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ADVECTION-DIFFUSION-REACTION PROBLEMS*
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Abstract. This work combines the Hierarchical Model (HiMod) reduction technique with a standard Proper
Orthogonal Decomposition (POD) to solve parametrized partial differential equations for the modeling of advection-
diffusion-reaction phenomena in elongated domains (e.g., pipes). This combination leads to what we define as HiPOD
model reduction, which merges the reliability of HiMod reduction with the computational efficiency of POD. Two
HiPOD techniques are presented and assessed by an extensive numerical verification.
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1. Motivations. Parametrized partial differential equations (PDEs) arise in several con-
texts such as inverse problems, control, optimization, uncertainty quantification, and risk
assessment. In most of these applications, the number of parameters may become very large
so that an efficient numerical approximation of parametric PDEs represents a challenging
computational issue; see, e.g., [2, 3, 6, 7]. Parametric model order reduction aims at reducing
the computational effort associated with a parametric modeling, for instance, in many-query
and real-time tasks, where the occurrence of the curse of dimensionality raises the necessity to
propose numerical methods to sustain the computational cost.

Many of the model reduction techniques currently employed in engineering practice
exploit the offline/online paradigm to efficiently reduce the numerical effort. This is the case,
for instance, for the well-known reduced basis method [17, 33], where during the offline
phase, a reduced basis is precomputed by solving a high-fidelity model (the “truth”) for
certain samples of the parameter, while in the online phase, the reduced model is evaluated
to predict a new scenario (i.e., for a value of the parameter not previously sampled). From a
practical viewpoint, the offline stage remains the bottleneck of an offline/online decomposition,
especially when many samples are needed like for multiparametric problems.

To tackle this issue, we propose to replace the “truth” with a reduced-order model that
exhibits a high accuracy although it is characterized by a contained computational demand.
For this purpose, we employ the reduced solution provided by a Hierarchical Model (HiMod)
discretization [12, 26, 28, 31] as high-fidelity model.

HiMod reduction proved to be an effective tool to model partial differential equations char-
acterized by a privileged dynamics aligned with the dominant dimension of the domain (e.g.,
flows of fluid in channels, pipes, or vessels), which may be locally modified by a secondary
dynamics evolving along the transverse sections [8, 15, 29]. Analogously to other model
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reduction procedures [9, 10, 14, 16, 24, 34], a HiMod discretization starts from a standard
separation of variables and approximates the mainstream and the secondary dynamics by
means of different numerical methods. In the seminal papers, the main direction of the flux is
discretized by one-dimensional (1D) finite elements, while the transverse dynamics are recov-
ered by using few degrees of freedom via a suitable modal basis. This separate discretization
yields a system of coupled 1D problems whose coefficients include the effect of the transverse
dynamics. The reliability exhibited by HiMod is considerably higher compared with standard
1D reduced models, whereas the computational effort remains absolutely affordable. Indeed,
HiMod reduction is characterized by a linear dependence of the computational cost on the
number of degrees of freedom, in contrast to a standard finite element model, which requires a
suitable power of such a number.

In this paper, we focus on two different ways to combine a Proper Orthogonal Decomposi-
tion (POD) [19, 20, 21, 22, 36] with HiMod reduction, setting what we define as HIPOD model
reduction. The first approach is very straightforward, and it has been introduced in [4]. The
second variant, which represents the actual novelty of the paper, is more complex and takes
advantage of the separation of variables implied by a HiMod approximation. Independently of
the adopted procedure, the HiMod discretization significantly reduces the computational effort
of the offline phase without compromising its reliability. At the same time, the online phase
relies on the efficiency of a POD formulation so that a system of very small dimensionality is
solved to approximate the parametric problem at hand.

From a different viewpoint, we can conceive HiPOD as a new method to construct
HiMod approximations that differ from the classical approach proposed in [12, 28]. The
HiMod approximation is now built by resorting to a reduced basis generated by a data-driven
procedure. This choice significantly lowers the computational costs without compromising the
quality of the reduced solution.

The paper is organized as follows. Section 2 applies the HiMod discretization to reference
parametric advection-diffusion-reaction problems and numerically assesses the reliability of
the high-fidelity model. Section 3 introduces the two HiPOD model reduction procedures
and provides an extensive numerical verification to investigate the robustness of the proposed
approaches with respect to the truncation of the POD basis, the extrapolation, and the possibility
to explore multi-parametric settings. In Section 4 we look for possible settings where one of
the two HiPOD approximations outperforms the other. Finally, some conclusions are drawn in
the last section, and possible future developments of the current work are provided.

2. HiMod reduction: the basics. HiMod reduction is performed under the specific
assumption that the computational domain @ C R?, with d = 2,3, can be expressed as a
Cartesian product, | J, .o, {2} x Xz, where Q1 p is a 1D horizontal supporting fiber, while
¥, C R41 denotes the transverse section at the generic point x along Q;p [12, 26, 28, 31].
The reference geometry is a pipe, where the dominant dynamic is parallel to €2; p, whereas
the transverse dynamics occur along the fibers >,. For the sake of simplicity, we select
Q1p = (a,b) C R. For the general case where (21 coincides with a bent centerline, we refer
to [8, 25, 29]. Then, AVia an invertiAble map ¥ : Q — SA), we change the physical domain 2 into
a reference domain 2 = €21 p x ¥, which shares the same supporting fiber as in {2 and where
¥ C R?~! denotes the reference fiber. In particular, for any point z = (x,y) € €2, there exists
apointZ = (z,y) € Qsuch that Z = ¥(z), with = 2 and y = ¥, (y), where th, : £, — &
is the map between the generic and the reference transverse fiber. Hereafter, we assume v,, to
beaC 1—diffeom0£phism for all x € £;p and ¥ to be differentiable with respect to z. The
reference domain {2 represents the setting where the computations are actually performed and
where all the constants can be explicitly computed. More details about the maps ¥ and 1),, are
available in [28].
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As a reference problem, we choose a parametrized elliptic PDE defined on €2, which can
be recast into the following weak form: given the parameter o € P,

2.1 findu(a) €V s.t. a(u(a),v;a) = f(v;a) Yo eV,

where P C IR? is the set of admissible parameters, V' C H'(Q) is a Hilbert space depending
on the PDE problem and on the selected boundary conditions with the standard notation
for function spaces [11], a(-,;a) : V x V xP — Rand f(;a) : V x P — R denote a
parametrized bilinear and linear form, respectively, where the linearity property holds with
respect to all the variables but «.. Suitable hypotheses are imposed on the problem data to
guarantee the well-posedness of the formulation (2.1) for any o € P. Moreover, we assume
an affine parameter dependence [17, 33].

We focus on a scalar linear advection-diffusion-reaction (ADR) problem completed for
the sake of simplicity with full homogeneous Dirichlet boundary conditions so that the bilinear
and the linear forms in (2.1) are

2.2) a(w,z;a)z/qu-Vde—}—/ (b-Vw—l—ow)de, f(z;a):/fde,
Q Q Q

withw, z € V = H, & (2). The parameter « coincides with one or several of the problem data,
chosen among the viscosity 1, the advective field b = [by, ..., bs]”, the reaction coefficient
o, the source term f, or a boundary value when other boundary conditions more general than
homogeneous Dirichlet data are assigned.

HiMod reduction performs a different discretization along the supporting and the trans-
verse directions. For this purpose, we introduce a 1D discrete space Vip C H(} (Qp), with
dim(Vip) = Nj, < 400, of functions vanishing at a and b and a modal basis {¢y } en+ Of
functions defined on 3. that are orthonormal with respect to the Lz(i)—scalar product and
which satisfy the data assigned on I'y, = |, cq,p 0% For further details about the choice of
the modal basis also in the presence of general boundary data on I',, we refer to [1, 15, 28].
Concerning V) p, a standard choice is the finite element space [12, 26, 28, 30, 31, 32] or an
isogeometric discretization when €2 is not rectilinear [8, 29]. Thus, the HiMod reduced space
can be defined as

m Ny
Vm:{vm(x,)’; ZZU’H )k (W (y)), forczfeﬂlD’yeZ}z’Oé€7)}7
k=1 j=1
with {¥; } , being a basis for the space Vi p so that v, (z; ) = ;Vhl ve 05(2) € Vip

denotes the frequency coefficient of v,,, associated with the kth modal function ¢y.

The modal index m € N7 establishes the level of detail of the HiMod approximation
in the hierarchy of reduced spaces {V,,, },,. This index is selected by the user through some
preliminary (geometric or physical) information about the problem at hand or via an automatic
procedure based on an a posteriori modeling error analysis [30, 32]. Additionally, the index m
can be the same in the whole €2, or it can be locally tuned along the domain to match possible
heterogeneities of the solution. We refer the interested reader to [26, 31], where a survey about
the different criteria to choose m is provided.

The HiMod approximation to problem (2.1) becomes

(2.3) find up, (@) = up(z,y;0) € Vi st a(um(@),vm; ) = f(om;a) Yo, € Vi,

for a given parameter o € P and for a selected modal index m € N*. Following [28], we add
a conformity and a spectral approximability assumption on the HiMod space V/,,, to ensure the
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well-posedness of the formulation (2.3) along with a standard density assumption on the space
Vip to guarantee the convergence of the HiMod approximation u,, (<) to the full solution
u(a) in (2.1). From a computational viewpoint, after applying the HiMod expansion to the
solution w,, () in (2.3) and choosing the test function v,, as the generic product ¥, 4, with
g=1,...,mandt=1,..., N, the HiMod formulation turns into the system

2.4) Ap(@)uy(a) = £, (@)

of m 1D coupled problems, where A, («) € R™NeXmNu and f,, () € R™Nr are the HiMod
stiffness matrix and right-hand side, while

o

_ ~a ~a ~a ~a ~a mNp,
u, (o) = [ul,l, e UL N U gy ey U Ny sy Uy gy ,um_’Nh] R

is the vector describing the solution,

m Np

(2.5) U (@, y50) = > 05 ()R (¢ (y)),

k=1j=1

discretized via the HiMod approach, where {u J} i j , are the modal coefficients; see [12,
28] for additional computational details.

When the mainstream dominates the transverse dynamics (i.e., for small values of m),
the HiMod procedure has been shown to considerably reduce the computational burden
associated with a standard discretization of problem (2.1) without affecting the accuracy of
the simulation [8, 15, 23].

2.1. Reliability check of the HiMod reduction. The numerical assessment of this paper
focuses on the two-dimensional (2D) setting. In this section, we qualitatively investigate the
reliability of the HiMod reduction for two ADR problems completed with different boundary
conditions, and we disregard the role played by the PDE parameters at this stage. For the
HiMod discretization, we resort to linear finite elements (FE) along €21 p, whereas we describe
the transverse dynamics by a sinusoidal modal basis. For a quantitative analysis as well as
for a three-dimensional (3D) verification of the HiMod approximation, we refer the reader
to[1, 8, 15, 28].

2.1.1. Test case 1. We define the domain €2 as the rectangle (0, 3) x (0, 1), while the
problem data in (2.2) are

26)  wplxy) =1, bzy =[30", oy =0 flzy =1-2z+3y.

The image at the top of Figure 2.1 displays the reference (full) solution computed with linear
finite elements on a uniform unstructured grid of 260058 triangles. The chosen data justify the
diffusive trend of the solution, which alternates a maximum to a minimum area.

With regards to the HiMod approximation, we subdivide the supporting fiber [0, 3] into
60 uniform subintervals, and we discretize the transverse dynamics by gradually increasing
the number m of modal basis functions. The bottom panels in Figure 2.1 display the HiMod
approximations for m = 1 (left) and m = 2 (right). It is evident that two modes are enough to
ensure a qualitatively good accuracy of the reduced solution with a considerable reduction in
terms of the degrees of freedom (dofs) (120 dofs for the HiMod approximation to be compared
with 373464 dofs for the finite element model).
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FIG. 2.1. HiMod verification (test case 1): reference FE (top) and HiMod (bottom) solution for m = 1 (left)
and m = 2 (right).

2.1.2. Test case 2. The domain €2 is now taken as the rectangle (0,6) x (0,1), and we
select the problem data as

wl(z,y) = 0.24, b(z,y) = [5,sin(6z)]7, o(xz,y) =0.1,

2.7
f(z,y) = 10xc, (z,y) + 10xc, (2, 9),

where y,, denotes the characteristic function associated with the generic region w C R?, while
C; and Cs identify the ellipsoidal areas {(z,y) : (z — 0.75)% + 0.4(y — 0.25)? < 0.01}
and {(z,y) : (z — 0.75)> + 0.4(y — 0.75)% < 0.01}, respectively. The ADR problem is
completed with homogeneous Neumann data on I'y = {(z,y) : ¢ = 6,0 < y < 1} and with
homogeneous Dirichlet condition on I'p = 9Q \ T'y, so that V- = Hp () in (2.1). The
top panel of Figure 2.2 displays the contour plot of the approximation obtained with linear
finite elements on a uniform and unstructured mesh consisting of 3200 elements. We draw
the attention of the reader to the oscillatory dynamics induced by the sinusoidal field and the
presence of the two localized sources in Cy and C. Moreover, no stabilization is applied
despite the convection overcomes the diffusion. HiMod reduction is applied by introducing a
uniform subdivision of €2; p into 120 subintervals and by employing an increasing number of
modes. We do not introduce any stabilization also for the HiMod discretization. Figure 2.2,
second to fourth row, provides the HiMod approximation for m = 2, m = 3, and m = 5,
respectively. At least five modes have to be employed to obtain a qualitatively reliable HiMod
solution. As expected, the number of HiMod dofs is considerably lower compared with the
finite element case (600 versus 305171 dofs).

3. HiPOD techniques. The goal of the HiPOD techniques is to build a HiMod ap-
proximation for problem (2.1) at a computational cost lower than that for the HiMod sys-
tem (2.4). For this purpose, we resort to a POD approach by adopting the offline/online
paradigm [19, 20, 21, 22, 36]. In particular, during the offline phase, we discretize the prob-
lem (2.1) via HiMod for different choices of « to extract the POD (reduced) basis. In the
online phase, we employ such a basis to approximate the HiMod solution of (2.1) for a value
a = o of the parameter not yet sampled.

In this paper we explore two different HIPOD approaches. The first one is the most
straightforward procedure, where the online phase is carried out by resorting to a standard
projection [4]. In the second approach, we drive the online phase by means of interpolation,
following [37]. This second variant takes advantage of the separation of variables implied by a
HiMod discretization.
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FIG. 2.2. HiMod verification (test case 2): reference FE (first row) and HiMod solution for m = 2 (second
row), m = 3 (third row), and m = 5 (fourth row).

The leading feature of a HiPOD technique is that it contains the typical computational
burden of an offline phase. Actually, the POD is applied to solutions which have already been
reduced via HiMod in contrast to standard approaches where full solutions (e.g., finite element
approximations) are employed to sample the phenomenon at hand. Finally, we notice that
HiPOD methods are fully general since, a priori, any model reduction technique may replace
the HiMod discretization during the offline phase.

3.1. The basic HIPOD approach. We start the offline phase by assembling the snapshot
(or response) matrix S. To this aim, we select p different values «; of the parameter o, and
we compute the HiMod approximation of the associated problem (2.1), for: = 1,...,p. We
employ the same discretization along €2; p and the same modal expansion for the transverse
dynamics so that, according to the representation (2.5), each HiMod solution is identified by

the m Ny, coefficients {uj; };:L:’]lv’;::l or, likewise, by the vector

o2l O O 0 Pate?} fate?} T Nh
3.1 um(ai):[u‘f‘,i,...,u’f"Nh,ug‘fl?...,ug‘how..,u%’l,...,u%’Nh] € R™NYR,

k=1 k=2 k=m

collecting the modal coefficients by mode. Thus, we assemble the snapshot matrix

(3.2) S = [um(al), U (as),. .. ,um(ap)] e RMNr)xP,
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and the matrix
1P
V=5-- Z [Wn (i), W (a), ..., upm(ag)] € ROMRxP,

i=1

which is characterized by having zero average. The matrix V is the array actually employed to
extract the POD basis. For this purpose, we apply the Singular Value Decomposition (SVD) to
V to obtain

(3.3) Y =oxuT,

where & € R™Nw)X(mNw) and & € RP*P are the unitary matrices gathering the left and the
right singular vectors of V, while ¥ = diag (07, ...,0,) € R0MNo)XP js the pseudo-diagonal
matrix of the singular values of V with 01 > 03 > --- > 0., > 0 and v = min(mNp,, p) [13].
In the numerical assessment below, we always assume v = p.

The decomposition (3.3) allows us to define the POD orthogonal reduced basis, being the
set of the first [ most significant left singular vectors {¢; }!_; of V' so that the reduced POD
space is Viiop = span{¢1, . .., ¢} with dim(Vi o) = [ and, in general, | < mNj,.

As to the choice of the integer [, different criteria can be adopted. For instance, one can
analyze the trend of the spectrum X or introduce a control on the variance by selecting the first
[ ordered singular values such that

2
(3:4) Ry= &= >

for a positive user-defined tolerance € [36].

REMARK 3.1. As an alternative to the procedure above, the POD basis can be derived
by applying a spectral decomposition for the covariance matrix C' = V'V € RP*P assuming
p < mNy,. In particular, it holds that \; = o7 and ¢; = )\leci, where {\;, ¢;} denotes the
generic {eigenvalue, eigenvector} pair associated with C, fori =1,...,p [36].

REMARK 3.2 (Snaphot choice). The choice of the representative values for the parameter
ain (3.2) is a critical issue to make POD effective in practice. In general, it strictly depends
on the problem at hand. In particular, the model reduction is effective if the selected snapshots
cover the whole parameter space. This aspect is beyond the goal of this work albeit extremely
interesting.

Now, the online phase approximates the HiMod solution to problem (2.1) for the value
o of the parameter, with o* # «; fori =1, ..., p, at a lower computational cost with respect
to directly solving the HiMod system (2.4) for « = «a*. For this purpose, we project the
system (2.4) onto the POD space VFZ‘OD by computing the POD stiffness matrix and right-hand
side,

Apop(a”) = (QZPOD)TAm(Oé*) (I)ZPOD € R,

3.5
frop () = (Phop) fn(a®) € R,

respectively, where the matrix ®Lop = [, ..., @] € ROMN)X! collects the POD basis
vectors column-wise, while A, (o*) and £, (o*) are the HiMod stiffness matrix and right-hand
side in (2.4). Then, we solve the POD system of order [

Apop(a®)upop(a”) = frop (o)
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with upop (a*) = [U%BD’I, ey ug*ODJ]T € R!. This allows us to approximate the HiMod
solution u,, («*) in (2.4) by using the POD basis as

!
u, (@) & ujpop (@) = ZU%;QS% e RN

s=1

after solving a system of order [ instead of m N,. Finally, thanks to the expansion (2.5), we
obtain the HiPOD approximation uly;pop (@*) to up, (z,y; o).

The assembly of A,,(a*) and f,,,(a*) in (3.5) constitutes the bottleneck of the basic
HiPOD method although this represents a computational burden typical of any projection-
based POD procedure. Nevertheless, the employment of a reduced rather than a full model
when building the matrix .S leads to a considerable reduction of the computational effort,
especially when m is a small value.

3.1.1. Numerical assessment. The basic HIPOD procedure is assessed on the test prob-
lems in Section 2.1.

Test case 3. To perform the offline phase, we assume an affine dependence of the problem
data in (2.2) on the independent variables x, y so that

1(X) = po + pa® + pyy,  b(x) = [bo + byx, by + byy] T,
U(X):UO+wa+Uyyv f(x):f0+fx-r+fyy~

Then, we hierarchically reduce 30 different problems by setting 1o = 1, 0, = 0y, = 0, fo = 1,
and by randomly varying the remaining nine parameters as

te € Py, = [072]a by € Puy = [Oa2}7 00 € Pyy = [073]a
by € Py, = [0, 3], by € Py, =10, 3], by € Py, =[0,2],
b, € Pby = [0, 2], fo €Ps, = [—2,2], fy € Pfy =[-2,2],

so that the parameter in (2.1) coincides with the vector & = (g, y), 00, bo, b1, ba, by, [, f]"
€ R? varying in P = Py, X P, X Pgy X Pyy X Py, X Py, X Py, X Py, X P, .

The HiMod discretization uses linear finite elements along the mainstream, associated
with a uniform partition of §2; p into 60 subintervals, and a modal expansion based on 10
sinusoidal modes. Figure 3.1 (left) displays the spectrum of the matrix V, where the vertical
lines identify the dimension [ for the POD space adopted in the online phase. The singular
values decrease rather slowly until a drop occurs at [ = 17 (being rank(})=17). This can be
ascribed to the large number of parameters involved, which limits the redundancy across the
snapshots.

During the online phase we approximate the same problem as in Section 2.1.1 for

a* =10,0,0,3,0,0,0,-2,3]" € P,

so that the reference HiMod solution is the one in Figure 2.1 (bottom-right). Starting from the
spectrum on the left-hand side of Figure 3.1, we pick [ = 2,4, 7,15,17. The corresponding
value for the ratio R; in (3.4) is given by 0.9352, 0.9832, 0.9952, 0.9999, 1, respectively. Fig-
ure 3.2 provides the contour plots of ubypop (a*) for I = 2, 7, 15. The solutions uZ;pop (@)
and ufy;pop (a*) exhibit a good accuracy if we take into account that they are obtained by
solving a system of dimensionality 2 and 7, respectively, and that we are varying 9 parameters
simultaneously. The quality of the HIPOD approximation gradually improves by increasing
the dimension of the POD space as confirmed also by the values in Table 3.1, which gathers
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FIG. 3.1. Basic HiPOD reduction: singular values of the matrix V for the test cases 3 (left) and 4 (right).
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FIG. 3.2. Basic HiPOD reduction (test case 3): HiPOD approximation for | = 2 (top), l = 7 (middle), and

| = 15 (bottom).

the L?(2)- and the H'(£2)-norm of the relative modeling error obtained by replacing the
HiMod solution u10(a*) with the HiPOD approximation uly;pop (a*) for different values of
[. The modeling error is quickly reduced by increasing [. From a qualitative viewpoint, the
HiPOD approximation uj{pop(a*) is fully comparable with the HiMod approximation in
Figure 2.1 (bottom-right) with a reduction of the wall-clock time from 1.44 to 0.04 seconds'
(the time associated with the HiPOD approximation refers to the online phase only).

Test case 4. As reference setting, we consider now the test case in Section 2.1.2. We
adopt the following dependence on the independent variables for the problem data in (2.1):

W(x) = po + pa® + pyy,
o(x) = 09 + 0gx + 0y,

b(x) = [bo, by sin(62)]7,
f(x) = fixe, (%) + faxe. (x).

The computations have been run on a MacBookPro15,3 Intel Core i9 2.40GHz 32 GB desktop computer.
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TABLE 3.1
Basic HiPOD reduction (test case 3): relative modeling error for different HiPOD approximations.

| 1=2 | 1=4 | I=7 | 1=15 | I=17
L?(Q)-norm | 3.23e-01 | 5.98¢-02 | 3.51e-02 | 2.70e-03 | 1.71e-03
H'(Q)-norm | 4.50e-01 | 1.23e-01 | 6.21e-02 | 7.61e-03 | 4.81e-03

TABLE 3.2
Basic HiPOD reduction (test case 4): relative modeling error for different HiPOD approximations.

| 1=2 1=4 1=6 =8 | 1=16 | =29

L?(Q)-norm | 2.41e-01 | 2.12e-01 | 9.83e-02 | 3.42e-02 | 3.94e-03 | 1.23e-03
H'(Q)-norm | 3.23e-01 | 1.87e-01 | 1.15e-01 | 4.93e-02 | 9.31e-03 | 2.33e-03

During the offline phase, we compute the HiMod approximation for 30 different ADR
problems by setting y,, = p, = 0, = 0, = 0 and by randomly varying

to € Py = [0.1,10], by € Py, = [2,20], by € Py, =1, 3],
UOGPUO :[033]7 fl Gpﬁ :[5325}7 fQEPf'z :[5725]a

so that the parameter in (2.1) is provided by the vector & = [, bo, b1, 00, f1, f2]* taking
values in the set P = P, X Py, X Py, X Pyy X Py, X Py,. The HiMod discretization employs
linear finite elements on a uniform partition of 2; , into 120 subintervals combined with 20
sinusoidal modes to discretize the transverse dynamics. Figure 3.1 (right) illustrates the trend
of the spectrum for the corresponding matrix V. This is characterized by a very slow decay
without any significant drop before the 29th singular value (being rank()) = 29).

The online phase is employed to approximate the solution for the problem in Section 2.1.2.
This is equivalent to the parameter setting

o =0.24,5,1,0.1,10,10]7 € P.

Figure 3.3 (top-bottom) displays the basic HiPOD approximations u%j;pop (), u$ipop (@),
uilpop(a*). As expected, the ratio R, becomes closer to 1 when [ increases, being
Ry =0.6163, Rg = 0.9158, and R4 = 0.9971. Six POD modes suffice to recognize already
the general trend of the HiMod solution, whereas the HIPOD approximation ui{pop (),
which is obtained by solving a system of order 16, is fully comparable with the HiMod
approximation us (™) in Figure 2.2 (bottom), a solution of a system of dimension 600. This
leads to a significant saving in terms of the computational effort, the wall-clock time reducing
from 14.53 seconds for the HiMod approximation to 0.20 seconds when resorting to the basic
HiPOD approach.

Finally, Table 3.2 provides some quantitative information about the accuracy of the basic
HiPOD approximation by collecting the L?(£2)- and the H!(2)-norm of the relative modeling
error with respect to the HiMod approximation usq(a*). The error reduction is slightly slower
compared with the values in Table 3.1, the trend of the solution being in such a case less trivial.

3.2. The directional HiPOD approach. The directional HIPOD method combines Hi-
Mod reduction with POD by a deeper exploitation of the separation of variables underlying
a HiMod discretization. In particular, the SVD is employed to erase the redundancy along
the main stream and the transverse direction separately. Then, the online phase is carried out
by interpolating instead of projecting. This relieves us from assembling the HiMod stiffness
matrix and the right-hand side associated with the online parameter as expected by (3.5).
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FI1G. 3.3. Basic HiPOD reduction (test case 4): HiPOD approximation for l = 2 (top), | = 6 (center), and
| = 16 (bottom).

The offline phase starts by collecting the information to build the response matrix. To
this aim, we compute the HiMod discretization for problem (2.1) for p different values a; of
the parameter «, with i = 1, ..., p. The corresponding modal coefficients {Eg]}’;:%:l are

re-ordered by mode into the m vectors
k ~oy oy ~oy T N
(3.6) U(a) = [y’ gy, .- gy, |7 € RYY k=1,...,m,

instead of in a unique vector as in (3.1). Then, we employ the vectors U*(a;) to assemble the
response matrix

U= [Ul(al) - U™(aq) | UI(QQ) UM () | e | Ul(ap) . ..Um(%)]
"7?,11 ﬂgj 1 ﬁ(ll,Ql ﬂgnz,l ~Z,,1 ~g1p,1
~a ~o ~o ~o o~ ~

_ 1 12 um1,2 u1,22 um2,2 1,p2 mp,2
ﬂilzv NS ﬂzl,zvh 17(11’2}\[ SRS agiNh ﬂ?ﬁv SRS afnszh

The matrix U € RN»*(™P) exhibits a block-wise structure associated with the parameters o;
such that, for each block, the columns run over the modes while the rows run over the finite
element nodes. Now, we apply the SVD to the matrix U, thus yielding

(3.7) U =ZEAKT,

with 2 € RN»*Nr and K € R(™P)*(mP) being unitary matrices and A € RV»*(mP)
pseudo-diagonal matrix. The left singular vectors {§; };V:’ll of U constitute an orthogonal basis
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for R™V» so that each column of U can be expanded as
(3.8) Uk(ai) =Y TF(a)g;,  k=1,....m,i=1,...p.

In general, we can pick the first, say L with L < N}, most meaningful singular vectors of
U to identify the POD space VPLOD1 = span{&y, ..., &} associated with this first phase of
the directional HiPOD procedure with dim(V{p, ;) = L. Thus, the vectors U*(c;) can be
approximated as

L

(3.9) Uk (i) 2 ) T (w)g;, k=1,....m,i=1,...,p,
j=1

where equality holds when L = N, (see (3.8)). Now, we re-organize the coefficients {Tjk (i)}
by parameter into the p vectors T;(c;) = [T} (i), ..., Tj"()]" € R™, withi =1,...,p,
and we define the matrix

T ) ... Tj(ap)
Sj = [Tj(en),..., Tj(ep)] = : : € R™*P,

T/ (en) ... T (o)

with j =1,..., L. Then, we apply the SVD to each matrix S; to obtain the L factorizations
(3.10) S; = R;D, P,

with R; € R™*™ and P; € RP*? being unitary matrices and D; € R™*? the pseudo-
diagonal matrix collecting the singular values of S;. Thus, the columns T;(c;) of S; can be
represented in terms of the POD orthogonal basis {r* ’,:J: 1» with p; < m, constituted by the

J
most significant p; left singular vectors of .S;, as

Iz
(3.11) Tj(ai) 2> Q(aa)rh,  j=1,...,Li=1,..,p
k=1
With each j, we associate the POD space VI%D_Z j = span{r}, e r;” } of dimension

dim(VP‘féD’Q’ ;) = pj. Thus, the directional HiPOD procedure yields (L + 1) POD bases,
which, during the online phase, are employed to predict the HiMod approximation to the
problem (2.1) for a new value o* of the parameter with a* # «a;, fori =1,...,p.

For this purpose, first we compute an approximation for the coefficients Q;‘f (a*)in (3.11),
forj=1,...,Landk =1,...,pu;, via a suitable interpolation of the (known) values Qf (o),
fori =1,...,p. Successively, we go through the directional procedure backward until we
obtain an approximation for the vector U*(a*) in (3.6). In particular, thanks to (3.11), we
compute the L vectors

1

(3.12) T;(a) = [T} (a),.... T/ (@) =>_Qf(a)rk,  j=1,...,L
k=1

in R™, and then, according to (3.9), we assemble the m vectors Uk o (o) € RN as

L
k + * k
Uliipop (@) = [UBop 1s- - - UBoD kN, ) = g T; ()€, kE=1,...,m.
Jj=1
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TABLE 3.3
Directional HiPOD reduction (test case 5): prediction for the POD modes.

| e=06[c=09] =099 | e =0.999 | £ =0.9999

L 1 3 5 7 10
max; fi; 4 6 8 9 10
median f; 2 4 6 8 8

Finally, the vectors U¥,pop (a*) allow us to approximate the HiMod solution 1, (a*) as

m Ny
wn(0) & ufibdp (@) = D7 [ 3 uBo i, (@) er (i (v),
k=1 j=1
with My, = {u, }JL:p and where the values uggD)k, j provide an approximation of the actual
coefficient 6?3 in (3.6) with o;; = ™.

REMARK 3.3 (Choice of the interpolation). Different interpolation procedures can be
adopted to compute the coefficients Q?(a*). Following [37], we adopt a standard linear
interpolation, a piecewise cubic Hermite interpolant, and an interpolating radial basis function.
In the next section, we numerically investigate the performances of these three approaches.

3.2.1. Numerical assessment. We numerically assess the reliability of the directional
HiPOD procedure. First, we consider the case where o coincides with a single scalar quantity,
and then we generalize the approach to the vector case so that « will collect several parameters.

Test case 5. We adopt the solution for test case 1 as the setting to be approximated during
the online phase. The viscosity coefficient i, which is here assumed constant, represents the
parameter driving the offline phase so that = p. In particular, we hierarchically reduce
problem (2.1)—(2.2) for 20 different values of p with x = p; uniformly sampled in the interval
P, =1[0.15,3] and p1; # 1, fori =1, ..., 20, while preserving the same values as in (2.6) for
the other problem data. The HiMod discretization is the same as for test case 3 so that we
employ linear finite elements associated with a uniform partition of €2; p into 60 subintervals
to discretize the main stream and 10 sinusoidal modes to describe the transverse dynamics.

Concerning the choice of L in (3.9) and of y; in (3.11), we resort to a control analogous
to the one in (3.4). In more detail, for two fixed tolerances €1 and €5 with 0 < g1,e9 < 1, we
preserve the first L left singular vectors &; of U and the first p; left singular vectors r? of S
such that

ZL 1A 1 4o,
(3.13) Riop1==—_L>e and RY,,=m—2 > ey,
' Zj\ll A3 D DY
respectively, with \; the singular value of U associated with §; and j = 1,..., Nj and with
d; 1. the singular value of S; corresponding to the kth singular vector r? andk=1,...,m. As

a first test, we choose €1 = €5 = €. Table 3.3 collects the predictions for L for the maximum
value and for the median of the values ; for different choices of €. As expected, the number
of Hi-POD modes retained at both stages increases when € approaches 1. Moreover, a slightly
higher sensitivity of L with respect to the selected tolerance is detected when compared with
the maximum value and the median of the ;.

The online phase is performed by setting o™ = pu* = 1 € P, and by using a radial basis
function (RBF) interpolation [38]. In Figure 3.4, we compare the HiPOD approximations
associated with three of the selected tolerances. It is noticed that at the first level of the
procedure at least three POD modes have to be adopted to have an approximation sufficiently
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FI1G. 3.4. Directional HiPOD reduction (test case 5): HiPOD approximation for ¢ = 0.6 (top), € = 0.9
(middle), and € = 0.99 (bottom).

TABLE 3.4
Directional HiPOD reduction (test case 5): relative modeling error for different HIPOD approximations.

| =06 | e=09 [ =099 | £ =0.999 | & = 0.9999

L?(Q)-norm | 4.66e-01 | 4.01e-02 | 3.11e-03 | 8.17e-04 1.37e-04
H'(Q)-norm | 4.62e-01 | 9.43e-02 | 1.05e-02 | 3.11e-03 5.71e-04

reliable, which is equivalent to picking € > 0.9. On average, the wall-clock time required by
the directional HiPOD procedure is 0.08 seconds, which is significantly lower when compared
with the time associated with the HiMod reduction in Section 2.1.1 (1.44 seconds for m = 2).

In Table 3.4, we analyze the convergence of the directional HiPOD approach by computing
the L2(£2)- and the H!(2)-norm of the error that we have when replacing the HiMod solution
u10(*) with the HiPOD approximation. The accuracy ensured by the HiPOD approximation
is remarkable if we consider that the values in the table refer to a relative error.

Finally, we run the directional HiPOD procedure by distinguishing the tolerances in (3.13)
in order to identify a possible criterion for the choice of €; and 5. For this goal, we re-
peat the same error analysis as in Table 3.4, varying both €; and €5 in the set of values
{0.6,0.9,0.99,0.999,0.9999}. Table 3.5 collects the results of this investigation. It turns out
that the values of €1 and 5 have to be, in general, sufficiently close to 1 to have a monotoni-
cally decreasing trend of the error when we fix a tolerance and vary the other one. For this
particular test case, a possible strategy to ensure this monotonicity can be to select €1 very
close to 1 (¢; = 0.9999) and make ¢4 varying, or, as an alternative, we can fix €2 to 0.99,
0.999, or 0.9999 and gradually reduce the value for €;. This behaviour is shared by both
norms.

Test case 6. The benchmark configuration is now provided by test case 2, where the
HiPOD parameter « coincides with the reactive coefficient o that we assume constant.

The offline phase involves the hierarchically reduction of problem (2.1)—(2.2) for 30
different values of the reaction, uniformly sampled in the range P, = [0.02, 0.4], while all
the other problem data in (2.7) are preserved. The HiMod discretization adopted during this
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TABLE 3.5
Directional HiPOD reduction (test case 5): sensitivity to the selected tolerances.
Norm | e =06 | e9=0.9 | 69 =0.99 | e9 =0.999 | e5 = 0.9999
e1=06 | L2(Q) | 2.58¢-01 | 2.58¢-01 | 2.57e-01 | 2.57e-01 | 2.57e-01
HY(Q) | 4.61e-01 | 4.61e-01 | 4.59-01 4.59e-01 4.59¢-01
€1 =09 L2(Q) | 5.43e-02 | 5.43e-02 | 2.01e-02 2.01e-02 2.01e-02
HY(Q) | 1.50e-01 | 1.50e-01 | 5.91e-02 5.88e-02 5.88e-02
€1 =0.99 L?(Q) | 3.73e-02 | 3.47e-02 | 5.80e-03 5.80e-03 5.80e-03
HY(Q) | 8.90e-02 | 7.57e-02 | 2.83e-02 2.83e-02 2.83e-02
g1 =0.999 | L2(Q) | 3.72e-02 | 3.46e-02 | 1.34e-03 6.03e-04 6.03e-04
HY(Q) | 8.85e-02 | 7.51e-02 | 4.01e-03 3.10e-03 2.91e-03
g1 =0.9999| L3(Q) | 3.72e-02 | 3.46e-02 | 1.20e-03 5.57e-04 8.03e-05
HY(Q) | 8.84e-02 | 7.50e-02 | 2.81e-03 1.21e-03 3.95e-04
TABLE 3.6
Directional HiPOD reduction (test case 6): prediction for the POD modes.
£=06]e=09]e=099 | e =0.999 | £ =0.9999
L 2 3 4 12 17
max; [ 5 8 9 10 10
median f; 4 5 6 7 7

stage uses linear finite elements along {2, p in correspondence with a uniform partition of the
supporting fiber into 120 subintervals and 20 sinusoidal modes in the transverse direction,
analogously to what is done in test case 4. We set a* = 0* = 0.1 € P, in the online phase to
recover the setting of interest. The spectrum truncation in (3.13) is first driven by a unique
tolerance by selecting 61 = €5 = €.

The first row in Table 3.6 provides the number L of POD modes selected at the first level
of the HiPOD procedure for five different choices of €. The values in the table highlight the
presence of a strong redundancy. Indeed, L is considerably lower with respect to N, (= 120),
even when ¢ is very close to 1. For instance, it suffices that the POD space VPLOD1 has a
dimension equal to 12 to correctly describe the dynamics along the main stream. This is shown
in Figure 3.5, which gathers the contour plots of the HIPOD approximation associated with
the first four values selected for €. Information about the values predicted for the dimensions
ft5 in (3.11) are also furnished by Table 3.6.

The configuration explored in this test case is more complex with respect to the one in
test case 5. This is confirmed by the larger number of POD modes (L. = 12 versus L = 3)
employed at the first level to ensure a reliable HiPOD solution. Despite that, also for this test
case we have a computational gain with respect to the HiMod discretization in Section 2.1.2
(case m = 5). Indeed, the wall-clock time characterizing the directional HiPOD procedure is
0.33 seconds to be compared with 14.53 seconds for the HiMod reduction.

The accuracy of the directional HiIPOD approximation is quantified in Table 3.7 in terms

TABLE 3.7
Directional HiPOD reduction (test case 6): relative modeling error for different HiPOD approximations.

| =06 | €=09 [ £=0.99 | £ =0.999 | & = 0.9999

L?(Q)-norm | 1.93e-01 | 7.38¢-02 | 1.16e-02 | 4.82e-04 5.54e-05
HY(Q)-norm | 4.34e-01 | 1.52e-01 | 3.08¢-02 | 3.11e-03 3.84e-04
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FI1G. 3.5. Directional HiPOD reduction (test case 6): HiPOD approximation for € = 0.6,0.9,0.99,0.999
(top-bottom).

of the L?(£2)- and of the H'(2)-norm of the POD relative error with respect to the HiMod
solution ugg (™). The values in the table confirm the effectiveness of the directional HIPOD
procedure.

Also for this test configuration, we explore the accuracy of the directional HiPOD approx-
imation when we select different values for €, and €. The analysis in Table 3.7 is replicated
by assigning the values 0.6, 0.9, 0.99, 0.999, 0.9999 to both the tolerances. Table 3.8 provides
the relative modeling error with respect to the reference HiMod solution in terms of the L?(£2)-
and of the H'(2)-norms. Conclusions similar to the ones for Table 3.5 can be drawn also for
this test case. To ensure a monotonic trend for the error norm, it is fundamental to choose ¢
very close to 1 (€7 = 0.999 or e; = 0.9999) and gradually reduce ¢», or, as an alternative, to
set €5 t0 0.99, 0.999, or 0.999 while diminishing ;.

Finally, we use this test case to investigate the sensitivity of the directional HiPOD
reduction procedure to the interpolant used in (3.12) to compute the coefficients Qf (a®).
For this purpose, we come back to the configuration analyzed in Table 3.7 (i.e., we pick
€1 = g9 = €), and we consider the four largest values for the tolerance ¢ = 0.6 providing
an excessively poor approximation. According to Remark 3.3, we resort to a standard linear
interpolation (LIN), a piecewise cubic Hermite (PCH) interpolant, and to an interpolating RBF.
Table 3.9 provides the L?(£2)- and the H'(£2)-norm of the relative error associated with the
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TABLE 3.8
Directional HiPOD reduction (test case 6): sensitivity to the selected tolerances.

Norm | e5=0.6 | e9=0.9 | e =0.99 | £ =0.999 | 5 = 0.9999
e1=06 | L2(Q) | 2.85e-01 | 2.85e-01 | 2.85e-01 | 2.85e-01 2.85e-01
HY(Q) | 3.81e-01 | 3.81e-01 | 3.81e-01 3.81e-01 3.81e-01
e1=09 | L%(Q) | 3.27e-02 | 3.27e-02 | 3.06e-02 | 3.06e-02 3.06e-02
HY(Q) | 6.49e-02 | 6.49¢-02 | 6.45e-02 | 6.45¢-02 | 6.45¢-02
e1 =099 | L2(Q) | 1.32e-02 | 1.21e-02 | 3.81e-03 | 3.81e-03 | 3.81e-03
HY(Q) | 1.47e-02 | 1.44e-02 | 1.23e-02 1.23e-02 1.23e-02
e1=0.999 | L*(Q) | 9.77e-03 | 8.75e-03 | 6.06e-04 6.04e-04 1.96e-04
HY(Q) | 1.27e-02 | 1.15e-02 | 1.18e-03 1.16e-03 1.21e-03
g1 =0.9999 | L3(2) | 9.73e-03 | 8.61e-03 | 5.81e-04 5.78e-04 8.68e-05
HY(Q) | 1.77e-02 | 1.15¢-02 | 1.38¢-03 | 1.31e-03 | 6.60e-04
TABLE 3.9
Directional HiPOD reduction (test case 6): sensitivity to the interpolant operator.
e=09 | =099 | €=0.999 | € =0.9999

LIN | L?(Q)-norm | 7.38¢-02 | 1.16e-02 | 4.83e-04 6.36e-05

H'(Q)-norm | 1.52e-01 | 3.08¢e-02 | 3.11e-03 3.85¢-04

PCH | L?(Q2)-norm | 7.38¢-02 | 1.16e-02 | 4.83e-04 5.54e-05

HY(2)-norm | 1.52e-01 | 3.08e-02 | 3.11e-03 3.84e-04

RBF | L?(Q2)-norm | 7.38¢-02 | 1.16e-02 | 4.82e-04 5.54e-05

H'(Q)-norm | 1.52e-01 | 3.08¢-02 | 3.11e-03 3.84e-04

directional HiPOD approximation with respect to the HiMod solution usg(a*). For this test
case, the PCH and the RBF interpolants slightly outperform the linear interpolation.

Test case 7. We analyze here the robustness of the directional HiPOD procedure in terms
of extrapolation to predict a scenario associated with a value a* of the parameter out of the
corresponding range P. For this test, we select as reference configuration the solution to the
ADR problem in (2.1)—(2.2) for the set of data

M(xay) =0.24, b(:c,y) = [57Sin(6m)]T’ 0(%,:1/) =0,

(3.14)
f(z,y) = 10xc1(z,y) + 10xc2(z, y),

with Cy and C defined as in (2.7). From a qualitative viewpoint, the linear finite element
approximation to this problem is essentially identical to the solution in Figure 2.2 (top), the
reaction o providing a negligible contribution to the solution trend.

The parameter o now coincides with the diffusivity coefficient p. The offline phase
involves the hierarchical reduction of problem (2.1)—(2.2) for ten different values of the
viscosity uniformly sampled in the range P,, = [1/30, 1] with all the other problem data being
preserved. The HiMod discretization adopted during this stage uses linear finite elements along
Q1 p in correspondence with a uniform partition of the supporting fiber into 120 subintervals
and 20 sinusoidal modes along the transverse direction.

We pick a* = 1/60 ¢ P, as the parameter characterizing the online stage. For compari-
son purposes, we adopt both the PCH and the RBF interpolations to compute the coefficients
Q?(a*) in (3.12). This choice is motivated by the higher reliability exhibited, in general,
by these two interpolants in terms of extrapolation properties. Table 3.10 compares the rel-
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TABLE 3.10
Directional HiPOD reduction (test case 7): robustness to extrapolation.
e=09 | e=0.99 | £€=0.999 | € =0.9999

PCH | L?(2)-norm | 2.75¢-01 | 1.01e-01 | 9.79e-02 9.78e-02
H'(Q)-norm | 5.46e-01 | 2.13e-01 | 1.92e-01 1.92e-01

RBF | L?(Q2)-norm | 2.67e-01 | 5.31e-02 | 4.70e-02 4.68e-02
H1(Q)-norm | 5.36e-01 | 1.44e-01 | 1.02e-01 9.97e-02

FIG. 3.6. Directional HiPOD reduction (test case 7): robustness to extrapolation. HiMod reference solution
(top) and HiPOD approximation for € = 0.9 (center) and € = 0.99 (bottom,).

ative modeling error associated with the two interpolants in terms of the L?(£2)- and the
H'(Q)-norms. The PCH and RBF procedures are fully comparable with a slightly better
performance for the second interpolant. Figure 3.6 provides the contour plots of the reference
HiMod solution ugg(«*) and of the directional HiPOD reduction when resorting to the RBF
interpolant and for ;1 = €5 = ¢ = 0.9 and 0.99 (tolerances ¢ = 0.999, 0.9999 provide
contour plots very similar to the bottom panel). The challenge intrinsic into an extrapolation
justifies the large values adopted for the tolerance. The matching between the HiMod and
HiPOD approximations is satisfactory.

Test case 8. In this section we extend the HiPOD directional approach to the case when a
multiple parameter has to be varied during the offline phase. The use of a vector of parameters
leads us to modify the interpolation step of the procedure in Section 3.2. In particular, in order
to recover the coefficients Q? (a*) in (3.12), we now resort to a two-dimensional interpolant.

As areference differential setting, we adopt the ADR problem in test case 7, where we
identify the parameter with the vector o = [y, b1]7, which collects the diffusivity coefficient
and the x-component of the advective field b = [b;, by]T with the y-component being pre-
served as in (3.14) (i.e., by = sin(6x)). The set of the admissible parameters is P = P, X Py,
with P, = [1/30, 1] and P}, = [0.5, 10].
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TABLE 3.11
Directional HiPOD reduction (test case 8): relative modeling error for different HIPOD approximations and
sensitivity to the interpolant operator for o = [0.6,5.1]T.

e=06 | e=09 [ =099 | e=0.999 | e =0.9999

L 2 6 16 32 41
max; f; 7 13 19 20 20
median p; 5 10 16 19 20

LIN | L?(Q)-norm | 1.81e-01 | 5.13e-02 | 3.81e03 | 6.33e-04 5.71e-04
)-norm | 3.90e-01 | 1.37e-01 | 1.74e-02 | 2.10e-03 6.34e-04

HY(Q
PCH | L? (2)-norm | 1.82e-01 | 5.13e-02 | 3.72e-03 | 2.78e-04 4.23e-05
H! (2)-norm | 3.90e-01 | 1.37e-01 | 1.74e-02 | 2.01e-03 2.51e-04

Due to the higher dimensionality of the parameter space, we extend the sampling during
the offline phase by hierarchically reducing the reference ADR problem for p = 600 different
choices of the parameter . In particular, the interval P,, is sampled with 30 uniformly
distributed points, whereas we pick 20 uniformly spaced points along the interval Py, . The
HiMod approximation coincides with the one adopted for test case 7, which employs a
linear finite element discretization associated with a uniform subdivision of {21 p into 120
subintervals along the mainstream enriched by 20 sinusoidal modal functions to approximate
the transverse dynamics. The POD truncation is carried out by identifying the two tolerances
in (3.13), and by setting € = €7 = €2 = 0.6, 0.9, 0.99, 0.999, 0.9999.

The online phase is run to approximate the HiMod solution corresponding to the choices
al = [0.6,5.1]7 and o = [0.06,9.3]T for the parameter. Concerning the interpolation
step, we adopt both the linear (LIN) and the piecewise cubic Hermite (PCH) bidimensional
interpolant operators. In Figures 3.7 and 3.8 we compare the reference HiMod solutions
ugo(a}) and ugp(al) with the approximation provided by the directional HiPOD reduction
when combined with the PCH interpolation and for the different tolerances. A tolerance
sufficiently close to 1 has to be selected to obtain a reliable HiPOD solution. In particular, the
choice a3 for the parameter turns out to be more challenging for the HIPOD procedure. This
is confirmed also by a cross-comparison between the values in Tables 3.11 and 3.12, which
gather the L2(2)- and the H'(£2)-norms of the relative modeling error associated with the
directional HiPOD approximation together with other quantitative data. For the parameter
a} =[0.6,5.1]7, it is not immediate to appreciate a remarkable difference between the two
interpolants, at least until the tolerance becomes very close to 1. The PCH interpolation
is characterized by a slightly better performance for the parameter a = [0.06,9.3] in
particular with respect to the L?(2)-norm.

4. Basic versus directional HIPOD approaches. This section has to be understood as
an attempt of a comparison between the two HiPOD procedures in Sections 3.1 and 3.2. This
task turns out to be not so straightforward due to the strong heterogeneity between the two
approaches. The actual goal is to identify specific configurations where one of the two HiPOD
methods outperforms the other rather than establishing which is the best formulation ever.

To make the comparison as fair as possible, we test the HiIiPOD reduction procedures by
selecting the same parameters and the corresponding range of variation. In particular:

i) we apply the basic HIPOD approach to the settings in test cases 5 and 6;
ii) we replicate test case 8 with the basic HIPOD approach for the choice a7;
iii) we customize a specific test case which highlights the potentials of the directional
method when the two levels of the procedure are properly exploited.
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FIG. 3.7. Directional HiPOD reduction (test case 8) for of = [0.6, 5.1]T.' HiMod solution (first row) and
HiPOD approximation associated with the PCH interpolant and for € = 0.6 (second row), ¢ = 0.9 (third row),
e = 0.99 (fourth row).

i). Test cases 5 and 6 are run with the basic HiPOD reduction procedure to approximate
the HiMod solution in Sections 2.1.1 and 2.1.2, respectively. In both cases, we deal with
a single parameter setting which identifies o with the viscosity coefficient 11 and with the
reactive coefficient o, respectively. We exploit the offline phase of the directional approach
by computing the HiMod solution for 20 and 30 values of the viscosity and of the reaction
uniformly distributed in P, = [0.15, 3] and in P, = [0.02, 0.4], respectively. The parameter
a* characterizing the online phase is a* = p* = 1 for test case 5 and a* = ¢* = 0.1 for test
case 6.

Tables 4.1 and 4.2 show the trend of the relative modeling error between the basic HiPOD
approximation and the reference HiMod solutions, i.e., u1o(a*) for test case 5 and uso (™)
for test case 6, when gradually increasing the dimension [ of the POD basis.

The values in Table 4.1 highlight the performance of the basic HIPOD approach, which
allows us to gain some order of accuracy with respect to the directional procedure (see
Tables 3.4 and 3.5) with a relative small number (I = 10) of POD modes. We observe also
an unusual increment of both the errors for [ = 15 and [ = 17. This finds a justification
in Figure 4.1, which displays the spectrum of the matrix V in (3.3). Actually, the singular
values in X drop to machine precision around the index 14-15, meaning that the matrix
V is numerically rank deficient. This implies that a POD reduction with a truncated SVD
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FIG. 3.8. Directional HiPOD reduction (test case 8) for oy = [0.06, 9.3}T: HiMod solution (first row) and
HiPOD approximation associated with the PCH interpolant and for ¢ = 0.6 (second row), € = 0.9 (third row),
e = 0.99 (fourth row), € = 0.999 (fifth row), and € = 0.9999 (sixth row).

with at most 15 components is enough to capture all the features of the parameter space.
Additional components would disadvantage the reconstruction by injecting spurious terms due
to numerical instabilities.

As far as Table 4.2 is concerned, we detect the expected decreasing monotonic trend of
the error when measured in both the L2()- and the H*(£2)-norm. A cross-comparison with


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

208 M. LUPO PASINI AND S. PEROTTO

TABLE 3.12
Directional HiPOD reduction (test case 8): relative modeling error for different HIPOD approximations and
sensitivity to the interpolant operator for o = [0.06,9.3]7.

e=06 | e=09 [ =099 | e=0.999 | e =0.9999

L 2 6 16 32 41
max; f; 7 13 19 20 20
median p; 5 10 16 19 20

LIN | L?(Q)-norm | 2.92e-01 | 5.89¢-02 | 1.49¢02 | 1.25¢-02 1.25¢-02
)-norm | 5.34e-01 | 1.73e-01 | 4.48e-02 | 2.76e-02 2.76e-02

HY(Q
PCH | L? (2)-norm | 2.93e-01 | 5.76e-02 | 9.22e-03 | 4.30e-03 4.14e-03
H! ()-norm | 5.24e-01 | 1.70e-01 | 3.62¢-02 | 1.21e-02 9.53e-03

TABLE 4.1
Basic HiPOD reduction (test case 5): relative modeling error for different HIPOD approximations.

| 1=2 | I=4 | I=7 [ 1=10 | I=15 | 1=17
L2(Q)-norm | 1.91e-01 | 1.01e-02 | 9.29¢-05 | 2.97¢-07 | 9.24e-02 | 1.19¢-01
H'(Q)-norm | 2.11e-01 | 1.14e-02 | 1.19¢-04 | 5.22¢-07 | 1.58e-01 | 1.89e-01

Tables 3.7, 3.8, and 3.9 highlights the fact that the directional HiPOD reduction outperforms
the other for this case setting. Finally, the basic and the directional HiPOD procedures are
essentially comparable in terms of the computational effort, the wall-clock time being equal to
0.04 and 0.20 seconds for the basic approach to be compared with 0.08 and 0.33 seconds for
the directional procedure for the test cases 5 and 6, respectively.

ii). We move to a multiparameter context by considering test case 8. We apply the
basic HiPOD approach to approximate the HiMod solution associated with the parameter
ai = [p*,bi]T = [0.6,5.1]7. We set up the offline phase as before for the directional
procedure based on the HiMod solution for 600 different ADR problems when uniformly
varying the parameter & = [y, b1]” in the set of admissible parameters P = P, x Py, =
[1/30,1] x [0.5,10]. To assess possible benefits of the basic approach in terms of accuracy, we
compute the relative modeling error between the basic HIPOD approximation and the HiMod
reference solution uqg () for increasing values of [ until all the POD modes are employed
(namely, until [ = 600). In Table 4.3, we collect the L?(2)- and the H'(2)-norm of such
an error. A good accuracy is ensured also by the basic HIPOD procedure provided that a
sufficiently large number of POD modes is adopted. Nevertheless, the directional approach
based on the PCH interpolant allows us to obtain an accuracy improvement by an order of
magnitude with respect to the L?(€2)-norm and without resorting to the full POD spectrum
(see Table 3.11).

iii). Some comments on the role played by the two levels in the directional approach
are in order to settle the new test case. The singular value decomposition of the matrix U in
(3.7) mixes information about the HiMod coefficients at different finite element nodes at the
first level. On the other hand, the singular value decomposition of the matrices S; in (3.10) at

TABLE 4.2
Basic HiPOD reduction (test case 6): relative modeling error for different HiPOD approximations.

| 1=2 | I=4 | I=6 | =8 | =10
L2(2)-norm | 7.33e-01 | 5.05e-01 | 7.36e-02 | 8.84e-03 | 7.54e-03
H'(Q)-norm | 8.33e-01 | 6.72e-01 | 8.09¢-02 | 9.84e-03 | 9.34e-03



http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

HIERARCHICAL MODEL REDUCTION DRIVEN BY POD 209

|

[ 2 4 6 8 10 12 14 16 18 20
Index of singular values

FIG. 4.1. Basic HiPOD reduction (test case 5): singular values of the matrix V.

TABLE 4.3
Basic HiPOD reduction (test case 8): relative modeling error for different HiPOD approximations for o} =
[0.6,5.1]T.
| 1=2 | 1=10 | =20 | 1=100 | I=400 | =600
L?(Q)-norm | 3.01e-01 | 2.22e-02 | 6.41e-03 | 5.80e-03 | 6.60e-04 | 2.43e-04
H'(Q)-norm | 4.56e-01 | 4.86e-02 | 8.12e-03 | 7.44e-03 | 9.48e-04 | 4.12e-04

the second level reveals a possible redundancy of information for the coefficients needed to
describe the changes of the HiMod solution over different parameter configurations. Therefore,
one would expect that mild changes of the HiMod coefficients across different values of the
parameter lead to rank-deficient matrices S;. This would translate into a potentially small loss
of accuracy when a dimensionality reduction is performed accordingly.

To support this conjecture, we set up a dedicated numerical test. At the ith run of the
offline phase, we solve a Poisson problem in the domain 2 = (0, L,) x (0, L,)) completed
with homogeneous Dirichlet boundary conditions so that the exact solution is

ui(z,y) = x(z — Ly) i sin (?)

m=1 Y
The parameter governing the offline phase is the number ¢ of HiMod modes used to reconstruct
the solution u; in exact arithmetic, and, clearly, the complexity of the solution increases with
1. Because solutions for different problems require a different number of HiMod modes, the
accuracy of the HiPOD approximation is expected to be highly sensitive to the performed
dimensionality reduction.

Now, we employ the online phase to recover the solution u;« for a random value of the
parameter ¢ with ¢ = ¢* via the directional HiPOD reduction, and we measure the associated
(relative) error with respect to both the L?(Q)- and the H'()-norm. Table 4.4 collects the
results of such an analysis. The accuracy obtained with the HiPOD approximation is not
sensitive to the threshold on the first level, but it is with respect to the threshold at the second
level. This is reasonable as the second level retains information about the importance of the
HiMod modes in reconstructing the solution and how these modes vary through the parameter
space spanned in the offline phase. Moreover, it can be noticed that matrices S; exhibit an
upper triangular pattern due to the growing complexity of the solution.

The basic HiPOD reduction is not conceived to work in such a combined way. Actually,
by replicating the same test case, it can be verified that the error does not ever decrease below
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TABLE 4.4
Directional HiPOD reduction: relative modeling error for different choices of the tolerances to investigate the
role of the two levels.

Eg = 0.6 &g = 0.9 &g = 0.99

-norm | 8.97e+00 | 2.54e+00 | 3.29e-04
-norm | 9.16e+01 | 4.41e+01 | 4.99¢-02

(©)
()
g1 =0.9 | L?(Q)-norm | 8.97e+00 | 2.54e+00 | 3.29e-04
()
(©)

g1 = 0.6 L2

-norm | 9.16e+01 | 4.41e+01 | 4.99¢-02

1 =0.99 | L2(Q)-norm | 8.97e+00 | 2.54e+00 | 3.29¢-04
HY(Q)-norm | 9.16e+01 | 4.41e+01 | 4.99e-02

5.52e-01 and 7.25e-01 with respect to the L?(Q)- and the H'(£2)-norm, respectively, even
when resorting to all the available POD modes.

5. Conclusions and developments. The numerical assessment in Sections 3.1.1 and
3.2.1 corroborates the reliability of the HiIPOD reduction procedures. We have carried out a
more extensive investigation for the directional approach since it represents the main novelty
of the paper. In particular, we have analyzed the performances of the directional HIPOD
procedure in terms of convergence, the selection of the tolerances driving the truncation
of the POD bases, the choice of the interpolant operator, and the robustness with respect
to extrapolation. Additionally, the numerical test carried out in the last section seems to
suggest that the directional approach outperforms the basic one when dealing with phenomena
characterized by a significant horizontal dynamics (i.e., in the considered test cases by an
advection field that dominates the diffusivity process).

Despite both the HiIPOD procedures deserve a more thorough investigation in 3D and
on more generic geometries, we believe that HIPOD model reduction represents a promising
tool to effectively manage, for instance, multi-query contexts such as inverse problems,
optimization strategies, data assimilation techniques, and parameter estimation algorithms.
This makes HiPOD a potential competitor against well-established techniques such as the
reduced basis method and the Proper Generalized Decomposition (PGD) (we refer to [27],
where a first attempt of a comparison between HiMod/HiPOD reduction and PGD is carried
out).

Additionally, we highlight that the techniques here proposed are data-driven approaches
so that they do not depend on the specific problem at hand. This could be of great usefulness
in view of complex applications. Moreover, HiPOD reduction procedures can be easily
generalized by employing any reliable reduced model as the “truth” or by adopting methods
other than POD to generate the reduced basis. In such a direction in [39], the authors apply a
reduced basis approach to collect the high-fidelity information and use a greedy algorithm to
extract the essential information.

As for the possible future research topics, we mention the proposal of rigorous estimators
to drive the POD selection ([18, 35]), the generalization of the HiPOD procedures to a nonlinear
framework ([5, 17, 33]), the application of such techniques to concrete contexts such as in
hemodynamic modeling to help clinicians in taking operative decisions [8, 23].
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