
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 55, pp. 401–423, 2022.
Copyright c© 2022, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol55s401

ON A COMPENSATED EHRLICH-ABERTH METHOD FOR THE ACCURATE
COMPUTATION OF ALL POLYNOMIAL ROOTS∗

THOMAS R. CAMERON† AND STEF GRAILLAT‡

Abstract. In this article, we use the complex compensated Horner method to derive a compensated Ehrlich-
Aberth method for the accurate computation of all roots, real or complex, of a polynomial. In particular, under
suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth iterations is as accurate
as if computed in twice the working precision and then rounded to the working precision. Moreover, we derive a
running error bound for the complex compensated Horner method and use it to form robust stopping criteria for the
compensated Ehrlich-Aberth iterations. Finally, extensive numerical experiments illustrate that the backward and
forward errors of the root approximations computed via the compensated Ehrlich-Aberth method are similar to those
obtained with a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in
terms of computation time.

Key words. polynomial evaluation, error-free transformations, polynomial roots, backward error, forward error,
rounding error analysis

AMS subject classifications. 65H04, 65Y20, 65-04

1. Introduction. The use of error-free transformations to produce compensated arith-
metic routines has a long and interesting history, which includes the works of Dekker, Gill,
Goldberg, Kahan, Knuth, and Møller [6, 12, 13, 21, 22, 23]. These works were the first
to extend the working precision of a computation without the use of a hardware or soft-
ware implementation of a high precision format [9, 10]. More recently, Rump, Ogita, and
Oishi have developed algorithms for the summation and the dot product computed in k-fold
working precision [25], k ≥ 2, as well as the computation of a summation that is faithfully
rounded [27, 28].

In addition, error-free transformations have been used to develop the compensated Horner
method for the evaluation of a polynomial and its derivatives at a real or complex number [15,
16, 17, 19, 20]. The real compensated Horner method has been used to improve the accuracy of
eigenvalue approximations of a symmetric tridiagonal matrix and real root approximations of
a real polynomial [11, 14]. In [14], Graillat shows that if the real compensated Horner method
is used to evaluate a polynomial, then the Newton iterations converge to an approximate root
as accurately as if computed in twice the working precision and then rounded to the working
precision.

The Ehrlich-Aberth (Börsch-Supan) method [1, 4, 8] combines Newton’s method with an
implicit deflation strategy, which allows for the computation of all roots, real or complex, of
a polynomial. In this article, we use the complex compensated Horner method to develop a
compensated Ehrlich-Aberth method that can compute all roots of a polynomial as accurately
as the Newton iterations from [14]. The outline of this article is as follows. In Section 2, we
recall the basic properties of real and complex floating-point arithmetic. Then, in Section 3, we
describe the Horner method and the compensated Horner method for polynomial evaluation
in complex floating-point arithmetic. Moreover, we derive a running error bound for the
compensated Horner method, which takes into account the rounding errors that occur during

∗Received September 12, 2021. Accepted February 10, 2022. Published online on March 21, 2022. Recom-
mended by Dario Bini. This work was partly supported by the NuSCAP (ANR-20-CE48-0014) project of the French
National Agency for Research (ANR).
†Department of Mathematics, Penn State Behrend, Erie, PA (trc5475@psu.edu).

https://behrend.psu.edu/person/thomas-cameron-phd
‡Sorbonne UniversitÃl’, CNRS, LIP6, F-75005 Paris, France

(stef.graillat@sorbonne-universite.fr). http://www-pequan.lip6.fr/~graillat

401

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol55s401
https://behrend.psu.edu/person/thomas-cameron-phd
http://www-pequan.lip6.fr/~graillat

ETNA
Kent State University and

Johann Radon Institute (RICAM)

402 T. R. CAMERON AND S. GRAILLAT

the computation. Section 4 is devoted to the presentation of the Ehrlich-Aberth method
and the compensated Ehrlich-Aberth method. In particular, the running error bound for the
compensated Horner method is used to form robust stopping criteria for the sequence of root
approximations. Moreover, under suitable conditions, we prove that these root approximations
have a similar limiting accuracy as if computed in twice the working precision and then
rounded to the working precision. Finally, in Section 5, extensive numerical experiments
illustrate that the backward and forward errors of the root approximations computed via the
compensated Ehrlich-Aberth method are similar to those obtained with a quadruple precision
implementation of the Ehrlich-Aberth method but with a significant speed-up in terms of
computation time.

2. Floating-point arithmetic. Throughout this article, we assume that the computer
arithmetic satisfies the IEEE 754 standard [2] and that neither underflow nor overflow occurs.
We denote by F the set of floating-point numbers and by µ the unit roundoff. Note that
for single precision, µ = 2−24 and for double precision, µ = 2−53, where the exponent
corresponds to the precision of this floating-point format. Finally, we use the standard notation
fl(·) to denote floating-point operations in working precision.

2.1. Real floating-point arithmetic. For operations ◦ ∈ {+,−, ·}, the IEEE 754 stan-
dard requires the result of fl(a ◦ b) to be correctly rounded, i.e., as accurate as if computed
exactly and then rounded to the current precision [13]. In this article, we assume that all the
computations are performed with rounding to nearest (using round to even). As a result, for
a, b ∈ F , the floating-point operations satisfy

fl(a ◦ b) = (a ◦ b)(1 + ε),

where |ε| ≤ µ. This further implies that

|fl(a ◦ b)− a ◦ b| ≤ µ|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ µ|fl(a ◦ b)|.

Throughout this article, we make use of the quantities γn, which are defined in the usual
way [18]:

γn =
nµ

1− nµ
,

where n ∈ N is assumed to satisfy nµ < 1. Moreover, we make use of the round to nearest
mode to perform error-free transformations for a floating-point operation. In particular, for
each x = fl(a ◦ b), there exists a y ∈ F such that x + y = a ◦ b. The pair (x, y) is called
the error-free transformation of (a, b) for the operation ◦. For instance, Algorithm 1 is
attributed to Knuth [22] and returns the error-free transformation of (a, b) for addition. Note
that Algorithm 1 requires 6 flops to be executed.

Algorithm 1 Error-free transformation of (a, b) ∈ F2 for addition.
function [x, y] = TwoSum(a, b) :
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

In addition, we make use of the fused multiply-add operation, denoted FMA(a, b, c),
which results in the floating-point number nearest to a · b + c ∈ R. Note that the fused

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 403

multiply-add operation was added to the IEEE 754 standard in 2008 and is supported by many
modern processors [24]. Moreover, the error-free transformation of (a, b) for multiplication
can be performed using the fused multiply-add operation as is done in [25]; see Algorithm 2.

Algorithm 2 Error-free transformation of (a, b) ∈ F2 for multiplication.
function [x, y] = TwoProduct(a, b) :
x = fl(a · b)
y = FMA(a, b,−x)

For processors that do not support the fused multiply-add operation, the error-free transfor-
mation of (a, b) for multiplication can be computed with the splitting operation introduced by
Dekker [6] but requires 17 flops rather than the 2 flops needed by Algorithm 2; see [25, Algo-
rithm 3.3]. We conclude this section with a theorem from [25] that summarizes the properties
of Algorithm 1 and Algorithm 2.

THEOREM 2.1. Let a, b ∈ F . Then, for [x, y] = TwoSum(a, b), we have

a+ b = x+ y, x = fl(a+ b), |y| ≤ µ|x|, |y| ≤ µ|a+ b|,

and, for [x, y] = TwoProduct(a, b), we have

a · b = x+ y, x = fl(a · b), |y| ≤ µ|x|, |y| ≤ µ|a · b|.

2.2. Complex floating-point arithmetic. We define C = F + iF to be the set of
complex floating-point numbers, where i =

√
−1 is the imaginary unit. Also, we use

the operators Re(·) and Im(·) to denote the real and imaginary part of a complex number,
respectively. As in the real case, we denote by fl(·) the operations that are done in floating-point
working precision. The following holds for all a, b ∈ C and ◦ ∈ {+,−}:

fl(a ◦ b) = (a ◦ b)(1 + ε),

where |ε| ≤ µ. In addition, we have

fl(a · b) = (a · b)(1 + ε),

where |ε| ≤
√

2 γ2. This further implies that

|fl(a ◦ b)− a ◦ b| ≤ µ|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ µ|fl(a ◦ b)|,

for ◦ ∈ {+,−}, and

|a · b− fl(a · b)| ≤
√

2 γ2|a · b|.

Finally, throughout this article, we make use of the quantity

γ̃n =
n
√

2 γ2

1− n
√

2 γ2
.

As in the real case, the error-free transformation of the pair of complex floating-point
numbers (a, b) for the operation ◦ is a pair (x, y) such that x = fl(a ◦ b) and x+y = a◦b. The
error-free transformation of (a, b) ∈ C2 for complex addition is a straightforward extension

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

404 T. R. CAMERON AND S. GRAILLAT

Algorithm 3 Error-free transformation of (a, b) ∈ C2 for addition.
function [x, y] = TwoSumCmplx(a, b) :

[Re(x),Re(y)] = TwoSum(Re(a),Re(b))
[Im(x), Im(y)] = TwoSum(Im(a), Im(b))

of Algorithm 1 and is shown in Algorithm 3. Note that Algorithm 3 requires 12 flops to be
executed.

The error-free transformation of (a, b) ∈ C2 for complex multiplication requires multiple
products of the real and imaginary parts of a and b as illustrated in Algorithm 4. Note
that Algorithm 4 requires 20 flops to be executed. In contrast, if the splitting operation
from [6] was used in Algorithm 2, then Algorithm 4 would require 64 flops to be executed;
see [17, Algorithm 3.3].

Algorithm 4 Error-free transformation of (a, b) ∈ C2 for multiplication.
function [w, x, y, z] = TwoProductCmplx(a, b) :

[g1, h1] = TwoProduct(Re(a),Re(b)); [g2, h2] = TwoProduct(Im(a), Im(b))
[g3, h3] = TwoProduct(Re(a), Im(b)); [g4, h4] = TwoProduct(Re(a), Im(b))
[g5, h5] = TwoSum(g1,−g2); [g6, h6] = TwoSum(g3, g4)
w = g5 + ig6; x = h1 + ih3; y = −h2 + ih4; z = h5 + ih6

We conclude this section with a theorem from [17] that summarizes the properties of
Algorithm 3 and Algorithm 4.

THEOREM 2.2. Let a, b ∈ C. Then, for [x, y] = TwoSumCmplx(a, b), we have

a+ b = x+ y, x = fl(a+ b), |y| ≤ µ|x|, |y| ≤ µ|a+ b|,

and, for [w, x, y, z] = TwoProductCmplx(a, b), we have

a · b = w + x+ y + z, w = fl(a · b), |x+ y + z| ≤
√

2 γ2|a · b|.

3. The Horner method. Consider the polynomial of degree m in the variable z defined
by

(3.1) p(z) = amz
m + · · ·+ a1z + a0,

where a0, a1, . . . , am ∈ C, and am 6= 0. Given z ∈ C, we can compute the polynomial
evaluation p(z) using the Horner method as shown in Algorithm 5.

Algorithm 5 Horner method.
function [h0] = Horner(p, z) :
hm = am
for k = m− 1 to k = 0 do
hk = fl(z · hk+1 + ak)

end for

The result h0 = Horner(p, z) satisfies the following forward error bound [17]:

|p(z)− h0| ≤ γ̃2m p̃(|z|),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 405

where p̃(z) =
∑m
k=0|ak|zk. Finally, if p(z) 6= 0, then we have the relative forward error

bound

|p(z)− h0|
|p(z)|

≤ γ̃2m cond(p, z),

where the condition number of the polynomial evaluation of p at z is defined by

(3.2) cond(p, z) = p̃(|z|)/|p(z)|.

3.1. The compensated Horner method. To improve the standard error bound for the
Horner method, we follow the development in [17] to produce a compensated Horner method
in complex floating-point arithmetic. To this end, we record the error at each iteration
from both the floating-point product and the sum operations. Specifically, we produce four
error polynomials: pπ, pµ, pν , pσ , which are collected monomial-by-monomial as outlined in
Algorithm 6. Note that each iteration of Algorithm 6 requires 12 flops for Algorithm 3 and 20
flops for Algorithm 4 with a total of 32m flops.

Algorithm 6 Error-free transformation of the Horner method.
function [h0, pπ, pµ, pν , pσ] = EFTHorner(p, z) :
hm = am
for k = m− 1 to k = 0 do

[ĥk, πk, µk, νk] = TwoProductCmplx(hk+1, z)

[hk, σk] = TwoSumCmplx
(
ĥk, ak

)

Set πk, µk, νk, σk, respectively, as the coefficient of degree k in pπ, pµ, pν , pσ .
end for

It is immediately clear that h0 = Horner(p, z). Furthermore, by induction, it is easy to
show that

p(z) = h0 + (pπ + pµ + pν + pσ)(z),

and it follows from [17, Proposition 5.3] that

(˜(pπ + pµ + pν) + p̃σ)(|z|) ≤ γ̃2m p̃(|z|).

To obtain a true error-free transformation, we would need to recursively perform Algo-
rithm 6 on the four error polynomials of degree (m− 1) until the resulting error polynomials
were constant. This recursive process would result in many error terms: four polynomials of
degree (m− 1), 16 polynomials of degree (m− 2), and so on to include 4m constant polyno-
mials. Moreover, most of the coefficients in these polynomials would suffer from underflow.
For this reason, we only consider the first-order error terms. In particular, Algorithm 7 shows
how we compute the forward error e(z) = (pπ + pµ + pν + pσ)(z) using Horner’s method
applied to the polynomial whose coefficients are those of (pπ + pµ + pν + pσ), computed
using the doubly compensated summation method from Priest [26].

In fact, any of the summation methods from [7, 18, 26, 27, 28] that guarantee a relative
error bound of 2µ can be used. For example, in [17], the authors advocate the use of the
accurate summation method from [27, 28], the result of which is guaranteed to be faithfully
rounded, i.e., as accurate as if computed exactly and then rounded to an adjacent floating-point
number. Hence, the relative error in the accurate summation method is 2µ. However, since

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

406 T. R. CAMERON AND S. GRAILLAT

we only need to sum 4 complex floating-point numbers, it is more efficient to use the doubly
compensated summation method. Although the result of this method is not guaranteed to be
faithfully rounded, it follows from the analysis of Priest in [26, Section 4.1] that it has the same
relative error of 2µ. If we ignore the cost of this sort, which for the given 4 floating-point values
requires 9 absolute values, 6 comparisons, and 3 swaps, then the execution of Algorithm 8
requires 30 flops. Since Algorithm 7 uses the complex doubly compensated summation from
Algorithm 9, it follows that its execution requires 68m− 8 flops.

Algorithm 7 Horner method applied to the degree-(m− 1) polynomial (p+ q + r + s).
function [v0] = HornerSum(p, q, r, s, z) :
vm−1 = DbleCompSumCmplx(pm−1, qm−1, rm−1, sm−1)
for k = m− 2 to k = 0 do
vk = fl(z · vk+1 + DbleCompSumCmplx(pk, qk, rk, sk))

end for

Algorithm 8 Doubly compensated summation of a1, a2, a3, a4 ∈ F .
function [sn] = DbleCompSum(a1, a2, a3, a4) :

Sort the ai so that |a1| ≥ · · · ≥ |a4|
s1 = a1, c1 = 0
for k = 2 to k = 4 do
yk = fl(ck−1 + ak)
uk = fl(ak − (yk − ck−1))
tk = fl(yk + sk−1)
vk = fl(yk − (tk − sk−1))
zk = fl(uk + vk)
sk = fl(tk + zk)
ck = fl(zk − (sk − tk))

end for

Algorithm 9 Doubly compensated summation of a1, a2, a3, a4 ∈ C.
function [x+ iy] = DbleCompSumCmplx(a1, a2, a3, a4) :
x = DbleCompSum(Re(a1),Re(a2),Re(a3),Re(a4))
y = DbleCompSum(Im(a1), Im(a2), Im(a3), Im(a4))

Let pπ, pµ, pν , pσ be the error polynomials from Algorithm 6. Then, by [17, Lemma 5.4],
the result v0 = HornerSum(pπ, pµ, pν , pσ, z) satisfies the following forward error bound:

(3.3) |e(z)− v0| ≤ γ̃2m−1(˜(pπ + pµ + pν) + p̃σ)(|z|).

It is worth noting that [17, Lemma 5.4] is formally stated for the accurate summation method
from [27, 28]; however, since the doubly compensated method has the same relative error
bound, the result follows. Now, by combining the error-free transformation of the Horner
method and the method for computing the corresponding forward error, we obtain the compen-
sated Horner method shown in Algorithm 10, which requires 100m− 7 flops to be executed.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 407

Algorithm 10 Compensated Horner method.
function [c0] = CompHorner(p, z) :

[h0, pπ, pµ, pν , pσ] = EFTHorner(p, z)
e0 = HornerSum(pπ, pµ, pν , pσ, z)
c0 = fl(h0 + e0)

From [17, Theorem 5.5], we know that the result c0 = CompHorner(p, z) satisfies the
following forward error bound:

(3.4) |p(z)− c0| ≤ µ|p(z)|+ γ̃22mp̃(|z|).

Furthermore, if p(z) 6= 0, then we have the relative forward error bound

|p(z)− c0|
|p(z)|

≤ µ+ γ̃22m cond(p, z).

Therefore, the compensated Horner method is as accurate as if computed in twice the working
precision and then rounded to the working precision.

3.2. Running error bound. The error bound in (3.4) is not useful in practice since it
contains the quantity p(z). Therefore, we establish a running error bound that can be computed
using the error polynomials produced in Algorithm 6. We begin with the following lemma.

LEMMA 3.1. Let p, q, r, s be degree-(m− 1) polynomials with non-negative coefficients
ak, bk, ck, dk ∈ F , and let x ∈ F be non-negative. Then,

0 ≤
m−1∑

k=0

(ak + bk + ck + dk)xk ≤ (1 + 2µ)m−1 HornerSum(p, q, r, s, x).

Proof. Consider v0 and the intermediate values vk produced by Algorithm 7. We prove
that, for k = 0, 1, . . . ,m− 1, we have

s(k) :=

k∑

j=0

(am−1−k+j + bm−1−k+j + cm−1−k+j + dm−1−k+j)x
j

≤ (1 + 2µ)2k+1vm−1−k.

(3.5)

The base case, k = 0, holds since the relative error in the doubly compensated summation is
bounded above by 2µ, that is,

(am−1 + bm−1 + cm−1 + dm−1) ≤ (1 + 2µ) DbleCompSum(am−1, bm−1, cm−1, dm−1)

= (1 + 2µ)vm−1.

Suppose that (3.5) holds for some integer k, where 0 ≤ k < m − 1, and note that s(k + 1)
can be split into the sum of two parts:

k∑

j=0

(am−1−k+j + bm−1−k+j + cm−1−k+j + dm−1−k+j)x
j

x

and

am−k−2 + bm−k−2 + cm−k−2 + dm−k−2.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

408 T. R. CAMERON AND S. GRAILLAT

By the induction hypothesis, the first part is bounded above by (1 + 2µ)2k+1x · vm−1−k, and,
since the relative error in the doubly compensated summation is bounded above by 2µ, the
second part is bounded above by

(1 + 2µ) DbleCompSum(am−k−2, bm−k−2, cm−k−2, dm−k−2).

Therefore, s(k + 1) is bounded above by

(1 + 2µ)2k+1x · vm−1−k + (1 + 2µ) DbleCompSum(am−k−2, bm−k−2, cm−k−2, dm−k−2),

which, in turn, is bounded above by (1 + 2µ)2k+1(1 + µ)2 times

fl(x · vm−1−k + DbleCompSum(am−k−2, bm−k−2, cm−k−2, dm−k−2)).

Thus,

s(k + 1) ≤ (1 + 2µ)2(k+1)+1vm−k−2,

and it follows that (3.5) holds for k = 0, 1, . . . ,m− 1.
We are now ready to prove a forward running error bound for the compensated Horner

method in Algorithm 10.
THEOREM 3.2. Let p be a degree-m complex polynomial as defined in (3.1). Then,

c0 = CompHorner(p, z) satisfies

|c0 − p(z)| ≤ fl
(
µ|c0|+ (γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|) + 2µ2|c0|)

)
.

Proof. Note that c0 = CompHorner(p, z) satisfies

|c0 − p(z)| = |fl(h0 + e0)− p(z)|
≤ |fl(h0 + e0)− (h0 + e0)|+ |(h0 + e0)− p(z)|
≤ µ|fl(h0 + e0)|+ |e0 − e(z)|,

where e(z) = (pπ + pµ + pν + pσ)(z). Applying the forward error bound in (3.3) and
Lemma 3.1, we have

|e0 − e(z)| ≤ γ̃2m−1(˜(pπ + pµ + pν) + p̃σ)(|z|)
≤ (1 + 2µ)2m−1 γ̃2m−1 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|).

Next, we make use of the following inequalities:

(1 +
√

2γ2)γ̃m ≤ γ̃m+1 and γ̃m ≤ (1−
√

2 γ2)γ̃m+1.

The first inequality implies that (1 +
√

2 γ2)2m−1 γ̃2m−1 ≤ γ̃4m−2. This combined with
2µ ≤

√
2 γ2 implies that (1 + 2µ)2m−1 γ̃2m−1 ≤ γ̃4m−2. Furthermore, the second inequality

implies that γ̃4m−2 ≤ (1−
√

2 γ2)4 γ̃4m+2. Since (1−
√

2 γ2) ≤ (1− µ)9/4, it follows that
γ̃4m−2 ≤ (1− µ)9γ̃4m+2. We summarize these results in the following inequality

(3.6) (1 + 2µ)2m−1 γ̃2m−1 ≤ γ̃4m−2 ≤ (1− µ)9 γ̃4m+2.

Now, we analyze the error in the computation of

γ̃k =
k
√

2 γ2

1− k
√

2 γ2
=

2kµ
√

2

(1− 2µ)− 2kµ
√

2
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 409

Note that 2µ, 2kµ, and (1− 2µ) are floating-point numbers computed exactly, and the IEEE
standard requires the square-root operation be correctly rounded, with round to nearest. Hence,
2kµ
√

2 ≤ (1− µ)−2 fl
(
2kµ
√

2
)

and (1− 2µ)− 2kµ
√

2 ≥ (1− µ)3 fl
(
(1− 2µ)− 2kµ

√
2
)
,

and it follows that

(3.7) γ̃k ≤ (1− µ)−6 fl(γ̃k).

Finally, we apply the inequalities in (3.6) and (3.7) to obtain the following:

|c0 − p(z)| ≤ µ|c0|+ (1 + 2µ)2m−1 γ̃2m−1 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|)
≤ µ|c0|+ (1− µ)9 γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|)
≤ µ|c0|+ (1− µ)2 fl(γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|)).

Therefore, the forward error in the computation of c0 is bounded above by

(1− µ)µ|c0|+ (1− µ)2 fl(γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|)) + µ2|c0|,

which, since we can always assume that 2(1− µ)2 ≥ 1, is bounded above by

(1− µ)µ|c0|+ (1− µ)2
(
fl(γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|)) + 2µ2|c0|

)
.

Furthermore, since we assume that no underflow occurs, both µ|c0| and 2µ2|c0| are floating-
point numbers computed exactly, and it follows that the forward error in the computation of c0
is bounded above by

(1− µ)
(
µ|c0|+ fl

(
γ̃4m+2 HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|) + 2µ2|c0|

))
.

Therefore, we have

|c0 − p(z)| ≤ fl
(
µ|c0|+ (γ̃4m+2 HornerSum

(
|pπ|, |pµ|, |pν |, |pσ|, |z|) + 2µ2|c0|

))
.

4. The Ehrlich-Aberth method. Let p be a degree-m complex polynomial as defined
in (3.1). Throughout this section, we assume that p has simple roots ζ1, . . . , ζm ∈ C. For
1 ≤ i ≤ m and n ≥ 0, let zn,i ∈ C denote the approximation of ζi after n iterations. The
Ehrlich-Aberth method [1, 3, 4, 8] updates each root approximation as follows:

(4.1) zn+1,i = fl

(
zn,i −

p(zn,i)

p′(zn,i)− p(zn,i)An,i(zn,i)

)
,

where An,i(z) =
∏
j 6=i(z − zn,j)−1. Note that we refer to the fractional expression on the

right-hand side of (4.1) as the Ehrlich-Aberth correction term.
The polynomial evaluations in (4.1) can be computed using the Horner method from

Algorithm 5. Moreover, given z ∈ C and h0 = Horner(p, z), we can push the error in the
computation back to the coefficients as follows [3, Theorem 7]:

h0 =

m∑

i=0

ai(1 + εi)z
i,

where |εi| ≤
(
(2
√

2 + 1)i+ 1
)
µ+O(µ2). Note that the backward error of z as a root of the

polynomial p is defined by

η(z) = min{ε : (p+ ∆p)(z) = 0, |∆ai| ≤ ε|ei|, i = 0, 1, . . . ,m},

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

410 T. R. CAMERON AND S. GRAILLAT

where the ei are arbitrary and represent tolerances against which perturbations are measured,
and

∆p(z) = ∆amz
m + · · ·+ ∆a1z + ∆a0.

It is well-known (see, e.g., [5]) that

η(z) =
|p(z)|
α(|z|)

,

where α(z) =
∑m
i=0|ei|zi. Let ei = ((2

√
2 + 1)i+ 1)ai. Then, the inequality

(4.2) η(z) ≤ µ

guarantees that z is a root of (p+∆p), where |∆ai| is not larger than the upper bound of |ai|εi,
for all i = 0, 1, . . . ,m. Furthermore, if η(z) > µ, then z being a root of (p + ∆p) implies
that |∆ai| is larger than |ai|εi, for some i = 0, 1, . . . ,m. Hence, in exact arithmetic, (4.2)
denotes a stopping criterion that guarantees that iterations do not terminate until z is a root of
a polynomial whose coefficients are no more perturbed than the floating-point computation of
p(z). In practice, we stop updating the root approximation z if the following inequality holds:

(4.3) |h0| > µHorner(α, |z|),

where the coefficients of α have been stored as floating-point numbers.

4.1. The compensated Ehrlich-Aberth method. Let z ∈ C be a root approximation of
the polynomial p such that the stopping criterion (4.3) holds. Then, h0 = Horner(p, z) is no
longer a reliable computation for updating the root approximation z. However, the computation
c0 = CompHorner(p, z) may still be reliable, depending on the value of cond(p, z) as defined
in (3.2). In this case, we update the root approximation using (4.1) and the compensated
Horner method. If the polynomial has well-conditioned simple roots, then we only need to
apply the compensated Horner method to p. However, the more difficult polynomial equations
have multiple or near multiple roots, which may be ill-conditioned. For this reason, we use the
compensated Horner method to evaluate p and p′. A method for performing these evaluations
is derived from [19, Algorithm 2] and presented in Algorithm 11.

It is clear that the value of c0 from Algorithm 11 is the same as its value from Algo-
rithm 10; therefore, c0 satisfies the forward error bound in (3.4) and the running error bound
in Theorem 3.2. Moreover, the derivative value c′0 can be shown to satisfy a similar forward
error bound by appealing to [19, Theorem 4] and making the necessary changes from real to
complex floating-point arithmetic.

Furthermore, the value of s0 from Algorithm 11 satisfies

s0 = HornerSum(|pπ|, |pµ|, |pν |, |pσ|, |z|),

where pπ, pµ, pν , and pσ are the polynomials created by EFTHorner(p, z). Therefore, by
Theorem 3.2, it follows that

|c0 − p(z)| ≤ fl
(
µ|c0|+ (γ̃4m+2s0 + 2µ2|c0|)

)
.

Hence, if

fl
(
µ|c0|+ (γ̃4m+2s0 + 2µ2|c0|)

)
< |c0|,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 411

Algorithm 11 Compensated Horner method for p and p′.
function [c0, c

′
0, s0] = CompHornerDer(p, z) :

hm = am, h′m = 0
em = 0, e′m = 0
sm = 0
for k = m− 1 to k = 0 do

[ĥ′k, π
′
k, µ
′
k, ν
′
k] = TwoProductCmplx

(
h′k+1, z

)

[h′k, σ
′
k] = TwoSumCmplx

(
ĥ′k, hk+1

)

e′k = fl
(
z · e′k+1 + ek+1 + DbleCompSumCmplx(π′k, µ

′
k, ν
′
k, σ
′
k)
)

[ĥk, πk, µk, νk] = TwoProductCmplx(hk+1, z)

[hk, σk] = TwoSumCmplx
(
ĥk, ak

)

ek = fl(z · ek+1 + DbleCompSumCmplx(πk, µk, νk, σk))
sk = fl(|z| · sk+1 + DbleCompSum(|πk|, |µk|, |νk|, |σk|))

end for
c0 = fl(h0 + e0), c′0 = fl(h′0 + e′0)

then the error in the computation of p(z) is smaller than the size of |c0| and it is still a
reliable computation. Thus, we obtain the following stopping criterion for the compensated
Ehrlich-Aberth method:

(4.4) |c0| ≤ fl
(
µ|c0|+ (γ̃4m+2s0 + 2µ2|c0|)

)
.

Finally, let z ∈ C be an approximate root of the polynomial p, and consider the computa-
tion [c0, c

′
0, s0] = CompHornerDer(p, z). Denote by EA(p, z) the computed Ehrlich-Aberth

correction term using the values of c0 and c′0. Then, even if (4.4) does not hold, it may happen
that the following inequality does hold,

(4.5) |EA(p, z)| ≤ µ|z|,

which implies that the relative change made to z by the Ehrlich-Aberth correction term
is insignificant. In summary, we do not stop updating the root approximations from the
compensated Ehrlich-Aberth method until either (4.4) or (4.5) hold, which guarantees that the
updates do not cease until the relative error in the compensated Horner method is too large or
the relative size of the Ehrlich-Aberth correct term is too small.

Before proceeding, note that the Horner and compensated Horner methods are prone to
overflow; for instance, when a large-degree polynomial with positive coefficients is evaluated
at z, where |z| > 1. For this reason, the reversal polynomial pR(z) := zmp(1/z), which for
ρ = 1/z satisfies

p(z) = zmpR(ρ)

p′(z) = mzm−1pR(ρ)− zm−2p′R(ρ),

is used to compute the Ehrlich-Aberth correction term when |z| > 1 [3].

4.2. Limiting accuracy. In [29], Tisseur examined the multi-variable Newton method,
allowing for extended precision in the computation of the residual and its application to
iterative refinements for the generalized eigenvalue problem. In particular, for a close enough
eigenvalue approximation, Newton’s method converges to an eigenvalue approximation with

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

412 T. R. CAMERON AND S. GRAILLAT

limiting accuracy that depends on the relative rounding error µ and the accuracy of the
computed residual.

Then, in [14], Graillat applied this result to real polynomials with real simple zeros.
Specifically, if the polynomial evaluation is computed using the real compensated Horner
method, then for a close enough root approximation, Newton’s method converges to a root
approximation with limiting accuracy as if computed in twice the working precision and then
rounded to the working precision. In this section, we show that the compensated Ehrlich-
Aberth method has a similar limiting accuracy for all, real or complex, roots of a polynomial.

To this end, we rewrite (4.1) as follows:

(4.6) zn+1,i = zn,i −
(
Jn,i(zn,i) + e′n,i

)−1(p(zn,i) + en,i) + εn,i,

where Jn,i(z) = p′(z)− p(z)An,i(z), en,i is the error in computing p(zn,i), e′n,i is the error
in computing Jn,i(zn,i) and performing the division, and εn,i is the error in the subtraction.

For i = 1, . . . ,m, we assume that p(zn,i) is computed via the compensated Horner
method in Algorithm 10. Hence,

|en,i| ≤ µ|p(zn,i)|+ γ̃22mp̃(|zn,i|).

We also assume that
∣∣e′n,i

∣∣ ≤ µφ(p, zn,i,m, µ),

for some function φ that reflects the error in computing Jn,i(zn,i) and performing the division.
For the error εn,i, we have

|εn,i| ≤ µ
(
|zn,i|+

∣∣(Jn,i(zn,i) + e′n,i
)−1(p(zn,i) + en,i)

∣∣).

Since the roots of p, denoted by ζ1, . . . , ζm, are assumed to be simple, it follows that
for i = 1, . . . ,m, there exists a closed disk Di in the complex plane centered at ζi such that
ζj /∈ Di, for all j 6= i. Furthermore, for close enough root approximations, we can assume
that zn,i ∈ Di and zn,j /∈ Di, for all j 6= i. Under these assumptions, we have the following
result.

LEMMA 4.1. For i = 1, . . . ,m, there exists a βi > 0 such that for all z, w ∈ Di, we
have

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 + |p(w)||An,i(w)||z − w|.

Proof. Since p′ is Lipschitz continuous on Di, there exists a βi > 0 such that

|p′(z)− p′(w)| ≤ βi|z − w|,

for all z, w ∈ Di. Furthermore, for all z, w ∈ Di, p(z) − p(w) − Jn,i(w)(z − w) can be
written as

∫ 1

0

(p′(w + t(z − w))− p′(w))(z − w)dt+ p(w)An,i(w)(z − w).

Therefore, by Hölder’s inequality and the Lipschitz continuity of p′, we have

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 + |p(w)||An,i(w)||z − w|.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 413

From Lemma 4.1 and the continuity of p and An,i on Di, it follows that there exists
Mi > 0 such that

|p(z)− p(w)− Jn,i(w)(z − w)| ≤ βi
2
|z − w|2 +Mi|z − w|,

for all z, w ∈ Di. Furthermore, the Lipschitz continuity of Jn,i on Di implies that there exists
β′i > 0 such that

|Jn,i(z)− Jn,i(w)| ≤ β′i|z − w|,

for all z, w ∈ Di.
THEOREM 4.2. For i = 1, . . . ,m, assume that

∣∣Jn,i(zn,i)−1e′n,i
∣∣ ≤ ν < 1,(4.7)

and

β′i
∣∣Jn,i(ζi)−1

∣∣|zn,i − ζi| ≤ τ < 1.(4.8)

Then, zn+1,i in (4.6) is well-defined and satisfies

|zn+1,i − ζi| ≤ Gi|zn,i − ζi|+ gi,

where

Gi =
ν

1− ν
+

µ(2 + µ)

(1− τ)(1− ν)
+Mi + µ+

(1 + µ)2τ

2(1− τ)(1− ν)

and

gi = µ|ζi|+ γ̃22m
1 + µ

(1− τ)(1− ν)

p̃(|zn,i|)
|p′(ζi)|

.

Proof. By (4.8) and the Lipschitz continuity of Jn,i on Di, we have

(4.9)
∣∣Jn,i(ζi)−1

∣∣|Jn,i(zn,i)− Jn,i(ζi)| ≤ β′i
∣∣Jn,i(ζi)−1

∣∣|zn,i − ζi| ≤ τ < 1.

Also, note that

Jn,i(zn,i)
−1 =

(
1 +

Jn,i(zn,i)− Jn,i(ζi)
Jn,i(ζi)

)
−1Jn,i(ζi)

−1,

which, combined with (4.9), implies that

(4.10)
∣∣Jn,i(zn,i)−1

∣∣ ≤
∣∣Jn,i(ζi)−1

∣∣
1− |Jn,i(ζi)−1||Jn,i(zn,i)− Jn,i(ζi)|

≤
∣∣Jn,i(ζi)−1

∣∣
1− τ

.

Similarly, (4.7) and (4.10) give us

∣∣(Jn,i(zn,i) + e′n,i
)−1∣∣ ≤

∣∣Jn,i(zn,i)−1
∣∣

1−
∣∣Jn,i(zn,i)−1e′n,i

∣∣ ≤
∣∣Jn,i(ζi)−1

∣∣
(1− τ)(1− ν)

.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

414 T. R. CAMERON AND S. GRAILLAT

Therefore,
(
Jn,i(zn,i) + e′n,i

)
is non-zero, so zn+1,i in (4.6) is well-defined and

zn+1,i − ζi = zn,i − ζi −
(
Jn,i(zn,i) + e′n,i

)−1(p(zn,i) + en,i) + εn,i

=

(
1− Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

)
(zn,i − ζi)−

p(zn,i)− Jn,i(zn,i)(zn,i − ζi) + en,i
Jn,i(zn,i) + e′n,i

+ εn,i.

Hence, we have the bound

|zn+1,i − ζi| ≤

∣∣∣∣∣1−
Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

∣∣∣∣∣|zn,i − ζi|

+
|p(zn,i)− Jn,i(zn,i)(zn,i − ζi)|+ |en,i|∣∣Jn,i(zn,i) + e′n,i

∣∣ + |εn,i|.

From

1− Jn,i(zn,i)

Jn,i(zn,i) + e′n,i
=

e′n,i
Jn,i(zn,i) + e′n,i

=
Jn,i(zn,i)

−1e′n,i
1 + Jn,i(zn,i)−1e′n,i

and (4.7), we have
∣∣∣∣∣1−

Jn,i(zn,i)

Jn,i(zn,i) + e′n,i

∣∣∣∣∣ ≤
ν

1− ν
.

From Lemma 4.1, we have

|p(zn,i)− Jn,i(zn,i)(zn,i − ζi)| ≤
βi
2
|zn,i − ζi|2 +Mi|zn,i − ζi|

and

|p(zn,i)− Jn,i(ζn,i)(zn,i − ζi)| ≤
βi
2
|zn,i − ζi|2.

Hence,

|p(zn,i)| ≤ |p(zn,i)− Jn,i(ζi)(zn,i − ζi)|+ |Jn,i(ζi)(zn,i − ζi)|

≤ βi
2
|zn,i − ζi|2 + |Jn,i(ζi)||zn,i − ζi|,

which allows us to bound the error term en,i as

|en,i| ≤ µ
(
βi
2
|zn,i − ζi|2 + |Jn,i(ζi)||zn,i − ζi|

)
+ γ̃22mp̃(|zn,i|)

and the error term εn,i as

|εn,i| ≤ µ(|zn,i − ζi|+ |ζi|+ |dn,i|),

where

|dn,i| =
∣∣(Jn,i(zn,i) + e′n,i

)−1∣∣(|p(zn,i)|+ |en,i|)

≤
∣∣Jn,i(ζi)−1

∣∣
(1− τ)(1− ν)

(
(1 + µ)

(
βi
2
|zn,i − ζi|2 + |Jn,i(ζi)||zn,i − ζi|

)
+ γ̃22mp̃(|zn,i|)

)
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 415

Note that conditions (4.7) and (4.8) are necessary for zn+1,i in (4.6) to be defined. As-
sumption (4.7) is a condition on the accuracy of computing Jn,i(z), and assumption (4.8) is a
condition on the diameter of the disk Di and the conditioning of the root ζi. In our final result,
we assume that we can make ν, τ , and Mi small enough, say ν ≤ 1

8 , τ ≤ 1
8 , and Mi ≤ 1

8 .
Under these assumptions, we have the following result, which implies that under suitable
conditions the compensated Ehrlich-Aberth method computes all roots of a polynomial as
accurate as if computed in twice the working precision and then rounded to the working
precision.

COROLLARY 4.3. For i = 1, . . . ,m, let z0,i ∈ Di. Then, the compensated Ehrlich-
Aberth method generates a sequence of approximations whose absolute error decreases until
the first n for which

(4.11) |zn+1,i − ζi| ≈ µ|ζi|+ γ̃22m
p̃(|ζi|)
|p′(ζi)|

.

Furthermore, if ζi 6= 0, then we have the relative limiting accuracy

|zn+1,i − ζi|
|ζi|

≈ µ+ γ̃22m cond(p, ζi),

where

cond(p, ζ) =
p̃(|ζ|)
|ζ||p′(ζ)|

is the condition number for the computation of the root ζ of p.
Proof. By Theorem 4.2, for i = 1, . . . ,m, we have

|z1,i − ζi| ≤ Gi|z0,i − ζi|+ gi.

Under the assumption that ν ≤ 1
8 , τ ≤ 1

8 , and Mi ≤ 1
8 , we have Gi ≤ 1

2 , and it follows that
the absolute error contracts unless (4.11) already holds. Thus, the result follows via induction.

5. Numerical experiments. In this section, we present the results of several numerical
experiments to demonstrate the running error bound of the compensated Horner method
in Theorem 3.2 and the limiting accuracy of the compensated Ehrlich-Aberth method in
Corollary 4.3. In addition, we compare the computation time of the compensated Horner
method to the Horner method implemented in double and quadruple precision. Finally, we
compare the computation time, backward error, and forward error of the compensated Ehrlich-
Aberth method to the Ehrlich-Aberth method implemented in quadruple precision. Note that
all higher precision computations, such as those in quadruple precision, are implemented
using the GNU MPFR and MPC libraries [9, 10]. The results that follow are from tests run on
an Intel Core i7 CPU running 3.2GHz with 16GB of memory. All code is written in C and
compiled using Apple clang version 12.0.5 and is available at https://github.com/
trcameron/CompEA.

5.1. The compensated Horner method. In this section, we illustrate the running error
bound of the compensated Horner method in Theorem 3.2 and the computation time of the
compensated Horner method in comparison to the Horner method implemented in double and
quadruple precision.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/trcameron/CompEA
https://github.com/trcameron/CompEA

ETNA
Kent State University and

Johann Radon Institute (RICAM)

416 T. R. CAMERON AND S. GRAILLAT

5.1.1. Running error bound. The numerical experiment is designed as follows. We
evaluate the expanded form of p(z) = (z − (1 + i))5 for 2000 z-values near the root 1 + i.
For each value of z, we compute CompHorner(p, z), the running error bound in Theorem 3.2,
and the a priori error bound in (3.4). Then, we compute an accurate evaluation of p(z) in
a high precision format, which allows us to measure the forward error in the computation
CompHorner(p, z). The results are displayed in Figure 5.1, where Im(z) = 1 and Re(z)
ranges from 0.99 to 1.01 with a step size of 10−5. Note that as z gets closer to the root 1 + i,
the condition number increases, and the a priori error bound becomes more pessimistic. The
running error bound is more accurate as it takes into account the rounding errors that occur
during the computation.

0.990 0.995 1.000 1.005 1.010
10−38

10−35

10−32

10−29

10−26

Re z

A priori error bound
Running error bound

Forward error

FIG. 5.1. Running error bound test.

5.1.2. Computation time. In addition to comparing the computation time of the com-
pensated Horner method to the Horner method implemented in double and quadruple precision,
we compare the computation time of the compensated Horner method when the fast accurate
summation method from [28] is used versus the doubly compensated summation method
in Algorithm 7. Note that this test illustrates our point made in Section 3.1 that the doubly
compensated summation method is more efficient in this case.

The experiment is designed as follows. For each degree from 100 to 2500 incremented
by 10, we form 100 random complex polynomials. For each polynomial, the computation
time required to evaluate the polynomial at a random complex number is recorded. Then, the
average time for each degree is displayed in Figure 5.2. Note that the compensated Horner
method is about 2 times faster with the doubly compensated summation method versus with the
fast accurate summation method. Moreover, the compensated Horner method with the doubly
compensated summation method is about 4 times faster than the Horner method implemented
in quadruple precision.

5.2. The compensated Ehrlich-Aberth method. In this section, we illustrate the lim-
iting accuracy of the compensated Ehrlich-Aberth method in Corollary 4.3. In addition, we
compare the accuracy and computation time of the compensated Ehrlich-Aberth method to
the Ehrlich-Aberth method implemented in double and quadruple precision. Finally, the
experiments in this section illustrate the robustness of the stopping criteria for the compensated
Ehrlich-Aberth method discussed in Section 4.1. Indeed, in all experiments, the stopping
criteria were used to suspend the compensated Ehrlich-Aberth iterations, and, as evident by
the accuracy of the root approximations, these iterations were not suspended prematurely.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 417

102 103

10−6

10−5

10−4

10−3

Degree

E
la
p
se
d
T
im

e
(s
)

QuadHorner: 0.98

CompHorner w/ AccSum: 0.97

CompHorner w/ DbleCompSum: 1.02
Horner: 0.79

FIG. 5.2. Computation time test.

5.2.1. Limiting accuracy. The experiment is designed as follows. Chebyshev polyno-
mials of the first kind are created for each degree from 5 to 80, incremented by 1. It is known
that the roots of the Chebyshev polynomial become more ill-conditioned as the degree of the
polynomial increases. In Figure 5.3, we compare the maximum condition number of the roots
of each Chebyshev polynomial to the maximum forward error in the computed roots using the
Ehrlich-Aberth method implemented in double precision and the compensated Ehrlich-Aberth
method. In addition, we include the limiting accuracy bounds for both methods.

10−2 104 1010 1016 1022 1028
10−17

10−13

10−9

10−5

10−1

Condition Number

R
el
at
iv
e
F
or
w
ar
d
E
rr
or

Limiting Accuracy

γ̃2m cond (p, ζm)
Ehrlich-Aberth

µ+ γ̃22m cond (p, ζm)
Ehrlich-Aberth-Comp

FIG. 5.3. Limiting accuracy test.

5.2.2. Computation time. In this section, we illustrate that the compensated Ehrlich-
Aberth method is approximately 10 times faster than the quadruple precision implementation
of the Ehrlich-Aberth method. Note that the latter method used the double precision imple-
mentation of the Ehrlich-Aberth method for initial estimates and then updates those estimates
in quadruple precision. Hence, the number of iterations that the latter method performs in
quadruple precision is comparable to the number of iterations that the former method uses
the compensated Horner method. Moreover, we show that the backward error of the root
approximations from these two methods is comparable.

Throughout this section, we let Ehrlich-Aberth and Ehrlich-Aberth-Quad denote the
Ehrlich-Aberth method implemented in double and quadruple precision, respectively. In
addition, we let Ehrlich-Aberth-Comp denote the compensated Ehrlich-Aberth method. Finally,
we make use of the following measurement of the backward error. Given a set of root
approximations z1, . . . , zm for the polynomial p, we define the relative backward error of all

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

418 T. R. CAMERON AND S. GRAILLAT

root approximations by

η(z1, . . . , zm) =
‖p− q‖∞
‖p‖∞

,

where ‖·‖∞ denotes the infinity vector norm and q is the polynomial with leading coefficient
equal to the leading coefficient of p and whose roots are exactly z1, . . . , zm. Note that we
compute the coefficients of the polynomial q in a high precision format using the GNU MPC
and MPFR libraries [9, 10].

First, we consider polynomials with well-conditioned roots. In particular, for the degrees
m = 10, 20, 40, . . . , 2560, we create 10 polynomials with random complex coefficients that
have real and imaginary parts distributed in the interval [−1, 1]. We compute the roots of
each polynomial using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Comp, and
the relative backward error and the elapsed computation time is recorded. Then, the average
over all 10 polynomials for each degree is recorded on the left of Figure 5.4. On the right of
Figure 5.4, the same test is repeated for polynomials of the form

p(z) = 1 + 2z + · · ·+ (m+ 1)zm,

for the degrees m = 10, 20, 40, . . . , 2560.

101 102 103
10−16

10−15

10−14

10−13

10−12

10−11

Degree

R
el

a
ti

ve
B

ac
k
w

ar
d

E
rr

or

Random Coefficients

Ehrlich-Aberth: 1.76
Ehrlich-Aberth-Comp: 1.02
Ehrlich-Aberth-Quad: 1.06

101 102 103

Degree

Natural Coefficients

Ehrlich-Aberth: 2.47
Ehrlich-Aberth-Comp: 1.08
Ehrlich-Aberth-Quad: 0.99

101 102 103
10−4

10−3

10−2

10−1

100

101

102

103

Degree

E
la

p
se

d
T

im
e

(s
)

Random Coefficients

Ehrlich-Aberth: 1.92
Ehrlich-Aberth-Comp: 2

Ehrlich-Aberth-Quad: 1.97

101 102 103

Degree

Natural Coefficients

Ehrlich-Aberth: 1.92
Ehrlich-Aberth-Comp: 2

Ehrlich-Aberth-Quad: 1.97

FIG. 5.4. Well-conditioned polynomial roots test.

Note that the slope of the linear regression line is reported for both the backward error
and the elapsed time in Figure 5.4. In particular, Ehrlich-Aberth-Quad is approximately 25

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 419

times slower than Ehrlich-Aberth, whereas, Ehrlich-Aberth-Comp is only 2–3 times slower.
Moreover, the backward error of the Ehrlich-Aberth-Quad and the Ehrlich-Aberth-Comp
method is comparable.

Next, we consider polynomials with ill-conditioned roots. In particular, for the degrees
m = 10, 20, 30, . . . , 150, we create 10 polynomials with random complex roots on the unit
circle. Then, we compute their roots using Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-
Aberth-Comp, and the relative backward error and the elapsed computation time is recorded.
The average over all 10 polynomials for each degree is recorded on the left of Figure 5.5. On
the right of Figure 5.5, the same test is repeated for the truncated exponential:

p(z) = 1 + x+
1

2
x2 +

1

3!
x3 + · · ·+ 1

m!
xm,

for the degrees m = 10, 20, 30, . . . , 100.

101 102
10−17

10−12

10−7

10−2

103

Degree

R
el
at
iv
e
B
ac
k
w
ar
d
E
rr
or

Roots on the Unit Disk

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

101 102

Degree

Truncated Exponential

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

101 102
10−4

10−3

10−2

10−1

100

101

Degree

E
la
p
se
d
T
im

e
(s
)

Roots on the Unit Disk

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

101 102

Degree

Truncated Exponential

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

FIG. 5.5. Ill-conditioned polynomial roots test.

As with the well-conditioned polynomial roots test, the Ehrlich-Aberth-Comp method is
approximately 10 times faster than the Ehrlich-Aberth-Quad method in the ill-conditioned
polynomial roots test. Note that the polynomial roots become more ill-conditioned as the
degree of the polynomial increases, which causes the accuracy of the Ehrlich-Aberth method
to rapidly decline. In contrast, Ehrlich-Aberth-Comp is able to reduce the relative backward
error of all computed roots to O(µ) for polynomials of degree less than 80. Of course, once

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

420 T. R. CAMERON AND S. GRAILLAT

the condition number of the polynomial roots is too large, say greater than 1016, the additional
accuracy afforded by the compensated Horner method is lost.

5.2.3. Forward error. In this section, we illustrate the improvements made to the for-
ward error of root approximations using the compensated Ehrlich-Aberth method developed
in Section 4.1. In particular, we investigate polynomials with simple ill-conditioned roots and
polynomials with multiple and near multiple roots. Throughout this section, we let Ehrlich-
Aberth and Ehrlich-Aberth-Quad denote the Ehrlich-Aberth method implemented in double
and quadruple precision, respectively. In addition, we let Ehrlich-Aberth-Comp denote the
compensated Ehrlich-Aberth method.

First, we consider polynomials with simple ill-conditioned roots. In particular, for the
degrees m = 5, 6, . . . , 20, we consider the monic mth-degree polynomial with prescribed
roots

2−bm/2c+j − 3,

for j = 0, 1, . . . ,m − 1, where b·c denotes the floor function. For each polynomial, the
maximum relative forward error of the root approximations is recorded on the left of Figure 5.6.
Next, for the degrees m = 5, 6, . . . , 25, we consider monic mth-degree polynomials whose
roots have small imaginary parts:

j + (−1)j8µi,

for j = 1, 2, . . . ,m. For each polynomial, the maximum relative forward error of the root
approximations is recorded in the center plot of Figure 5.6. Finally, we consider Wilkinson
polynomials of degrees m = 5, 6, . . . , 20 [30]. For each polynomial, the maximum relative
forward error of the root approximations is recorded on the right of Figure 5.6.

100.8 101 101.2
10−17

10−13

10−9

10−5

10−1

Degree

R
el
at
iv
e
F
or
w
ar
d
E
rr
or

Prescribed Roots

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

100.8 101 101.2 101.4

Degree

Small Imaginary Part

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

100.8 101 101.2

Degree

Wilkinson

Ehrlich-Aberth
Ehrlich-Aberth-Comp
Ehrlich-Aberth-Quad

FIG. 5.6. Simple ill-conditioned roots test.

Note that the results in Figure 5.6 illustrate the limiting accuracy of the compensated
Ehrlich-Aberth method indicated by Corollary 4.3. That is, the root approximations in these
examples have a relative forward error as if they were computed in twice the working precision
and then rounded to the working precision. Moreover, in each of the tests, we can see the point
at which the maximum condition number of the polynomial roots became too large and we
lose the additional pseudo-precision afforded to us by the compensated Horner method.

Next, we consider polynomials with multiple or near multiple roots. In particular, the
Mandelbrot polynomial, which has roots that lie in a fractal (Mandelbrot set), is defined
recursively by p0(z) = 1 and

pj(z) = zp2j−1 + 1,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 421

TABLE 5.1
Multiple and near multiple roots test.

Polynomial
Limiting
Accuracy Ehrlich-Aberth

Ehrlich-Aberth-
Comp

Ehrlich-Aberth-
Quad

Mandelbrot 2.53 · 10−5 4.42 · 10−1 3.04 · 10−8 1.70 · 10−11

Kameny, c = 10 1.11 · 10−16 1.42 · 10−14 1.77 · 10−16 1.11 · 10−16

Kameny, c = 103 1.11 · 10−16 5.11 · 10−11 1.25 · 10−16 1.11 · 10−16

Mignotte, a = 10,
k = 4,m = 15

1.74 · 10−16 2.14 · 10−5 2.18 · 10−16 1.11 · 10−16

p1(z) N/A 3.76 · 10−3 3.02 · 10−6 8.88 · 10−7

p2(z) N/A 7.19 · 10−4 8.40 · 10−8 1.90 · 10−8

p3(z) N/A 1.56 · 10−2 7.86 · 10−8 1.04 · 10−8

for j = 1, 2, . . . , k, with degree m = 2k − 1. For our purposes, we consider m = 63, i.e.,
k = 6. Also, we consider the Kameny polynomial, which is defined by

p(z) = (c2z2 − 3)2 + c2z9.

For c = 10, 103, these polynomials have two close real roots with 3 and 10 common decimal
digits, respectively, and a complex pair with very small imaginary parts, 10−4 and 10−13,
respectively. In addition, we consider the Mignotte polynomials defined as follows:

p(z) = zm + (a · z − 1)k,

where a > 1 and k is a natural number. These polynomials have a cluster of k zeros around
1/a. Finally, we consider the following polynomials with multiple roots:

p1(z) = (z + 1)5(z50 + z + 1),

p2(z) = (z − 1)4(z2 + z + 5)3(3z − 1)2(z50 + 1),

p3(z) = (z − 15)2
15∏

i=1

(z − i).

Note that the non-multiple roots of p1(z) and p2(z) are well-conditioned, whereas the non-
multiple roots of p3(z) are ill-conditioned.

In Table 5.1, we display the maximum relative forward error in the root computations
via Ehrlich-Aberth, Ehrlich-Aberth-Quad, and Ehrlich-Aberth-Comp. In addition, the worst
case limiting accuracy is displayed for each polynomial to illustrate the result in Corollary 4.3.
Finally, note that this test illustrates the importance of using the compensated Horner method
to evaluate the polynomial derivative. Indeed, if the Horner method implemented in double
precision is used, then the forward error of Ehrlich-Aberth-Comp is 2.42 · 10−1 for the
Mandelbrot polynomial. Hence, in this case, the limiting accuracy is not attained unless the
compensated Horner method is used to evaluate the polynomial and its derivative.

6. Conclusion. The compensated Ehrlich-Aberth method is effective for the accurate
computation of all roots, real or complex, of a polynomial. In Theorem 3.2, we proved a
running error bound for the compensated Horner method. Then, in Section 4.1, we used this
error bound to form robust stopping criteria for the compensated Ehrlich-Aberth method that
guarantee that iterations do not terminate until the relative error in the polynomial evaluation is
too large or until the relative size of the Ehrlich-Aberth correction term is too small. Moreover,
in Corollary 4.3, we showed that under suitable conditions, all root approximations have a
limiting accuracy as if computed in twice the working precision and then rounded to the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

422 T. R. CAMERON AND S. GRAILLAT

working precision. Finally, in Section 5, extensive numerical experiments illustrate the
accuracy of the compensated Horner and Ehrlich-Aberth methods as well as the speed-up in
terms of computation time as compared to the quadruple precision implementations of the
Horner and Ehrlich-Aberth methods, respectively.

Acknowledgments. The authors are grateful to the referees whose thoughtful comments
significantly improved this article.

REFERENCES

[1] O. ABERTH, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp., 27 (1973),
pp. 339–344.

[2] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, IEEE, New York, std 754-2019 ed., 2019.
[3] D. A. BINI, Numerical computation of polynomial zeros by means of Aberth’s method, Numer. Algorithms, 13

(1996), pp. 179–200.
[4] W. BÖRSCH-SUPAN, A posteriori error bounds for the zeros of polynomials, Numer. Math., 5 (1963), pp. 380–

398.
[5] F. CHAITIN-CHATELIN AND V. FRAYSSÉ, Lectures on Finite Precision Computations, SIAM, Philadelphia,

1996.
[6] T. J. DEKKER, A floating-point technique for extending the available precision, Numer. Math., 18 (1971/72),

pp. 224–242.
[7] J. DEMMEL AND Y. HIDA, Accurate and efficient floating point summation, SIAM J. Sci. Comput., 25

(2003/04), pp. 1214–1248.
[8] L. W. EHRLICH, A modified Newton method for polynomials, Commun. ACM, 10 (1967), pp. 107–108.
[9] A. ENGE, M. GASTINEAU, P. THÉVENY, AND P. ZIMMERMANN, MPC: A library for multiprecision complex

arithmetic with exact rounding, Software, Inria, 1.2.1 ed., 2021.
http://mpc.multiprecision.org

[10] L. FOUSSE, G. HANROT, V. LEFÈVRE, P. PÉLISSIER, AND P. ZIMMERMANN, MPFR: a multiple-precision
binary floating-point library with correct rounding, ACM Trans. Math. Software, 33 (2007), Art. 13, 15
pages.

[11] L. GEMIGNANI, Accurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems,
Comput. Math. Appl., 72 (2016), pp. 992–1001.

[12] S. GILL, A process for the step-by-step integration of differential equations in an automatic digital computing
machine, Proc. Cambridge Philos. Soc., 47 (1951), pp. 96–108.

[13] D. GOLDBERG, What every computer scientist should know about floating-point arithmetic, ACM Comput.
Surveys, 23 (1991), pp. 5–48.

[14] S. GRAILLAT, Accurate simple zeros of polynomials in floating point arithmetic, Comput. Math. Appl., 56
(2008), pp. 1114–1120.

[15] S. GRAILLAT, P. LANGLOIS, AND N. LOUVET, Algorithms for accurate, validated and fast polynomial
evaluation, Japan J. Indust. Appl. Math., 26 (2009), pp. 191–214.

[16] S. GRAILLAT, N. LOUVET, AND P. LANGLOIS, Compensated Horner scheme, Tech. Rep. RR2005-04,
Université de Perpignan Via Domitia, Perpignan 2005.

[17] S. GRAILLAT AND V. MÉNISSIER-MORAIN, Accurate summation, dot product and polynomial evaluation in
complex floating point arithmetic, Inform. and Comput., 216 (2012), pp. 57–71.

[18] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[19] H. JIANG, S. GRAILLAT, C. HU, S. LI, X. LIAO, L. CHENG, AND F. SU, Accurate evaluation of the k-th

derivative of a polynomial and its application, J. Comput. Appl. Math., 243 (2013), pp. 28–47.
[20] H. JIANG, S. LI, L. CHENG, AND F. SU, Accurate evaluation of a polynomial and its derivative in Bernstein

form, Comput. Math. Appl., 60 (2010), pp. 744–755.
[21] W. KAHAN, Further remarks on reducing truncation errors, Commun. ACM, 8 (1965), p. 40.
[22] D. E. KNUTH, The Art of Computer Programming. Vol. 2. Seminumerical Algorithms, Addison-Wesley,

Reading, 1998.
[23] O. MØLLER, Quasi double-precision in floating point addition, BIT, 5 (1965), pp. 37–50.
[24] Y. NIEVERGELT, Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably

accurate to the penultimate digit, ACM Trans. Math. Software, 29 (2003), pp. 27–48.
[25] T. OGITA, S. M. RUMP, AND S. OISHI, Accurate sum and dot product, SIAM J. Sci. Comput., 26 (2005),

pp. 1955–1988.
[26] D. M. PRIEST, On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate

Computations, PhD. Thesis, Computer Science, University of California, Berkeley, 1992.
[27] S. M. RUMP, Ultimately fast accurate summation, SIAM J. Sci. Comput., 31 (2009), pp. 3466–3502.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://mpc.multiprecision.org

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPENSATED EHRLICH-ABERTH METHOD 423

[28] S. M. RUMP, T. OGITA, AND S. OISHI, Accurate floating-point summation part I: Faithful rounding, SIAM J.
Sci. Comput., 31 (2008), pp. 189–224.

[29] F. TISSEUR, Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue
problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1038–1057.

[30] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, 1963.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

