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A DECOUPLING FINITE ELEMENT METHOD WITH DIFFERENT TIME STEPS
FOR THE MICROPOLAR FLUID MODEL*
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Abstract. In this paper, a decoupling finite element method with different time steps for the micropolar fluid
model is considered. The theoretical analysis shows that the proposed method is stable and convergent. Further, in
order to show the efficiency of the method, we present some numerical results for a problem with analytical solution,
and we test the method for the stirring problem of a passive scalar. From these numerical results, we can see that the
method is efficient for micropolar fluid flows.
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1. Introduction. The micropolar fluid model, introduced by Eringen [10, 11], can simu-
late the interaction between the evolution of an incompressible fluid and the rotational motion
of material microparticles that are suspended in a viscous medium and possess rotational
degrees of freedom. Hence, this is a very attractive model for the dynamical description of
continuum media subject to distributed couples and for polar media in general.

As is known, one of the fundamental assumptions in fluid mechanics is that material
particles do not possess an angular momentum (the stress tensor is symmetric). However, this
assumption does not hold when microscopic gyration effects become important (the stress
tensor is then nonsymmetric). For example, the angular momentum should be taken explicitly
into account to describe the behavior of micro- and nanoflows, to effectively design and
fabricate microchannels and chambers for microfluidic systems [29, 40], and to represent
anisotropic fluids (e.g., animal blood, exotic lubricants, and liquid crystals which are made up
of dumbbell molecules) [11, 24]. In fact, in the micropolar fluid model, the incompressible
Navier-Stokes equations is coupled with micro-rotational effects and micro-rotational inertia.
Hence, this model is more suitable in describing and representing the behavior of flows in
microfluidic systems than the classical Navier-Stokes equations, and it has a great deal of
practical applications in many current scientific, engineering, and industrial problems [1, 24].

Because of the mathematical and engineering importance of the micropolar fluid model,
there are numerous papers devoted to the model’s mathematical analysis, such as existence,
uniqueness, and regularity of solutions to micropolar flow equations; see [18, 24, 32, 34, 43].
Lukaszewicz [23] has established the local existence of weak solutions by using a linearization
and an almost fixed-point theorem. In [5], using a spectral semi-Galerkin method, the existence
of a local-in-time strong solution, the uniqueness of the strong solution, and some global
existence results have been proved. Galdi and Rionero [12] have shown that the weak form
of the unsteady incompressible micropolar fluid equations belongs to a general class of
evolution problems which the Navier-Stokes equations belong to as well, and the authors
studied existence and uniqueness results for the weak solutions of the considered problem.
Stability problems for micropolar fluids have been investigated in [30]. For the long time
behavior of the two-dimensional micropolar fluid system, the existence of L2-global attractors
in a bounded domain has been obtained [25]. Chen and Price [6] have shown the existence and
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uniqueness of small L3-strong solutions of the micropolar fluid motion system and derived
some sharp time decay estimates of strong L3-solutions.

Since the governing equations of the micropolar fluid model include not only incompress-
ibility and a strong nonlinearity but also the coupling between the angular motion equation
and the fluid equations of motion, it is not easy to solve these equations effectively. Therefore,
much effort has been invested into the development of efficient numerical methods for inves-
tigating this problem. For the spectral Galerkin approach of a spatial semi-discretization of
the micropolar fluid model, Boldrini and Rojas-Medar [4] have studied the convergence rate
of approximate solutions. Further, they have obtained a pointwise convergence rate without
any compatibility conditions for the initial data [3]. A decoupled time-stepping finite element
scheme for the evolutionary micropolar fluid flow model has been proposed and studied
in [31], where the Navier-Stokes equations and the microrotational velocity equations are
solved separately in each time step without iteration. Nochetto et al. [26] have developed a
semi-implicit fully discrete scheme which, at each time step, decouples the computation of
the linear and angular velocities but requires the solution of a saddle-point problem for the
determination of the linear velocity and the pressure. In order to remedy this shortcoming, by
applying a fractional time stepping technique, Salgado [33] has developed an unconditionally
stable first-order scheme and an almost unconditionally stable second-order scheme. In [27],
a fully discrete penalty finite element method has been proposed and analyzed, and subop-
timal error estimates have been proved. Yang and Jiang [42] have proposed and analyzed
some projection methods including first-order and second-order projection schemes. Further,
they have considered a decoupled penalty-projection scheme in [15]. With the stabilization
parameter tending to infinity, they have found that the solution of the decoupled penalty-
projection method converges to the associated solution of the fully decoupled method. Ashraf
et al. [2] have considered the asymmetric flow of a micropolar fluid in a porous channel. They
have transformed the governing equations of motion into ordinary differential equations by a
similarity transformation and have investigated numerically the influence of an asymmetric
parameter on the flow velocities and the microrotation. In order to describe a steady, laminar,
incompressible, and two-dimensional flow of a micropolar fluid between two stationary porous
coaxial disks, Kamal et al. [16] have used the micropolar fluid model and obtained a numerical
solution by Berman’s similarity transformation and the SOR iterative method.

The micropolar fluid model is a system of parabolic partial differential equations coupling
the linear velocity and the pressure with the angular velocity: material particles have both
translational and rotational degrees of freedom [26]. The overall goal of this work is to develop
and investigate a decoupling finite element method with different time steps to solve this
model effectively. For the strategy of different time steps, we refer to [8, 13, 17, 28, 35, 37]
and the references therein. In particular, Connors and Howell [7] have presented a full
discretization of the fluid-fluid interaction problem allowing different-sized time steps for
the decoupled subcalculations. Shi et al. [38, 39] have designed a multistep technique to
overcome the instability mainly caused by the explicit treatment of the convection system and
to enlarge the stability region such that the resulting scheme behaves like an unconditionally
stable scheme. Shan et al. [36] have analyzed a multirate and decoupling algorithm for the
coupled time-dependent Stokes equations with Darcy’s law, which allows different time steps
in the fluid region and the porous region. Later, as an extension of the decoupling algorithm
for the Stokes-Darcy system, the second-order backward differentiation formula [20], the
second-order spectral deferred correction method [41], and an explicit leap frog method [19]
have been designed. Besides that, the differing time steps method has been extended to the
Navier-Stokes/Darcy model [14], the Darcy-Brinkman problem [22], and to the nematic liquid
crystal flow [21].
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In this paper, we study a decoupled finite element method with different time steps for the
different physical fields to solve the micropolar fluid model. The remainder of this paper is
organized as follows. In Section 2, we introduce the governing equations of the micropolar
fluid model and some mathematical preliminaries. Then in the next section, a decoupling finite
element method with different time steps is described for these equations, and its stability is
analysed. An error analysis of the proposed algorithm is provided in Section 4. In Section 5,
some numerical experiments are carried out to verify the theoretical analysis of the presented
algorithm. Section 6 is the conclusion of this paper.

2. Notation and preliminaries. This work is concerned with the following governing
equations of the micropolar fluid model [9, 25]:

ur+u-Vu— (p+r)Au+Vp—2sV xW=f in(0,7T] x £,
@.1) Vou=0 in(0,T]xQ,
Wi+ u- VW —yAW +4xW — 25V xu =g  in (0,T] x £,

where (2 is a bounded domain in R? and 7' € (0, 00) is the final time, together with the
following homogeneous boundary and initial conditions:

=0, Wls, =0,
2.2) { ulsy |s
u(

z,0) = ug(x), W(x,0) = Wy(x), in €,

where St := 0Q x [0,T]. Moreover, v = (uj,us2,0), W = (0,0, W3), and p represent
the linear velocity, the angular velocity of the rotation of particles, and the pressure of the
fluid, respectively. The three nondimensional numbers appearing in (2.1) are the Newtonian
kinematic viscosity p, the dynamic micro-rotation viscosity x, and the angular viscosity v [24].
Furthermore, f = (f1, f2,0) and g = (0,0, g3) represent smooth, externally applied forces
and moments [33], respectively.

In view of this model, when the microgyration effects are neglected or when W = 0, the
micropolar fluid flow reduces to the Navier-Stokes flow. Hence, (2.1) can be regarded as a
modification of the Navier-Stokes equations, or vice versa, the Navier-Stokes equations are
viewed as characterizing the flow of a simplified micropolar fluid.

We use the standard notation for the Lebesgue space LP(2) and the Sobolev spaces
Wm4(Q), for 1 < g < oo andn € NT. The LP(Q)-norms for p # 2 are denoted as || - || 1»,
and the L2(Q2)-norm is denoted by || - [|o. Moreover, the W™2(Q) = H"(£2)-norms are
denoted by || - ||,,. Furthermore, define the dual space of H!() as H~1(Q) with its norm
given by

= sup L0

vert(e) IVollo”
Throughout the paper, we also need the following function spaces:

X =HYQ)?={ve HY(D)? v|on =0}, Q={qeL*Q):(q,1) =0},
M ={¢pecH(Q): ¢lan =0}.

Then, based on the above definitions, we have the following variational formulation of problem
(2.1)—(2.2):
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Find (u, p, W) € L%(0,T; X) x L*(0,T; Q) x L?(0,T; M) such that for all ¢ € (0,7
and (v,¢,¢) € X x Q x M,

(ug,v) + b(u, u,v) + (p + &) (Vu, Vo) — (p, V - v) — 26(V x W,v) = (f,v),
3 (V- m0) =0
(We, d) + b(u, W, 8) + v (VW, V) + 4&(W, ¢) — 26(V x u, ¢) = (g, $),

where
b(u,v,w) = (u-Vo,w) + (V- u)v,w)
1
:f(u~Vv,w)f§(u~Vv,w), Yu, v, w € Hy (Q).

N —

The form b satisfies the following properties [26]:

2.4 b(u,v,0) =0, blu,v,w) < clullsfvllllwll,  Vu,v,we Hy (),
(2.5) b(u, v, w) < c|lullo||vll2]|w|l1, Yu € L*(Q),v € H*(Q),w € Hy(Q).
Here and in the sequel, we denote by ¢ (with or without a subscript) a general positive constant

independent of the mesh size which may stand for different values at different occurrences.

3. A decoupling finite element method with different time steps. In this section, we
construct a decoupling finite element method with different time steps for the different physical
fields of the micropolar fluid model. We consider the situation that the linear velocity has a
faster dynamics than the angular velocity.

From now on, 7}, is a uniform partition of the domain € into triangular element K
with diameters bounded by a real positive parameter i = max ¢ 7, {diam(K)}. Further, we
introduce the finite element subspace X, C X, Qp C Q, and M}, C M as follows:

X, = {v, € XNC%UQ)* un|k € Ps(K)*, VK € Tp,},
Qn = {an € QNC°(Q);anlic € P(K),VK € T},
My, = {¢n € MNCQ); ¢n|x € P;(K),VK € Th},

where P,(K) is the space of piecewise polynomials of degree | > 1 on K and | = s,4, j.
Assume that a pair of finite element spaces (X}, Q)1,) satisfies the discrete LBB condition, i.e.,
there is a constant 5 independent of the mesh size h such that

sup (qh7 V- vh)

> Bllgnllo Yan € Qh.-
S0 ol = Plavllo

Following [26, 33, 36], for t € [0, T], we define a projection operator
P, : L*(0,T; X) x L*(0,T;Q) x L*(0,T; M) — X}, x Qp x M,
(u(t), p(t), W (1) — (Pyu(t), PYp(t), PV W (1))
by

( V-
= (u+ &) (Vu(t), Vop) — (p(t), V - vp), Yo, € Xy,
(3.1) (V- Piu(t), qn) = (V- u(t), qn), Van € Qn,

YVEYW (1), Von) + k(B W (1), 61)
=v(VW(),Vén) +4s(W(t), én), Von € Mp,
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which has the following approximation properties:
[ Pru(t) — u(t)llo + Al Pyu(t) — u(t)[x
< P u(®)llerr,  Vue X0 HM(Q),
(3.2 1Prp(t) = p()lo < eh*[lp(t)]Ix, vp € QNH"(Q),
1B W (t) = W()lo + hl| P, W(t) = W(H)
< chM WOk, YW e M0 HMH(Q),
where 1 < k < [is an integer.

Furthermore, we assume that for each time level s;, for the angular velocity there exists a
time level tm, - For convenience, we further assume uniform time levels, that is,

s; = jAs, j=0,1,..., M, As=rAt, and tm =mAt, m=0,1,..., N,

where At = % and N = rM, m; = jr. Here, r > 1 is the key to the strategy of different
time steps. If » = 1, then the scheme becomes the classical time discretization method.

Let us now describe the algorithm: For t,, and t,,, € [0, T}, the tuple (u}", pj, moWw,)
denotes the discrete approximation of (u(t., ), p(tm ), W(tm] )

ALGORITHM 1.
Step I: Find (u}" ™', pi**1) € Xj, x Qp, withm = m;,m; +1,...,m;11 — 1, such that for
all (vp, qn) € Xn x Qn,

m+1 m
u —Uu
h h +1
( h) b(uh 5 ZL Uh)

At
3.3) + (4 R)(Vup ™, Vo) — (0, V - 0p)
—26(V x W, Jop) + (qn, V - ul" ™) = (f™ op),
2 P;juo,

with a small time step size At.
Step II: Set §™s = LS Mot =y i

1=m 3

Step III: Find W,*" € M}, such that for all ¢, € My,

Wy Wy i
(A.S7¢h) +b(S ﬂd)h)

+ (VW Vo) + 4(W b)) — 26(V x 8™, én) = (9™, én),
Wy = PV W,

34

with a large time step size As = rAt. -
Step IV: Set j = j + 1, and repeat until j = M — 1.

We state the following theorem, which provides the stability of Algorithm 1.
THEOREM 3.1. The linear velocity u}" in the first large time interval [0, s1] is stable for
any 0 < J < r — 2, and the following a priori estimate is valid:

J
llup 15 + Z luptt =g 1§+ Atp Y 1[Vupt
(3.5) =0

< upllg + 24t WRNIE + — Z IF412y,
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Moreover, the linear velocity u}* and the angular velocity W,zn 7 are stable forall 0 < 1 < M —
land —1 < J < r — 2, and the following a priori estimate

+J v41+J
myp1+J+1,2 s i+1 72 A s i+12 mi41 (2
([, B+ D ™ = w5+ At > [IVu™ I+ W35
1=0 =0

l l l
Y W = WG 4 Aty Y (VWG 4 8rAte > (WS
=0

=0 =0
J l
At "EST 2r At _
< exp(2CT) | [lunllg + IWRIE + " Z 12, + 5 Z g™+ 12, ],
i=0 j=0

is valid when C; At < % with C; = max{2rx,8x%(ry)~1}.

Proof. Let (vy, qn) = 2A¢(u}" ™ p7"*1) in (3.3) and use (2.4). Then,
3.6) (u ™ — w20+ 208 (4 K) (Vu T Vul ) — AR (V x W gt
’ = 2A¢ (™ .

Applying the polarization identity and summing the resulting equation over m = m;, m; +
1, ceey M1 — 1 yleld

mj+1—1 mjt1—1
[ (e (A R S ARV ANV I S A VAR
(3 7) i=m; i=m
’ m]‘+171 m‘1'+171
=4Atk > (VX W upthy 4248 Y (f L uptt).
i=m i=m;

Moreover, choose ¢y, = 2AsW,"*" = 2rAtW,""*" in (3.4) and use the polarization identity
and (2.4) again to conclude that

W18 = W I + 1w+ = Wy |G
(3.8) + 2r Aty || VW, |8 + 8rAtk||[ W, 1§
= 4rAtk(V x 8™ W) 4 2r At (g™ W),

Now, by using the Cauchy-Schwarz inequality and Young’s inequality, we deduce

myp1—1
A0 Y (VX W) ArAte(V x ST W)
mjt1—1
FOAL DT (F ) 2r (g W)
(3.9) =
mjp1—1 4 At mjt1—1 '
SQTAtﬂHWhJHg—FAt(ZR—F/,L) Z ||vuz-i-1‘|g_|_7 Z L2,
i=m i=m;
mir1—1
8AtK? TN m; At
0 ST up R+ r Aty VW R + =g 2,

1=m
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where we have used the fact that
(a,Vxb)=(Vxa,b) fora,bc HY(Q) and |Va|?=]|V xa|2+||V-al?
Then, combining (3.7), (3.8), and (3.9), we get

mj41—1 mj41—1
[ e [ e N (AR A [ R AT N AT a
i=m; i=m;

WG = W3 IE + I = W |G
+ Aty [ VWG + 8rAts]| W

8AtK2 T

D i3

(3.10)

< 2rAts||W, |2 +

i:mj
ir1—1
At T ) At
F2 ST R T g
i=m; 'Y
J

Furthermore, summing (3.10) over all j from0to[,0 <1 < M — 1, we obtain

mj41—1 mj1—1
I hl+l||o+z >t *Uh||o+AtuZ > IVuRti
Jj=0 i=m; j=0 i=m;

!
WG + W — WS
7=0
l l
Gl Ay VWS 4 8r At Y W3

j=0 j=0
S8AtkK? M1l
< unlls + [IWRE + 2mm2 W, 15 + Z > luli
Jj=0 j=0 i=m;
myy1—1 l
2rAt .

Z > > g™ 12

i=0 i=m; T %0
Summing (3.6) over m = myq1,mi41 + 1,...,my41 +J,0 < J < r — 2 and using the

Cauchy-Schwarz inequality and Young’s inequality, we also arrive at

+J +J
miy1+J+1 miy1 e i+1 2 e i+1)2
[y 15 — lup" 115 + Z [Jug,™ = uillo + 28t (1 + k) Z Vg™ [l
= mi41 7;:"7'7411»1
myp1+J myy1+J
= 4Atk Z (V x WM ity 4+ 2A¢ Z (fulth
i=miy1 1=mi41
myy1+J
<2Ats Y [ Vul I A+ 2r At W3
1=my41

miy1+J myy1+J

At i i
o Do At Y V.

i=myq1 1=mi41
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Hence, it follows that

mi41+J myy1+J
l41+J+1 i i ;
[y + 05 =l 15+ > lup —upllg + At > (1Vupt3
i=mjq1 =My
3.12
( ) At miy1+J
< AW G+ = D 2
i=myq1
On the one hand, notice that (3.12) with [ = —1 can be rewritten as

J
P g+ Z it — |5 + Atp Z IV 13
=0

< Nlup g + 2rAtsl| WG + — Z [

which is (3.5). On the other hand, combining (3.11) with (3.12), we obtain

it miy1+J myp1+J

m L L m

[y, B+ D lup™ —wuillg+ At Y (IVuptIE + W15
= =0

l l l
YW = WM 4 e Aty Y VWS 8r Aty WG

j=0 Jj=0
1+1 8Atl€ mj1+J+1
< I3 + IWRIG + 2rAte > W3 (1§ + Z > il
7=0 i=m;
! J l
AT 2rAt _
+= I+ > g™z
e 70

Denote C; = max{2rx,8x%(ry) '} and choose At such that it satisfies C; At < 3. By the
discrete Gronwall inequality, we get the stability estimate

+J i+1+J
mip1+J+1)2 & i+1 72 A s i+1 mit1 )2
[[wy, B+ D I =g+ Atn D IVupt I+ WG
1=0 =0

l l l
YW = WG Aty Y IVW S 4 8rAte Y WS

j=0 j=0
thH—J X WAL <

< exp(2C4T) IIU?LII3+IIW£’H%+? SOOI+ 5 > g2,
i=0 =0

a

4. Error estimates for the algorithm. In this section, we present the convergence
analysis for Algorithm | and derive an a priori error estimate for the fields. In order to get the
error of Algorithm 1, we at first state some notation. Let

= Plu(ty),  P" = Pp(tm), and W™ = PV W(ty,).
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Set
ey =ulty) =™, € =p(tn) —p", & =W(tn) — W™, and
e =a" —uy, e =p" —py, g =Wm—wr.

Furthermore, we assume that e® = 0, ¥ = 0, and £° = 0.
Next, we define

,aerl _ ,am

H:Z:rl — T — Ut(tm-{—l)
am™tt —a™ () — u(tn) utm1) = u(tm)
B < At At > " ( At _Ut(tm“)) |
and
Mj41 ij+1 — VNij

HW,: = T - Wt(tmj+1)

_ Wmit1 — Jms B W(tmj+1) — W(tmf)

W(tm;,,) = W(tm,)
+ ( + As - Wt(tmj+1)> :

m
u )

It is easy to verify that II zrl and H;’Il,j;l satisfy the following bounds:

2

m 1 tm+1
i< g () @ Do)
2

4.1 1 e
(4.1) +@/ﬂ (/tm (t—tm)utt(t)dt> dx

L[ 2 e 2
x| B = Dl At [ o),
t t

m m

and

1 [tmin W 9 bmjpa 9
o I(Pn *I)Wt(t)llodHAS/ [[Wee (1) [lodt.
t

m; 2
@2 My = &

IN

tm -

One also finds that

[am = a™|[g = | Py (u(tmsr) — u(tm))I5 < clultmer) — ultm)lI5

tmt1 2 tm+1
§c/ (/ ut(t)dt> dz < cAt/ e (8)]|2,
Q tm t

m

and

) ~ tm41
t

m
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According to (3.1) and (2.3), we have

,am—i—l —aqm
(At’ 'Uh> + (/1/ + Ii)(Vﬂm—H, V'Uh)

4.3) +b(u(tmy1), u(tme1); vn)
— (P ) = 26(V X W (tmi1), vn)

= (I on) + (F™ on),

(4.4) (V-a™ q,) =0,

As
- 2K(V X u(tmj+1)7¢h) + b( ( mj+1) W( m]+1) (bh)

_( nVP[L/J:lv(éh) ( m]+la¢h)-

Then based on (4.3), (4.4), and (3.3), we obtain

Wmit1 — Wi - N
<’ ¢h> + (VW™ Vp) + 4x(W™M+ dy)

4.5)

6m+1 _ em 1

At
(4.6) + b(u(tmr1)s ultmer)s vn) — d(up, uf" ™, vy)

- (€m+1’ A Uh) + (V ' em+1’ Qh)
—26(V X W (tmy1),vn) + 26(V x W}:nj,vh) = (Hﬁ?’l,vh).

Besides that, subtract (4.5) from (3.4) to get
Emj+1 gnLJ )
(A, qsh) +(VE™, Vo)
4.7 + 4’€(§m]+1 ) ¢h) + b(“(tm1+1)7 W( mJ+1) (bh)
- b(Smja W;Lnj+17¢h) - 2K’(V X U( mj+1)a d)h) + 2K(v x S ) ¢h)
= ( ZVlJ;—l ) (bh)
THEOREM 4.1. Suppose that the true solutions are smooth and that the time step At

satisfies

1 2 ok *
JAtR < 1, ( 6k +80 8¢

+ >At§1.
v o p

Then the following estimate for the error at the large time step As = r At holds:

I mjp1—1

lem ol + AtGem) 30 > IV G+ e g

=0 i=m;

1 l
Aty Y ([VEMIF 4 8rate Y [l I3

j=0 j=0
< A + ch? B,
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Proof. Setting (vy,, qn) = 2At(e™T1, em*1) in (4.6) yields

(emTh —e™ 2e™ ) £ 2At(u + k) (Ve™ T, Ve ™)
+ 2Atb(u(ti1)s w(tm1), €Y — 2A¢b(upt, u) T ™)
—AAtKR(V X W (tms1), €T + 4AL(V x W, ™t
= 2A¢(II e ).

(4.8)

Then, summing (4.8) over m = m;,m; +1,...,m;41 — 1, we obtain

mj+1—1 mj+1—1
le™ |5 = lle™ 5+ Y lle™™ = eI+ 2At(u+r) Y Vet
i=m; i=m;
myp1—1 mjy1—1
=2At Y bluj,uptt et =288 > b(u(tign) ulti), e
z:mj 1:mj

(4.9)

mj41—1 mj41—1
HAAtE Y (VX W(tig), ) —dAte > (V x Wy, et
i=m; i=m;
mj41—1
+2At Y (A .
i=m;
Let ¢, = 2As&™i+1 = 2r At£™i+1 in (4.7), use the polarization identity, and rearrange.
Then,

f€mst 2 — s 3 + l€m — €753 + 20 Aty VM | + SrAt]€m |3
= 2 AIB(S™, Wy €)= 2 A (ultin, ). W (by,). €77)
+ 4rAtk(V x u(tmjﬂ),{mj“) — 4rAtk(V x S™3 gmi+t)

+ QrAt(H@{j,ng).

(4.10)

Furthermore, combining (4.9) and (4.10), we get

mjy1—1
lems i3 = lem 1B+ S0l — 3
i:mj
mj41—1
28+ k) Y IV g1
i=m;
— [l€™I I + Nl€™+t — EMIN[G + 2rAty|[VET |G + 8rAtk]|€™ 13
mjt1—1 mj+1—1
=2At Z b(ujp, up™, e th) — 2A¢ Z b(u(titr), ultivr),e™)
i=m; i=m
mjq1—1
+4Ats Y (VX W(tig),e )
i:mj
m]‘+171

—AAts Y (VX WY e

1=my
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my1—1
F2A8 Y (TR ) 4 20 Atb(S™, Wy i)

- QTAtb(u(tmj+1)a W(t"nj+1 )7 gm]-+1 )
+4rAts(V X u(tm,,, ), M)

10
— ArAtR(V x §™9, €M) + 2r AL L €M) =Y T
i=1

Now, we estimate each term of the right-hand side of the previous inequality. By the Cauchy-
Schwarz inequality and Young’s inequality, we have

mjq41—1
(4.11) Iy + Iig <cAt > T[S + erAt|TI7 |13
i:mj
1 mjt1—1 1
(4.12) + hAt ; Ve g + EMWHV&’”MII&
and
mjp1—1 mjp1—1 4
I3 + 1, < 4Atk Z [W (tig1) — W, (|5 + Atk Z Ve i3
mjt1—1 o
<adte 3 (IW(tn) - IR+ W) - 1
4.13) i=m;
FIN = TR I~ W)
mj+1—1 _
+ Atk Z Vel |3
i=m;

In fact, one has

tit1
Wit - Wil <At [ [Waolde

tq
W (t:) = WG = (€ llp < ch®*FY,
W™ =W 15 = €™ |5 < (€™ — €M+ I + [|€™+ |3

Hence, (4.13) is rewritten as

mjt1—1
I+ I <dntn o (Jlem —gmv B+ e |3+ W — W)
M=l
4.14) et Y / Wi ()12t + er Ath2F+D)
i:mj ti
mjy1—1

+ Atk Z [Veltt2.

1=m;
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Similarly,
m; 1 2
16rAtk? 17EN 1 ,
Is+Ig < —— U(tijrl)—; Z U;L +1TAt"y||V§mJ+1||(2)
’y i:mj 0
it1—1 mjp1—1
6rAte? (1798 1M , ,
<SS -y Y et -l
(415) i=m; i=m;
1mj+1—1 4
)
i:mj

2P 1
b AL / " (e Bt + er&th?ED 4 Lr Aty TE
t

m;

Now, we estimate /; and /5. By adding and subtracting some terms and applying (2.4),
we have

mj1—1 mj41—1
I + 1, <2At Z |b(uj, — @', uptt, e )| + 24t Z |b(a’ — u(ti),uffl,e”l)’
i=m; i=m;
mjt1—1
+2A8 Y |b(ults) = ultic), et
i=m;
mjp1—1
F20¢ > [b(ultiva), uptt = ultivg), e
i=m;
mj1—1 mjt1—1
< 2At Z b(e’, e, e )| + 2A¢ Z b(e’, u(tiv1), e )|
i=m; i=m;
mj41—1 mj41—1
+ 2At Z bl el e )| + 2At Z |b(el, u(tiv1), e
i=m; i=m
mjy1—1
+ 2At Z ‘b(u(tl) — u(ti+1), u(ti+1), €i+1)’
i=m;
mjt1—1
+2A8 ) [b(ultipr), b e )|
i=m;
mjp1—1 7
+2A8 Y |b(ults) — ultio), e e =) R
i=m; i=1

Further, by applying the Cauchy-Schwarz inequality and Young’s inequality and (2.5), we
arrive at

3 miy1-l _ 1 mj1—1 _
Ri+ Ry < =At Y [llglel™ 15 + lultiva)ll3) + cudt Y [Ve g,
H i=m; 8 i=m;
mipi=l _ 1 mj41—1 4
Ry+ Ry <ent Y legl§lle™ 15 + llulta)l3) + gHAt > lvete,

i=m; i=m;
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mj41—1
Rs+ Ry <At Y flu(ts) — ultip) 5 (lultiza) 13 + lles™[13)
i=m;
1 mj+1—1
+gndt > Ve,
izmj
mj41—1 1 mj41—1
Rg < cAt _27; ||u(ti+1>||§||ez“||%+guAt ;ﬂ: Ve 3.
— g — g

Then, according to (3.2), we have

gt RN, :
At Y (e = HE+ e )

r=m;

L +1r <

mjy1—1

i+1
.16) + AR Z/ e (8)] 2t

mjiy1—1
. 1 fas ,
+ er Ath? D 4 ShAt > Iverts,

1=m;

where ¢* = sup; (||e |3 + ||u(ti1)]3). Analogously to (4.16), we obtain

mjy1—1
I+ I; < 2rAt |b Z W (t, ), £
1mj+1*1
2rAt|b | - ~i_ mmy) MGkl emjin
+ r r Z (U U )7§W a§
i=m;
mjp1—1
2rAt|b | — i gMitl emjp
+ 2r . Z e’ &y €
i=m;
1mj+1*1
“4.17) +2rAtb r Z (@ —a '7)’W(tmj+1)a§ it
i=mj

+ 20 AL DA™ — ulty, ), Ey T €M)
+ 2rAt ]b( "= u(tm,), W(tmj+1),§mﬂ'+1)\

+ 2rAt |b(u tm, ), m”1,5m1+1)|

+ 2r AL |b(u(tm,) = w(tm, .y ), W (tm, ), ™)

8 K% mjt1—1 mji1—1
At D (Il — e+ le ) +eat o flat — a3
! =my i=m;

1 t?nv 1
+érAt’yHme”ngJrc(rAt)Q / " e ()2t + er A2,

tm;

where ¢** = [|&y 13 + W (6, 1 )I13.
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Combining (4.11), (4.14), (4.15), (4.16) and (4.17) yields

mjy1—1
lems 3 = lems B+ 30 flet*t - )3
i=m;
mj+1—1
+AHp+R) Y V]
i=m;

+IEmH NG = €™ NI + ™o — €M 13
+rAty||[VE™ [T+ 8rAts|l¢m |3

mj+1—1
Seht S TR + er AT R
’L:'”'Lj
(4.18) "
At > (W =W F 4+ (lat - ™ |13)
i=m;
Myt =1 tmjiq—
ratar( 3 / Iwilae+ [ futolae
t”lj
mjr1—1
+erAth? D L ANt > (€M = €M+ (€17
i=m;
162 8c** 8¢ et i itly2 i+12
SR PR R

Let 4Atk < 1 and (% 4 8 %) At < 1. Then, (4.18) can be rewritten as

ry
lema+ 12 — [le™ |12
mj41—1
FAH ) S VT Z 4 e |2 — e |3
i:mj
+ rAy||VETH |2 4 8rAtrl|em+ |2
mjt1—1
<At S MR 4 erAd|IT
(4.19) i=m;
mjq1—1
teAt N (W - W 4 et - a2
i:mj
mMji+1— 1 i+1 mig—
retac | Y / Wi (0)]12de + / e (8) 2t
1= =m; mj

mj41—1
+or At oAt Y (€I + e HIR)-

1=m;
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Sum (4.19) over j =0, 1,...,1. Then,

1 mjp1—1

e 218 + At tm) 3 3 VMG + 6™+ 13

j:() i:mj

l l
Ay Y |IVETIE 4 8rate Yy [l€m I3
§=0 §=0
1 mjp1—1
< cAt Z Z [TILEHIS + erAt Z ||Hmj4rl 12 + cAt? + ch?+D
7=0 i=m; 7=0
my41—1

+cAtZ ST (e + e 2)

j=0 i=m;
I mjp1—1

ety Dy (W =W E - amf).

7J=0 i=m;

We now seek to estimate all terms on the right-hand side in the above inequality. Using
(4.1)—(4.2) and (3.2), we have

mjp1—1

cAtZ > |H’+1|\O+crAtZ||Hm]“||0
7=0

7=0 i=mj

I mjp1—1

<Aty Y ( /t (P — Iug(t)||2dt

7=0 i=m;
tita
+At/ ||utt(t)||§dt)
t

(3

! ton,
1 mjt1 » )
(4.20) + CTAt; (rAt /tm_ (P — DWi(t)|5dt

b 9
+rAt/t |Wee (2) |5t

J

T T
g(/ I(BE — Dyud(t)]2dt + AP / ||utt<t>||3dt>
T T
+</ |(BE — DWi()|2dt + (rAt)? / ||th<t>3dt>

< cA#? + ch2(k+1)

Besides that,

mjr1—1 I mjp1—1
(4.21) cAtZ STOAW WG ALY > at —am 3
7=0 i=m; 7=0 i=m;
mj+1—1
(4.22) <cAtZ S =W 4 it — attR)

7=0 i=my
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T T
(4.23) < cAt? / W (t)|3dt + / lue()]|adt | < AL,
0 0
Hence, we have
1 mjt+1-1

lem I+ At(p+ )Y D IIVeTH

j=0 i=m;
l l
R 4 Al > [ VEm |2+ 8rAts Y [lem |3

J=0 J=0
I mjy1—1

<A R oAty Y (1€ + e IR)-

§=0 i=m;
This yields the final result by using the Gronwall inequality:

mjy1—1

lle™ 1[5 + At(p+ Z DR\ PR e

7J=0 i=m;

l l
ity YO VEM 4 8t Y e |3

j=0 3=0
< eAt? + ch2k+1) 0

In case of smaller time steps for the linear velocity, we have the following error estimate:
THEOREM 4.2. Under the assumption of Theorem 4.1, the following estimate holds: for
J=12....,r—1andj=0,1,...,],

mj+J mj+J
le™ TG = e 1§+ D (e = eI+ At(ut k) Y Vet
i:mj i:mj

< cA + ch2(k+1)

Proof. Let (vp,, qr,) = 2At(e™*1, €™ F1) in (4.6). Then, summing the resulting equation

overm =mj,mj +1,...,m; + J leads to
mj;+J mj+J
le™s TG — le™ N5 + > lle™t = €lllf +2At(u+5) Y (Ve
i=m; i=m
m;+J mj+J
= 2At Z bluj, uitt ey — 2A¢t Z blu(tivr), u(tiv), ™)
i=m; i=m;
mj+J m;+J
20t Y (VX W(tir), ) —4Ats Y (V x Wy eth)
i=m; i=m;
mji+J

+2A8 Y A e,

1=m;
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Similar to (4.11), (4.14), (4.16), (4.20), and (4.21)—(4.23), we have

m;+J mji+J
e H TG —fle™ 5+ D Nl = e F + Atp+r) D Vet
i=m; i=m;
mj+J
< At 4 eAth?* D) 4o er At Z lle’]|2 + crAt||€™i||2
i=m;
mj+J m;+J
At W= WE 4 eAt > T
i=m; i=m,;
m;+J
< AP + AR L orat 3 €3 4 er AHIE™ [ 4 o( A + B2,
i=m;
Hence, we arrive at
mj+J mi+J
lems TG = le™ 1§+ D lle = eI+ At(u+ k) Y Vet
i=m; i=m;
mj+J
< eAE? 4 ch2FHD 1At Z lle’]|a + crAt||€™i||3.
i=m;

Then by Theorem 4.1, we have

mj+J mj+J
le™ HHE — e 1§+ Y Nl =€+ At(u+r) Y [V
i=m; i=m;

< A2 +ch2FtD 0

Finally, using the triangle inequality, combining the approximation properties (3.2) and
the above theorems, one obtains the next theorem.

THEOREM 4.3. Under the assumption of Theorem 4.1, for j = 0,1,..., M — 1 and
m=1,2,..., N, the following estimates hold:

w(tm) — u||? < cAL? + ch?*+D)]

IV (u(tm) = up)llg < cA? + ch®*,
||W(tmj+1) - W}:njﬂ ”g < cA? + Ch2(k+1)’

[V W () — W) < AP + k™,

5. Computational experiments. In this section, we give some numerical experiments
to verify the estimates developed in the previous sections and illustrate the efficiency of the
decoupling finite element method with different time steps. On the one hand, we test a problem
with known analytical solution to verify the convergence rates prediction of the proposed
algorithm. On the other hand, we simulate a realistic example of the stirring of a passive scalar.
In all experiments, a (P, Py, P)-finite element pair is used to approximate the linear velocity,
the pressure, and the angular velocity, respectively.
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5.1. A problem with analytical solution. In this section, we present some numerical
results to show the convergence performance for the micropolar fluid model (2.1)—(2.2) for
the following analytical solution:

uy = wsin(t) sin? (rx) sin(27y),  ug = msin(t) sin(27z) sin®(7y),
p = sin(t) cos(rz) sin(my),

W3 = 7sin(t) sin? (7z) sin? (y).

The source terms f and g can be obtained by evaluating the equations of problem (2.1) for the
analytical solution. Denote Err(s) = ||s(tm) — si*|lo and s = u, W.

We set 2 = (0,1)? and choose the parameters ;1 = k = v = 1.0. Moreover, we present
numerical results for the errors, the convergence rates, and the CPU-times for different values
of the mesh size h. In Table 5.1 and Table 5.2, we list the computational results with At = h3
at the final time 7' = 1.0 for » = 1 and r = 5, respectively. From these tables, we can find
that the convergence rates are O(h?3) for the L?-norm of u, O(h?) for the H!-seminorm of u,
O(h3) for the L?-norm of W, and O(h?) for the H!-seminorm of W. This shows that the
decoupled method works well, and the numerical convergence rates agree with the theoretical
analysis. As expected, Algorithm | with r = 5 requires less CPU-time than Algorithm 1 with
r = 1 to achieve nearly the same relative error.

TABLE 5.1
Convergence performance and CPU-time of Algorithm 1 with r = 1.

1/h  Err(u) rate Err(Vu) rate Err(W) rate FErr(VW) rate  CPU

5 0.02043 - 0.10769 - 0.01473 - 0.09398 - 2.905
10 0.00251 3.02 0.02868 1.91 0.00171 3.11 0.02490 1.92 86.435
15 0.00074 3.00 0.01292 1.97 0.00049 3.07 0.01121 1.97 585.296
20 0.00031 3.00 0.00731 1.98 0.00021 3.04 0.00633 1.98 2254.59
25 0.00016 3.01 0.00469 1.99 0.00010 3.03 0.00406 1.99 6932.17

TABLE 5.2
Convergence performance and CPU-time of Algorithm 1 with r = 5.

1/h Err(u) rate Err(Vu) rate Err(W) rate Err(VIW) rate CPU

5 0.02095 - 0.10771 - 0.01711 - 0.09426 - 2.268
10 0.00255 3.04 0.02868 191 0.00192 3.16 0.02491 1.92 73.797
15 0.00075 3.01 0.01293 1.97 0.00055 3.10 0.01121 1.97 512.904
20 0.00032 3.01 0.00731 1.98 0.00023 3.06 0.00633 1.98 1891.03
25 0.00016 3.01 0.00469 1.99 0.00011 3.05 0.00406 1.99 6013.49

5.2. Stirring of a passive scalar. In this example, we consider an important practical
problem, the stirring of a passive scalar, which has been tested in [33]. In order to model
the passive scalar, we combine the micropolar fluid model (2.1)—(2.2) with the following
convection equation:

(5.1 pr+u- Vo =0,
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together with the initial condition

oo = 1, y<0,
=070, y>o,

where ¢ represents a passive scalar, and the linear velocity u is obtained by solving the
micropolar fluid model (2.1)—(2.2) using Algorithm 1.

Firstly, consider Q = (—1,1)%2. Sety = k = 0.1,y = 2.0,and f = 0, g = 25(z — 1).
Then, the micropolar fluid model (2.1)—(2.2) is solved by Algorithm 1. Secondly, based on the
known linear velocity u, we solve the convection equation (5.1) to obtain the passive scalar
o, where we apply the backward Euler scheme for the temporal discretization and P»-finite
elements for the spatial discretization with a time step At = 0.01 and a mesh size h = 4—18.

In Figures 5.1 and 5.2, we plot the evolution of the passive scalar with » = 1 and
r = b, respectively. From these figures, one can find that ¢ has almost the same trend when
Algorithm 1 is applied with 7 = 1 and » = 5. However, Algorithm 1 with r = 5 can save
much computational time. Moreover, it is found that the results of our algorithm are similar to
those in [15, 33, 42]. Therefore, Algorithm 1 captures this model well.

FIG. 5.1. The evolution of the passive scalar ¢ for T' = 10, 20, 30, 40 when r = 1.

6. Conclusions. In this work we have presented a decoupling finite element method with
different time steps for solving the micropolar fluid model. The main feature of our method is
a decoupling of the linear velocity and the angular velocity at each time step and the use of a
small time step for the linear velocity u and the pressure p and a large time step for the angular
velocity W. This has more efficiency compared with a decoupled algorithm with equal time
steps. Numerical tests are presented to confirm that the decoupling finite element method with
different time steps is efficient.

The future extension of this work lies in the solutions of the magneto-micropolar fluid
equations (Maxwell equations coupled with (2.1)), the equations of ferrohydrodynamics
(magnetostatic equations coupled with (2.1)), and the flow and heat transfer of micropolar
fluid equations (heat equations coupled with (2.1)). The design, analysis, and implementation
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FIG. 5.2. The evolution of the passive scalar ¢ for T' = 10, 20, 30,40 when r = 5.

of the decoupling finite element algorithm with different time steps for these problems may be
more complicated than for those presented here, but they will allow for more interesting and
realistic simulations.
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