, 25Y, 30Y, 40Y, 50Y },
n =: {1306 daily interest rates at each tenor point}.

Figure 4.1 displays the plots of simulated yield curves obtained by bootstrapping for five years

FIG. 4.1. 10 000 simulated yield curves obtained by bootstrapping for five years and ten years in the future.

and ten years in the future. The calibration generates a parameter space P of order 10 000×m
for which we now solve the two-factor Hull-White model.

For calculations, we have used a structured, two-dimensional triangular mesh grid that
generates a full model of order M . We have used fully implicit time-stepping so that dis-
cretizations in time and space can be chosen independently. The resulting system of linear
equations is (2.1)

A(ρ`(t))V
n−1 = B(ρ`(t))V

n.

To obtain a solution, we solve this system starting at t = T with an appropriate terminal
condition V (T ) backward in time at each time step n. It is important to note that we have
selected the time step ∆t = 20 days using Algorithm 1 and by ensuring that all key dates are
achievable, i.e., coupon dates, put dates, or valuation dates. The tolerance ettol of 10−3 is used
to obtain this best suitable time step ∆t. We determine the value of the steepener by solving
the linear system given in (2.1) as follows. If the coupon date is reached, then we update the
value of the steepener by adding the necessary coupon given by (4.1) [38]

V n−1 = V n−1 + Cn−1
F ,

where V n−1 is the value calculated by solving the full model and CF is either an already
known cashflow or a cashflow generated by the coupon if the coupon date is achieved at tn−1
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or zero. Similarly, if the put date is reached, then we have to update the value at that time point
by the following max function

V n−1 = max(V n−1,Put Price),

where the put price is the strike price defined by the put option contract. In this paper, we have
considered Put Price = 1. We have considered put dates annually starting one year after the
issuing of the bond until one year before maturity.

The quality of the full model is assured by calculating the discretization error associated
with the two-factor Hull-White model, as explained in Section 3.1. Figure 4.2 displays the
discretization error along with the grid convergence index values. We can see that the error
decreases with increasing order of the full model. A discretization error computation requires

225 400 625 900 1225 1600 2025 2500

2

4
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8

10

12

10
-4

FIG. 4.2. Discretization error estimator and grid convergence index (3.16) vs. full model size.

three different solutions of the full model for three different grid sizes. The error estimator
is acceptable if these solutions are in the asymptotic range of convergence, i.e., the observed
order of accuracy matches the formal order of accuracy, and the grid convergence index is
low. The formal order of accuracy depends on the order of the polynomial used to define the
elements in the finite element method [29]. The pth-order polynomial gives a (p+ 1)st order
of convergence [4]. We have constructed our full model using first-order linear triangular
elements. Thus, the formal order of accuracy is pf = 2. The observed order of accuracy p̂ is in
the range of 1.8959 to 2.5616 with an average of 2.072. For the full model with M = 1600, it
is found that p̂ = 1.9213, which matches the formal order of accuracy within 10%. Thus, we
can say that the solutions obtained using the full model are in the asymptotic range. The safety
factor used to calculate the grid convergence index (3.16) is then 1.5. The full model size is
selected using Algorithm 5, which is terminated when the discretization error is less than the
user-defined tolerance ehtol = 5× 10−4. We have designed a full model of order M = 1600
as the discretization error εh = 2.182× 10−4 falls below 5× 10−4. Also, one can notice that
the grid convergence index is less than 0.05%.

4.1. Model order reduction. For the model order reduction approach, we have obtained
the training parameter set to compute the optimal reduced basis by using either the classical
greedy sampling or adaptive greedy sampling. In the following, we present the results and
error analysis of these algorithms. For the classical greedy sampling, we have used c = 40
randomly selected parameter groups to train the algorithm. The allowed maximum iterations
are Imax = 10, i.e., at most 10 parameter groups are selected that maximize the residual error.
The algorithm then updates the snapshot matrix and generates a new reduced basis.
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FIG. 4.3. Evolution of the maximum and average residuals with each iteration of classical greedy algorithm.

Figure 4.3 displays the evolution of the maximum and average residuals with each iteration
of the classical greedy sampling algorithm. It is observed that the residual error decreases with
each proceeding iteration. We can truncate the greedy iteration after the 4th or 5th iteration as
the error has dropped below 10−4.

The dimension of the reduced basis d is chosen using Algorithm 5. The projection error is
plotted in Figure 4.4. We observe that the POD projection error decreases monotonically with
increasing d, which is determined in terms of POD eigenvalues. The graph of the projection
error shows that we have succeeded in determining an optimal reduced basis, which is later
used to generate the reduced model. Figure 4.4 also displays the reduced model error εRM
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FIG. 4.4. Projection error associated with POD (left), and a plot of the relative error between full and reduced
model obtained using the classical greedy sampling approach (right).

plotted against the reduced dimension d for the parameter group ρ732. It is observed that the
error εRM decreases as the dimension d increases. This shows that the reduced model is an
excellent approximation of the full model. We have designed a reduced model of dimension
d = 10 as the model order reduction error

εd = εPOD + εRM = 4.18× 10−5 + 1.17× 10−4 = 1.588× 10−4

is less than edtol = 5 × 10−4. Finally, we used this reduced model to solve the remaining
scenarios, as explained in Section 3.5. In classical greedy sampling, the algorithm is trained
on the randomly generated parameter set P̂ of cardinality 40. We noticed that the random
sampling often neglects some of the vital parameter groups within the parameter space. The
reduced model designed using the classical greedy sampling approach shows this drawback
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FIG. 4.5. Drawback of the classical greedy (CG) sampling approach.

as illustrated in Figure 4.5. The figure displays the reduced model error for two different
parameter groups (ρ342, ρ5287). In both cases, the relative error does not drop below the
user-defined tolerance edtol = 5× 10−4, and Algorithm 5 does not converge. This prompted
us to implement an adaptive greedy approach that relies on the surrogate model to locate the
training parameters. The used surrogate model is based on the principal component regression
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FIG. 4.6. PCA error (left) and predicted values obtained using the surrogate model for an error estimator vs.
the actual values (right).

technique [7]. The adaptive greedy iteration is initiated by computing the error estimator
for a randomly selected parameter set P̂0 of cardinality c0 = 10. At each surrogate model
iteration, we have chosen ck = 10 parameter groups. This process repeat itself until we get the
parameter set P̂ of cardinality 40. Figure 4.6 displays the monotonically decreasing singular
values of the data matrix P̂k composed of ck parameter groups at the kth iteration. We noticed
that the first three principal components comprise almost 99% of the energy, and within the
first five components, the energy level rounds up to 99.99%. Thus, the surrogate model has
only five principal components. Figure 4.6 demonstrates that the predicted values obtained via
the surrogate model match the actual values within an acceptable range.

The quality of the designed surrogate model is further tested using a mean squared error
of prediction. We have used a K-fold cross-validation technique to determine the MSEP as
described in Section 3.3. The learning data matrix composed of k × ck parameter groups
and error estimators at the kth iteration is divided into K = 4 folds. We obtain the mean
square error for each fold and sum it to calculate the MSEP of the cross-validation. Table 4.2
shows the calculations and MSEP for the designed surrogate model. The sampling error
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TABLE 4.2
Mean squared error of prediction.

Fold No. Squared error

LK = 1 8.7790× 10−5

LK = 2 7.6331× 10−5

LK = 3 7.9755× 10−5

LK = 4 8.8776× 10−5

MSEPK−CV 8.3163× 10−5

MSEPK−CVadj 7.2815× 10−5

εsamp = MSEPK−CVadj + εPCA 2.3750× 10−4

εsamp is the sum of the adjusted K-fold cross-validation error and the projection error, i.e.,
εsamp = MSEPK−CVadj + εPCA = 2.3750× 10−4. As εsamp < esamptol = 5× 10−4, we can
say that the designed surrogate model is satisfactory. We have used this surrogate model to

1 2 3 4 5 6 7 8 9

10
-5

10
-4

10
-3

10
-2

FIG. 4.7. Evolution of the maximum and average residuals in the adaptive greedy algorithm.

construct the parameter set P̂ . Finally, the optimal parameter group ρI is selected from the
parameter set P̂ that maximizes the residual error. The reduced basis is obtained by computing
the truncated SVD of this snapshot matrix, as shown in Algorithm 5. Figure 4.7 displays the
evolution of the maximum and average residual error with each adaptive greedy iteration. It
illustrates that the residual error decreases with increasing iteration and falls below 10−4 after
the fourth iteration, which is enough to truncate the greedy iteration. The decrease of the
residual error with each incrementing iteration also shows that the algorithm succeeded in
efficiently locating the optimal parameter group. The reduced basis dimension d is selected
such that for the generated reduced model, εPOD and εRM are below the user-defined tolerance.

Figure 4.8 displays the monotonically decreasing projection error εPOD associated with
the POD. The reduced model error εRM plotted in Figure 4.8 shows that the error decreases
with increasing the reduced dimension d. We have constructed the final reduced model using
d = 10, as the model order reduction error is less than the user-defined tolerance edtol, i.e.,

εd = εPOD + εRM = 4.042× 10−6 + 1.882× 10−4 = 1.922× 10−4 < 5× 10−4.

This means that the reduced model is an excellent approximation of the full model. We
have performed 10 full model evaluations during the adaptive greedy sampling, and the
remaining scenarios are solved using this reduced model, as explained in Section 3.5. We
have implemented the adaptive greedy sampling approach to overcome the drawbacks of the
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FIG. 4.8. Projection error associated with POD (left), and a plot of the relative error between full and reduced
model obtained using adaptive greedy sampling (right).
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FIG. 4.9. Comparison of the classical greedy (CG) approach and the adaptive greedy (AG) approach.

classical greedy sampling method, as evident from Figure 4.9. The relative error between the
full model and the reduced model obtained using the adaptive greedy sampling approach is
smaller than 10−4 with the reduced dimension d = 10 for both parameter groups ρ342, ρ5287.
The error εRM keeps on decreasing with increasing d, unlike in the classical greedy sampling
approach. The convergence of the classical greedy sampling approach is monitored using the
residual error. However, we have used an error model ε̄RM that uses the reduced model errors
and the residual errors to monitor the convergence of the adaptive greedy sampling. Figure 4.10
illustrates the designed error model based on the available error set Ep for 4 different greedy
iterations. The error plot demonstrates a strong correlation between the relative error and the
residual error. The results indicate that a consideration of the linear error model is adequate to
capture the overall behavior of the exact error as a function of the residual error.

4.1.1. Random sampling. We have used random sampling up to a certain extent in both
classical and adaptive greedy approaches. Random sampling is used to construct the parameter
set P̂ in the classical greedy approach, while in the case of the adaptive greedy approach, it is
used to initiate the algorithm. In both cases, the random sampling somewhat affects the results.
Figure 4.11 displays the maximum residual error plot with each proceeding iteration of the
greedy algorithms with error bars. These results are obtained by performing classical and
adaptive procedures for 30 different sets of random numbers. It is observed that the adaptive
greedy approach is less sensitive to random sampling than its classical counterpart. On average,
the adaptive greedy approach yields a better reduced model as its residual errors are smaller
than the classical approach.
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FIG. 4.10. Error model ε̄RM based on the available error set Ep for 4 different greedy iterations.
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FIG. 4.11. Effect of random sampling on classical and adaptive greedy sampling.

4.1.2. Sensitivity analysis. We have obtained 30 different data points for each numerical
error to generate the respective distributions by varying certain key parameters. We have
sampled 30 different grid sizes to compute the discretization error distribution, where the
full model dimension is being varied from 100 to 2500. To compute the sampling error
distribution, we have randomly generated 15 different P̂0 by keeping the cardinality of
n(P̂) = 50. Additionally, 15 data points for the sampling error are calculated by varying n(P̂)
between 30 and 100, while keeping P̂0 fixed using a particular seed number. The distributions
for the projection error and the reduced model error are obtained by varying the reduced
dimension between 5 and 60.

As depicted in Table 4.3, the local indices show that the final output is most sensitive to
the discretization error followed by the sampling error, while it is least sensitive to the reduced
model error and the projection error, respectively. We can mitigate the discretization error by
increasing the full model dimension. Nevertheless, sensitivity indices prevail that the change in
grid size considerably affects the final output. We overcome this problem by increasing the full
model dimension until the further change in grid sizes does affect the solutions significantly.
We have constructed the full model of order M = 1600, where the discretization error is of
order 10−4.
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TABLE 4.3
Sensitivity analysis: local and global sensitivity indices.

Numerical Error Local Index Rank Global Index Rank

Discretization error εh 0.3351 1 0.4172 2
Reduced model error εRM 0.1450 3 0.0917 3
Projection error εPOD 0.0167 4 0.0081 4
Sampling error εsamp 0.2247 2 0.5397 1

The global sensitivity analysis shows that the sampling error is the most sensitive numeri-
cal error. The major input factors contributing to the sampling error are the randomly sampled
parameter set P̂0 and the cardinality of the set P̂ . As it is not feasible to search the entire
parameter space as the parameter set P̂ , the surrogate model only locates a certain number
of parameter groups to construct P̂ and neglects the rest. This omission of parameter groups
contributes to the sampling error together with the random sampling of P̂0 used to initiate the
surrogate model loop, as we have already demonstrated in Figure 4.11. This random sampling
contributes to the uncertainty and makes the sampling error more sensitive. To overcome this
problem, we suggest to increase the cardinality of P̂ used to locate the most optimal parameter
group if necessary. We have kept the cardinality of P̂ as 40, as the sampling error is of order
10−4.

Although increasing the cardinality of the set will increase the computational burden,
it generates the best suitable reduced basis that allows the construction of a fairly low-
dimensional reduced model. This compensates for the extra computational burden necessary
during the adaptive sampling. We noticed that the projection error is least sensitive to the final
output considering both local (individual contribution) and global (interactions) indices. This
tells us that the singular value decay of the snapshot matrix is efficient to obtain the desired
reduced basis.

4.1.3. Computational cost. The three major error contributors that lead to the total error
are the discretization error, the model order reduction error, and the sampling error. Figure 4.12
presents the model hierarchy along with the error associated with each stage. The total error is
a sum of all significant errors and is given by (3.2)

εT ≈ εh + εRM + εPOD + εsamp.,

εT = 2.182× 10−4 + 1.882× 10−4 + 4.042× 10−6 + 2.3750× 10−4 = 6.479× 10−4.

As εT < 10−3, it fulfills the stopping criteria prescribed in Remark 3.1. Thus, we can say that
` = 10 full model valuations are enough to obtain a fairly accurate reduced model, and the
remaining scenarios (parameter groups) can be solved using the generated reduced model.

Calculation of the computation time is a crucial aspect enlightening the importance of
the model order reduction over the full model approach. In the classical greedy sampling
approach, the algorithm solves c reduced models and one full model at each greedy iteration.
The algorithm then updates the snapshot matrix using the full model solution and computes
its truncated SVD. Let tRM be the time required to solve one reduced model, tFM be the
computational time required for one full model, and let tSVD be the time required to obtain a
truncated SVD of the snapshot matrix. The total computational time TCG

Q required to obtain
the reduced basis after i iterations of the classical greedy sampling approach can then be given
as

TCG
Q ≈

[
c× tRM + (tFM + tSVD)

]
× i.
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Partial differential equation, M

Discretization error, εh = 2.182× 10−4

Discretized model, Mh

Reduced model error, εRM = 1.882× 10−4

Projection error, εPOD = 4.042× 10−6

Sampling error, εsamp. = 2.3750× 10−4

Reduced model, Md
h

Total error,
εT ≈ 6.479× 10−4

FIG. 4.12. Model hierarchy showing errors arising in the analysis of the mathematical model.

The adaptive greedy approach at each iteration conducts the following steps to obtain a reduced
basis. It is initiated by solving c0 reduced models to obtain the residual errors {εj}c0j=1. These
error estimator values are used to construct a surrogate model that locates ck parameter groups.
The process is repeated until the total cardinality of P̂ reaches c, i.e., for k iterations. The
algorithm then solves the full model for the optimal parameter group, updates the snapshot
matrix, and computes a truncated singular value decomposition of the updated snapshot matrix.
Finally, an error model ε̄RM is built to monitor the convergence of the greedy algorithm. Thus,
the total computational time can be given as

TAG
Q ≈

[
c0 × tRM + k(ck × tRM + tSM + tevSM) + tFM + tSVD + 2taft,befRM + tEM

]
× i,

where tSM and tevSM denote the computational times required to build and valuate a surrogate
model for the entire parameter space, respectively, where tEM is the time required to build an
error model. The term 2taft,befRM refers to the computational time needed to solve the reduced
model after and before updating the reduced basis. We have used a truncated SVD based

TABLE 4.4
Computational time comparison: SVD vs. Randomized SVD.

SVD RandSVD Speedup factor

Computational time tSVD 8.756 s 0.7102 s ≈ 12.5

on randomized algorithms to obtain a reduced basis. Table 4.4 shows the computation time
comparison between the randomized truncated and full SVD. For our problem, the randomized
SVD is at least 12 times faster than the basic SVD.

Table 4.5 shows the computational time required to compute the reduced basis using
classical greedy and adaptive greedy sampling for a varying cardinality of the set P̂ . Fur-
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TABLE 4.5
Computing time/ reduction time (TQ) to generate a reduced basis.

Algorithm Cardinality |P̂| Imax Computing time

Classical greedy sampling 20 10 106.81 s
Classical greedy sampling 30 10 156.24 s
Classical greedy sampling 40 10 278.46 s
Adaptive greedy sampling 40 10 387.63 s

TABLE 4.6
Evaluation time.

Algorithm Model
Eva. time
single ρs

Total Eva.
time (Teva)

Total time
TQ + Teva

FM, M = 1600 1.9136 s 19316.5 s 19316.5 s

Classical greedy sampling RM, d = 5 0.198 s 1975.31 s 2253.7 s
Classical greedy sampling RM, d = 10 0.268 s 2681.45 s 2959.9 s

Adaptive greedy sampling RM, d = 5 0.214 s 2143.47 s 2531.1 s
Adaptive greedy sampling RM, d = 10 0.263 s 2671.30 s 3058.9 s

thermore, from Table 4.6, we noticed that the evaluation of the reduced model is at least
8–10 times faster than the full model. However, there is a slight increase in the total time
due to the additional reduction time. Table 4.6 also infers that the evaluation time increases
with an increasing reduced dimension d. The reduced model obtained based on the classical
greedy sampling approach is at least 7–9 times faster than the full model. The computational
time for the adaptive greedy based reduced model is a bit higher due to the time invested in
computing the surrogate and error models. The reduced model obtained using the adaptive
greedy sampling approach is 6–8 times faster than the full model. The computation time
presented in the table considers that the greedy algorithms run for the maximum number of
iterations Imax. However, in practice, we can truncate the algorithms after the 4th or 5th
iteration and achieve an even higher speedup.

4.2. Steepener results. We solve the steepener instrument with the reduced model
obtained using the adaptive greedy approach for 10 000 different parameter groups. To design
a key information document, we need the values of the steepener at different spot rates. The
spot rate is nothing but the yield rate at the first tenor point from the simulated yield curve. For
10 000 simulated yield curves, we procure 10 000 different spot rates and the corresponding
values for the instrument. The regulations also demand to find a VaR equivalent volatility

TABLE 4.7
Results for the puttable steepener.

Performance Scenario 5 years 10 years

Model RM UnRisk RM UnRisk

Favorable (90th percentile) 0.983 0.972 1.001 0.994
Moderate (50th percentile) 0.931 0.926 0.940 0.934
Unfavorable (10th percentile) 0.907 0.904 0.912 0.919

(VEV) to determine a market risk indicator at the recommended holding period. The VaR
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shall be the instrument’s price at a confidence level of 97.5% at the end of the recommended
holding period discounted to the present date using the risk-free discount factor (DF). Thus,
the VaR in price space is VaR×DF, and the VEV is

VEV =

√
(3.842− 2× ln(VaRprice space))− 1.96

√
T

.

For the steepener instrument, the calculated VEV is 1.3285%, which gives the market risk

FIG. 4.13. Distribution of 10 000 results after five years (left) and ten years (right).

indicator as 2. See [7] for a detailed discussion on the VEV and market risk indicators. It is
required to include three different performance scenarios in the KID: (i) favorable scenario,
(ii) moderate scenario, (iii) unfavorable scenario, which are the values at the 90th percentile,
50th percentile, 10th percentile of 10 000 values, respectively. The steepener performance
scenarios obtained using the reduced model and the commercially available software UnRisk
for the comparison are presented in Table 4.7 after five and ten years. Figure 4.13 displays the
distribution of fair values of the instrument, plus the coupons in the respective path obtained so
far after five years and ten years in the future. The histogram gives an idea about the frequency
distribution and shape of a set of 10000 values for the PRIIP.

5. Conclusion. This paper presents a detailed error analysis of the model order reduction
framework developed in [7] for financial risk analysis. Three major sources of errors considered
are the discretization error, the sampling error, and the model order reduction error. We have
developed error estimations and their quantification methods for each error. Based on these
error estimators, we have designed algorithms to select optimal grid size, suitable training
parameters, and the appropriate reduced dimension. The algorithms are designed such that
the model order reduction framework can be used as a black box for which the user is only
required to provide inputs and get the desired output.

Another major contribution of this paper is the implementation of a sensitivity analysis to
rank the contribution of each numerical error. We have developed a methodology to address
both deterministic (e.g., discretization error) and stochastic errors (sampling error). The Sobol
variance-based sensitivity analysis is used, which computes local as well as global indices.
The global sensitivity analysis revealed that the sampling error is most sensitive to the final
output. Such information advised us to allocate more computational resources to the sampling
algorithm. This ultimately generated a suitable reduced basis as demonstrated by the obtained
results.

We have tested the designed algorithms for a numerical example of a puttable steepener
under the two-factor Hull-White model. The reduced model is obtained such that the total
error εT = 6.479× 10−4 is less than the user-defined tolerance etol = 10−3. As εT < etol,
we can conclude that the full model valuations for the adaptively selected ` = 10 parameter
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groups are enough, and the rest of the parameter groups can be solved inexpensively using
the reduced model of dimension d = 10. The reduced model approach to solve the entire
parameter space was at least 8–10 times faster than the full model approach. We also noticed
that the randomized singular value decomposition provides an excellent speedup compared to
the basic singular value decomposition.

We conclude that the new model order reduction approach shows many potential applica-
tions in the historical or Monte Carlo Value-at-Risk calculations.
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