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ANALYSIS OF PARALLEL SCHWARZ ALGORITHMS FOR TIME-HARMONIC
PROBLEMS USING BLOCK TOEPLITZ MATRICES∗
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Abstract. In this work we study the convergence properties of the one-level parallel Schwarz method with Robin
transmission conditions applied to the one-dimensional and two-dimensional Helmholtz and Maxwell’s equations.
One-level methods are not scalable in general. However, it has recently been proven that when impedance transmission
conditions are used in the case of the algorithm being applied to the equations with absorption, then, under certain
assumptions, scalability can be achieved and no coarse space is required. We show here that this result is also true
for the iterative version of the method at the continuous level for strip-wise decompositions into subdomains that
are typically encountered when solving wave-guide problems. The convergence proof relies on the particular block
Toeplitz structure of the global iteration matrix. Although non-Hermitian, we prove that its limiting spectrum has
a near identical form to that of a Hermitian matrix of the same structure. We illustrate our results with numerical
experiments.
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1. Introduction. Time-harmonic wave propagation problems, such as those arising
in electromagnetic and seismic applications, are notoriously difficult to solve for several
reasons. At the continuous level, the underlying boundary value problems lead to non-self-
adjoint operators (when impedance boundary conditions are used). The discretization of these
operators by a Galerkin method requires an increasing number of discretization points as the
wave number grows in order to avoid the pollution effect, which is a shift in the numerical wave
velocity with respect to the continuous one [1]. This leads to increasingly large linear systems
with non-Hermitian matrices that are difficult to solve by classical iterative methods [20].

In the past two decades, different classes of efficient solvers and preconditioners have been
devised; see the review [23] and the references therein. One important class is based on domain
decomposition methods [15], which are a good compromise between direct and iterative
methods. Some of these domain decomposition methods rely on improving the transmission
conditions, which pass data between subdomains, yielding optimized transmission conditions;
see the seminal work on Helmholtz equations [21] and its extension to Maxwell’s equations [13,
14, 17, 19] as well as to elastic waves [4, 29]. For large-scale problems, in order to achieve
robustness with respect to the number of subdomains (scalability) and the wave number,
two-level domain decomposition solvers have been developed in recent years: they are based
on the idea of using the absorptive counterpart of the equations as a preconditioner, which in
turn is solved by a domain decomposition method. These methods were successfully applied to
Helmholtz and Maxwell’s equations, which arise naturally in different applications [3, 16, 25].

However, an alternative idea emerged in the last few years by observing that, when using
Robin or impedance transmission conditions, under certain assumptions involving the physical
and numerical parameters of the problem (i.e., absorption, size of the subdomains, etc.),
one-level Schwarz algorithms can scale weakly (i.e., have a convergence rate that does not
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deteriorate as the number of subdomains grows) without the addition of a second level [24, 26].
The notion of scalability here applies with respect to a family of problems rather than for a
fixed problem. In essence, weak scalability is achieved such that the convergence rate of the
domain decomposition method does not deteriorate for harder problems in the family when an
appropriate number of subdomains is used. In other words, adding more subdomains allows
us to solve harder problems while achieving the same convergence rate.

Achieving scalability without a coarse space in the case of a decomposition into chains
of subdomains was first observed for problems arising in computational chemistry; see [5].
However, the first true scalability analysis, based on Fourier techniques, was developed in [7]
for a classical parallel Schwarz method on a rectangular chain of fixed-size subdomains, and
this work provides the first concrete construction of the Schwarz iteration operator in Fourier
space. This technique was extended in [6] to other types of one-level methods. Weak scalability
results for the Laplace problem have been proven for more general chain-type geometries
using various techniques, such as the maximum principle in [8] and a fully variational analysis
in [9]. The most recent work on the topic without restrictive assumptions can be found in [10],
where a propagation-tracking analysis based on graph theory and the maximum principle
permitted a scalability analysis for very general decompositions. To our knowledge, there is
no such analysis for Schwarz methods for time-harmonic wave propagation problems, where
previous techniques no longer extend to, as the nature of the underlying equations is very
different.

In our work, we would like to explore this idea of weak scalability at the continuous level
(independent of the discretization) for a strip-wise decomposition into subdomains as it arises
naturally in the solution of wave-guide problems. While in [24, 26] the family of problems is
parameterized by the wave number k and the focus is on k-robustness, here we focus on the
weak scalability aspect for a family consisting of a growing chain of fixed-size subdomains.
Nonetheless, we will see that k-robustness in certain scenarios can easily be derived from our
theory. The main contributions of the paper are the following:

• We provide an analysis of the limiting spectrum as the number of subdomains grows
for a one-level Schwarz method applied to a strip-wise decomposition. While our
analysis is limited to this simple yet realistic configuration (wave propagation in a
rectangular wave-guide with Dirichlet conditions on the top and bottom boundaries
and Robin conditions at its ends), it is valid at the continuous level both for the
one-dimensional and two-dimensional Helmholtz and Maxwell’s equations.

• We build on the formalism of iteration matrices acting on interface data introduced
in [6] (where Schwarz methods using strip-wise decompositions were analyzed for
the Laplace’s equation), but here we are able to characterize the entire spectrum of
these iteration matrices by using their block Toeplitz structure, even if upper bounds
for the iteration matrix norm could have been derived in a similar manner.

• Despite the fact that the block Toeplitz structure is non-Hermitian, and thus results
from the standard literature for Toeplitz matrices do not apply in a straightforward
manner, we prove that the limiting spectrum of the iteration matrices, as their size
grows (corresponding to an increasing number of subdomains), tends to the limit
predicted by the eigenvalues of the symbol of the block Toeplitz matrix, except
perhaps for two additional eigenvalues. This novel approach, utilizing the limiting
spectrum, is quite general and can be applied to other problems as an analysis tool for
domain decomposition methods where such block Toeplitz structure arises naturally.

• We show that the limiting spectrum is descriptive of what is observed in practice
numerically, even for a relatively small number of subdomains.
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• As a corollary to our theory we show that, in certain scenarios and with k-dependent
domain decomposition parameters, the one-level method can be k-robust as the wave
number k increases; in the Maxwell case we believe this to be a novel result.

The structure of the paper is as follows: In Section 2 we present our results on the limiting
spectrum of a non-Hermitian block Toeplitz matrix whose characteristic polynomial verifies a
three-term recurrence. In Sections 3 and 4 we apply these results to the analysis of the iterative
Schwarz algorithm in one-dimensional and two-dimensional cases. We illustrate the theory
with numerical results in Section 5. Finally, Section 6 draws together our conclusions.

The codes used to provide numerical results in this work as well as several Maple
worksheets that confirm some of the more involved calculations required in Sections 3 and 4
are provided at https://github.com/vicdolean/schwarz.

2. A non-Hermitian block Toeplitz structure. Consider a non-Hermitian block Toeplitz
matrix T ∈ C2m×2m of the form

T =


A0 A1

A−1 A0 A1

. . . . . . . . .
A−1 A0 A1

A−1 A0

 ,(2.1a)

where

A0 =

[
0 b
b 0

]
, A1 =

[
a 0
0 0

]
, A−1 =

[
0 0
0 a

]
,(2.1b)

for some non-zero complex coefficients a and b. We will see in the following sections that
such non-Hermitian block Toeplitz structures arise naturally for iterative Schwarz algorithms
applied to wave propagation problems. We are interested in a characterization of the complete
spectrum of the matrix T in (2.1) when its dimension becomes large. This will equate to
the number of subdomains N in the Schwarz method being large. The coefficients a and b
stem from the particular PDE and domain decomposition used; we consider them to be fixed
independent of the dimension of T , and thus N , which corresponds to fixed-size subdomains.

The so-called Szegő formula enables the asymptotic spectrum (i.e., the spectrum as
m → ∞) of a wide class of Hermitian block Toeplitz matrices to be characterized by the
eigenvalues of an associated matrix-valued function called the (block) symbol [34]. For
non-Hermitian matrices, analogous results do not exist in general [34] but do hold when
the union of the essential ranges of the eigenvalues of the block symbol has empty interior
and does not disconnect the complex plane [18]. Unfortunately, T in (2.1) has the symbol
F (z) = A−1z +A0 +A1z

−1, and, for relevant values of a and b, the union of the essential
ranges is a closed curve. Additional characterizations of the asymptotic spectrum of (block)
banded Toeplitz matrices are available [27, 31, 37], but they do not provide explicit formulae
for the eigenvalues, as we shall in Theorem 2.2. Other formulae for the eigenvalues [30]
and the determinant [35] of block tridiagonal Toeplitz matrices are known, however, they are
applicable only when A1 (or A−1) is nonsingular.

We also remark that the matrix T will be an iteration matrix in the Schwarz algorithms that
we consider later. Hence, to prove convergence of these Schwarz methods it would be sufficient
to bound the spectral radius of T , for example, using a matrix norm. It is straightforward to
see that ‖T ‖∞ = |a|+ |b|, and it is also possible to show, using [32, Corollary 3.5], that

‖T ‖2 ≤ max

{√
|a|2 ± 2<(ab) + |b|2

}
.
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However, since a and b are complex, neither norm is straightforwardly bounded above by 1.
Additionally, characterizing the full spectrum provides more information than the spectral
radius alone. Accordingly, in this section we derive the limiting spectrum of T .

In order to establish a result for the spectrum of T , we first show that the characteristic
polynomials of (2.1) for increasing m obey a three-term recurrence relation.

LEMMA 2.1 (Three-term recurrence and generating function). Let pm(z) denote the
characteristic polynomial of the block Toeplitz matrix T ∈ C2m×2m defined in (2.1). Then
pm(z) satisfies the three-term recurrence relation

(2.2) pm(z) +B(z)pm−1(z) +A(z)pm−2(z) = 0 for m ≥ 2,

with A(z) = a2z2 and B(z) = −z2 + b2 − a2, and where p0(z) = 1 and p1(z) = z2 − b2.
Furthermore, this recurrence relation is encoded in the generating function

∞∑
m=0

pm(z)tm =
N(t, z)

D(t, z)
,(2.3)

where

D(t, z) = 1 +B(z)t+A(z)t2,

N(t, z) = p0(z) + (p1(z) +B(z)p0(z))t.

Thus, in our case, D(t, z) = 1− (z2 − b2 + a2)t+ a2z2t2 while N(t, z) = 1− a2t.
Proof. We first prove the recurrence relation. Let Dm be the 2m × 2m matrix whose

determinant is the characteristic polynomial of T in the variable z. Note that the first two
characteristic polynomials are

p1(z) = det(D1) =

∣∣∣∣ −z b
b −z

∣∣∣∣ = z2 − b2,(2.4a)

p2(z) = det(D2) =

∣∣∣∣∣∣∣∣
−z b a 0
b −z 0 0
0 0 −z b
0 a b −z

∣∣∣∣∣∣∣∣ = (z2 − b2)2 − a2b2.(2.4b)

To derive a recurrence relation, let us also define the intermediary determinants rm(z) that
arise as the minor of Dm having removed the second row and first column,

rm(z) :=

∣∣∣∣∣∣∣∣∣∣∣

b a 0 0 · · ·
0

Dm−1
a
0
...

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

b a 0 0 · · ·
0 −z b a 0
a b −z 0 0
0 0 0

Dm−2... 0 a

∣∣∣∣∣∣∣∣∣∣∣
= b pm−1(z) + a2 rm−1(z),

where we use the cofactor expansion of the determinant. Similarly, for pm(z) we obtain

pm(z) = z2 pm−1(z)− b rm(z) = (z2 − b2) pm−1(z)− a2b rm−1(z).

We can then rearrange this relation to give an expression for rm−1(z) in terms of pm(z) and
pm−1(z). Substituting this into the recurrence for rm(z) above, along with the equivalent
expression for rm(z), yields the desired recurrence relation

pm+1(z) = (z2 − b2 + a2) pm(z)− a2z2 pm−1(z),
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whereA(z) := a2z2 andB(z) := −z2+b2−a2. Finally, note that setting p0 = 1 is consistent
with this recurrence relation and the initial characteristic polynomials (2.4).

To show the equivalence of the generating function, we multiply (2.2) by tm and sum
over m ≥ 2 before adding relevant terms to isolate

∑∞
m=0 pm(z)tm as follows:

∞∑
m=2

[pm(z) +B(z)pm−1(z) +A(z)pm−2(z)] tm = 0

⇐⇒
∞∑
m=0

[
1 +B(z)t+A(z)t2

]
pm(z)tm = p0(z) + (p1(z) +B(z)p0(z)) t

⇐⇒
∞∑
m=0

pm(z)tm =
p0(z) + (p1(z) +B(z)p0(z)) t

1 +B(z)t+A(z)t2
.

Substituting the appropriate values gives D(t, z) = 1 − (z2 − b2 + a2)t + a2z2t2 and
N(t, z) = 1− a2t in our case, as required.

Before continuing, we remark on the convergence of the Maclaurin series in t of the
generating function. Note that the Maclaurin series of any rational function (without a pole at 0)
satisfies a linear recurrence relation, which can be seen by following backwards an analogous
argument to that in the above proof. Moreover, the Maclaurin series is convergent (to the
rational function) on the open disc centered at 0 with a radius equal to the minimum root of
the denominator in absolute value; this can be observed from a partial fractions decomposition
(over C) and noting that it is a (finite) sum of geometric series. As such, in our present
case, pm(z) are precisely the coefficients in the Maclaurin series for any given z since the
denominator is such that 0 is never a pole of the generating function and so there is always a
non-trivial disc where the series converges.

We now introduce a useful tool that will help us to characterize the spectrum of (2.1):
the q-analogue of the discriminant known as the q-discriminant [36]. The q-discriminant of a
polynomial Pn(t) of degree n with leading coefficient p is defined as

Disct(Pn; q) = p2n−2qn(n−1)/2
∏

1≤i<j≤n

(q−1/2ti − q1/2tj)(q
1/2ti − q−1/2tj),

where ti, 1 ≤ i ≤ n, are the roots of Pn(t). A key point is that the q-discriminant is zero if
and only if a quotient of the roots, ti/tj , equals q. Note that as q → 1, the q-discriminant
becomes the standard discriminant of a polynomial.

In particular, we will consider the q-discriminant of the denominatorD(t, z) as a quadratic
in t. Direct calculation using the quadratic formula yields

Disct(D(t, z); q) = q
(
B(z)2 − (q + q−1 + 2)A(z)

)
(2.5)

for any q 6= 0. If q is a quotient of the two roots in t of D(t, z), then (2.5) is zero, and so q
must satisfy

B(z)2

A(z)
= q + q−1 + 2,(2.6)

where, in general, q will depend on z. The q-discriminant condition (2.6) for D(t, z) will
be crucial in what follows since it will allow us to characterize roots of pm(z) in terms of
the quotient q. We now state our main result on the limiting spectrum of T as its dimension
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becomes large. For this we adapt some ideas from [36] for finding roots of polynomials
verifying a three-term recurrence but now with a different generating function.

THEOREM 2.2 (Limiting spectrum). The limiting spectrum, as m → ∞, of the block
Toeplitz matrix T ∈ C2m×2m defined in (2.1) lies on the curve given by

λ±(θ) = a cos(θ)±
√
b2 − a2 sin2(θ), θ ∈ [−π, π],(2.7)

except perhaps for the eigenvalues

λ = ±
√

1
2b

2 − a2,(2.8)

which can only occur if |a2| > | 12b
2 − a2|.

Proof. Suppose that zm is a root of the characteristic polynomial pm(z), for m ≥ 2. If
zm = 0, then we must have that a2 = b2. To see this, assume for a contradiction that a2 6= b2.
Then B(0) 6= 0 while A(0) = 0 and pm(0) = 0, and thus the recurrence relation (2.2) gives
that pm−1(0) = 0. Following this recursion down to m = 2 gives that p1(0) = 0, which is
false as b 6= 0. Further, if pm(0) = 0, then also pm+1(0) = 0 by (2.2) since A(0) = 0, and so
a sequence of zero roots occurs as m increases giving 0 in the limiting spectrum. This case
is covered by choosing θ = π

2 in (2.7) and noting that a2 = b2 must hold. As such, for the
remainder of the proof we assume that zm 6= 0.

Now consider the denominator D(t, zm). Since A(zm) 6= 0 by the assumption that
zm 6= 0, the denominator, as a quadratic in t, has two roots t1 and t2. Note that by Vieta’s
formula for the product of roots, neither of these two roots can be zero since t1t2A(zm) = 1.
If t1 = t2, then the (standard) discriminant ofD(t, zm) is zero, givingB(zm)2−4A(zm) = 0.
Solving for zm given our expressions for A(z) and B(z) yields solutions zm = ±(a± b) for
all choices of signs. These cases are also covered by (2.7) when θ = 0 or θ = π.

As such, we now assume that t1 6= t2, and so D(t, zm) = A(zm)(t − t1)(t − t2).
Considering the generating function (2.3), we observe that

N(t, zm)

D(t, zm)
=

1− a2t

A(zm)(t− t1)(t− t2)
=

1− a2t

A(zm)(t1 − t2)

(
1

t− t1
− 1

t− t2

)
=

1− a2t

A(zm)(t1 − t2)

∞∑
m=0

tm+1
1 − tm+1

2

tm+1
1 tm+1

2

tm

=
1

A(zm)(t1 − t2)

∞∑
m=1

[
tm+1
1 − tm+1

2

tm+1
1 tm+1

2

− a2 t
m
1 − tm2
tm1 t

m
2

]
tm + 1.(2.9)

The sum introduced in the second line is the Maclaurin series in t and, as the difference of
two geometric series, is convergent in the open disc |t| < min{|t1|, |t2|}. Note that this set
is non-trivial since neither t1 or t2 are zero. In (2.9) we identify that the coefficient of tm is
exactly pm(zm). Thus, as zm is a root of pm(z), the coefficient of tm in (2.9) must be zero.
Now suppose that t1 = qt2 for some quotient q 6= 0 (as neither t1 nor t2 is zero). Then this
condition for the coefficient of tm translates into

qm+1 − 1

qm+1tm+1
2

− a2 q
m − 1

qmtm2
= 0 =⇒ qm+1 − 1 = a2t2q(q

m − 1).

Since t1t2A(zm) = 1, we deduce that t2 = ±(A(zm)q)−1/2, and thus q must solve(
qm+1 − 1

)2
=

a4

A(zm)
(qm − 1)

2
q.
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Let us define the coefficient cm, depending on zm,

cm =
a4

A(zm)
=
a2

z2
m

.(2.10)

Then q must be a root of the (2m+ 2)-degree polynomial

fm(q) = q2m+2 − cmq2m+1 + 2(cm − 1)qm+1 − cmq + 1.(2.11)

In order to characterize the roots of (2.11) we will make use of the following corollary of
Rouché’s theorem (see, e.g., [28, Section 5.3.2]): Let f be a polynomial of degree d with
coefficients {αj}dj=0. If R > 0 is such that for an integer 0 ≤ k ≤ d we have

|α0|+ · · ·+ |αk−1|Rk−1 + |αk+1|Rk+1 + · · ·+ |αd|Rd < |αk|Rk,(2.12)

then there are exactly k roots of f , counted with multiplicity, having absolute value less than
R. In particular, we will use this result for the polynomial fm(q) with k = 0, k = 2m+ 1, or
k = 2m+ 2.

We first point out some facts about (2.11). Note that q = 0 is not a root of fm. Moreover,
by symmetry of the coefficients, we have (for q 6= 0)

fm(q−1) = q−(2m+2)fm(q).(2.13)

Thus, if qm is a root of fm, then q−1
m is also a root. Further, since fm has a unique factorization

in C, applying this both in the variable q−1 and q in (2.13) shows that the multiplicities of
the roots qm and q−1

m must be identical. This means that we only need to study roots with
|qm| ≤ 1, with roots outside the unit disc being precisely the reciprocal values of those inside
the unit disc, or vice versa.

We will use (2.12) to determine how many roots of fm(q) in (2.11) do not approach
the unit circle as m → ∞. This information, along with (2.6), will allow us to determine
conditions for zm. A significant challenge is that the coefficient cm depends on m, and so we
will need to consider several cases. To proceed, we let ε > 0 be small. We will show that
for all m ≥M , for a suitable M(ε), all but potentially two roots of fm(q) lie in an annulus
that shrinks to the unit circle as ε→ 0. The remaining two roots can only persist if |cm| > 1,
and, should they exist, consist of a root sm close to c−1

m and the corresponding reciprocal root
outside the unit circle. Given ε > 0, for m ≥M , we consider three cases depending on cm:

1. |cm| ≤ 1,
2. 1 ≤ |cm| ≤ (1 + ε)2,
3. |cm| ≥ (1 + ε)2.

Case 1. To start the analysis we suppose that we are in case 1 so that |cm| ≤ 1 and define
R− = 1− ε. Let M1 be such that

4Rm+1
− +R2m+1

− +R2m+2
− < ε

for all m ≥M1. Such an M1 exists since |R−| < 1. Then, for m ≥M1, we have that

|cm|R− + 2|cm − 1|Rm+1
− + |cm|R2m+1

− +R2m+2
−

≤ R− + 4Rm+1
− +R2m+1

− +R2m+2
− < 1.

Thus, for large enough m, by using k = 0 in the corollary of Rouché’s theorem, we deduce
that there are no roots of fm with modulus less thanR− = 1−ε. In this case, by the reciprocal
nature of the roots, for m ≥M1, we conclude that all 2m+2 roots qm of fm lie in the annulus

1− ε ≤ |qm| ≤
1

1− ε
.
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Case 2. We now turn to the analysis of case 2, where 1 ≤ |cm| ≤ (1 + ε)2. To aid in the
next case we first relax this condition to consider |cm| ≥ 1 and prove a useful bound for all
roots of fm. Define R+ = 1 + ε, and let M2 be such that

R
−(2m+1)
+ +R−2m

+ + 4R−m+ <
ε

1 + ε

for all m ≥M2. Now let R> = |cm|(1 + ε) = |cm|R+. We want to show that

1 + |cm|R> + 2|cm − 1|Rm+1
> + |cm|R2m+1

> < R2m+2
> ,(2.14)

in order to apply the corollary of Rouché’s theorem with k = 2m+ 2. To do so we divide by
R2m+2
> , in which case, for m ≥M2, we have

R
−(2m+2)
> + |cm|R−(2m+1)

> + 2|cm − 1|R−(m+1)
> + |cm|R−1

>

= |cm|−(2m+2)R
−(2m+2)
+ + |cm|−2mR

−(2m+1)
+ +

2|cm − 1|
|cm|

|cm|−mR−(m+1)
+ +R−1

+

≤ R−(2m+2)
+ +R

−(2m+1)
+ + 4R

−(m+1)
+ +R−1

+ <
ε

(1 + ε)2
+

1

1 + ε
< 1.

Thus we have proven the required inequality and deduce from the corollary of Rouché’s
theorem that all 2m+ 2 roots qm lie in the disc given by |qm| < |cm|(1 + ε). This will prove
useful later in case 3. For now we turn back to case 2, where 1 ≤ |cm| ≤ (1 + ε)2. Using this
upper bound for |cm| and the reciprocal nature of the roots, we conclude that, for m ≥M2,
all 2m+ 2 roots qm of fm lie in the annulus

1

(1 + ε)3
< |qm| < (1 + ε)3.(2.15)

Case 3. Finally, consider case 3, where |cm| ≥ (1 + ε)2. Let R+ = 1 + ε and M2 be as
defined in case 2. We want to show that

1 + |cm|R+ + 2|cm − 1|Rm+1
+ +R2m+2

+ < |cm|R2m+1
+(2.16)

in order to apply the corollary of Rouché’s theorem with k = 2m+ 1. To do so we divide by
|cm|R2m+1

> , in which case, for m ≥M2, we have

|cm|−1R
−(2m+1)
+ +R−2m

+ +
2|cm − 1|
|cm|

R−m+ + |cm|−1R+

≤ R−(2m+1)
+ +R−2m

+ + 4R−m+ + (1 + ε)−2R+ <
ε

1 + ε
+

1

1 + ε
= 1.

Thus we have proven the required inequality and deduce from the corollary above that 2m+ 1
roots qm lie in the disc given by |qm| < 1 + ε. In this case, by the reciprocal nature of the
roots, for m ≥M2, we conclude that 2m roots qm of fm lie in the annulus

1

1 + ε
< |qm| < 1 + ε.

We pause to note at this stage that, combining all three cases, we have just shown
that all but potentially two roots of fm lie in a small annulus around the unit circle for
m ≥ M = max{M1,M2}, independently of the value of cm. In particular, this will be the
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largest annulus of the three cases which, for small ε > 0, is that in (2.15). Letting ε→ 0 we
deduce that all but potentially two roots of fm must tend to the unit circle as m→∞.

The remaining question is what happens to the other two roots, which only appear in case 3.
We know from the bound in (2.14) that, for large enoughm, all roots satisfy |qm| < |cm|(1+ε)
while all but one satisfy |qm| < (1 + ε). We now show that the remaining root in case 3
satisfies |qm| ≥ |cm|(1− ε) for large enough m. To do so let R⊥ = |cm|(1− ε) = |cm|R−,
and note that then, assuming ε is small enough (ε < 1

3 suffices), the inequalityR⊥ > 1 follows
since

R⊥ = |cm|(1− ε) ≥ (1 + ε)2(1− ε) ≥ 1 +
ε

2
.

Now let M3 be such that(
1 +

ε

2

)−(2m+1)

+
(

1 +
ε

2

)−2m

+ 4
(

1 +
ε

2

)−m
< ε

for all m ≥ M3. We want to show that an identical bound for (2.16) holds but now for R⊥
in order to use again the corollary of Rouché’s theorem with k = 2m+ 1. We proceed in a
similar manner and divide by |cm|R2m+1

⊥ so that for m ≥M3, we have

|cm|−1R
−(2m+1)
⊥ +R−2m

⊥ +
2|cm − 1|
|cm|

R−m⊥ + |cm|−1R⊥

≤ R−(2m+1)
⊥ +R−2m

⊥ + 4R−m⊥ +R−

≤
(

1 +
ε

2

)−(2m+1)

+
(

1 +
ε

2

)−2m

+ 4
(

1 +
ε

2

)−m
+R− < 1.

Thus we have proven the required inequality and deduce from the corollary of Rouché’s
theorem that 2m + 1 roots qm lie in the disc given by |qm| < |cm|(1 − ε). Thus, for
large enough m, we conclude that the single remaining root lies in the annulus defined by
|cm|(1− ε) ≤ |qm| < |cm|(1 + ε).

This result makes it clear that roots that do not tend to the unit circle persist only when we
have |cm|-values that stay bounded away from 1 as m→∞, and their size is dictated by cm.
That is, for such roots to persist, there must exist an infinite subsequence with |cm| > c > 1
for some fixed c, and so we now assume this condition. We further focus on the reciprocal root
that is inside the unit circle and show that it approximates c−1

m for large m. Define this single
root to be sm, and note that, through the reciprocal nature of roots, we have just shown that
it satisfies the bound |sm| ≤ |c−1

m | 1
1−ε , which in turn gives that |cmsm| ≤ 1

1−ε . Moreover,
|cm| > c yields the bound |sm| ≤ c−1 1

1−ε , where c > 1 is fixed, and thus choosing ε > 0
small enough we have |sm| < r < 1 for a fixed r. This provides the ingredients for the
following limit:

|s2m+2
m − cms2m+1

m + 2(cm − 1)sm+1
m |

≤ |sm|2m+2 +
1

1− ε
|sm|2m + 2|sm|m+1 +

2

1− ε
|sm|m → 0

as m → ∞, since |sm| < r < 1. Now, by definition of sm as a root of fm, we have that
fm(sm) = 0, and hence we must have that 1 − cmsm → 0 and thus sm − c−1

m → 0 as
m → ∞, due to |c−1

m | being bounded above by c−1 < 1. This says that the root that stays
inside the unit circle approximates c−1

m for large m while the root that stays outside the unit
circle must approximate cm by reciprocity.
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We would now like to interpret what this shows for the potential corresponding root zm
in the limit m→∞ using the q-discriminant condition (2.6). For this we use the definition
of the coefficient cm = a2/z2

m from (2.10) and denote δm = cmsm − 1, where δm → 0 as
m→∞. Then, with q = sm = c−1

m (1 + δm), (2.6) becomes

B(zm)2

A(zm)
= c−1

m (1 + δm) + cm(1 + δm)−1 + 2

=⇒ (−z2
m + b2 − a2)2

a2z2
m

=
z2
m

a2
(1 + δm) +

a2

z2
m

(1 + δm)−1 + 2

=⇒ b4 − 2a2b2 − 2b2z2
m = δm(z4

m − a4) +O(δ2
m),(2.17)

where we have used the binomial expansion (1 + δm)−1 = 1 − δm + O(δ2
m), which is

valid for large m since δm → 0. Recall that, given we are in case 3, |cm| is bounded below
away from zero, and so |zm| is bounded above for all m. Now note that (2.17) is a singular
perturbation [2, Section 7.2], and, as δm → 0, all possible solutions for zm tend to infinity
except for those that satisfy the left-hand side being zero. As such, the only possibility for any
zm being a true root of the characteristic polynomial is that it tends to one of the limiting roots

z = ±
√

1
2b

2 − a2.(2.18)

Note that for such zm to exist we required the condition |cm| > 1, and so |a2| > |z2
m|, to hold

for arbitrarily large m. For this to hold in the limit we require |a2| > | 12b
2 − a2|, and so the

limiting roots in (2.18) may only exist when this condition is met.
We have now seen that, aside from the potential case of the limiting roots (2.18), all

remaining zm correspond to qm-values that tend to the unit circle. To complete the proof we
now translate this result using the q-discriminant condition (2.6). Since qm tends to the unit
circle, the corresponding zm must tend to the limiting curve defined by (2.6), where q = eiφ

for some φ ∈ [−π, π]. This limiting curve in the complex plane is given parametrically as

B(z)2

A(z)
= eiφ + e−iφ + 2, φ ∈ [−π, π],

⇐⇒ (−z2 + b2 − a2)2

a2z2
= 4 cos2

(
φ

2

)
, φ ∈ [−π, π],

⇐⇒ z2 − b2 + a2 = ±2az cos

(
φ

2

)
, φ ∈ [−π, π],

⇐⇒ z2 − 2a cos(θ)z − b2 + a2 = 0, θ ∈ [−π, π],

⇐⇒ z = a cos(θ)±
√
b2 − a2 sin2(θ), θ ∈ [−π, π].

Thus, as roots zm of pm(z) are eigenvalues λ of T ∈ C2m×2m, we deduce that the limiting
spectrum of T must lie on the curve defined by (2.7) as m → ∞, except perhaps for the
eigenvalues in (2.8) that can only occur if |a2| > | 12b

2 − a2|.
We note that, while the so-called Szegő formula does not apply in our non-Hermitian

case, we have just proven that the limiting eigenvalues of T , except perhaps two, lie on the
equivalent curve defined by the eigenvalues of the (block) symbol of T , which is precisely
that defined in (2.7).

3. The one-dimensional problem. We now turn our attention to analyzing the one-level
method. In this section we study the parallel Schwarz iterative method for the one-dimensional
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x
a1 a2 aj aj+1 aN aN+1

b0 b1 bj−1 bj bN−1 bN

· · ·
· · ·

· · ·
· · ·

Ω1 Ωj ΩN

2δ L− 2δ 2δ

FIG. 3.1. Overlapping decomposition of the one-dimensional domain into N subdomains.

Maxwell’s equations with Robin boundary conditions defined on the domain Ω = (a1, bN ):
Lu := −∂xxu+ (ikσ̃ − k2)u = 0, x ∈ (a1, bN ),

Blu := −∂xu+ αu = g1, x = a1,

Bru := ∂xu+ αu = g2, x = bN ,

(3.1)

where u represents the complex amplitude of the electric field, k is the wave number, and
σ̃ = σZ, with σ being the conductivity of the medium and Z its impedance. Here α is
the impedance parameter that is chosen such that the local problems are well-posed and is
classically set to ik, in which case the problem corresponds to a “one-dimensional wave-
guide”, and the incoming wave or excitation can be represented by g1, for example, with g2

being set to 0. Note that, when α = ik, the problem is well-posed even if σ̃ = 0, but in the
following we will assume that σ̃ > 0. In order to simplify notation we will omit the tilde
symbol for σ. We remark that (3.1) can also be seen as an absorptive Helmholtz equation,
where the absorption term ikσ comes from the physics of the problem.

Let us also consider two sets of points {aj}j=1,...,N+1 and {bj}j=0,...,N defining the
overlapping decomposition Ω =

⋃N
j=1 Ωj such that Ωj = (aj , bj), as illustrated in Figure 3.1

(and considered in [6]), where

bj − aj = L+ 2δ, bj−1 − aj = 2δ, aj+1 − aj = bj+1 − bj = L, δ > 0.(3.2)

Note that the length of each subdomain is fixed and equal to L+2δ while the overlap is always
2δ. This means that the family of problems that we consider consists of a growing chain of
fixed-size subdomains, as in [6], rather than solving on a fixed problem domain with shrinking
subdomain size.

We consider solving (3.1) by a Schwarz iterative algorithm with Robin transmission
conditions and denote by unj the approximation to the solution in subdomain j at iteration n,
starting from an initial guess u0

j . We compute unj from the previous values un−1
j by solving

the following local boundary value problems
Lunj = 0, x ∈ Ωj ,

Blunj = Blun−1
j−1 , x = aj ,

Brunj = Brun−1
j+1 , x = bj ,

(3.3a)

in the case 2 ≤ j ≤ N , while for the first (j = 1) and last (j = N ) subdomain we have
Lun1 = 0, x ∈ Ω1,

Blun1 = g1, x = a1,

Brun1 = Brun−1
2 , x = b1,


LunN = 0, x ∈ ΩN ,

BlunN = Blun−1
N−1, x = aN ,

BrunN = g2, x = bN .

(3.3b)
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In the following we wish to analyze the convergence of the iterative method that is defined
by (3.3). We observe this iteration to be a parallel Schwarz method with Robin transmission
conditions, a label that we shall adopt in this work. In particular, we will be interested in the
convergence properties for a growing number of subdomains N and the absorptive problem,
i.e., σ > 0.1 This means that we will consider asymptotic bounds for large N and make use of
the theory presented in Section 2.

In order to do this we define the local errors in each subdomain j at iteration n as
enj = u|Ωj

−unj . They satisfies the boundary value problems (3.3a) for the interior subdomains
and the homogeneous analogues of (3.3b) for the first and last subdomains (i.e., (3.3b) but
with boundary conditions g1 = 0 and g2 = 0). The convergence study will be preformed in
two steps: first we prove that the Schwarz iteration matrix is a block Toeplitz matrix and then
that its spectral radius remains bounded below and away from one in the limit of large N . As
mentioned before, we build on the formalism of iteration matrices acting on interface data
introduced in [6]; here this will be Robin data.

LEMMA 3.1 (Block Toeplitz iteration matrix). Let enj = u|Ωj
− unj be the local error in

each subdomain j at iteration n, and let

Rn :=
[
Rn+(b1), Rn−(a2), Rn+(b2), . . . ,Rn−(aN−1), Rn+(bN−1), Rn−(aN )

]T
,

where

Rn−(aj) := Blenj−1(aj), Rn+(bj) := Brenj+1(bj),(3.4)

is the Robin interface data. Then

Rn = T1dRn−1,

where T1d is a block Toeplitz matrix of the form (2.1) with the complex coefficients a and b
given by

a =
(ζ + α)2e2ζδ − (ζ − α)2e−2ζδ

(ζ + α)2eζ(2δ+L) − (ζ − α)2e−ζ(2δ+L)
,(3.5a)

b = − (ζ2 − α2)(eζL − e−ζL)

(ζ + α)2eζ(2δ+L) − (ζ − α)2e−ζ(2δ+L)
,(3.5b)

where ζ =
√
ikσ − k2.

Proof. We first observe that the solution to Lenj = 0 is given by

enj (x) = αnj e
−ζx + βnj e

ζx, ζ =
√
ikσ − k2.(3.6)

Note that we choose the principle branch of the square root here so that ζ always has positive
real and imaginary parts. Now the interface iterations at x = aj and x = bj from (3.3) can be
written in terms of the error as [

Blenj (aj)
Brenj (bj)

]
=

[
Blen−1

j−1 (aj)

Bren−1
j+1 (bj)

]
.(3.7)

1When σ = 0, impedance transmission conditions are also transparent conditions, with the resulting iteration
matrix being nilpotent. Therefore, the algorithm will converge in a number of iterations equal to the number of
subdomains in this case.
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By introducing (3.6) in the left-hand side of (3.7) and by using the notation from (3.4), we
obtain [

(ζ + α)e−ζaj −(ζ − α)eζaj

−(ζ − α)e−ζbj (ζ + α)eζbj

] [
αnj
βnj

]
=

[
Rn−1
− (aj)
Rn−1

+ (bj)

]
,

which we can solve for the unknowns αnj and βnj to give[
αnj
βnj

]
=

1

Dj

[
(ζ + α)eζbj (ζ − α)eζaj

(ζ − α)e−ζbj (ζ + α)e−ζaj

] [
Rn−1
− (aj)
Rn−1

+ (bj)

]
,(3.8)

where Dj = (ζ + α)2eζ(bj−aj) − (ζ − α)2eζ(aj−bj). Note that since bj − aj = L + 2δ,
it follows that Dj is actually independent of j, and thus we simply denote it by D. The
algorithm is based on Robin transmission conditions, hence the quantities of interest that are
transmitted at the interfaces between subdomains are the Robin data (3.4). Therefore, we
need to compute the current interface valuesRn−(aj) andRn+(bj) by inserting the coefficients
from (3.8) into (3.6) and then applying the formulae in (3.4), giving

Rn−(aj) = Blenj−1(aj) = (ζ + α)αnj−1e
−ζaj − (ζ − α)βnj−1e

ζaj

=
1

D

[
((ζ + α)2eζ(bj−1−aj) − (ζ − α)2eζ(aj−bj−1))Rn−1

− (aj−1)

+ (ζ2 − α2)(eζ(aj−1−aj) − eζ(aj−aj−1))Rn−1
+ (bj−1)

]
,

(3.9a)

Rn+(bj) = Brenj+1(bj) = −(ζ − α)αnj+1e
−ζbj + (ζ + α)βnj+1e

ζbj

=
1

D

[
(ζ2 − α2)(eζ(bj−bj+1) − eζ(bj+1−bj))Rn−1

− (aj+1)

+ ((ζ + α)2eζ(bj−aj+1) − (ζ − α)2eζ(aj+1−bj))Rn−1
+ (bj+1)

]
.

(3.9b)

The iteration of the interface values (3.9) can be summarized as follows:[
Rn−(aj)
Rn+(bj)

]
= T1

[
Rn−1
− (aj−1)
Rn−1

+ (bj−1)

]
+ T2

[
Rn−1
− (aj+1)
Rn−1

+ (bj+1)

]
,

T1 =

[
a b
0 0

]
, T2 =

[
0 0
b a

]
,

where a and b are given by (3.5). Note that since the homogeneous counterparts of the
boundary conditions from (3.3b) translate into Rn−(a1) = 0 and Rn+(bN ) = 0 for all n, we
can remove these terms. As such, the iterates for j ∈ {1, 2, N − 1, N} are prescribed slightly
differently as [

0
Rn+(b1)

]
= T2

[
Rn−1
− (a2)
Rn−1

+ (b2)

]
,[

Rn−(a2)
Rn+(b2)

]
= T1

[
0

Rn−1
+ (b1)

]
+ T2

[
Rn−1
− (a3)
Rn−1

+ (b3)

]
,[

Rn−(aN−1)
Rn+(bN−1)

]
= T1

[
Rn−1
− (aN−2)
Rn−1

+ (bN−2)

]
+ T2

[
Rn−1
− (aN )

0

]
,[

Rn−(aN )
0

]
= T1

[
Rn−1
− (aN−1)
Rn−1

+ (bN−1)

]
.
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With the notation from (3.4), the global iteration over the interface data belonging to all
subdomains becomesRn = T1dRn−1, where

T1d =



0 T̂2

T̃1 02×2 T2

. . . . . . . . .
T1 02×2 T2

. . . . . . . . .
T1 02×2 T̃2

T̂1 0


(3.10)

with

T̃1 =
[
b 0

]T
, T̃2 =

[
0 b

]T
, T̂1 =

[
a b

]
, T̂2 =

[
b a

]
.

We conclude from this that the parallel Schwarz algorithm is given by a stationary iteration
with iteration matrix T1d defined by (3.10), and, therefore, convergence is determined by the
spectral radius ρ(T1d). We also notice that T1d is a block Toeplitz matrix precisely of the form
in (2.1), where the complex coefficients a and b are given by (3.5), and, as such, the limiting
spectral analysis in Section 2 will apply.

Before proving convergence of the parallel Schwarz algorithm, we first utilize the key
result of Theorem 2.2 for the limiting spectrum of T1d to provide a useful intermediary lemma.
This intermediary result will also aid our analysis in the two-dimensional case to follow in
Section 4.

LEMMA 3.2 (Limiting spectral radius and sufficient conditions for convergence). The
following relation holds:

max
θ∈[−π,π]

∣∣∣∣a cos(θ)±
√
b2 − a2 sin2(θ)

∣∣∣∣ = max{|a+ b|, |a− b|},

and thus the convergence factor R1d := limN→∞ ρ(T1d) of the Schwarz algorithm as the
number of subdomains tends to infinity satisfies

R1d ≤

{
max {|a+ b|, |a− b|} if

∣∣a2 − 1
2b

2
∣∣1/2 ≥ |a|,

max {|a+ b|, |a− b|, |a|} if
∣∣a2 − 1

2b
2
∣∣1/2 < |a|.(3.11)

Further, consider the change of variables

z = 2δζ, l =
L

2δ
, γ = 2δα, v =

z − γ
z + γ

,(3.12)

and let z := x+ iy for x, y ∈ R+. Then the condition g±(z; δ, l) > 0, where

g±(z; δ, l) = (e2lx − 1)(e2x − |v|2)± 4 sin(ly)(=v cos y −<v sin y)ex(l+1)(3.13)

will ensure the desired convergence bound max{|a+ b|, |a− b|} < 1. Similarly, the condition
g(z; δ, l) > 0, where

g(z; δ, l) = (e2lx − 1)(e2x(l+2) − |v|4) + 4 sin(ly)

·
[
((<v)2 − (=v)2) sin(y(l + 2))− 2<v=v cos(y(l + 2))

]
e2x(l+1)

(3.14)

will ensure that |a| < 1.
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Proof. Since T1d is of the form T in (2.1), Theorem 2.2 provides its limiting spectrum
and thus allows us to bound R1d by the largest eigenvalue in magnitude. We first bound

λ±(θ) = a cos(θ)±
√
b2 − a2 sin2(θ). It is straightforward to see that these values are the

eigenvalues of the matrix

T =

[
a cos(θ) b− a sin(θ)

b+ a sin(θ) a cos(θ)

]
.

A simple computation shows that the matrix

T ∗T =

[
|a|2 + |b|2 + (ab̄+ āb) sin(θ) (ab̄+ āb) cos(θ)

(ab̄+ āb) cos(θ) |a|2 + |b|2 − (ab̄+ āb) sin(θ)

]
has the eigenvalues µ± = |a± b|2. We can now conclude that

|λ±(θ)| ≤ ‖T‖2 =
√
‖T ∗T‖2 =

√
max{µ+, µ−} = max{|a+ b|, |a− b|},

and furthermore note that this bound is attained when θ = 0. Additionally, Theorem 2.2 states
that the eigenvalues λ = ±( 1

2b
2 − a2)1/2 may belong to the limiting spectrum but only if they

have magnitude strictly less than |a|. Together, these two cases yield (3.11).
Let us consider now the complex-valued functions F± : C→ C

F±(z) =
(z + γ)2ez − (z − γ)2e−z

(z + γ)2e(l+1)z − (z − γ)2e−(l+1)z
± (z2 − γ2)(elz − e−lz)

(z + γ)2e(l+1)z − (z − γ)2e−(l+1)z
.

It is easy to see that a∓ b = F±(z), when z, l, and γ are as defined in (3.12). Similarly, we
define the function G : C→ C to be the first term in F±(z) so that a = G(z). Let us simplify
in the first instance the expression of |F±(z)| without using any assumption on z := x+ iy.
For this we consider the transformation v along with its polar form

v :=
z − γ
z + γ

, v = w(cos(ϕ) + i sin(ϕ)), w = |v|.(3.15)

After some lengthy but elementary calculations we find that

|F±(z)|2 = 1− (ex(l+1) − w)2 + 2w(1∓ cos ((l + 1)y − ϕ))ex(l+1)

(e2x(l+1) − w2)2 + 4w2 sin2((l + 1)y − ϕ)e2x(l+1)
g±(z; δ, l),(3.16a)

g±(z; δ, l) = (e2lx − 1)(e2x − w2)± 4w sin(ly) sin(ϕ− y)ex(l+1).

(3.16b)

We observe that the fraction in (3.16a) is positive since the individual terms involved are
so, and thus, max{|a − b|, |a + b|} < 1 ⇔ |F±(z)|2 < 1 ⇔ g±(z; δ, l) > 0. We can
now rewrite g±(z; δ, l) in (3.16b) using (3.15) and convert v to Cartesian form to obtain the
required expression in (3.13). A nearly identical argument can be used to derive conditions
for |G(z)|2 < 1, and this results in the criterion that g(z; δ, l) > 0, where g(z; δ, l) is defined
by (3.14). Thus, the required conclusions follow.

We are now ready to state our main convergence result for the one-dimensional problem
in the case when α = ik, namely that of classical impedance conditions.
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THEOREM 3.3 (Convergence of the Schwarz algorithm in 1D). If α = ik (the case of
classical impedance conditions), then for all k > 0, σ > 0, δ > 0, and L > 0, we have
that R1d < 1. Therefore the convergence will ultimately be independent of the number of
subdomains (we say that the Schwarz method will scale).

Proof. By Lemma 3.2 we see that it is enough to study the sign of g±(z; δ, l) and of
g(z; δ, l). We observe that if α = ik and κ = 2δk, then for z := x+ iy, (3.15) becomes

<v =
−κ2 + x2 + y2

(κ+ y)2 + x2
, =v =

−2κx

(κ+ y)2 + x2
, |v|2 =

(κ− y)2 + x2

(κ+ y)2 + x2
< 1,

the final inequality holding since κ > 0 and y > 0. We emphasize that x and y are the real
and imaginary parts of z = 2δζ and hence are positive by the nature of ζ in (3.6). Now we
can further simplify (3.13) using these expressions for v to obtain

g±(z; δ, l) =
4ex(l+1)

(κ+ y)2 + x2
g̃±(z; δ, l),(3.17a)

g̃±(z; δ, l) = [(κ2 + x2 + y2) sinh(x) + 2κy cosh(x)] sinh(lx)

± [(κ2 − x2 − y2) sin(y)− 2κx cos(y)] sin(ly).
(3.17b)

Proving positivity of g±(z; δ, l) is then equivalent to the positivity of g̃±(z; δ, l). To proceed,
we relate x and y by considering the real part of z2 = (x + iy)2 = 2iκδσ − κ2 that yields
y2 = κ2 + x2. Let us now eliminate y using this identity to obtain

g̃±(z; δ, l) = 2
[
(κ2 + x2) sinh(x) + κ

√
κ2 + x2 cosh(x)

]
sinh(lx)

∓ 2
[
x2 sin(

√
κ2 + x2) + κx cos(

√
κ2 + x2)

]
sin(l

√
κ2 + x2).

To show that this is positive we want to bound from below the hyperbolic term in the first line
(which is positive) while making the trigonometric term in the second line as large as possible
in magnitude and negative. To do this we make use of some elementary bounds that hold for
t > 0:

| sin(t)| < t < sinh(t), | cos(t)| ≤ 1 < cosh(t).(3.18)

We can now derive the positivity bound for g̃±(z; δ, l), noting that x > 0, as follows:

g̃±(z; δ, l) > 2
[
(κ2 + x2)x+ κ

√
κ2 + x2

]
lx− 2

[
x2
√
κ2 + x2 + κx

]
l
√
κ2 + x2 = 0.

Turning to g(z; δ, l), we can follow a similar process, simplifying (3.14), to find that

g(z; δ, l) =
4e2x(l+1)

((κ+ y)2 + x2)2
g̃(z; δ, l),(3.19a)

g̃(z; δ, l) =
[
((κ2 + x2 + y2)2 + 4κ2y2) sinh(x(l + 2))

+ 4κy(κ2 + x2 + y2) cosh(x(l + 2))
]

sinh(lx)

+
[
((−κ2 + x2 + y2)2 − 4κ2x2) sin(y(l + 2))

+ 4κx(−κ2 + x2 + y2) cos(y(l + 2))
]

sin(ly).

(3.19b)

Using the identity y2 = κ2 + x2 along with the elementary bounds (3.18), we obtain

g̃(z; δ, l) = 4
[
y2(y2 + κ2) sinh(x(l + 2)) + 2κy3 cosh(x(l + 2))

]
sinh(lx)

+ 4
[
x2(x2 − κ2) sin(y(l + 2)) + 2κx3 cos(y(l + 2))

]
sin(ly)

> 4
[
y2(y2 + κ2)x(l + 2) + 2κy3

]
lx− 4

[
x2(x2 + κ2)y(l + 2) + 2κx3

]
ly

= 4l(l + 2)x2y2κ2 + 8lxyκ3 > 0.
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FIG. 3.2. The spectrum of the iteration matrix T1d for N = 160 (left) and the convergence factor of the
Schwarz algorithm for varying number of subdomains N (right) when σ = 0.1.
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FIG. 3.3. The spectrum of the iteration matrix T1d for N = 160 (left) and the convergence factor of the
Schwarz algorithm for varying number of subdomains N (right) when σ = 5.

Thus, we conclude that for any choice of parameters, the required sufficient criteria from
Lemma 3.2 for g±(z; δ, l) and g(z; δ, l) hold, and hence, R1d < 1. Therefore the algorithm
will always converge in a number of iterations ultimately independent of the number of
subdomains. Nonetheless, note that as any problem parameter shrinks to zero, the bounds
become tight and so R1d can be made arbitrarily close to one.

In order to verify this result, we compute numerically (using MATLAB) the spectrum of
the iteration matrix and compare it with the theoretical limit for different values of σ. We
choose here k = 30, L = 1, and δ = L/10. From Figures 3.2, 3.3 we notice that the spectrum
of the iteration matrix tends to the theoretical limit when the number of subdomains becomes
large, and the algorithm remains convergent. Additionally, when σ grows, the behavior of the
algorithm improves, which is consistent with the fact that when absorption in the equations
is important (the solutions are less oscillatory) or the overlap is large (more information is
exchanged), the systems are easier to solve. We also remark an empirical observation that
the convergence factor monotonically increases towards the limit given in Lemma 3.2, thus
indicating that the algorithm will always converge for any N .

Before moving on to the two-dimensional case, we first derive a simple corollary showing
how our results can be extended in the direction of k-independence of the one-level method
within certain scenarios. In this case we consider the parameters L and δ being dependent
upon the wave number k.
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COROLLARY 3.4 (A case of k-independent convergence). Suppose that α = ik (the
case of classical impedance conditions) and that σ = σ0k for some constant σ0. Consider
a k-dependent domain decomposition given by L = L0k

−1 and δ = δ0k
−1, that is, the

subdomain size and overlap shrink inversely proportional to the wave number. Then the
convergence of the corresponding Schwarz method is independent of the wave number k. Thus,
the approach is k-robust, and convergence will ultimately be independent of the number of
subdomains.

Proof. Inserting the relevant k-dependent parameters α, σ, δ, and L into (3.5), we find that
both coefficients a and b, and thus the iteration matrix T1d, are independent of k. Combining
this result with Theorem 3.3 shows that the convergence of the corresponding Schwarz method
is both k-independent and, ultimately, independent of the number of subdomains.

We note that k-robustness of the one-level method was proved, under certain conditions,
in [26] using rigorous GMRES bounds. Here, our theory is able to directly evidence k-
robustness of the algorithm at the continuous level, independent of the discretization, in a
simple one-dimensional scenario. We can also consider the case where k is linked to N such
that we now solve on a fixed domain a family of problems with increasing wave number using
an increasing number of subdomains. Here our theory shows the method to be k-robust and
weakly scalable.

Theorem 3.3 shows that weak scalability is achieved in the one-dimensional case as soon
as the parameter σ is strictly positive. Intuitively this makes sense since, in the one-dimensional
case for σ = 0, impedance conditions are transparent, and therefore a classical iterative method
will need a number of iterations equal to the number of subdomains to converge (hence no
scalability). The complex shift brought about by σ will aid convergence by damping the waves
and, when this damping parameter is large enough, robustness with respect to the wave number
can also be achieved as seen in Corollary 3.4.

4. The two-dimensional problem. Consider the domain Ω = (a1, bN ) × (0, L̂), on
which we wish to solve the two-dimensional problem, and a decomposition intoN overlapping
subdomains defined by Ωj = (aj , bj)× (0, L̂), where aj and bj are as given in (3.2). We will
analyze the case of the Helmholtz equation and then Maxwell’s equations.

4.1. The Helmholtz equation. The definition of the parallel Schwarz method with
Robin transmission conditions for the iterates unj in the case of the two-dimensional Helmholtz
problem is

(ikσ − k2)unj − (∂xx + ∂yy)unj = f, (x, y) ∈ (aj , bj)× (0, L̂),

Blunj (aj , y) = Blun−1
j−1 (aj , y), y ∈ (0, L̂),

Brunj (bj , y) = Brun−1
j+1 (bj , y), y ∈ (0, L̂),

unj (x, y) = 0, x ∈ (aj , bj), y ∈ {0, L̂},

(4.1)

where the boundary operators Bl and Br are as defined in (3.1). We consider here the case
of impedance conditions, i.e., α = ik. Note that this configuration corresponds to a “two-
dimensional wave-guide” problem. By linearity, it follows that the local errors enj = u|Ωj

−unj
satisfy the homogeneous analogue of (4.1). To proceed, we make use of the Fourier sine
expansion of enj , as the solution satisfies Dirichlet boundary conditions on the top and bottom
of each rectangular subdomain:

enj (x, y) =

∞∑
m=1

vnj (x, k̃) sin(k̃y), k̃ =
mπ

L̂
, m ∈ N.
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Inserting this expression into the homogeneous counterpart of (4.1), we find that for each
Fourier number k̃, vnj (x, k̃) satisfies the one-dimensional problem

(ikσ + k̃2 − k2)vnj − ∂xxvnj = 0, x ∈ (aj , bj),

Blvnj (x, k̃) = Blvn−1
j−1 (x, k̃), x = aj ,

Brvnj (x, k̃) = Brvn−1
j+1 (x, k̃), x = bj ,

which is of exactly the same type as (3.3), where ikσ − k2 is replaced by ikσ + k̃2 − k2.
Therefore, the result of Lemma 3.1 applies here if we replace α by ik and ζ by

ζ(k̃) =

√
ikσ + k̃2 − k2.(4.2)

Let us denote the resulting iteration matrix, which propagates information for each Fourier
number k̃ independently, by T H

1d(k̃), and further let RH
1d(k̃) := limN→∞ ρ(T H

1d(k̃)) with
RH

2d = supk̃ R
H
1d(k̃). We can now state our main convergence result for the two-dimensional

Helmholtz problem.
THEOREM 4.1 (Convergence of the Schwarz algorithm for Helmholtz in 2D). If α = ik

(the case of classical impedance conditions), then for all k > 0, σ > 0, δ > 0, and L > 0, we
have that RH

1d(k̃) < 1 for all evanescent modes k̃ > k. Furthermore, under the assumption
that σ, δ, and L are sufficiently large, we have that RH

2d < 1. In particular, this is true when
σ ≥ k for all δ > 0 and L > 0. Therefore the convergence will ultimately be independent of
the number of subdomains (we say that the Schwarz method will scale).

Proof. By Lemma 3.2 we see that it is enough to study the sign of g±(z; δ, l) and g(z; δ, l).
To assist, we use the scaled notation κ = 2δk, κ̃ = 2δk̃, and s = 2δσ akin to (3.12). Now
g±(z; δ, l) can be formally simplified identically to (3.17). However, in this case with ζ as
in (4.2), the real part of z2 gives the identity κ̃2 − κ2 = x2 − y2. Utilizing this identity along
with the bounds (3.18) yields

g̃±(z; δ, l) >
[
(κ2 + x2 + y2)x+ 2κy

]
lx−

∣∣(κ2 − x2 − y2)y − 2κx
∣∣ ly

≥ l(κ2 + x2 + y2)(κ̃2 − κ2).

Hence, we always have g̃±(z; δ, l) > 0 for the evanescent modes k̃ > k (equivalent to κ̃ > κ).
Similarly, g(z; δ, l) can be simplified identically to (3.19), and we find that

g̃(z; δ, l) > l(l + 2)
(
x2((κ2 + x2 + y2)2 + 4κ2y2)− y2|(−κ2 + x2 + y2)2 − 4κ2x2|

)
+ 4lκxy

(
κ2 + x2 + y2 − | − κ2 + x2 + y2|

)
≥ l(l + 2)(κ2 + x2 + y2)2(κ̃2 − κ2),

and so we always have g̃(z; δ, l) > 0 for the evanescent modes k̃ > k, too. Together this
shows that RH

1d(k̃) < 1 for all evanescent modes. Note that, for the remaining modes k̃ ≤ k,
it is possible that RH

1d(k̃) ≥ 1 for some choices of problem parameters.
We now refine the above bounds. In order to do so we make use of the identities

4x2y2 = κ2s2 and x2 + y2 =
√

(κ̃2 − κ2)2 + κ2s2 that arise since (by considering both real
and imaginary parts of z2 = (x+ iy)2 = iκs+ κ̃2 − κ2) we have that

2x2 =
√

(κ̃2 − κ2)2 + κ2s2 + κ̃2 − κ2, 2y2 =
√

(κ̃2 − κ2)2 + κ2s2 − κ̃2 + κ2.(4.3)

Now, if we make use of the substitution κ2 + x2 = κ̃2 + y2 for the terms involving hyperbolic
functions and the substitution κ2 − y2 = κ̃2 − x2 for the terms involving trigonometric
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functions, we obtain the following:

g̃±(z; δ, l) >
[
(κ̃2 + 2y2)x+ 2κy

]
lx−

∣∣(κ̃2 − 2x2)y − 2κx
∣∣ ly

≥ l
(
x2(κ̃2 + 2y2)− y2|κ̃2 − 2x2|

)
=

{
lκ̃2(x2 + y2) if κ̃2 ≤ 2x2,

l
(
4x2y2 + κ̃2(κ̃2 − κ2)

)
if κ̃2 > 2x2,

=

{
lκ̃2
√

(κ̃2 − κ2)2 + κ2s2 if κ̃2 ≤ 2x2,

l
(
κ̃4 + κ2(s2 − κ̃2)

)
if κ̃2 > 2x2,

and

g̃(z; δ, l) > l(l + 2)
(
x2(κ̃2 + 2y2)2 − y2(κ̃2 − 2x2)2

)
+ 4lκxy

(
κ̃2 + 2y2 − |κ̃2 − 2x2|

)
= l(l + 2)

(
κ̃4(x2 − y2) + 4x2y2(2κ̃2 + y2 − x2)

)
+ 4lκxy

(
κ̃2 + 2y2 − |κ̃2 − 2x2|

)
=

{
l(l + 2)

(
κ̃4(κ̃2 − κ2) + 4x2y2(κ̃2 + κ2)

)
+ 8lκ3xy if κ̃2 ≤ 2x2,

l(l + 2)
(
κ̃4(κ̃2 − κ2) + 4x2y2(κ̃2 + κ2)

)
+ 8lκxy(x2 + y2) if κ̃2 > 2x2,

=

{
l(l + 2)

(
κ̃6 + κ4s2 + κ̃2κ2(s2 − κ̃2)

)
+ 4lκ4s if κ̃2 ≤ 2x2,

l(l + 2)
(
κ̃6 + κ4s2 + κ̃2κ2(s2 − κ̃2)

)
+ 4lκ2s

√
(κ̃2 − κ2)2 + κ2s2 if κ̃2 > 2x2.

From the penultimate expression in each case we see that for evanescent modes k̃ > k (i.e.,
κ̃ > κ), we always have g̃±(z; δ, l) > 0 and g̃(z; δ, l) > 0. Furthermore, from the final
expressions we see that all modes k̃ ≤ σ (i.e., κ̃ ≤ s) also give the desired positivity. Thus
we deduce that when σ ≥ k we have positivity for all modes k̃ and hence RH

2d < 1. We also
remark that the modes k̃ ≤ k that are relatively close to k are identified as those giving the
worst bounds, suggesting that these are the most problematic modes for the algorithm.

If σ < k, then we may still have positivity of g̃±(z; δ, l) and g̃(z; δ, l) for all modes as
long as x or lx are large enough so that the hyperbolic term, which is always positive, is larger
than the magnitude of the trigonometric term in both (3.17b) and (3.19b). Using (4.3) and
converting back to the original variables, we have that

x = 2δ

√
1

2

(√
(k2 − k̃2)2 + σ2k2 + k̃2 − k2

)
,

while lx has an identical expression except with 2δ replaced by L. Thus we see that as long as
the parameters σ, δ, and L as are sufficiently large, we have g̃±(z; δ, l) > 0 and g̃(z; δ, l) > 0
for all modes k̃ and thus RH

2d < 1 as desired.

To verify these results, we numerically compare the spectral radius of the iteration matrix
with the theoretical limit for different values of σ. We choose here k = 30, L = 1, L̂ = 1,
and δ = L/10. From Figures 4.1, 4.2 we see that, as predicted, the Schwarz algorithm is not
convergent for all Fourier modes when σ is small but becomes convergent for σ sufficiently
large. In particular, we see in Figure 4.2 that the method can be convergent for σ � k. As
expected from our theory, the algorithm always converges well for evanescent modes (k̃ > k).
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FIG. 4.1. The convergence factor of each Fourier mode for N = 80 (left) and the convergence factor of the full
Schwarz algorithm for varying number of subdomains N (right) when σ = 0.1.
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FIG. 4.2. The convergence factor of each Fourier mode for N = 80 (left) and the convergence factor of the full
Schwarz algorithm for varying number of subdomains N (right) when σ = 1.

Similarly to the one-dimensional case we can also consider the question of k-robustness:

COROLLARY 4.2 (A case of k-independent convergence). Suppose that α = ik (the
case of classical impedance conditions) and that σ = σ0k for some constant σ0. Consider
a k-dependent domain decomposition given by L = L0k

−1 and δ = δ0k
−1, that is, the

subdomain size and overlap shrink inversely proportional to the wave number. Then the
convergence factor RH

2d can be bounded above by a k-independent value, and this bound
becomes tight as k →∞. As such, the convergence of the corresponding Schwarz method is
ultimately independent of the wave number k as it increases. Under the additional assumptions
of Theorem 4.1 (now for σ0, L0, and δ0), we thus deduce that the approach will ultimately be
k-robust and independent of the number of subdomains.

Proof. The proof is similar to the one-dimensional case except that now we must consider
the Fourier number k̃. To do so, we let k̃2 = βk2. In this scenario, the coefficients a and b of
the iteration matrix depend on k only through β. However, in the final convergence factor RH

2d

we take the supremum over all k̃, i.e., over a discrete set of positive β values. This is bounded
above by the supremum over all β ∈ R+, which is then independent of k. This supremum is
finite since the bounds derived in Theorem 4.1 do not rely on the discrete nature of k̃ and so
can be readily applied, translated into β. Note that as k →∞, the discrete set of the β-values
becomes dense in R+, so this supremum bound becomes tight. Thus we will ultimately have
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FIG. 4.3. The convergence factor of each Fourier mode in the non-overlapping case for N = 80 and σ = 0.1
(left) and σ = 1 (right).

k-robustness. Combining with Theorem 4.1 we further obtain that ultimately the convergence
will also be independent of the number of subdomains.

REMARK 4.3. We note an empirical observation that, for reasonable values of σ, δ, and L
(namely, when these parameters are not too small—essentially the same conditions required for
convergence but also with neither δ or σ being too large), the value of k̃ giving the supremum
of RH

1d(k̃) lies in a small neighborhood around k (equivalent to β = 1 in the above proof).
This is consistent with other works in the literature (e.g., [11, 22]), where the most problematic
modes are those close to the cut-off wave number k. In this case, a series expansion around
k̃ = k shows that kδ and kL being fixed are the requirements for the domain decomposition
parameters in order for the algorithm to be k-independent; see the supplementary Maple
worksheets.

For a more general theory on k-robustness of the one-level method and rigorous GMRES
bounds, see [26]. As in the one-dimensional case, we can link k and N so that we consider
solving on a fixed domain a family of problems with increasing wave number using an
increasing number of subdomains, and, under the conditions of Theorem 4.1 and Corollary 4.2,
our theory shows that the Schwarz algorithm will ultimately be k-robust and weakly scalable.

REMARK 4.4. We have focused here on the case of an overlapping domain decomposition.
While the algorithm can also work in the non-overlapping case, it typically has a very poor
behavior. It is known from the literature (for example, by setting the parameters to zero
in [22, Formula (3.2)]) that if σ = 0 in the case of a decomposition into two subdomains,
the purely iterative algorithm does not converge for evanescent modes (k̃ > k), i.e., the
convergence factor is equal to 1. By increasing σ, the convergence factor can be lowered
but only a little bit (it remains close to one), and the algorithm continues to have very poor
convergence properties for evanescent modes. This is illustrated in Figure 4.3, where we take
the same parameter values as in our previous results (k = 30, L = 1, and L̂ = 1), and it can
be proven by similar techniques to those used in the overlapping case.

We also note a fundamental difference between the one-dimensional and two-dimensional
cases from the scalability point of view. Whereas in the first case independence on the number
of subdomains is achieved simply by taking σ > 0, in the two-dimensional case things become
more complex. This is consistent with previous convergence studies, starting from that in
the seminal work on optimized transmission conditions [22], where it has been observed that
propagating and evanescent modes behave differently, and the iterative algorithm does not
converge for the cut-off wave number k. The maximum of the convergence factor is usually
attained in a neighborhood of k̃ = k and can be made sufficiently small when σ is taken
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large enough; in this case we can achieve scalability and k-robustness. We note that this kind
of discrepancy, between one- and two-dimensional problems, is typical for the Helmholtz
equation and cannot be observed in the case of the Laplace equation.

4.2. The transverse electric Maxwell’s equations. We now apply the same ideas to the
transverse electric Maxwell’s equations with damping in the frequency domain. For an electric
field E = (Ex, Ey), these equations are expressed as

LE := −k2E +∇× (∇×E) + ikσE = 0

⇔
{
−k2Ex − ∂yyEx + ∂xyEy + ikσEx = 0,
−k2Ey − ∂xxEy + ∂xyEx + ikσEy = 0,

(4.4)

for (x, y) ∈ Ω. The boundary conditions on the top and bottom boundaries (y = 0 and y = L̂)
are perfect electric conductor (PEC) conditions, the equivalent of Dirichlet conditions for
Maxwell’s equations:

E× n = 0⇔ Ex = 0, y = {0, L̂}.(4.5)

On the left and right boundaries (x = a1 and x = bN ) we use impedance boundary conditions2:

(∇×E× n)× n + ikE× n = g

⇔

{
BlE := (−∂x + ik)Ey + ∂yEx = g1, x = a1,

BrE := (∂x + ik)Ey − ∂yEx = −g2, x = bN .

(4.6)

The same conditions will be used at the interfaces between subdomains, akin to the classical
algorithm defined in [12]. The Maxwell problem (4.4)–(4.6) constitutes a “two-dimensional
wave-guide” model.

Let us denote by Enj the approximation to the solution in the subdomain j at iteration n.
Starting from an initial guess E0

j , we compute Enj from the previous values En−1
j by solving

the following local boundary value problems
LEnj = 0, x ∈ Ωj ,

BlEnj = BlEn−1
j−1 , x = aj ,

BrEnj = BrEn−1
j+1 , x = bj ,

Enx,j = 0, y ∈ {0, L̂},

(4.7)

for the interior subdomains (1 < j < N ), while for the first (j = 1) and last (j = N )
subdomain we impose BlEn1 = g1 when x = a1 and BrEnN = −g2 when x = bN . To study
the convergence of the Schwarz algorithm we define the local error in each subdomain j at
iteration n as enj = E|Ωj

−Enj . Note that these errors satisfy boundary value problems that
are the homogeneous counterparts of (4.7).

Due to the PEC boundary conditions on the top and bottom boundaries of each rectangular
subdomain, we can use the following Fourier series ansatzes to compute the local solutions of
Lenj = 0:

enx,j =

∞∑
m=1

vnj (x, k̃) sin(k̃y), eny,j =

∞∑
m=1

wnj (x, k̃) cos(k̃y), k̃ =
mπ

L̂
, m ∈ N.

2Note that in rewriting the impedance conditions we can use the three-dimensional definition of the operators,
i.e., E = (Ex, Ey , 0) and n = (1, 0, 0) for the right boundary and n = (−1, 0, 0) for the left boundary.
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By plugging in the expressions for enx,j and eny,j into Lenj = 0, a simple computation shows
that, for each Fourier number k̃, we have the general solutions

vnj (x, k̃) = −αnj
k̃

ζ
e−ζx + βnj

k̃

ζ
eζx, wnj (x, k̃) = αnj e

−ζx + βnj e
ζx,

where ζ(k̃) =
√
ikσ + k̃2 − k2. From these formulae we can see easily that

∂xv
n
j = k̃wnj , ∂xw

n
j =

ζ2

k̃
vnj .(4.8)

In order to benefit again from the analysis in the one-dimensional case, we first prove the
following result.

LEMMA 4.5 (Maxwell reduction). For each Fourier number k̃, we have that both vnj (x, k̃)

and wnj (x, k̃) are solutions of the following one-dimensional problem:
(ikσ + k̃2 − k2)unj − ∂xxunj = 0, x ∈ (aj , bj),

Bl,σunj (x, k̃) = Bl,σun−1
j−1 (x, k̃), x = aj ,

Br,σunj (x, k̃) = Br,σun−1
j+1 (x, k̃), x = bj ,

where Bl,σ = −∂x + ik + σ and Br,σ = ∂x + ik + σ.
Proof. Let us notice first that, because of (4.8), we have

∂xe
n
x,j + ∂ye

n
y,j =

∞∑
m=1

(
∂xv

n
j − k̃wnj

)
sin(k̃y) = 0.

If we use this in the error equation Lenj = 0, then we obtain that both vnj (x, k̃) and wnj (x, k̃)

satisfy, for each k̃, the one-dimensional equation (ikσ + k̃2 − k2)unj − ∂xxunj = 0. Let us
analyze now the boundary conditions. With the help of (4.8), we consider the right boundary
and note that the left one can be treated similarly:

Brenj = (∂x + ik)eny,j − ∂yenx,j =

∞∑
m=1

((∂x + ik)wnj − k̃vnj ) cos(k̃y)

=

∞∑
m=1

(
ik

k̃
∂xv

n
j +

(
ζ2

k̃
− k̃
)
vnj

)
cos(k̃y) =

∞∑
m=1

ik

k̃
Br,σvnj cos(k̃y).

Thus, imposing a transfer of boundary data with Brenj is equivalent to that with Br,σvnj , for
each Fourier number k̃.

It is now clear that the analysis of the two-dimensional case can again be derived from
the one-dimensional case. That is, the result from Lemma 3.1 applies here if we replace α by
ik + σ and by ζ being defined by (4.2). Let us denote the resulting iteration matrix, for each
k̃, by T M

1d (k̃), and let RM
1d(k̃) := limN→∞ ρ(T M

1d (k̃)) with RM
2d = supk̃ R

M
1d(k̃). We can now

state our main convergence result for the two-dimensional Maxwell problem.
THEOREM 4.6 (Convergence of the Schwarz algorithm for the Maxwell problem in 2D).

For all k > 0, σ > 0, δ > 0, and L > 0, we have that RM
1d(k̃) < 1 for all evanescent modes

k̃ > k. Furthermore, under the assumption that σ, δ, and L are sufficiently large, we have
that RM

2d < 1. In particular, this is true when σ ≥ k for all δ > 0 and L > 0. Therefore,
convergence will ultimately be independent of the number of subdomains (we say that the
Schwarz method will scale).
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Proof. By Lemma 3.2 we see that it is enough to study the sign of g±(z; δ, l) and g(z; δ, l).
To assist, we use the scaled notation κ = 2δk, κ̃ = 2δk̃, and s = 2δσ akin to (3.12). We can
see that if α = ik + σ, then for z := x+ iy, (3.15) becomes

<v =
−κ2 − s2 + x2 + y2

(κ+ y)2 + (s+ x)2
, =v =

2sy − 2κx

(κ+ y)2 + (s+ x)2
, |v|2 =

(κ− y)2 + (s− x)2

(κ+ y)2 + (s+ x)2
,

where |v|2 < 1. We can now simplify g±(z; δ, l) in (3.13) using these formulae to give

g±(z; δ, l) =
4ex(l+1)

(κ+ y)2 + (s+ x)2
g̃±(z; δ, l),

g̃±(z; δ, l) = [(κ2 + s2 + x2 + y2) sinh(x) + 2(κy + sx) cosh(x)] sinh(lx)

± [(κ2 + s2 − x2 − y2) sin(y) + 2(sy − κx) cos(y)] sin(ly).

Proceeding as before, using κ̃2 − κ2 = x2 − y2 and the bounds (3.18), we derive that

g̃±(z; δ, l) > l(κ2 + s2 + 2s+ x2 + y2)(κ̃2 − κ2),

which is positive for all evanescent modes k̃ > k. Similarly, simplifying g(z; δ, l) in (3.14) we
find that

g(z; δ, l) =
4e2x(l+1)

((κ+ y)2 + (s+ x)2)2
g̃(z; δ, l),

g̃(z; δ, l) =
[
((κ2 + s2 + x2 + y2)2 + 4(κy + sx)2) sinh(x(l + 2))

+ 4(κy + sx)(κ2 + s2 + x2 + y2) cosh(x(l + 2))
]

sinh(lx)

+
[
((−κ2 − s2 + x2 + y2)2 − 4(κx− sy)2) sin(y(l + 2))

+ 4(κx− sy)(−κ2 − s2 + x2 + y2) cos(y(l + 2))
]

sin(ly),

from which we can obtain the bound

g̃(z; δ, l) > l(l + 2)
(
(κ2 + s2 + x2 + y2)2 + 4s2(x2 + y2) + 8κsxy

)
(κ̃2 − κ2)

+ 4ls
(
κ2 + s2 + x2 + y2

)
(κ̃2 − κ2).

Again, this is positive for all evanescent modes, and thus we deduce that RM
1d(k̃) < 1 for all

k̃ > k.
We now refine these bounds, as in the proof of Theorem 4.1 and using the same identities

and substitutions. For g±(z; δ, l) we first obtain

g̃±(z; δ, l) > l
(
x2(s2 + κ̃2 + 2y2)− y2

∣∣s2 + κ̃2 − 2x2
∣∣+ 2x(κy + sx)− 2y |κx− sy|

)
,

and split the analysis into four cases based on the sign of each term we take the absolute value
of. At first consider the case s2 + κ̃2 ≤ 2x2 and κx ≤ sy. Then,

g̃±(z; δ, l) > l
(
(s2 + κ̃2)(x2 + y2) + 4κxy + 2s(x2 − y2)

)
= l
(

(s2 + κ̃2)
√

(κ̃2 − κ2)2 + κ2s2 + 2κ̃2s
)
.

Now consider the case s2 + κ̃2 > 2x2 and κx > sy, where we find that

g̃±(z; δ, l) > l
(
4x2y2 + (s2 + κ̃2)(x2 − y2) + 2s(x2 + y2)

)
= l
(
κ̃2(s2 + κ̃2 − κ2) + 2s

√
(κ̃2 − κ2)2 + κ2s2

)
.
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The remaining cases follow as combinations of the previous two cases, and we deduce, in the
case s2 + κ̃2 ≤ 2x2 and κx > sy, that

g̃±(z; δ, l) > l(s2 + κ̃2 + 2s)
√

(κ̃2 − κ2)2 + κ2s2,

while the case s2 + κ̃2 > 2x2 and κx ≤ sy gives

g̃±(z; δ, l) > lκ̃2(s2 + κ̃2 − κ2 + 2s).

Turning to g̃(z; δ, l), we first derive that

g̃(z; δ, l) > l(l + 2)
[
x2((s2 + κ̃2 + 2y2)2 + 4(κy + sx)2)

− y2((s2 + κ̃2 − 2x2)2 + 4(κx− sy)2)
]

+ 4l
(
x(κy + sx)(s2 + κ̃2 + 2y2)− y

∣∣(κx− sy)(s2 + κ̃2 − 2x2)
∣∣) ,

from which we see that we need to analyze just two sets of combined cases. First consider the
case when both s2 + κ̃2 ≤ 2x2 and κx ≤ sy or both s2 + κ̃2 > 2x2 and κx > sy. Then,

g̃(z; δ, l) > l(l + 2)
[
(s2 + κ̃2)2(x2 − y2) + 4x2y2(2s2 + 2κ̃2 + y2 − x2)

+ 4s(x2 + y2)(2κxy + s(x2 − y2))
]

+ 4l(x2 + y2)(2κxy + s(s2 + κ̃2))

= l(l + 2)
[
κ2s2(s2 + κ2) + κ̃2(s2 + κ̃2)(s2 + κ̃2 − κ2)

+ 4κ̃2s2
√

(κ̃2 − κ2)2 + κ2s2
]

+ 4ls(s2 + κ̃2 + κ2)
√

(κ̃2 − κ2)2 + κ2s2.

On the other hand, in the second set of cases when both s2 + κ̃2 ≤ 2x2 and κx > sy or both
s2 + κ̃2 > 2x2 and κx ≤ sy, we have

g̃(z; δ, l) > l(l + 2)
[
(s2 + κ̃2)2(x2 − y2) + 4x2y2(2s2 + 2κ̃2 + y2 − x2)

+ 4s(x2 + y2)(2κxy + s(x2 − y2))
]

+ 4l
(
2κxy(s2 + κ̃2 + y2 − x2) + s(4x2y2 + (s2 + κ̃2)(x2 − y2))

)
= l(l + 2)

[
κ2s2(s2 + κ2) + κ̃2(s2 + κ̃2)(s2 + κ̃2 − κ2)

+ 4κ̃2s2
√

(κ̃2 − κ2)2 + κ2s2
]

+ 4ls
(
κ2(s2 + κ2) + κ̃2(s2 + κ̃2 − κ2)

)
.

Summarizing, we see that all cases give g̃±(z; δ, l) > 0 and g̃(z; δ, l) > 0 for all modes k̃
satisfying k̃2 ≥ k2 − σ2 (i.e., κ̃2 ≥ κ2 − s2). From this we can deduce that when σ ≥ k,
we have positivity for all modes k̃ and hence RM

2d < 1. Note that σ ≥ k is far from a
necessary requirement, and it is clear that there is some slack in these bounds. We also remark
that it follows from this analysis that the modes k̃ ≤

√
k2 − σ2 that are relatively close to√

k2 − σ2 yield the poorest bounds, suggesting that they are the most problematic ones for
the algorithm. Indeed, we may have RM

1d(k̃) ≥ 1 when k̃ ≤
√
k2 − σ2 for some choices of

problem parameters. However, as in Theorem 4.1, we can enforce positivity of g̃±(z; δ, l)
and g̃(z; δ, l) for all modes so long as x or lx are large enough. Since x and lx take the same
expressions as in Theorem 4.1 we can similarly deduce that, as long as the parameters σ, δ,
and L are sufficiently large, we have g̃±(z; δ, l) > 0 and g̃(z; δ, l) > 0 for all modes k̃ and
thus obtain the required conclusion that RM

2d < 1.
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COROLLARY 4.7 (A case of k-independent convergence). Suppose that σ = σ0k for
some constant σ0. Consider a k-dependent domain decomposition given by L = L0k

−1 and
δ = δ0k

−1, that is, the subdomain size and the overlap shrink inversely proportional to the
wave number. Then the convergence factor RM

2d can be bounded above by a k-independent
value, and this bound becomes tight as k →∞. As such, the convergence of the corresponding
Schwarz method is ultimately independent of the wave number k as it increases. Under
the additional assumptions of Theorem 4.6 for convergence (now for σ0, L0, and δ0), we
thus deduce that the approach will ultimately be k-robust and independent of the number of
subdomains.

The proof is identical to that of Corollary 4.2, and we find similar empirical observations
to those in Remark 4.3. As before, we can also link k and N so that we consider solving on a
fixed domain a family of problems with increasing wave number using an increasing number
of subdomains. Then, under the conditions of Theorem 4.6 and Corollary 4.7, our theory
shows that the algorithm will ultimately be k-robust and weakly scalable. Note that in the
Maxwell case we are not aware of any theory showing k-robustness of the one-level method.

5. Numerical simulations of the discretized equation. Although extensive numerical
results are beyond the scope of this paper, in the following short section we will show some
simulations that confirm our theory within the more practical setting of using an iterative Krylov
method to accelerate convergence, with the Schwarz method being used as a preconditioner.

We focus here on the two-dimensional Helmholtz equation, as described in Section 4
(with α = ik), where a (horizontal) plane wave is incoming from the left boundary and
homogeneous Dirichlet boundary conditions are imposed on the top and bottom boundaries,
giving a wave-guide problem. A second test case that we consider is the propagation of such
a wave in free space (i.e., when impedance boundary conditions are imposed on the whole
boundary). While not covered by our theory, we will nonetheless observe similar conclusions,
illustrating that the results apply more widely than within the restrictions of our theoretical
assumptions. In our simulations, each subdomain is a unit square split uniformly with a fixed
number of grid points in each direction. New subdomains are added on the right so that, with
N subdomains, the whole domain is Ω = (0, N)× (0, 1).

To discretize, we use a uniform square grid in each direction and triangulate it to form P1
elements. As we increase k we increase the number of grid points proportional to k3/2 in order
to ameliorate the pollution effect [1]. We use an overlap of size 2h, with h being the mesh size.
All computations are performed using FreeFem (http://freefem.org/), in particular
using the ffddm framework. We solve the discretized problem using GMRES, where the
parallel Schwarz method with Robin conditions is used as a preconditioner. In particular, we
use right-preconditioned GMRES and terminate when a relative residual tolerance of 10−6 is
reached. The construction of the domain decomposition preconditioner is described in detail
in [3, 16]. The preconditioner, which arises naturally as the discretized version of the parallel
Schwarz method with the Robin conditions that we have studied (see, e.g., [33]), is known
as the one-level optimized restricted additive Schwarz (ORAS) preconditioner. This ORAS
preconditioner is given by

M−1 =

N∑
i=1

RT
i DiA

−1
i Ri,

where {Ri}1≤i≤N are the Boolean restriction matrices from the global to the local finite
element spaces and {Di}1≤i≤N are local diagonal matrices representing the partition of unity.
The key ingredient of the ORAS method is that the local subdomain matrices {Ai}1≤i≤N
incorporate more efficient Robin transmission conditions.
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TABLE 5.1
Preconditioned GMRES iteration counts for varying wave number k and number of subdomains N when σ = 1.

Wave-guide problem Free space problem
k\N 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

20 19 22 25 30 30 30 30 30 19 21 25 25 25 25 25 25
40 18 21 24 29 29 29 29 29 17 19 24 25 25 25 25 25
60 19 21 24 29 29 29 29 29 16 19 24 25 25 25 25 25
80 19 21 24 28 28 28 28 28 16 18 24 25 25 25 25 25

100 19 21 24 28 28 28 28 28 16 18 24 25 25 25 25 24

Note that, unlike in [26], where the emphasis is placed on the independence of the one-
level method with respect to the wave number, we focus here on the scalability aspect, i.e.,
the independence of the one-level method with respect to the number of subdomains N as
soon as the absorption parameter kσ is positive. We will observe that, beyond a sufficiently
large value of N , the iteration count does not increase further, though in general this value will
depend on the parameters of the problem, namely the wave number and the absorption as well
as the overlap and the subdomain size. As a side effect, when the absorption is sufficiently
large (i.e., of order k), wave number independence is also achieved.

In Table 5.1 we detail the GMRES iteration count for an increasing number of subdomains
N and different values of k for the wave-guide problem and the wave propagation in free
space problem. We set the conductivity parameter as σ = 1 (giving an absorption parameter
k). We see that, after an initial increase, the iteration counts become independent of the
number of subdomains and also independent of the wave number, which is consistent with the
results obtained in [26], where the absorption parameter for optimal convergence is of order
k. Another possible explanation of this is that when the absorption parameter increases, the
waves are damped, and their amplitude will decrease with the distance to the boundary on
which the excitation is imposed. Hence, when additional subdomains are added, the solution
will not vary much in these subdomains, and thus the residual will already be small.

6. Conclusions. In this work we have analyzed a purely iterative version of the Schwarz
domain decomposition algorithm, in the limiting case of many subdomains, at the continuous
level for the one-dimensional and two-dimensional Helmholtz and Maxwell’s equations with
absorption. The key mathematical tool which facilitated this study is the limiting spectrum
of a sequence of block Toeplitz matrices having a particular structure, for which we proved
a new result in the non-Hermitian case. The algorithm is convergent in the one-dimensional
case as soon as we have absorption, and, for sufficiently many subdomains N , its convergence
factor becomes independent of the number of subdomains, meaning that the algorithm is also
scalable. In practice, this is achieved for relatively small N . In the two-dimensional case these
conclusions remain true for the evanescent modes of the error (i.e., k̃ > k) or when σ, δ, and L
are sufficiently large. In particular, we proved that the stationary iteration will always converge
when σ ≥ k, giving an absorption parameter k2. We further showed that the algorithm can be
k-robust within certain scenarios, requiring the domain decomposition parameters to depend
on k.

The concept of the limiting spectrum proved to be a very elegant mathematical tool and
can be used, for example, in constructing more sophisticated transmission conditions to further
explore parameter robustness, to analyze the algorithm at the discrete level, or to design
improved preconditioners.
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