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GRAPH LAPLACIAN FOR IMAGE DEBLURRING∗

DAVIDE BIANCHI†, ALESSANDRO BUCCINI‡, MARCO DONATELLI§, AND EMMA RANDAZZO§

Abstract. Image deblurring is a relevant problem in many fields of science and engineering. To solve this
problem, many different approaches have been proposed, and, among the various methods, variational ones are
extremely popular. These approaches substitute the original problem with a minimization problem where the functional
is composed of two terms, a data fidelity term and a regularization term. In this paper we propose, in the classical
non-negative constrained `2-`1 minimization framework, the use of the graph Laplacian as regularization operator.
Firstly, we describe how to construct the graph Laplacian from the observed noisy and blurred image. Once the
graph Laplacian has been built, we efficiently solve the proposed minimization problem by splitting the convolution
operator and the graph Laplacian by the Alternating Direction Multiplier Method (ADMM). Some selected numerical
examples show the good performances of the proposed algorithm.

Key words. image deblurring, graph Laplacian, `2-`1 regularization

AMS subject classifications. 65R32, 65K10, 65F22

1. Introduction. We are concerned with the problem of space-invariant image deblurring,
which can be modeled as a linear system of equations

Ax = b,

where x ∈ RN and b ∈ RM are samplings of the unknown image that we wish to recover
and of the blurred image, respectively. The matrix A ∈ RM×N is structured (see below) and
severely ill-conditioned, i.e., its singular values decay rapidly to 0 with no significant gap;
see, e.g., [33] for more details. The discretization process, along with measurement errors,
introduces some perturbations in the data, namely η ∈ RM , often referred to as noise, leading
to the system

Ax = b + η = bδ.

Since, in general, η /∈ R(A), we reformulate the system above as a least-squares problem

(1.1) arg min
x

∥∥Ax− bδ
∥∥ ,

where ‖·‖ denotes the Euclidean norm. Let A† denote the Moore-Penrose pseudo-inverse of
A. The naive solution of (1.1), A†bδ , is usually a poor approximation of the desired solution
x† = A†b; see, e.g., [24, 32]. Since A is severely ill-conditioned, the solution of (1.1) is
extremely sensitive to the presence of noise in the data. To compute an accurate approximation
of x† we resort to regularization methods. These methods aim at reducing the sensitivity of
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the problem with respect to the presence of noise. Probably the most popular regularization
method is Tikhonov regularization, where the original minimization problem is substituted by

(1.2) arg min
x

∥∥Ax− bδ
∥∥2 + µ ‖Lx‖2 ,

where L ∈ Rp×n is chosen so that N (A) ∩ N (L) = {0}. The matrix L is the so-called
regularization operator and its role is to enforce some a-priori knowledge on the reconstruction.
If A is the discretization of an integral operator, then L is usually chosen to be a discretization
of either the first or the second derivative; see, e.g., [23].

The formulation (1.2) can be extended to a general `p-norm by considering

(1.3) arg min
x

∥∥Ax− bδ
∥∥2 + µ ‖Lx‖pp ,

where ‖x‖pp =
∑n
i=1 |xi|p for p > 0; see, e.g., [14, 21, 25, 34, 38]. Note that for p < 1 the

function x 7→ ‖x‖p is not a norm.
In this paper, we propose to use an appropriately constructed graph Laplacian for L

in (1.3) with p = 1. Therefore, our minimization problem is of the form

(1.4) arg min
x≥0

∥∥Ax− bδ
∥∥2 + µ ‖Lx‖1 .

Since we are considering imaging problems, we know that the solution cannot have negative
entries; therefore we have introduced non-negativity constraints; see, e.g., [2, 22, 42].

Recently, the graph Laplacian of a network, built from an approximation of x†, has been
proposed as regularization operator for image denoising, i.e., for problems of the form (1.1)
with A = I , where I denotes the identity matrix; see. e.g., [36, 37, 39, 41, 43, 46, 50]. For
the case of image denoising, the approximation of x† used for the construction of the graph is
usually given by the noisy data bδ .

In this paper, we consider the more general case of image deblurring. In such a case, bδ is
no longer a good approximation of x†, thus we propose a two-step procedure to first compute
an appropriate graph Laplacian and then solve (1.4). The construction of the graph Laplacian
that we propose is completely automatic and does not need any intervention from the user. The
image used to construct the graph Laplacian is cheaply computed by Tikhonov regularization
with an automatic estimation of the parameter µ. Note that the proposed regularization
operator could be considered for other regularization methods as well, for instance, for solving
equation (1.3) with p 6= 1.

A second contribution of this paper is the efficient solution of the minimization prob-
lem (1.4). From a computational point of view, the convolution operator A cannot be easily
combined with the graph Laplacian L because the matrix A can be diagonalized by a Fast
Fourier transform (fft), while this is not the case for L, which, however, is sparse. Therefore,
we solve (1.4) by the Alternating Direction Multiplier Method (ADMM) [7] such that the
inner steps can be computed by fft and Krylov methods. Finally, in some selected numerical
examples we compare the reconstructed images obtained by our problem (1.4) with the graph
Laplacian and some recently proposed methods including the standard Total Variation (TV);
see [45]. The result is that our proposal can lead to substantial improvements in the quality of
the reconstructed images.

This paper is structured as follows: in Section 2 we recall the definition of the Laplacian
of a given graph, and we construct the one that we use in the following. Section 3 presents our
algorithmic proposal for the solution of (1.4) and Section 4 contains some selected numerical
experiments. Finally, we draw some conclusions in Section 5.
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Notation. Discretized images consist of the union of several pixels in the plane and there-
fore are well represented by nonnegative two-dimensional discrete functions, i.e.,
x : Rn1×n2 → [0,+∞), x(i1, i2) = xi1,i2 ∈ R+, for i1 = 1, . . . , n1, i2 = 1, . . . , n2.
For our purposes we reorder the pixels so that the image is represented by a one-dimensional
discrete function. For the sake of notational simplicity, we fix n1 = n2 = n =

√
N and

consider the lexicographic one-dimensional ordering, that is, (i1, i2) =: i < j := (j1, j2) if
i1 < j1 or i1 = j1 and i2 < j2. With this choice, an image reads as x : RN → [0,+∞),
x(i) = xi ∈ R+, for i = 1, . . . , N , and we say that x is the vectorization of a square image.

2. Construction of the graph Laplacian. In this section, we first describe how to con-
struct the Laplacian of a given weighted graph. Then we show how to build an appropriate
graph, i.e., a graph whose Laplacian is a “good” regularization operator given a good approxi-
mation of the exact image x†. Finally, we provide an algorithm for constructing our matrix L
for the problem (1.4).

Given a countable measure space (V, ν), where ν is a positive measure. A symmetric
non-negative function ω : V × V → [0,+∞) with zero diagonal is called an undirected graph
on V . The elements i, j of the set V are called vertices, and two vertices are connected if
ω(i, j) > 0. The positive value w(i, j) is called weight associated to the edge {i, j}; for an
introduction to graph theory we refer to [35]. If V is a finite set of N elements, then the graph
ω can be uniquely represented, up to permutations, by the adjacency matrix Ω ∈ RN×N ,

Ωi,j := ω(i, j).

The linear operator Lω : C(V) → C(V) acting on the space C(V) := {x : V → R} ' RN
via

Lωx(i) :=
1

ν(i)

∑
j

ω(i, j) (x(i)− x(j))

is the graph Laplacian on C(V) associated to the graph ω. It is a symmetric operator with
respect to the inner product

〈x,y〉 :=
∑
i

x(i)y(i)ν(i).

In many applications, a quite standard choice for the measure ν is the degree function ν = deg
defined by

deg(i) :=
∑
j

ω(i, j)

since it measures the whole intensity of the weights associated to the vertex i. Clearly, this
choice makes Lω non-symmetric with respect to the standard Euclidean inner product. A
good compromise is to choose the homogeneous measure associated to the Frobenius norm
of Ω, i.e., ν(i) ≡ ‖Ω‖F . Let us observe that, writing D as the diagonal matrix such that
(D)i,i = deg(i), then it is easy to verify that

1

N
‖D‖1 ≤ ‖Ω‖F ≤ ‖D‖1,

where we denote by ‖D‖1 the 1-norm of the vector obtained by extracting the diagonal of D.
Henceforth, we will assume ν = ‖Ω‖F . In matrix form, the graph Laplacian reads

Lω =
D − Ω

‖Ω‖F
.
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We wish to construct a graph ω so that Lω can be used in (1.4). In principle, we would like to
construct ω such that ∥∥Lωx†∥∥ ≈ 0.

To this aim, let x∗ be a good approximation of x†. Intuitively, the graph is constructed as
follows: the nodes are the pixels of x∗ and we connect two pixels if they are “spatially” close
enough. The weight of their connection depends on how similar their values are. In particular,
we give a strong connection to pixels that have similar values. We introduce a parameter R
that determines how large the neighborhood is that we consider for each pixel and a parameter
σ that determines how strong the connection between two close pixels should be.

Define ω as the weighted and undirected graph on V whose nodes are the pixels of x∗

and where the weights are defined by

ω(i, j) =

{
e−(x

∗(i)−x∗(j))2/σ if i 6= j and ‖r(i)− r(j)‖∞ ≤ R,
0 otherwise.

Here r(i) = (i1, i2) is the two-dimensional index of the pixel x∗(i), and σ > 0 and R ∈ N
are user-defined parameters. The choice of the Gaussian function that appears in the definition
of ω is motivated by its relation to the heat-kernel. For the motivation behind this common
choice (see, e.g., [20, 44] and the references therein), we refer to [47, Section 3.1.2]. We recall
that if r(i) = (i1, i2), r(j) = (j1, j2), then ‖r(i)− r(j)‖∞ = max {|i1 − j1|, |i2 − j2|}.

The construction of this graph and consequently of the graph Laplacian, in turn, depends
on the construction of an appropriate approximate solution x∗. As we show in Section 4, if
we could choose x∗ = x†, we would obtain an almost optimal result. However, this is not
possible in realistic scenarios. Therefore, we wish to provide a practical way to determine a
good enough x∗ in a totally automatic way.

To compute x∗ we propose to solve (1.2) with a regularization operator defined as follows.
Let L1 ∈ Rn×n be

L1 =


−1 1

−1 1
. . . . . .

−1 1
1 −1

 ,

i.e., L1 is a discretization of the first derivative with periodic boundary conditions (BCs), and
let In be the identity matrix of order n. Then we define LTV by

(2.1) LTV =

[
L1 ⊗ In
In ⊗ L1

]
∈ R2N×N .

This choice is inspired by the well-known Total Variation approach described, e.g., in [45].
Intuitively, we are looking for a solution whose gradient has small norm, i.e., one that is regular
enough; see, e.g., [23] for more details.

Note thatLTV is an extremely sparse matrix formed by two Block Circulant with Circulant
Blocks (BCCB) matrices stacked one above the other. Therefore, matrix-vector products
involving LTV can be performed extremely cheaply (in particular, the flop count is O(N)) and
LTTVLTV is a BCCB matrix. We exploit the latter property below. We recall that a circulant
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matrix is a matrix of the form

C =


c1 c2 c3 . . . cn
cn c1 c2 . . . cn−1
cn−1 cn c1 . . . cn−2

...
...

...
...

...
c2 c3 c4 . . . c1

 ,

i.e., a matrix such that the ith row is obtained by shifting the (i− 1)st entry, imposing periodic
boundary conditions.

To simplify the computations we impose periodic BCs for the matrix A. Thanks to this
choice, A is a BCCB matrix; see [33] for more details. We recall that BCCB matrices are
diagonalized by the two-dimensional Fourier matrix. Let F1 ∈ Rn×n be the Fourier matrix,
i.e., (F1)j,k = e2πι(j−1)(k−1)/n with ι2 = −1. Then the two-dimensional Fourier matrix is
defined by F = F1 ⊗ F1. Note that matrix-vector products with F and its inverse F ∗ can be
performed in O(N logN) flops with the aid of the fft and ifft algorithms; see, e.g., [33].

As discussed above, we wish to solve (1.2) with L = LTV, i.e., we wish to solve a
problem of the form

xµ = arg min
x

∥∥Ax− bδ
∥∥2 + µ ‖LTVx‖2

for a certain µ > 0. Thanks to the structure of A and LTV this can be solved cheaply for any
µ. We can write

(2.2) A = F ∗ΣF and LTV =

[
F ∗ΛxF
F ∗ΛyF

]
,

where Σ, Λx, and Λy are diagonal matrices whose diagonal entries are the eigenvalues of A,
L1⊗ In, and In⊗L1, respectively. We recall that the eigenvalues of a BCCB matrix C can be
computed by Fc1, where c1 is the first column of C. Assuming thatN (A)∩N (LTV) = {0},
we have that

xµ = (ATA+ µLTTVLTV)−1ATbδ

=

(
F ∗Σ∗FF ∗ΣF + µ

[
F ∗Λ∗xF F ∗Λ∗yF

] [F ∗ΛxF
F ∗ΛyF

])−1
F ∗Σ∗Fbδ

=
(
F ∗Σ∗ΣF + µF ∗(Λ∗xΛx + Λ∗yΛy)F

)−1
F ∗Σ∗Fbδ

= F ∗
(
Σ∗Σ + µ(Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗Fbδ,

(2.3)

where the matrix to be inverted is a diagonal matrix. Therefore, xµ can be computed with
small effort for any µ.

We now wish to determine the parameter µ in an automatic way. We employ the General-
ized Cross Validation (GCV); see, e.g., [31]. The GCV parameter µGCV is the minimizer of
the function

G(µ) =

∥∥Axµ − bδ
∥∥2

trace(I −A(ATA+ µLTTVLTV)−1AT )2
,

i.e., µGCV = arg minµG(µ). Intuitively, the GCV parameter is chosen starting from the idea
that if a data point is omitted in bδ, then a good reconstruction should be able to predict the
missing pixel.
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Given the decomposition (2.2), the value of G(µ) can be computed in a straightforward
way. Introduce the following notation

rµ =
∥∥Axµ − bδ

∥∥ and tµ = trace(I −A(ATA+ µLTTVLTV)−1AT ),

thus, G(µ) = r2µ/t
2
µ. Using the spectral decomposition of A we have

rµ =
∥∥Axµ − bδ

∥∥ =
∥∥∥F ∗ΣFF ∗ (Σ∗Σ + µ(Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗Fbδ − bδ

∥∥∥
=
∥∥∥Σ
(
Σ∗Σ + µ(Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗Fbδ − Fbδ

∥∥∥
=
∥∥∥(ΣΣ∗

(
Σ∗Σ + µ(Λ∗xΛx + Λ∗yΛy)

)−1 − I)b̂δ
∥∥∥ ,

where b̂δ = Fbδ . We now move to the computation of tµ

tµ = trace(I −A(ATA+ µLTTVLTV)−1AT )

= trace(I − F ∗Σ(Σ∗Σ + µ
(
Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗F )

= trace(I − ΣΣ∗(Σ∗Σ + µ
(
Λ∗xΛx + Λ∗yΛy)

)−1
).

We observe that once the decompositions (2.2) and b̂δ have been computed, the evaluation of
G(µ) can be done in O(N) flops. This allows for an extremely fast determination of µGCV by
a standard minimization algorithm. Finally, we select as x∗ the solution of the minimization
problem

x∗ = arg min
x

∥∥Ax− bδ
∥∥2 + µGCV ‖LTVx‖2

computed by

x∗ = F ∗
(
Σ∗Σ + µGCV(Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗b̂δ

thanks to equation (2.3).
We summarize the procedure to construct Lω in Algorithm 1.
REMARK 2.1. If A is constructed with BCs different from the periodic ones, then it is still

possible to compute a fairly accurate approximation of G(µ) using Krylov subspace methods;
see [16, 26, 27].

3. Graph Laplacian deblurring. We now describe the nonlinear model that we employ
to compute an approximate solution of (1.1). We consider the graph Laplacian Lω constructed
by Algorithm 1, and we use it in (1.4). Therefore, we wish to solve the following minimization
problem:

(3.1) arg min
x≥0

1

2

∥∥Ax− bδ
∥∥2 + µ ‖Lωx‖1 .

To solve this problem we use ADMM; see, e.g., [7] for a recent review. We use this method
since it allows us to decouple the `2- and `1-norms as well as the matrices A and Lω. The
latter point is extremely relevant since, as we discuss below, both matrices have exploitable
structures, but they are quite different, and, if coupled, this can be difficult to exploit.

We first reformulate (3.1) into an equivalent form

(3.2) arg min
x,y,w,z

{
1

2

∥∥Ax− bδ
∥∥2 + µ ‖z‖1 + ι0(w), s.t. x = y,x = w, z = Lωy,

}
,
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Algorithm 1 Construction of Lω for image deblurring.

1: Input: A ∈ RN×N , bδ ∈ RN , R > 0, σ > 0

2: Output: Lω ∈ Rn×n

3: Construct LTV as defined in (2.1)
4: Σ = diag

(
F (A(:,1))

)
5: Λx = diag

(
F ((LTV)(:,1:N))

)
6: Λy = diag

(
F ((LTV)(:,N+1:2N))

)
7: b̂δ = Fbδ

8: µGCV = arg minµ
r2µ
t2µ

, where

{
rµ =

∥∥∥(ΣΣ∗
(
Σ∗Σ + µ(Λ∗xΛx + Λ∗yΛy)

)−1 − I)b̂δ
∥∥∥

tµ = trace(I − ΣΣ∗(Σ∗Σ + µ
(
Λ∗xΛx + Λ∗yΛy)

)−1
)

9: x∗ = F ∗
(
Σ∗Σ + µGCV(Λ∗xΛx + Λ∗yΛy)

)−1
Σ∗b̂δ

10: Construct Ω ∈ Rn×n as

ω(i, j) =

{
e−(x∗(i)−x∗(j))2/σ if i 6= j and ‖r(i)− r(j)‖∞ ≤ R,
0 else,

where r(i) = (i1, i2) is the two-dimensional index of the pixel x∗(i)
11: D = diag{

∑n
j=1(Ω)(i,j)}

12: Lω = D−Ω
‖Ω‖F

or equivalently,

arg min
x,y,w,z

1

2

∥∥Ax− bδ
∥∥2 + µ ‖z‖1 + ι0(w)

s.t.

 I O
O I
I O

[x
z

]
−

 I O
Lω O
O I

[y
w

]
= 0,

(3.3)

where O and 0 denote the zero matrix and the zero vector, respectively, and ι0 is the indicator
function of the nonnegative cone, i.e.,

ι0(x) =

{
0 if x ≥ 0,
+∞ otherwise.

We can construct the augmented Lagrangian of (3.3) by

Lρ(x,y,w, z;λ) =
1

2

∥∥Ax− bδ
∥∥2 + µ ‖z‖1 + ι0(w)

+

〈
λ,

 I O
O I
I O

[x
z

]
−

 I O
Lω O
O I

[y
w

]〉

+
ρ

2

∥∥∥∥∥∥
 I O
O I
I O

[x
z

]
−

 I O
Lω O
O I

[y
w

]∥∥∥∥∥∥
2

,
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where ρ > 0 is a fixed parameter and λ ∈ R3N is the Lagrangian multiplier. Applying ADMM
we get the iterations

[
x(k+1)

z(k+1)

]
= arg minx,z Lρ(x,y(k),w(k), z;λ(k)),[

y(k+1)

w(k+1)

]
= arg miny,w Lρ(x(k+1),y,w, z(k+1);λ(k)),

λ(k+1) = λ(k) + ρ

 I O
O I
I O

[x(k+1)

z(k+1)

]
−

 I O
Lω O
O I

[y(k+1)

w(k+1)

] .

We can write λ =

λ1

λ2

λ3

with λj ∈ RN , for j = 1, 2, 3. Therefore, the minimization problems

above decouples, and we obtain

x(k+1) = arg minx
1
2

∥∥Ax− bδ
∥∥2 +

〈[
λ
(k)
1

λ
(k)
3

]
,

[
x− y(k)

x−w(k)

]〉
+ ρ

2

∥∥∥∥[x− y(k)

x−w(k)

]∥∥∥∥2 ,
z(k+1) = arg minz µ ‖z‖1 +

〈
λ
(k)
2 , z− Lωy(k)

〉
+ ρ

2

∥∥z− Lωy(k)
∥∥2 ,

y(k+1) = arg miny

〈[
λ
(k)
1

λ
(k)
2

]
,

[
x(k+1) − y

z(k+1) − Lωy

]〉
+ ρ

2

∥∥∥∥[ x(k+1) − y
z(k+1) − Lωy

]∥∥∥∥2 ,
w(k+1) = arg minw ι0(w) +

〈
λ
(k)
3 ,x(k+1) −w

〉
+ ρ

2

∥∥x(k+1) −w
∥∥2 .

All the solutions of these minimization problems have closed forms, namely

x(k+1) = (ATA+ 2ρI)−1(ATbδ + ρy(k) − λ
(k)
1 + ρw(k) − λ

(k)
3 ),

z(k+1) = Sµ/ρ

(
Lωy

(k) − λ
(k)
2 /ρ

)
,

y(k+1) = (LTωLω + I)−1(LTω (z(k+1) + λ
(k)
2 /ρ) + x(k+1) + λ

(k)
1 /ρ),

w(k+1) =
(
x(k+1) + λ3/ρ

)
+
,

λ
(k+1)
1 = λ

(k)
1 + ρ(x(k+1) − y(k+1)),

λ
(k+1)
2 = λ

(k)
2 + ρ(z(k+1) − Lωy(k+1)),

λ
(k+1)
3 = λ

(k)
3 + ρ(x(k+1) −w(k+1)),

where Sµ denotes the soft-thresholding operator with parameter µ, defined by

Sµ(x) = sign(x)(|x| − µ)+,

and where the operations are meant element-wise and (x)+ = max{x, 0} is the metric
projection into the nonnegative cone. Note that each iteration requires the solution of two
linear systems. The linear system involving A can be easily solved using the fft algorithm if
periodic BCs are employed; see above. If other BCs are employed, then the structure of the
matrix, in general, does not allow us to use fast transforms for the solution of the linear system.
Nevertheless, this system can be solved by an iterative method using a circulant preconditioner.
On the other hand, the solution of the linear system with the Lω-matrix can be easily computed
using the lsqr algorithm applied to the equivalent least-squares problem since the matrix Lω
is extremely sparse; see below and, e.g., [6] for a discussion.

We would like to briefly discuss the use of the lsqr method for the solution of the system

(3.4) (LTωLω + I)y(k+1) = LTω (z(k+1) + λ
(k)
2 /ρ) + x(k+1) + λ

(k)
1 /ρ.
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The linear system of equations (3.4) is equivalent to the least-squares problem

y(k+1) = arg min
y

∥∥∥∥∥
[
Lω
I

]
y −

[
z(k+1) + λ

(k)
2 /ρ

x(k+1) + λ
(k)
1 /ρ

]∥∥∥∥∥
2

= arg min
y

∥∥∥L̂y − v̂(k)
∥∥∥2 .(3.5)

The lsqr algorithm is an iterative method that determines an approximate solution of (3.5) in
a Krylov subspace. In particular, at its jth iteration, the lsqr algorithm determines a solution
of (3.5) in the Krylov subspace Kj(L̂T L̂, L̂T v̂(k)), where

Kj(L̂T L̂, L̂T v̂(k)) = span
{
L̂T v̂(k), (L̂T L̂)L̂T v̂(k), . . . , (L̂T L̂)j−1L̂T v̂(k)

}
.

The lsqrmethod requires one matrix-vector product with L̂ and one with L̂T at each iteration.
Therefore, since L̂ is extremely sparse, the flop count per iteration is O(N). Moreover, lsqr
is mathematically equivalent to the cg method applied to (3.4). However, its implementation
is more stable. Nevertheless, the number of iterations required to converge is proportional to
κ(L̂) which is small since, for N large enough, the spectrum of L̂ is included in the interval
[1, 5]; see, e.g., [6] for a discussion on lsqr and cg.

We briefly discuss the bound for the spectrum of L̂ = I + LTωLω . Since the entries of Ω

are positive, we have αi :=
∑N
j=1 Ωi,j =

∑N
j=1 |Ωi,j |. The ith Geršgorin disk of Lω is the

interval

[
−2

αi
‖Ω‖F

, 0

]
⊆
[
−2
‖Ω‖∞
‖Ω‖F

, 0

]
;

see, e.g., [48] for a discussion on Geršgorin disks. Hence, the spectrum of I + LTωLω is
contained in

[
1, 1 + 4‖Ω‖2∞/‖Ω‖2F

]
. Each entry in each row of Ω is smaller or equal to 1,

and there are at most K non-vanishing entries per row, where K is a constant that depends
exclusively on R and does not depend on N . Therefore, we have ‖Ω‖∞ ≤ K. On the other
hand, assuming that the image is rescaled so that its maximum value is 1, we have that each
nonzero entry of Ω is larger than e−1/σ . Observe that there are least k nonzero entries per row;
therefore, we have ‖Ω‖2F ≥ kNe−2/σ . Similarly as above, the value of k depends only on R.
Combining all the estimates above we obtain that

‖Ω‖2∞
‖Ω‖2F

≤ K2

kNe−2/σ
= O

(
1

N

)
.

In particular, if N is large enough, then we have that ‖Ω‖2∞/‖Ω‖2F < 1. Therefore, the
spectrum of I + LTωLω is contained in [1, 5]. Note that this estimate is very rough, and in all
the computed examples we have observed that the spectrum of L̂ is contained in the interval
[1, 5] for small values of N . We summarize our approach in Algorithm 2.
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Algorithm 2 Graph Laplacian image deblurring.

1: Input: A ∈ RN×N , bδ ∈ RN , R > 0, σ > 0, ρ > 0, τ > 0, K > 0, µ > 0

2: Output: x ∈ Rn×n

3: Run Algorithm 1 to compute Lω
4: y(0) = w(0) = λ

(0)
1 = λ

(0)
2 = λ

(0)
3 = 0

5: for k = 0, . . . ,K

6: x(k+1) = (ATA+ 2ρI)−1(ATbδ + ρy(k) − λ
(k)
1 + ρw(k) − λ

(k)
3 )

7: z(k+1) = Sµ/ρ

(
Lωy

(k) − λ
(k)
2 /ρ

)
8: y(k+1) = (LTωLω + I)−1(LTω (z(k+1) + λ

(k)
2 /ρ) + x(k+1) + λ

(k)
1 /ρ)

9: w(k+1) =
(
x(k+1) + λ3/ρ

)
+

10: λ
(k+1)
1 = λ

(k)
1 + ρ(x(k+1) − y(k+1))

11: λ
(k+1)
2 = λ

(k)
2 + ρ(z(k+1) − Lωy(k+1))

12: λ
(k+1)
3 = λ

(k)
3 + ρ(x(k+1) −w(k+1))

13: if k > 1 &
∥∥xk+1 − xk

∥∥ ≤ τ ∥∥xk∥∥
14: Exit
15: end if
16: end for
17: x = x(k+1)

Note that, since the functional minimized in (1.4) is convex, we can apply the following
classical result for ADMM:

THEOREM 3.1 (see, e.g., Section 3.2 of Boyd et al. [7]). With the notation of Algorithm 2,
it holds that

(i) limk→∞

∥∥∥∥∥∥
 I O
O I
I O

[x(k)

z(k)

]
−

 I O
Lω O
O I

[y(k)

w(k)

]∥∥∥∥∥∥ = 0, i.e., the iterates approach fea-

sibility as k →∞;
(ii) limk→∞

1
2

∥∥Ax(k) − bδ
∥∥2 + µ

∥∥z(k)∥∥
1

+ ι0(w(k)) = p∗, where p∗ is the solution of
the minimization problem (3.1);

(iii) limk→∞ λk = λ∗, where λ∗ is a dual optimal point, i.e., a saddle point of L0.
We now briefly comment on this result. Point (i) shows that in the limit, the constraints

on the variables in (3.2) are satisfied. Points (ii) and (iii) imply that the iterates converge to a
solution of the problem. In particular,

∥∥Ax(k) − bδ
∥∥2 + µ

∥∥z(k)∥∥
1

+ ι0(w(k)) converges to
its minimum value as k →∞.

REMARK 3.2. ADMM can be slow to converge in certain scenarios. It is outside the
scope of this paper to propose a fast algorithm for the solution of (3.1). Rather we wish to
show the potential of Lω as a regularization operator. Nevertheless, it is possible to accelerate
the convergence of ADMM by extrapolation methods to improve the convergence rate of
ADMM; see, e.g., [9, 30]. We would like to stress that, in our experiments, the proposed
algorithm converges in a reasonable number of iterations, and, while it could benefit from an
acceleration, accelerating it is not essential for our purposes.

4. Numerical examples. We now report some selected numerical examples to show the
performances of the proposed method. We are particularly interested in illustrating that the
graph Laplacian constructed in Algorithm 2 provides better reconstructions than the classical
TV approach.
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TABLE 4.1
Setting of the parameters in Algorithm 2.

Paramter Value Description
R 10 Support of the weight function in the Graph
σ 10−2 Variance of the weight function in the Graph
ρ 10−1 Augmentation parameter in ADMM
τ 10−4 Stopping criterion for ADMM
K 3000 Maximum number of iterations
µ Hand-tuned Regularization parameter in (1.4)

We compare the results obtained using L = LTV and L = Lω in (1.4) with the solution
x∗ computed in line 9 of Algorithm 1. To compute the solution of (1.4) with L = LTV, we use
the algorithm described in [22]. Moreover, we want to show the full potential of the proposed
approach. To this aim, we construct the operator Lω using the exact image xtrue, and we
denote it by L̃ω . Obviously, this approach is not feasible in realistic scenarios, nevertheless, it
allows us to exhibit the capabilities of the proposed method. In all our experiments we set the
parameters as specified in Table 4.1.

Moreover, we wish to compare the proposed approach with other methods from the
literature. We consider the following methods:

• Approximated Iterated Tikhonov with General Penalty term (APIT-GP) [8];
• CGLS, stopped with the discrepancy principle, from the IRtools toolbox [28];
• Constrained Projected Linearized Bregman [13].

The first two methods do not require an estimate of any parameter, while the last one requires
the user to set the value of a regularization parameter. For the third method, we select the one
that minimizes the RRE defined below.

We compare the considered methods in terms of accuracy using the Relative Restoration
Error (RRE) computed as

RRE(x) =
‖x− xtrue‖2
‖xtrue‖2

and the Peak Signal to Noise Ration (PSNR) defined by

PSNR(x) = 20 log10

(
Nm

‖x− xtrue‖2

)
,

wherem denotes the maximum value achievable by xtrue. Moreover, we consider the Structure
SIMilarity index (SSIM) constructed in [49]. The definition of the SSIM is extremely involved;
here we simply recall that this statistical index measures how structurally similar two images
are, in particular, the higher the SSIM the more similar the images are, and its highest
achievable value is 1.

REMARK 4.1. A possible approach to further improve the quality of the computed
restoration is to use the output of Algorithm 2 to construct a new graph Laplacian and
run Algorithm 2 again with the “improved” regularization operator. In our experience, this,
however, does not substantially improve the quality of the computed solution, and the additional
computational cost is not justifiable. Moreover, this approach would require the estimate of the
value of the regularization parameter µ twice (once per each run of Algorithm 2). Therefore,
we do not present this algorithm here.

Example 1. Our first example is the atmosphericBlur50 test case of the Restore-
Tools toolbox [3]. We report the exact image, the PSF, and the blurred and noisy image in
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(a) (b) (c)

FIG. 4.1. Example 1: (a) True image (256× 256 pixels). (b) PSF (256× 256 pixels). (c) Blurred and noisy
image (256× 256 pixels with δ ≈ 0.01 ‖b‖2).

FIG. 4.2. Example 1: Visualization of
∣∣∣L̃ωx†∣∣∣ in the jet colormap. The color blue represents the 0s in the image.

(a) (b) (c)

FIG. 4.3. Example 1: Reconstructions: (a) `2-`1 with L = LTV. (b) `2-`1 with L = Lω . (c) `2-`1 with L = L̃ω .

Figure 4.1. The norm of the noise, denoted by δ, that corrupts the data is approximately 1% of
the norm of the exact right-hand side bδ .

To validate our model we display in Figure 4.2 a visualization of
∣∣∣L̃ωx†∣∣∣. We can observe

that it is extremely sparse, and only a few entries have a large modulus. Therefore, we expect
our model to provide accurate reconstructions.

We report the obtained results with the considered methods in Table 4.2. We can observe
that `2-`1 methods provide much more accurate results than the classical Tikhonov method,
especially in terms of SSIM. The reconstruction obtained with L = L̃ω, i.e., using the graph
related to the exact image, is extremely accurate. However, this approach is not feasible in real

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

GRAPH LAPLACIAN FOR IMAGE DEBLURRING 181

TABLE 4.2
Comparison of the RRE, PSNR, and SSIM.

Example Method RRE PSNR SSIM

Example 1

Tikhonov 0.22299 26.663 0.55512
`2-`1 with L = LTV 0.19152 27.984 0.92623
`2-`1 with L = Lω 0.17763 28.638 0.93971

`2-`1 with L = L̃ω 0.083333 35.212 0.98129
APIT-GP 0.23292 26.284 0.89742
CGLS 0.29454 24.246 0.38733
Constrained Bregman 0.31758 23.591 0.85887

Example 2

Tikhonov 0.17352 25.735 0.55241
`2-`1 with L = LTV 0.15492 26.720 0.80458
`2-`1 with L = Lω 0.14968 27.019 0.81256

`2-`1 with L = L̃ω 0.10096 30.439 0.89943
APIT-GP 0.18024 25.405 0.75959
CGLS 0.18487 25.185 0.50769
Constrained Bregman 0.17074 25.875 0.77753

Example 3

Tikhonov 0.080283 33.715 0.72254
`2-`1 with L = LTV 0.068917 35.041 0.94873
`2-`1 with L = Lω 0.060094 36.231 0.94809

`2-`1 with L = L̃ω 0.040382 39.684 0.96489
APIT-GP 0.069238 35.001 0.96062
CGLS 0.094625 32.288 0.73798
Constrained Bregman 0.079316 33.821 0.94204

Example 4

Tikhonov 0.16236 27.160 0.73224
`2-`1 with L = LTV 0.15299 27.686 0.86899
`2-`1 with L = Lω 0.14716 28.024 0.85765

`2-`1 with L = L̃ω 0.085936 32.695 0.93887
APIT-GP 0.41090 19.104 0.62979
CGLS 0.18810 25.891 0.72145
Constrained Bregman 0.17140 26.700 0.81379

scenarios. Nevertheless, we can also observe that using L = Lω improves the quality of the
restoration with respect to the classic TV. This is confirmed by the visual inspection of the
reconstructions in Figure 4.3. Comparing the reconstructions obtained by the `2-`1 methods,
we can observe that the choice L = LTV leads to more noisy reconstructions than the ones
obtained with the graph Laplacian. Moreover, we can observe that the `2-`1 methods are able
to outperform all the considered benchmark algorithms both in terms of RRE and SSIM.

Example 2. For our second example, we consider the Hubble image in Figure 4.4(a),
and we blur it with the PSF in Figure 4.4(b). We then add white Gaussian noise such that
δ = 0.1 ‖b‖2 obtaining the blurred and noisy image in Figure 4.4(c).

We compute approximate solutions with the considered algorithms and report the obtained
RRE, PSNR, and SSIM in Table 4.2. We can observe that our proposal provides the best
reconstruction both in terms of RRE (and therefore of PSNR) and SSIM. This is confirmed
by the visual inspection of the reconstructions in Figure 4.5. We would like to stress that,
similarly to the previous example, the unconstrained Tikhonov method computes extremely
noisy reconstructions and that the `2-`1 methods outperform the benchmark algorithms.
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(a) (b) (c)

FIG. 4.4. Example 2: (a) True image (256× 256 pixels). (b) PSF (9× 9 pixels). (c) Blurred and noisy image
(256× 256 pixels with δ = 0.1 ‖b‖2).

(a) (b) (c)

FIG. 4.5. Example 2: Reconstructions: (a) `2-`1 with L = LTV. (b) `2-`1 with L = Lω . (c) `2-`1 with L = L̃ω .

Example 3. For our third example, we consider the Saturn image in Figure 4.6(a). We
blur it with a non-symmetric PSF (see Figure 4.6(b)) and add 5% of white Gaussian noise, i.e.,
δ = 0.05 ‖b‖2 obtaining the image in Figure 4.6(c).

We report in Table 4.2 the obtained results with the considered algorithms. We observe
that our proposal provides a very accurate reconstruction in terms of RRE and PSNR. However,
the SSIM of the computed solution is slightly lower than the one obtained with the standard TV
regularization. In Figure 4.7 we report all the computed solutions. Note that the reconstruction
obtained with the classical TV regularization is affected by a very heavy stair-case effect
that is avoided by our approach. This is evident in Figure 4.8, where we show blow-ups of
the central part of the image of the exact solution and of the reconstructions obtained by TV
regularization and our approach.

In this case we can observe that, similarly as above, the `2-`1 methods provide more
accurate reconstructions than the ones computed by the benchmark methods. However, the
SSIM obtained with APIT-GP is the highest among all tested algorithms. However, the
reconstruction computed by APIT-GP is overly smoothed, and this may not be desirable in
many situations.

Example 4. We consider the exact image in Figure 4.9(a), we blur it with an average
PSF (see Figure 4.9(b)) and add white Gaussian noise so that

∥∥b− bδ
∥∥ = 0.03 ‖b‖ obtaining

Figure 4.9(c).
In Table 4.2 we note that the proposed algorithm with the perfect choice of L̃ω largely

outperforms the other approaches furnishing a very accurate reconstruction of the proposed
image. Moreover, the choice of L = Lω, which we recall does not require any a priori
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(a) (b) (c)

FIG. 4.6. Example 3: (a) True image (256 × 256 pixels). (b) PSF (17 × 17 pixels). (c) Blurred and noisy
image (256× 256 pixels with δ = 0.05 ‖b‖2).

(a) (b) (c)

FIG. 4.7. Example 3: Reconstructions: (a) `2-`1 with L = LTV. (b) `2-`1 with L = Lω . (c) `2-`1 with L = L̃ω .

(a) (b) (c)

FIG. 4.8. Example 3: Blow ups of the exact solution and of two reconstructions in the jet colormap: (a) True
solution. (b) `2-`1 with L = LTV. (c) `2-`1 with L = Lω .

information on the exact solution, is still more accurate than the classical TV. This is confirmed
by the visual inspection of the reconstructions in Figure 4.10.

Finally, we observe that the APIT-GP method fails to provide an accurate reconstruction.
In particular, the method fails to converge, reaching the maximum number of iterations.

5. Conclusions. In this paper we have proposed a new regularization operator for `2-`1

minimization of image deblurring problems. The construction of this operator is automatic
and extremely cheap to perform. We have shown that the proposed method outperforms the
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(a) (b) (c)

FIG. 4.9. Example 4: (a) True image (256 × 256 pixels). (b) PSF (12 × 12 pixels). (c) Blurred and noisy
image (256× 256 pixels with δ = 0.03 ‖b‖2).

(a) (b) (c)

FIG. 4.10. Example 4: Reconstructions: (a) `2-`1 with L = LTV. (b) `2-`1 with L = Lω . (c) `2-`1 with
L = L̃ω .

classical TV approach. Matters of future research include the application of the proposed
method to more general inverse problems as well as the integration of the considered method
with the `p-`q minimization proposed in [12, 15, 34, 38] or with iterative regularization
methods like, e.g., linearized Bregman splitting [11, 13, 17, 18, 19] and iterated Tikhonov
regularization with general penalty terms [4, 5, 8, 10]. Another line of future research is the
construction of more sophisticated graphs ω which can better exploit the structure of the given
image itself. Such constructions may stem from a PDEs approach; see, e.g., [1, 29, 40].

Acknowledgment. The authors would like to thank the anonymous referees whose
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