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1. Introduction. This paper considers the nonlinear eigenvalue problem of finding a
parameter λ such that the linear system

T (λ)x = 0

has a nontrivial solution x 6= 0, where T (·) is a family of linear bounded operators on a real
Hilbert spaceH. It generalizes the linear eigenvalue problem Ax = λx and the generalized
linear eigenvalue problem Ax = λBx, where A and B are linear operators onH.

Nonlinear eigenvalue problems arise in a variety of applications in science and engineering,
such as the dynamic analysis of structures, vibrations of fluid-solid structures, the electronic
behavior of quantum dots, and viscoelastic oscillators, to name just a few. Due to its wide
range of applications, the quadratic eigenvalue problem T (λ)x = λ2Mx+ λCx+Kx = 0
is of particular interest [153, 225], but also polynomial [162, 163, 173], rational [217], and
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more general eigenvalue problems appear. A standard approach for investigating or numer-
ically solving polynomial eigenvalue problems is linearization, where the original problem
is transformed into a generalized linear eigenvalue problem with the same spectrum. Details
on linearization and structure preservation are discussed in [81, 106, 137, 156]. Likewise, a
rational eigenvalue problem can be turned into a polynomial one by multiplying it with an
appropriate scalar polynomial in λ. Notice, however, that important structural properties like
symmetry and variational characterizations of eigenvalues may get lost. Moreover, the degree
of the polynomial can become very large, and roots of the denominator produce spurious
eigenvalues that may hamper the numerical solution. We do not consider polynomial or
rational eigenvalue problems here.

In this paper we consider self-adjoint nonlinear eigenvalue problems that allow for a varia-
tional characterization of its eigenvalues generalizing the well-known minmax characterization
of Poincaré [191] or Courant [50], Fischer [68], and Weyl [256] for linear eigenvalue problems.
Recent surveys on general nonlinear eigenvalue are contained in [89] and [245].

Variational characterizations are very powerful tools when studying self-adjoint linear
operators on a Hilbert space H. Bounds for eigenvalues, comparison theorems, interlacing
results, and monotonicity of eigenvalues can be proved easily with these characterizations, to
name just a few.

The paper is organized as follows. Section 2 summaries generalizations of the variational
characterization of eigenvalues for symmetric nonlinear eigenproblems. Section 3 presents
various numerical methods for dense eigenvalue problems, and Section 4 discusses iterative
projection methods for large sparse problems. Most of the methods in these two sections also
apply to non-symmetric problems.

The following three sections are concerned with the localization of eigenvalues for dense
problems. Hyperbolic matrix polynomials allow for a definite linearization and can therefore
be solved by standard algorithms like the QR algorithm. In Section 5 we present a method
for detecting whether a given matrix polynomial is hyperbolic or not. Section 6 generalizes
Sylvester’s law of inertia to symmetric nonlinear eigenvalue problems, which combined with
the bisection method yields an easy way to locate eigenvalues on the real axis. In Section 7 we
consider nonlinear low-rank modifications of symmetric eigenvalue problems.

The Automated Multi-Level Substructuring (AMLS) method was introduced by Ben-
nighof [27] to reduce large symmetric eigenvalue problems to much smaller ones. It consists
of a combination of elimination of variables and curtailment of the system in several steps.
Section 8 contains an error bound for AMLS.

Regularization for large-scale problems by orthogonal projection for total least-squares
problems based on symmetric eigenproblems and for the dual regularization of total least-
squares problems are presented in Sections 9, 10, and 11.

The following Sections 12 and 13 take advantage of variational characterizations of
eigenvalues to examine the electronic behavior of quantum dots and to study viscoelastic
damping. Section 14 is dedicated to modeling vibrations of fluid-solid structures. Although
this is not a symmetric eigenproblem, its eigenvalues allow for a variational characterization.
The paper closes with conclusions.

2. Variational characterizations of eigenvalues for nonlinear eigenproblems. This
section contains a summary on variational characterizations of eigenvalues of nonlinear
eigenvalue problems generalizing the well-known minmax characterization of Poincaré [191]
or Courant [50], Fischer [68], and Weyl [256] for linear eigenvalue problems. Variational
characterizations are highly useful instruments for investigating self-adjoint linear operators
on a Hilbert spaceH. For instance, they can be employed to obtain bounds for eigenvalues and
comparison theorems yielding results on the interlacing and the monotonicity of eigenvalues;
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see Sections 5, 6, and 7 for detailed results on the location of eigenvalues. The other sections
of this paper are all about particular applications, where variational characterization plays a
crucial role.

We consider the nonlinear eigenvalue problem

(2.1) T (λ)x = 0,

where T (λ) : H → H, λ ∈ J , is a family of self-adjoint and bounded operators depending
continuously on the parameter λ and J ⊂ R is an open real interval that may be unbounded.
We stress the fact that in this section we are only concerned with real eigenvalues in J although
T (·) may be defined on a larger subset of C and T (·) may have additional eigenvalues in
C \ J .

To generalize the variational characterization of eigenvalues, we first need a generalization
of the Rayleigh quotient. To this end we assume that

(A1) for every fixed x ∈ H, x 6= 0, the real equation

f(λ;x) := 〈T (λ)x, x〉 = 0

has at most one solution λ =: p(x) ∈ J ,
with the inner product 〈·, ·〉 as scalar product. This defines a Rayleigh functional p of (2.1)
with respect to J , and we denote by D(p) ⊂ H the domain of definition of p.

Generalizing the definiteness requirement for a linear pencil T (λ) = λB −A, we further
assume that λ 7→ 〈T (λ)x, x〉 is increasing at the point p(x), i.e.,

(A2) for every x ∈ D(p) and every λ ∈ J with λ 6= p(x), it holds that

(λ− p(x))f(λ;x) > 0.

If p is defined on D = H \ {0}, then the problem T (λ)x = 0 is called overdamped. This
notation is motivated by the finite-dimensional quadratic eigenvalue problem

T (λ)x = λ2Mx+ λCx+Kx = 0,

where M , C, and K are Hermitian and positive definite matrices. If C is large enough such
that d(x) := (xHCx)2 − 4(xHKx)(xHMx) > 0 for every x 6= 0, then T (·) is overdamped.
Generalizations of the minmax and maxmin characterizations of eigenvalues were proved
by Duffin [56] for the quadratic case and by Rogers [196] for general overdamped problems.
Infinite-dimensional overdamped eigenvalue problems were studied by Turner [226], Langer
[139], and Weinberger [254], who proved generalizations of both the maxmin characterization
of Poincaré and the minmax characterization of Courant, Fischer, and Weyl for quadratic
(and by Turner [227] for polynomial) overdamped problems. The corresponding results
on generalizations for general overdamped problems of infinite dimension were derived by
Hadeler [91]. Similar results (weakening the compactness or smoothness requirements) are
contained in the works of Rogers [197], Werner [255], Abramov [1], Hadeler [92], Markus
[168], Maksudov and Gasanov [165], and Hasanov [100].

The key to the variational principle in the nonoverdamped case is an appropriate enu-
meration of the eigenvalues. In general, the natural enumeration, i.e., the first eigenvalue is
the smallest one, followed by the second smallest one, etc. is not reasonable. Instead, the
number of an eigenvalue λ of the nonlinear problem (2.1) is inherited from the location of
the eigenvalue 0 in the spectrum of the operator T (λ) based on the following consideration;
cf. [248].
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For j ∈ N and λ ∈ J , let

µj(λ) := sup
V ∈Sj

min
v∈V,v 6=0

〈T (λ)v, v〉
〈v, v〉

,

where Sj is the set of all j-dimensional subspaces ofH. We assume that
(A3) if µn(λ) = 0 for some n ∈ N and some λ ∈ J , then, for j = 1, . . . , n, the supremum

in µj(λ) is attained and µ1(λ) ≥ µ2(λ) ≥ · · · ≥ µn(λ) are the n largest eigenvalues
of the linear operator T (λ). Conversely, if µ = 0 is an eigenvalue of the operator
T (λ), then µn(λ) = 0 for some n ∈ N.

DEFINITION 2.1. λ ∈ J is an nth eigenvalue of T (·) if µn(λ) = 0 for n ∈ N.

Condition (A3) is satisfied for example if for every λ ∈ J the supremum of the essential
spectrum of T (λ) is less than 0. The following stronger condition that for every λ ∈ J there
exists ν(λ) > 0 such that T (λ) + ν(λ)I is a compact operator was used in Hadeler [91].
With this enumeration the following minmax characterization for eigenvalues was proved
in [243, 248].

THEOREM 2.2 ([243, 248]). Let J be an open interval in R, and let T (λ) : H → H,
λ ∈ J , be a family of self-adjoint and bounded operators depending continuously on the
parameter λ such that the conditions (A1), (A2), and (A3) are satisfied. Then the following
statements hold:

(i) For every ` ∈ N, there is at most one `th eigenvalue of T (·), which can be character-
ized by

(2.2) λ` = min
V∈S`,

V∩D(p)6=∅

sup
v∈V ∩D(p)

p(v).

(ii) If

λ` := inf
V∈S`,

V∩D(p)6=∅

sup
v∈V ∩D(p)

p(v) ∈ J

for some ` ∈ N, then λ` is the `th eigenvalue of T (·) in J , and (2.2) holds.
(iii) If there exist the kth and the `th eigenvalue λk and λ` in J (k < `), then J contains

the jth eigenvalue λj (k ≤ j ≤ `) as well, and λk ≤ λj ≤ λ`.
(iv) The minimum in (2.2) is attained for the invariant subspace of T (λ`) corresponding

to its ` largest eigenvalues.
The proof is based on the following lemma which relates the supremum of p on a subspace

V of H to the sign of the Rayleigh quotient of T (λ) on V and which is useful in numerical
methods for computing eigenvalues of the problem (2.1).

LEMMA 2.3. Under the conditions (A1), (A2), and (A3), let λ ∈ J , and assume that V
is a finite-dimensional subspace ofH such that V ∩ D(p) 6= ∅. Then

λ

 <
=
>

 sup
x∈V ∩D(p)

p(x) ⇔ min
x∈V
〈T (λ)x, x〉

 <
=
>

 0.

REMARK 2.4. We only consider the case when for every λ ∈ J the supremum of the
essential spectrum of T (λ) is less than 0. In the same way we obtain, for the case when for
every λ ∈ J the infimum of T (λ) exceeds 0, a maxinf characterization of the eigenvalues of
T (·) in J if we replace (A2) by

(A′2) (λ− p(x))f(λ;x) < 0 for every x ∈ D(p) and λ ∈ J such that λ 6= p(x)
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and (A3) with
(A′3) If

νm(λ) := inf
V ∈Sm

max
x∈V,x6=0

〈T (λ)x, x〉/〈x, x〉 = 0

for some m ∈ N and some λ ∈ J , then, for j = 1, . . . ,m, the infimum in νj(λ) is
attained, and ν1(λ) ≤ ν2(λ) ≤ · · · ≤ νm(λ) are the m smallest eigenvalues of the
linear operator T (λ). Conversely, if ν = 0 is an eigenvalue of the operator T (λ),
then νm(λ) = 0 for some m ∈ N.

If the eigenvalues of T (·) are now enumerated in decreasing order, i.e., λ ∈ J is an mth
eigenvalue of T (·) if νm(λ) = 0, for m ∈ N, then λm can be characterized by

λm = max
V∈Sm

V∩D(p) 6=∅

inf
v∈V ∩D(p)

p(v).

In the following we consider only problem (2.1) under the conditions (A1), (A2), and
(A3) although the analogue results also hold under the conditions (A1), (A′2), and (A′3) with
the modified enumeration given above. If the extreme eigenvalue λ1 is contained in J , then
the enumeration based on (A3) is the natural ordering. For this case, Barston [19] proved
the minmax characterization for some extreme real eigenvalues for the finite-dimensional
quadratic eigenvalue problems. Abramov [2] and Hasanov [101] derived the minmax and
maxmin characterizations for the extreme eigenvalues for pencils of waveguide type, which are
certain quadratic eigenvalue problems depending on two parameters. For T (·) with λ1 ∈ J , it
can further be shown that the eigenspaces corresponding to eigenvalues in J are contained in
D(p) ∪ {0}. Hence, the minmax characterization is of the following form:

THEOREM 2.5. Let the conditions (A1), (A2), and (A3) be satisfied, and assume that
λ1 = infx∈D(p) p(x) ∈ J and λn ∈ J , for some n ∈ N.

If j ∈ {1, . . . , n} and V ∈ Sj such that λj = supx∈V ∩D(p) p(x), then V ⊂ D(p) ∪ {0},
and the characterization of λj can be replaced by

λj = min
V∈Sj

V⊂D(p)∪{0}

sup
v∈V ∩D(p)

p(v).

A generalization of the maxmin characterization of Courant, Fischer, and Weyl was
proved in [234]:

THEOREM 2.6 ([234]). Assume that the conditions (A1), (A2), and (A3) are satisfied. If
there exists an nth eigenvalue λn ∈ J of T (λ)x = 0, then

λn = max
V∈Sn−1

V⊥∩D(p)6=∅

inf
v∈V ⊥∩D(p)

p(v),

and the maximum is attained by W := span{u1, . . . , un−1}, where uj denotes an eigenvector
corresponding to the jth-largest eigenvalue µj(λn) of T (λn).

Essentially the same variational characterizations of Poincaré- and of Courant-Fischer-
Weyl-type were derived by Mel’nik and Nazarov [174], where T (λ) is a set of bounded
self-adjoint operators depending continuously differentiably on λ, by Griniv and Mel’nik [83]
for T (λ) = A(λ) − I , where A(λ) is self-adjoint and compact, and by Binding, Eschwé,
and H. Langer [40] for general bounded and self-adjoint T (λ) depending continuously on λ.
Eschwé and M. Langer [66] obtained these variational characterizations also for unbounded
operators. In most of these papers the natural enumeration of the eigenvalues is used. However,
in [66] it is shifted by the dimension of the maximal subspace on which the functions 〈T (·)x, x〉
are negative on the whole interval J .
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Hadeler [90, 91] proved Rayleigh’s principle for differentiable overdamped problems. He
showed that the eigenvectors are orthogonal with respect to the scalar product

(2.3) [x, y] :=


〈
T (p(x))− T (p(y))

p(x)− p(y)
x, y

〉
if p(x) 6= p(y),

〈T ′(p(x))x, y〉 if p(x) = p(y),

which is symmetric, definite, and homogeneous but in general not bilinear. For non-differenti-
able problems, the scalar product (2.3) can be modified for the case p(x) = p(y) by setting
[x, y] := 〈x, y〉. Then the generalized scalar product [·, ·] becomes discontinuous for p(x) =
p(y), but the continuity is not needed in the proof of the following Rayleigh’s principle ([246]):

THEOREM 2.7 ([246]). Under the conditions (A1), (A2), (A3), assume that J contains
n ≥ 1 eigenvalues λ1 ≤ · · · ≤ λn (where λi is an ith eigenvalue) with orthogonal (with
respect to [·, ·]) eigenvectors x1, . . . , xn.

If there exists x ∈ D(p) with [xi, x] = 0, for i = 1, . . . , n, then J contains an (n+ 1)st
eigenvalue, and

λn+1 = inf{p(x) : [xi, x] = 0, i = 1, . . . , n}.

Here, we took advantage of the Rayleigh functional to obtain variational characteriza-
tions of eigenvalues. It can also be used to prove approximation properties of eigenvector
approximations as was done by Schreiber and Schwetlick [204, 206].

3. Numerical methods for dense nonlinear eigenproblems. In the following sections
we focus on numerical methods for small dense nonlinear symmetric eigenproblems, i.e.,

(3.1) T (λ)x = 0,

assuming that T (λ) is a family of Hermitian matrices, which is a necessary prerequisite for the
variational characterization of Section 2. In Section 3.1, methods based on a corresponding
scalar equation are discussed, whereas Section 3.2 considers numerical approaches based on
Newton’s method. It is noticeable that most of them apply also to non-symmetric eigenprob-
lems. However, for iterative projection methods considered in the next section, the residual
inverse iteration, Algorithm 3, and the safeguarded iteration, Algorithm 4, are of particular
interest.

For polynomial or rational eigenproblems, a common approach is to use linearization and
apply standard methods for solving linear eigenvalue problems [81, 106, 190]. However, in
many applications, the polynomial eigenproblems possess some desirable structure that should
be preserved and exploited in their numerical solution for reasons of efficiency, stability, and
accuracy [67, 106, 161, 164].

Furthermore, in [163] an approach was introduced to construct linearizations of poly-
nomial eigenvalue problems, which generalize the companion forms, and which gave rise
to linearizations preserving symmetry [102], definiteness [85, 103, 183], and respecting
palindromic and odd-even structures [162]. We do not review these types of problems here.

For general nonlinear eigenproblems, the classical approach is to formulate the eigenvalue
problem as a system of nonlinear equations and to use variants of the Newton’s method or the
inverse iteration [13, 123, 137, 186, 188]. Thus, these methods are local and not guaranteed to
converge, but as for linear eigenvalue problems, their basin of convergence can be enlarged by
homotopy methods [52, 117, 155] or trust region strategies [258].

Generally, methods for solving dense eigenproblems require several factorizations of
varying matrices to approximate one eigenvalue. Thus, they are only appropriate for relatively
small eigenproblems (with dimensions up to 1000, depending on the computer in use). In case
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of large and sparse problems, iterative projection methods from Section 4 are applicable. It
should be noted that when solving large and sparse problems, also solvers for dense nonlinear
eigenproblems discussed in this section are needed to solve the projected eigenproblems.

3.1. Methods based on a scalar equation. In this section, we consider methods that
are based on smooth scalar functions φ(λ) such that the eigenvalue λ̂ of interest of (3.1) is a
root of φ. We apply Newton’s method to solve φ(λ) = 0 for some initial guess, but any other
suitable method (e.g., a higher-order method) may be used instead to solve this equation.

The most natural choice is φ(λ) = detT (λ). It was suggested by Kublanovskaya [123,
124] to use a QR-decomposition with column pivoting T (λ)P (λ) = Q(λ)R(λ), where P (λ)
is a permutation matrix that is chosen such that the diagonal elements rjj(λ) of R(λ) are
decreasing in magnitude, i.e., |r11(λ)| ≥ |r22(λ)| ≥ · · · ≥ |rnn(λ)|. Then λ is an eigenvalue
if and only if rnn(λ) = 0. Applying Newton’s method to this equation yields the iteration

(3.2) λk+1 = λk −
1

eHn Q(λk)HT ′(λk)P (λk)R(λk)−1en

for eigenvalue approximations of (3.1), where en denotes the nth unit vector. Approximations
of left and right eigenvectors can be obtained from yk = Q(λk)en and xk = P (λk)R(λk)−1en.

An improved version of Kublanovskaya’s method was suggested by Jain, Singhal, and
Huseyin [112], who also proved quadratic convergence of their scheme. A similar approach
was presented by Yang [259] via a representation of Newton’s method using the LU factoriza-
tion of T (λ).

A careful analysis of the QR algorithm for banded matrices with a narrow bandwidth
based on Newton’s method and a new version based on a new data structure enabling a more
efficient use of memory is described in [74]. The source code contained in [75] is publicly
available.

The following method (originally applied to polynomial matrix-valued functions T (·))
called nonlinear generalized Rayleigh quotient iteration (NGRQI) was introduced by Lan-
caster [136] and also applies to more general T (·). Let T (·) be holomorphic in a neighborhood
Λ of an eigenvalue λ̂ of T (·), and assume that a and b are not orthogonal to ker(TH(λ̂)) and
ker(T (λ̂)), respectively. For a given λ 6= λ̂, let v(λ) and w(λ) be solutions of the linear
systems

(3.3) T (λ)v(λ) = a and T (λ)Hw(λ) = b,

and define

φ(λ) :=
1

bHT (λ)−1a
.

Then Newton’s method applied to φ yields the NGRQI method with the generalized Rayleigh
quotients

λk+1 = λk −
w(λk)HT (λk)v(λk)

w(λk)HT ′(λk)v(λk)
,

at (λk, v(λk), w(λk)). If λ̂ is a simple eigenvalue, then λ̂ is a simple root of φ, and the NGRQI
method converges quadratically to λ̂ [136].

Since the system matrices in (3.3) become ill-conditioned close to λ̂, Schwetlick and
Schreiber [206] considered an equivalent bordered version of (3.3),[

T (λ) a
bH 0

] [
s
µs

]
=

[
0
α

]
and

[
T (λ)H b
aH 0

] [
t
νt

]
=

[
0
α

]
,
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which has to be solved, where α is a scaling factor. The system matrices are nonsingular for
λ close enough to a simple eigenvalue λ̂ if a and b are not orthogonal to the right and left
eigenvector, respectively. Unger [228] (and more generally Langer [140] for holomorphic
operator functions in a Hilbert space) considered also the case of multiple eigenvalues λ̂.

A further approach has been introduced by Andrew, Chu, and Lancaster [12]. They take
advantage of Bordered matrices, Deleting one row or column, and Substituting one of the
vectors b or c, which motivates the name BDS method. The general form of BDS methods,
which—like the approach in [206]—avoids the solution of linear systems with nearly singular
matrices, reads as follows: For fixed vectors b and c and H(λ) := T (λ) + bcH , determine s, t,
and φ such that

H(λ)s(λ) = (1− φ(λ))b, t(λ)TH(λ) = (1− φ(λ))cH ,

bHt(λ) = 1 = cHs(λ), and φ(λ) = −t(λ)HT (λ)s(λ) = 0.

The function φ(λ) can be evaluated in the following way: By solving H(λ)s̃(λ) = b and
scaling the solution, one obtains

s(λ) = s̃(λ)/
(
cH s̃(λ)

)
and φ(λ) = 1−

(
cH s̃(λ)

)−1
,

and t(λ) can be calculated similarly. Determining a root λ̂ by Newton’s method is obviously
equivalent to NGRQI; the eigenvector approximations, however, are different from the natural
choices s(λ) = T (λ)−1c and t(λ)H = bHT (λ)−1.

Osborne [187] considers Newton’s method for the complex function φ(λ) defined by

T (λ)u = φ(λ)x, sHu = κ,

where κ is a given constant and x and s are given vectors. The corresponding basic iteration
applies Newton updates for λ for determining roots of

φ(λ) :=
κ

sHT (λ)−1x
.

This approach generalizes the method (3.2), the inverse iteration, and a method proposed
in [188]. It was proved that the rate of convergence is quadratic and that cubic convergence
can be obtained if not only λ but also x and/or s are updated appropriately, thus unifying the
results in [13, 123, 137, 186, 188].

3.2. Methods based on Newton’s method. Applying Newton’s method to the nonlinear
system

f(x, λ) :=

[
T (λ)x
vHx− 1

]
= 0,

where v ∈ Cn, v 6= 0, is suitably chosen, yields the (nonlinear) inverse iteration method of
Algorithm 1, which converges locally and quadratically for simple eigenpairs.

If T (·) is Hermitian and the conditions (A1) and either (A2) or (A2)′ of Section 2 are
satisfied and if the update of λk+1 in step 3 is replaced with λk+1 ← p(xk+1), given that all
xk ∈ D(p), then one obtains the Rayleigh functional iteration method of Algorithm 2. This
method converges locally and cubically for simple eigenpairs.

The cost for solving a linear system in each iteration step with a varying matrix can
be avoided by using the residual inverse iteration method of Algorithm 3, which replaces a
varying matrix T (λk) by a fixed matrix T (λ0), at least for several iteration steps. This idea
was introduced by Neumaier [180].
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Algorithm 1 Inverse iteration.
Require: initial pair (λ0, x0) and normalization vector v with vHx0 = 1

for k = 0, 1, 2, . . . until convergence do
solve T (λk)xk+1 = T ′(λk)xk for xk+1

set λk+1 = λk − vHxk/(vHxk+1)
normalize xk+1 ← xk+1/(v

Hxk+1)
end for

Algorithm 2 Rayleigh functional iteration.
Require: initial pair (λ0, x0) and normalization vector v with vHx0 = 1

1: for k = 0, 1, 2, . . . until convergence do
2: solve T (λk)xk+1 = T ′(λk)xk for xk+1

3: set λk+1 = p(xk+1)
4: normalize xk+1 ← xk+1/(v

Hxk+1)
5: end for

If T (·) is Hermitian and λ0 ∈ R, then the convergence can be improved by determining
λk+1 in step 2 via the Rayleigh functional, i.e., solving xHk T (λk+1)xk = 0 for λk+1, given
the same conditions as for the Rayleigh functional iteration above.

If T (·) is twice differentiable and λ̂ is algebraically simple, then the residual inverse
iteration converges for all (λ0, x0) sufficiently close to (λ̂, x̂), and

‖xk+1 − x̂‖/‖xk − x̂‖ = O(|λ0 − λ̂|) and |λk+1 − λ̂| = O(‖xk − x̂‖t),

where t = 2 in the Hermitian case if λk is updated via the Rayleigh functional and t = 1
otherwise [204].

If (3.1) allows for a variational characterization of its eigenvalues, then the safeguarded
iteration in Algorithm 4, which aims at a particular eigenvalue, is a natural choice. The
safeguarded iteration was introduced by Voss and Werner [249]. Under assumptions (A1) and
(A2) of Section 2, it has the following convergence properties; cf. [249] or [183], which is
accessible more easily.

THEOREM 3.1 ([249]). Let J ⊂ R be an open interval, and let T (λ) ∈ Cn×n, λ ∈ J , be
a family of Hermitian matrices allowing for the minmax characterization.

(i) If λ1 := infx∈D(p) p(x) ∈ J and x0 ∈ D(p), then the safeguarded iteration for
j = 1 converges globally and monotonically decreasing to λ1.

(ii) If T (λ) is holomorphic in a neighborhood U ⊂ C of a jth eigenvalue of T (·) and
λj is a simple eigenvalue, then the safeguarded iteration converges locally and
quadratically to λj .

(iii) Under the conditions of (ii), the convergence is even cubic if T ′(λ) is positive
definite for λ ∈ U ∩ J and xk in step 3 of Algorithm 4 is chosen to be an eigen-
vector corresponding to the jth-largest eigenvalue of the generalized eigenproblem
T (σk−1)x = µT ′(σk−1)x.

REMARK 3.2. In every iteration step of the methods based on Newton’s method, one
has to solve a linear system. Szyld and Fei [220] discussed the local convergence of inexact
versions of several of these methods (inverse iteration, Rayleigh quotient iteration, residual
inverse iteration, single vector Jacobi-Davidson method) demonstrating that its order of local
convergence can be preserved. When local symmetry of T (·) is present, the use of a nonlinear
Rayleigh functional is shown to be fundamental in achieving a higher-order convergence
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Algorithm 3 Residual inverse iteration.
Require: initial pair (λ0, x0) and normalization vector w with wHx0 = 1

1: for k = 0, 1, 2, . . . until convergence do
2: solve wHT (λ0)−1T (λk+1)xk = 0 for λk+1

3: solve T (λ0)uk = T (λk+1)xk for uk
4: set vk+1 ← xk − uk
5: normalize xk+1 ← vk+1/(w

Hvk+1)
6: end for

Algorithm 4 Safeguarded iteration.
Require: initial vector x0 ∈ D(p)

1: compute σ0 = p(x0)
2: for k = 1, 2, . . . until convergence do
3: determine an eigenvector xk corresponding to the jth-largest eigenvalue of T (σk−1)
4: evaluate the Rayleigh functional σk := p(xk), i.e., solve xHk T (σk)xk = 0 for σk
5: end for

rate [220]. In [219, 221, 222] they showed that the convergence of Newton-like methods for
degenerate eigenvalues in general is linear, but for semi-simple eigenvalues, convergence is at
least quadratic.

REMARK 3.3. For eigenvalue problems satisfying the conditions of the minmax charac-
terization in an interval J , eigenvectors corresponding to different eigenvalues are necessarily
linearly independent. In the general case, however, it may even happen that different eigen-
values share the same eigenvector. Generalizing the notion of eigenspaces, Betcke and
Kressner [32] introduced and studied invariant pairs that can be computed in a stable way.
Taking advantage of this notion Beyn, Effenberger, and Kressner [39, 120] designed algorithms
for computing several eigenpairs of invariant pairs.

The methods considered so far are constructed for computing one eigenvalue or eigenpair
at a time. To determine more eigenpairs one can repeat the calculations with modified initial
values, but some care has to be taken to prohibit the method to converge to already converged
eigenpairs. A standard approach called deflation consists of mapping an already converged
eigenvalue to∞ while preserving the others [89].

4. Iterative projection methods for large nonlinear eigenproblems. For sparse linear
eigenvalue problems

Ax = λx,

iterative projection methods like the Lanczos, Arnoldi, rational Krylov, or Jacobi-Davidson
method are very efficient. Here, the dimension of the eigenproblem is reduced by projecting
it to a subspace of much smaller dimension and then solving the reduced problem by a fast
technique for dense problems. The subspaces are expanded in the course of the algorithm in
an iterative way with the aim that some of the eigenvalues of the reduced matrix become good
approximations of some of the wanted eigenvalues of the original problem.

Two types of iterative projection methods are in use: methods that expand the subspaces
independently of the eigenpair of the projected problem and take advantage of a normal
form of A, like the Arnoldi, Lanczos, and rational Krylov methods, and methods that aim
at a particular eigenpair and choose the expansion such that it has a high approximation
potential for a wanted eigenvector, like the Jacobi-Davidson method. Today the Arnoldi
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method (together with its shifted and inverted and its restarted variants) is a standard solver
for sparse linear eigenproblems. A detailed discussion is contained in [16]. Implementations
of the (implicitly restarted) Arnoldi method is available in the package ARPACK [145] and in
MATLAB with the command eigs.

For general nonlinear eigenproblems

(4.1) T (λ)x = 0, T : R ⊃ J → Rn×n,

with J being an open interval which may be unbounded, a normal form like the Schur
factorization does not exist. Therefore, generalizations of iterative projection methods to
general nonlinear eigenproblems always have to be of the second type, i.e., aiming at an
individual eigenpair. These methods are considered in the next sections.

4.1. Iterative projection methods. An iterative projection method for a nonlinear eigen-
value problem (4.1) has the form given in Algorithm 5.

Algorithm 5 Iterative projection method for nonlinear eigenproblems.
Require: initial basis V with V HV = I; set m = 1

1: while m ≤ the number of wanted eigenvalues do
2: compute an eigenpair (θ, y) of the projected problem V HT (λ)V y = 0.
3: determine the Ritz vector x = V y, ‖x‖ = 1, and the residual r = T (θ)x
4: if ‖r‖ < ε then
5: accept an approximate eigenpair λm = θ, xm = x; increase m← m+ 1
6: reduce the search space V if necessary
7: choose an approximation (λm, x) of the next eigenpair, and compute r = T (λm)x
8: end if
9: expand the search space V = [V, vnew]

10: update the projected problem
11: end while

The main question is how to expand the search space V = span{V }, i.e., how to determine
the new search direction vnew in line 9 if the approximation of an eigenvalue by a solution of
the projected problem is not sufficiently accurate.

Let θ be an eigenvalue of the projected problem

V HT (λ)V y = 0

and x = V y a corresponding Ritz vector. Then inverse iteration yields a suitable candidate

v := T (θ)−1T ′(θ)x

for the expansion of V . To implement this expansion we have to solve a large linear system,
where from step to step the system matrix varies. In a truly large problem, the exact solution
v will not be accessible but only an inexact solution ṽ := v + e of T (θ)v = T ′(θ)x, and
the next iterate will be a solution of the projection of T (λ)x = 0 upon the expanded space
Ṽ := span{V, ṽ}.

If we assume that x is already a good approximation of an eigenvector of T (·), then
v will be an even better approximation, and therefore the eigenvector we are looking for
will be very close to the plane E := span{x, v}. We therefore neglect the influence of the
orthogonal complement of x in V on the next iterate and discuss the nearness of the planes E
and Ẽ := span{x, ṽ}.
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If the angle between these two planes is small, then the projection of T (λ) upon Ṽ should
be similar to the one upon span{V, v}, and the approximation properties of the inverse iteration
should be maintained. If this angle becomes large, then it is not surprising that the convergence
properties of inverse iteration are not reflected by the projection method.

THEOREM 4.1 ([241]). Let φ0 = arccos(xT v) denote the angle between x and v, with
x, v ∈ Rn, ‖x‖ = ‖v‖ = 1, and the relative error of ṽ by ε := ‖e‖.

Then the maximal possible acute angle between the planes E and Ẽ is

β(ε) =

{
arccos

√
1− ε2/ sin2 φ0 if ε ≤ | sinφ0|,

π
2 if ε ≥ | sinφ0|.

Obviously, for every α ∈ R, α 6= 0, the plane E is also spanned by x and x + αv. If
Ẽ(α) is the plane which is spanned by x and a perturbed realization x+ αv + e of x+ αv,
then by the same arguments as in the proof of Theorem 4.1, the maximum angle between E
and Ẽ(α) is

γ(α, ε) =

{
arccos

√
1− ε2/ sin2 φ(α) if ε ≤ | sinφ(α)|,

π
2 if ε ≥ | sinφ(α)|,

where φ(α) denotes the angle between x and x+ αv. Since the mapping

φ 7→ arccos

√
1− ε2/ sin2 φ

decreases monotonically in the interval φ ∈ [arcsin(ε), π/2], the expansion of the search
space by an inexact realization of x+ αv is most robust with respect to small perturbations if
α is chosen such that x and x+ αv are orthogonal, i.e.,

v = x− xHx

xHT (θ)−1T ′(θ)x
T (θ)−1T ′(θ)x,

which yields a maximum acute angle between E and Ẽ(α),

γ(α, ε) =

{
arccos

√
1− ε2 if ε ≤ 1,

π
2 if ε ≥ 1.

This expansion v of the current search space V can be obtained by the solution of the
equation

(4.2)
(
I − T ′(θ)xxH

xHT ′(θ)x

)
T (θ)

(
I − xxH

)
v = −r, v⊥x,

with r = T (θ)x.
This is the so called correction equation of the Jacobi-Davidson method, which was

derived in [38] generalizing the approach of Sleijpen and van der Vorst [211] for linear and
polynomial eigenvalue problems. Hence, the Jacobi-Davidson method is the most robust
realization of an expansion of a search space such that the direction of the inverse iteration is
contained in the expanded space in the sense that it is least sensitive to inexact solves of linear
systems T (θ)v = T ′(θ)x.

Neglecting the orthogonalization with respect to the previous search space, the expansion
in the direction of (4.2) is equivalent to expanding the search space by the direction of the
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inverse iteration. A connatural expansion of search spaces utilized in the Nonlinear Arnoldi
method [237] is based on the residual inverse iteration.

There are many variants of the Jacobi-Davidson and Nonlinear Arnoldi methods in the
literature [34, 35, 37, 38, 58, 59, 69, 89, 105, 145, 172, 204, 210, 211, 238, 242]. A broad
survey is given in the PhD thesis of Schreiber [204]. In the following, we consider only
the Jacobi-Davidson and Nonlinear Arnoldi methods, together with an early version of the
Rational Krylov method by Ruhe [202].

4.2. The Jacobi-Davidson method. The correction equation (4.2) in the Jacobi-David-
son method does not have to be solved exactly to maintain fast convergence, but usually a
few steps of a Krylov subspace solver with an appropriate preconditioner suffice to obtain
a good expansion direction of the search space. The natural generalization of the Jacobi-
Davidson method for polynomial eigenvalue problems was suggested in [210, 212] and studied
in [38, 238, 242] for general nonlinear eigenproblems.

In the correction equation (4.2), the operator T (θ) is restricted to map the subspace x⊥

into itself. Hence, if M ≈ T (θ)−1 is a preconditioner of T (θ), then a preconditioner for an
iterative solver of (4.2) should be modified correspondingly to

M̃ :=

(
I − T ′(θ)xxH

xHT ′(θ)x

)
M

(
I − xxH

xHx

)
.

It was already pointed out for linear eigenproblems in [211] that taking into account the
projectors in the preconditioner, i.e., using M̃ instead of M in a preconditioned Krylov solver,
increases the cost only slightly. Applying a preconditioned Krylov solver to (4.2) requires
solving one linear system with M in every iteration step, and one additional solve with T ′(θ)
during the initialization.

A template for the Jacobi-Davidson method for the nonlinear eigenvalue problem
T (λ)x = 0 is given in Algorithm 6. In the following we comment on some of its steps.
A detailed discussion is contained in [38, 238, 242].

(i) In step 1 of Algorithm 6, prior information such as known approximate eigenvectors
of the problem (4.1) or eigenvectors of the contiguous problems can be introduced
into the algorithm. If no information on the eigenvectors is at hand and we are
interested in eigenvalues close to the parameter σ ∈ D, then one can choose an initial
vector at random, execute a few Lanczos or Arnoldi steps for the linear eigenproblem
T (σ)u = θu or T (σ)u = θT ′(σ)u, and choose V as an orthonormal basis of the
eigenvectors corresponding to eigenvalues small in modulus. Starting with a random
vector without this preprocessing step usually will yield a value λm in step 4 that is
far away from σ and will avert convergence.
Rational eigenvalue problems governing free vibrations of fluid-solid structures
require a particular initial space, the choice of which is discussed in [236].

(ii) Preconditioning is key to a successful iterative solver. A comprehensive exposition of
many useful preconditioning techniques can be found in [45, 203]. Sleijpen and van
der Vorst [211] suggested to precondition by a few steps of BiCGStab (or GMRES in
the non-symmetric case), which essentially costs one matrix-vector product in every
iteration step and one additional matrix-vector product to initialize.

(iii) Since the dimension of the projected problems are usually small, they can be solved
by any method for dense nonlinear eigenvalue problems discussed in Section 3.

(iv) A crucial point in iterative projection methods for general nonlinear eigenvalue
problems when approximating more than one eigenvalue is to inhibit the method to
converge to the same eigenvalue repeatedly. In the linear case this is not a problem.
Krylov subspace solvers construct an orthogonal basis of the ansatz space not aiming
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Algorithm 6 Nonlinear Jacobi-Davidson method.
Require: initial basis V with V HV = I; set m = 1

1: determine a preconditioner M ≈ T (σ)−1, σ close to the first wanted eigenvalue
2: while m ≤ the number of wanted eigenvalues do
3: compute an approximation of the mth wanted eigenvalue λm and the corresponding

eigenvector ym of the projected problem V HT (λ)V y = 0
4: determine the Ritz vector u = V ym and the residual r = T (λm)u
5: if ‖r‖/‖u‖ < ε then
6: accept an approximate eigenpair (λm, u); increase m← m+ 1;
7: reduce the search space V if indicated
8: determine a new preconditioner M ≈ T (λm)−1 if indicated
9: choose an approximation (λm, u) of the next eigenpair

10: compute the residual r = T (λm)u;
11: end if
12: Find an approximate solution of the correction equation(

I − T ′(λm)uuH

uHT ′(λm)u

)
T (σ)

(
I − uuH

uHu

)
z = −r

(by a preconditioned Krylov solver, e.g.)
13: orthogonalize z = z − V V Hz, v = z/‖z‖, and expand the subspace V = [V, v]
14: update the projected problem
15: end while

at a particular eigenvalue, and one gets approximations of extreme eigenvalues
without replication, at least if reorthogonalization is employed. If several eigenvalues
are computed by the Jacobi-Davidson method, then one determines an incomplete
Schur factorization thus preventing the method from approaching an eigenvalue
which was already obtained previously; cf. [69].
If T (λ) is a family of real symmetric or Hermitian matrices and D is a real interval
such that the eigenvalues are maxmin values of a Rayleigh functional, then the
projected problems inherit this property. The eigenvalues can be determined one after
the other by the safeguarded iteration, and while approximating the mth eigenvalue,
usually enough information about the next eigenvector is gathered to compute the
(m+ 1)st eigenvalue safely. This approach, discussed in [38], has the advantage that
it is most unlikely that the method converges to an eigenvalue that has already been
found previously.
Similarly, in the general case, one can order the eigenvalues by their distance to
a fixed parameter σ0 and approximate them one after the other by the method of
successive linear problems. If already m− 1 eigenvalues of (4.1) closest to σ0 have
been determined and µ` is an approximation of the eigenvalue wanted next, then we
iteratively perform the following three steps until convergence: we solve the linear
eigenproblem V HT (µ`)V y = θV HT ′(µ`)V y, choose the eigenvalue θ̂ such that
|σ0 − (µ` − θ̂)| is mth-smallest among the eigenvalues θ, and set µ`+1 = µ` − θ̂.
A disadvantage of this method is the fact that consecutive eigenvalues λm−1 and λm
usually will not be close to each other, and therefore, a preconditioner which was
adequate for one eigenvalue can yield slow convergence of the iterative solver for the
next eigenvalue [242]. Hence, this method should be used only if a small number of
eigenvalues close to a parameter are of interest.
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Quite often the nonlinear eigenvalue problem under consideration is a (small) per-
turbation of a linear eigenvalue problem. This happens for instance for rational
eigenproblems governing the free vibrations of a structure using a viscoelastic consti-
tutive relation to describe the behavior of the material [242]. It is well known that
often the eigenmodes of the damped and undamped problems do not differ very much
although the eigenvalues do. Therefore, it is reasonable to determine an eigenvector y
of the undamped and projected problem (ω2V HMV −V HKV )y = 0 corresponding
to the mth-smallest eigenvalue ω2

m, determine an approximate eigenvalue ω̃ of the
nonlinear projected problem from the complex equations yHV HT (ω)V y = 0 or
eHV HT (σ)−1T (ω)V y = 0 for some fixed vector e 6= 0, and correct it by one of the
methods in Section 3.

(v) As the subspaces expand in the course of the algorithm, the increasing storage or
the computational cost for solving the projected eigenvalue problems may make it
necessary to restart the algorithm and purge some of the basis vectors. Since a restart
destroys information on the eigenvectors and particularly on the eigenvector that the
method is just aiming at, we restart only if an eigenvector has just converged.
Since some of the solvers of the nonlinear projected eigenproblems take advan-
tage of some enumeration of the eigenvalues, it is natural to keep the eigenvectors
that have been converged in the course of the algorithm. Otherwise this enumer-
ation would be perturbed. We therefore continue with an orthonormal basis of
Xm := span{x1, . . . , xm}. If an approximation of an eigenvector wanted next is ob-
tained cheaply, then we add it to Xm. A local restart procedure which is particularly
suitable if a very large number of eigenvalues or eigenvalues in the interior of the
spectrum are desired is discussed in [166].

(vi) Some of the eigensolvers discussed in Section 3 can be used to get approximations
of the eigenvector and eigenvalue wanted next. In this case we continue with these
approximations. If no information on the next eigenvalue and eigenvector can be
gained cheaply, then we continue with the current approximations.

(vii) v is orthogonalized with respect to the current search space V by the classical Gram-
Schmidt method. It may be replaced by the modified Gram-Schmidt method for
stability reasons. Notice, however, that the classical Gram-Schmidt procedure is able
to use BLAS3 and thus can be faster than the modified Gram-Schmidt method due to
the better use of cache.

4.3. The Nonlinear Arnoldi method. Expanding the current search space V by the
direction v̂ = x−T−1(σ)T (θ)x, which is suggested by the residual inverse iteration, generates
similar robustness problems as in the case of the inverse iteration. If v̂ is close to the desired
eigenvector, then an inexact evaluation of v̂ spoils the favorable approximation properties of
the residual inverse iteration.

Similarly as in the Jacobi-Davidson method, one could replace v̂ by z := x+ αv̂, where
α is chosen such that xHz = 0, and one could determine an approximation of z by solving
a correction equation. However, since the new search direction is orthonormalized against
the previous search space V and since x is contained in V , we may choose the new direction
ṽ = T (σ)−1T (θ)x as well. This direction satisfies the orthogonality condition xH ṽ = 0 at
least in the limit as θ approaches a simple eigenvalue λ̂ (cf. [240]), i.e.,

lim
θ→λ̂

xHT (σ)−1T (θ)x = 0.

For the linear problem T (λ) = A− λB, the expansion ṽ is exactly the Cayley transform with
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pole σ and zero θ. Since

(A− σB)−1(A− θB) = I − (θ − σ)(A− σB)−1B

and Krylov spaces are shift-invariant, the resulting projection method of expanding V by v is
nothing else but the shift-and-invert Arnoldi method.

If the linear system T (σ)v = T (θ)x is too expensive to solve for v, then we may choose
as new direction v = MT (θ)x with M ≈ T (σ)−1, and for the linear problem we obtain
an inexact Cayley transform or a preconditioned Arnoldi method. The resulting iterative
projection method, which was introduced in [170, 171] for quadratic eigenvalue problems
and was studied in [235, 237] for general nonlinear eigenproblems, is referred to as the
Nonlinear Arnoldi method in spite the fact that differently to the linear case, no Krylov space
is determined in the course of the algorithm and no Arnoldi recursion holds.

Since the rate of convergence depends crucially on |σ − λ|, it is advisable to change the
shift—or more generally the preconditioner M—in the course of the algorithm if convergence
to the current eigenvalue is too slow.

A template for the preconditioned Nonlinear Arnoldi method with restarts and varying
preconditioner is given in Algorithm 7.

Algorithm 7 Nonlinear Arnoldi method.
Require: initial shift σ and an initial basis V with V HV = I; set m = 1

1: determine a preconditioner M ≈ T (σ)−1, σ close to the first wanted eigenvalue
2: while m ≤ the number of wanted eigenvalues do
3: compute an appropriate eigenvalue θ and the corresponding eigenvector y of the pro-

jected problem V HT (θ)V y = 0
4: determine the Ritz vector u = V y and the residual r = T (θ)u
5: if ‖r‖/‖u‖ < ε then
6: accept λm = θ, xm = u, increase m← m+ 1
7: determine a new preconditioner M ≈ T (σ)−1 if indicated
8: restart if necessary
9: choose an approximations θ and u of the next eigenvalue and eigenvector

10: determine the residual r = T (θ)u
11: end if
12: v̂ = Mr
13: v = v̂ − V V H v̂ ,ṽ = v/‖v‖, V = [V, ṽ]
14: reorthogonalize if necessary
15: update the projected problem V HT (θ)V y = 0
16: end while

Since the residual inverse iteration with fixed pole σ converges linearly and the contraction
rate satisfies O(|σ − λm|), it is reasonable to update the preconditioner if the convergence
(measured by the quotient of the last two residual norms before convergence) has become
too slow. For several other recent variations and generalizations of the Arnoldi method for
quadratic or general polynomial eigenvalue problems, see [17, 18, 70, 107, 154, 170, 171, 225].

REMARK 4.2. The LSTRS software for the efficient solution of large-scale Trust-Region
subproblems was proposed by Rojas, Santos, and Sorensen; see [198, 213]. It is based on
recasting the problem in terms of a parameter-dependent eigenvalue problem and adjusting
a parameter iteratively. The essential effort in each iteration is the solution of an eigenvalue
problem for the smallest eigenvalue of a bordered Hessian matrix (or the two smallest eigenval-
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ues in the so-called hard case) and the associated eigenvector(s). Using the Nonlinear Arnoldi
method to solve the eigenvalue problems makes it possible to recycle most of the information
from previous iterations, which can substantially accelerate LSTRS [128].

4.4. Rational Krylov method. In some sense, Ruhe [201, 202] generalized the rational
Krylov approach for linear eigenproblems to sparse nonlinear eigenvalue problems. His idea
was to nest the linearization of problem (4.1) by Lagrangian interpolation and to solve the
resulting linear eigenproblem by Arnoldi’s method. Similarly to the rational Krylov process
for linear eigenvalue problems, a sequence Vk of subspaces of Cn is constructed. At the
same time Hessenberg matrices Hk, which approximate the projection of T (σ)−1T (λk) to
Vk, are updated. Here σ denotes a shift (which similarly as in the rational Krylov method for
linear problems can be updated in the course of the algorithm) and λk an approximation of the
wanted eigenvalue of (4.1). Then a Ritz vector xk of Hk corresponding to an eigenvalue of
small modulus approximates an eigenvector of the nonlinear problem from which a (hopefully)
improved eigenvalue approximation of problem (4.1) is obtained.

The convergence results of this first version of the rational Krylov method for nonlinear
problems were far from being satisfactory. To improve convergence, Ruhe in [202] proposed
an inner iteration which enforces the residual rk = T (σ)−1T (λk)xk to be orthogonal to the
search space Vk. (This property is automatically satisfied for linear eigenproblems.) The inner
iteration is presented heuristically not noticing that it actually is nothing else but a solver of
the projected nonlinear eigenproblem V Hk T (σ)−1T (λ)Vks = 0. Thus, the rational Krylov
method for nonlinear eigenproblems can be interpreted as an iterative projection method [113].
The inner iteration can be replaced by any solver for dense nonlinear eigenproblems.

Algorithm 8 Rational Krylov method for nonlinear eigenproblems.
Require: initial vector V1 = [v1] with ‖v1‖ = 1, initial λ1 and σ

1: for k = 1, 2, . . . until convergence do
2: solve the projected eigenproblem V Hk T (σ)−1T (λ)Vks = 0 for (λ, s)
3: compute the Ritz vector x = Vks and the residual r = T (σ)−1T (λ)x
4: orthogonalize r = r − VkV Hk r
5: expand the search space Vk+1 = [Vk , r/‖r‖]
6: end for

Although derived differently, the rational Krylov method expands the search space Vk in
the same way as in the Arnoldi method for nonlinear eigenproblems introduced in [235, 237].
However, differently from the rational Krylov method, in the Arnoldi approach, the original
problem T (λ)x = 0 is projected to Vk. Thus, the Nonlinear Arnoldi method preserves
symmetry properties of the problem (4.1), which can be exploited when solving the projected
problems.

The inner iteration algorithm in the original rational Krylov method usually does not
converge very fast, which makes the original rational Krylov method inferior to other iterative
projection methods. However, there is one advantage of Ruhe’s approach: The solvers for
dense nonlinear eigenproblems need the explicit form of the projected problem whereas Ruhe’s
approach only needs a procedure that yields the vector T (σ)−1T (λ)x for a given vector x.

4.5. Numerical example. To demonstrate the numerical behavior of the iterative projec-
tion methods, we consider a delay differential equation [61, 93, 94, 182, 244]

ut(x, t) = ∆u(x, t) + a(x)u(x, t) + b(x)u(x, t− τ), t > 0, x ∈ [0, π]× [0, π],
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TABLE 4.1
Computation times for the 20 smallest eigenvalues of a discretized delay differential equation of dimension 39,601.

Preconditioner Nonlinear Arnoldi Jacobi-Davidson
# iter. CPU # iter. CPU

LU 125 14.9 119 38.4
inc. LU, 10−3 241 34.2 143 44.7
inc. LU, 10−2 1001 245.0 177 58.2

where ∆ is the Laplacian operator ∆ := ∂2

∂x2
1

+ ∂2

∂x2
2

and a and b are real functions of x.

Semi-discretizing with finite differences with respect to x and the ansatz u(x, t) = eλtv(x)
yields the nonlinear eigenvalue problem

T (λ)v = λv +Av + e−λτBv = 0.

In [244] we tested both iterative projection methods, i.e., the Nonlinear Arnoldi and the
Jacobi-Davidson procedure, for a problem of this type of dimension n = 39, 601. Since T (λ)
is symmetric and the conditions of the minmax characterization are satisfied, the projected
problems can be solved by the safeguarded iteration, and the eigenvalues can be determined
safely one after the other.

We have computed the 20 smallest eigenvalues. For both methods an average of ap-
proximately 6 iterations are needed to find an eigenvalue. Notice, however, that for the
Nonlinear Arnoldi method, only one solve with the preconditioner is needed to expand the
search space, whereas the Jacobi-Davidson method requires the approximate solution of a
correction equation.

Table 4.1 contains the CPU time for both methods, where we employed the LU factor-
ization as well as incomplete LU factorizations for two cut-off levels, 10−3 and 10−2, and
did not reduce the search space during the iterations. It is observed that for an accurate
preconditioner, the Nonlinear Arnoldi method is much faster than the Jacobi-Davidson method,
whereas for a coarse preconditioner, the Jacobi-Davidson method is the clear winner. The
same observation was made for many other examples; the Jacobi-Davidson method is more
robust with respect to coarse preconditioners than the Nonlinear Arnoldi method. This can be
explained by the motivation of the Jacobi-Davidson method in [241]: It aims at the expansion
direction (containing the information of an inverse iteration step) in the most robust way, i.e.,
it is least sensitive to inexact solves. Despite requiring a smaller number of iterations, the
Jacobi-Davidson method might be slower in terms of CPU time since one iteration is more
expensive compared to one iteration of the Nonlinear Arnoldi method.

The CPU times in Table 4.1 correspond to the projection methods without restart. Fig-
ure 4.1 displays on the left the time consumption of the Nonlinear Arnoldi method with
incomplete LU preconditioner with threshold 10−2 as well as the time that is required for
solving the projected eigenvalue problems. It demonstrates the necessity of restarts since the
superlinear time consumption is mainly caused by the eigensolvers. On the right, Figure 4.1
displays the behavior of the Nonlinear Arnoldi method if the method is restarted whenever the
dimension of the search space exceeds 100 after the computation of an eigenvalue had been
completed.

REMARK 4.3. Further numerical examples for the Jacobi-Davidson method and the
Nonlinear Arnoldi method are shown in Example 12.3, where we considered a quantum dot
problem of dimension 96, 640 with preconditioning and restarts, and in Example 14.4 of
dimension 67, 616, applying AMLS to a fluid-solid vibration problem.
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FIG. 4.1. Time consumption of the Nonlinear Arnoldi method without (left) and with (right) restarts [244].

5. Detecting hyperbolic and definite eigenproblems. Hyperbolic or, more generally,
definite matrix polynomials are important classes of Hermitian matrix polynomials. They
allow for a definite linearization and can therefore be solved by a standard algorithm for
Hermitian matrices like the QR algorithm [85, 86, 103, 104]. They have only real eigenvalues,
which can be characterized as minmax and maxmin values of Rayleigh functionals. In this
section we present an easy way to test whether a given matrix polynomial is hyperbolic or
definite or not [183]. We consider here only quadratic hyperbolic problems. Definite problems
and polynomial eigenproblems of higher degree are discussed in [183].

5.1. Quadratic hyperbolic problems. For quadratic hyperbolic pencils Higham, Tis-
seur, and Van Dooren [104] proposed a method for testing hyperbolicity and constructing a
definite linearization. Another method for detecting if a Hermitian quadratic matrix polynomial
is hyperbolic, which is based on cyclic reduction, was introduced by Guo and Lancaster [87]
and accelerated by Guo, Higham, and Tisseur [85]. Another method based on an improved arc
algorithm for a Hermitian linearization of the quadratic pencil is studied in [86].

DEFINITION 5.1. The quadratic matrix pencil

Q(λ) := λ2A+ λB + C

with Hermitian matrices A,B,C ∈ Cn×n is called hyperbolic if A is positive definite, and,
for every x ∈ Cn, x 6= 0, the quadratic polynomial

f(λ;x) := λ2xHAx+ λxHBx+ xHCx = 0

has two distinct real roots

p±(x) =
1

2xHAx

(
−xHBx±

√
(xHBx)2 − 4(xHAx)(xHCx)

)
.

A hyperbolic quadratic matrix polynomial Q(·) has the following properties (cf. [168]):
the ranges J̃± := p±(Cn \ {0}) are disjoint real closed intervals with max J̃− < min J̃+

(this was proved by Duffin [56] for the overdamped case, and this is true for hyperbolic
problems as well since the shifted pencil Q(λ + θ) is overdamped for sufficiently large θ),
Q(λ) is positive definite for λ < min J̃− and λ > max J̃+, and it is negative definite for
λ ∈ (max J̃−,min J̃+).

Let J− and J+ be open intervals with J̃− ⊂ J− and J̃+ ⊂ J+, respectively, with
J− ∩ J+ = ∅. Each of the intervals J− and J+ contains n eigenvalues

λ−n ≤ λ−n−1 ≤ · · · ≤ λ
−
1 < λ+

1 ≤ · · · ≤ λ+
n
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(notice that in J−, the sign condition (A2) from Section 2 is satisfied for−Q(λ), and therefore
the smallest eigenvalue is an nth eigenvalue), which can be characterized by (cf. Duffin [56])

λ−j = max
dimV=j

min
x∈V,x 6=0

p−(x), λ+
j = min

dimV=j
max

x∈V,x 6=0
p+(x).

The safeguarded iteration (cf. Algorithm 4) for λ+
1 and for λ−1 converges globally and mono-

tonically decreasing and increasing, respectively, for every initial vector x0 ∈ Cn \ {0}.
This suggests the following Algorithm 9 for detecting whether a quadratic matrix poly-

nomial is hyperbolic or not. In the upper sweep (lines 1–19), we determine sequences xk
and σk := p+(xk) by the safeguarded iteration for p+ aiming at λ+

1 , which is terminated if
a discriminant d(xk) = (xHk Bxk)2 − 4(xHk Axk)(xHk Cxk) is negative (indicating that Q(λ)
is not hyperbolic) or a parameter µ is found such that Q(µ) < 0, indicating that Q(λ) is
hyperbolic.

If the relative distance of σk and σk−1 becomes very small and hyperbolicity is not
disclosed in line 15, then we determine in the lower sweep (lines 20–35) sequences xk and
ωk = p−(xk) by the safeguarded iteration for p− aiming at λ−1 . If there is a clear gap between
J− and J+, i.e., if Q(λ) is hyperbolic, then the matrix Q(µ), µ := 0.5(minj σj + ωk), will
turn out to be negative definite after a few steps. However, it may happen that {ωk} approaches
minj σj signalling that the gap is extremely small or even λ−1 = λ+

1 .

5.2. Numerical considerations. Some remarks about Algorithm 9:
(i) Since the Rayleigh functional has similar approximation properties as the Rayleigh

quotient in the linear case (i.e., an approximation xk of an eigenvector with error
O(ε) yields an approximation σk = p+(xk) of the corresponding eigenvalue, the
error of which satisfies O(ε2)), the eigenvector approximations xk do not have to be
computed very accurately.

(ii) Non-hyperbolicity is detected in lines 1, 7, and 28 if the discriminant d(xk) is negative
and in lines 13 and 32 if the sequence σk and ωk are not monotonically decreasing
and increasing, respectively.

(iii) Hyperbolicity is detected if Q(λ) is negative definite for some λ. If λ+
1 is a simple

eigenvalue, then the safeguarded iteration converges quadratically, and therefore (at
least close to convergence), the increment ρk := σk−1 − σk will be greater than the
error σk − λ+

1 . Moreover, ρk will converge to 0, and even if the gap λ+
1 − λ

−
1 is

small, a double step σk−1 + 2ρk = 2σk − σk−1 is likely to hit the gap eventually.
Therefore in line 15, the negative definiteness of Q(µ), µ := 2σk − σk−1, is tested,
which can be done by computing the Cholesky decomposition of −Q(µ). For not too
small gaps between J+ and J−, this test often reveals that Q(λ) is hyperbolic well
before convergence of the safeguarded iteration.

(iv) Although for multiple eigenvalues the quadratic convergence of the safeguarded iter-
ation is not proved, the double step strategy worked also fine for double eigenvalues
λ+

1 and λ−1 ; cf. [183, Example 3.3].
(v) The algorithm fails if both sequences {σk} and {ωk} converge and if their limits are

very close to each other or even coincide. In the latter case, Q(λ) is called weakly
hyperbolic.

DEFINITION 5.2. The pencil Q(λ) is weakly hyperbolic if A, B, and C are Hermitian, A
is positive definite, and

γ := min
‖x‖=1

[(xHBx)2 − 4(xHAx)(xHCx)] ≥ 0.
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Algorithm 9 Detecting hyperbolicity.
Require: initial vector x0 6= 0, ε > 0

1: if d(x0) = (xH0 Bx0)2 − 4(xH0 Ax0)(xH0 Cx0) < 0 then
2: STOP: Q(λ) is not hyperbolic
3: end if
4: determine σ0 = p+(x0)
5: for k = 1, 2, . . . until convergence do
6: determine an eigenvector xk of Q(σk−1) corresponding to its largest eigenvalue
7: if d(xk) = (xHk Bxk)2 − 4(xHk Axk)(xHk Cxk) < 0 then
8: STOP: Q(λ) is not hyperbolic
9: end if

10: determine σk = p+(xk)
11: if |(σk − σk−1)/σk| ≤ ε then
12: set σ = σk, ω0 = p−(xk) and GOTO 20
13: else if σk > σk−1 then
14: STOP: Q(λ) is not hyperbolic
15: else if Q(2σk − σk−1) is negative definite then
16: µ = 2σk − σk−1

17: STOP: Q(λ) is hyperbolic
18: end if
19: end for
20: for k = 1, 2, . . . until convergence do
21: if Q((ωk−1 + σ)/2) is negative definite then
22: µ = (ωk−1 + σ)/2
23: STOP: Q(λ) is hyperbolic
24: else if |(σ − ωk−1)/ωk−1| ≤ ε then
25: STOP: Hyperbolicity not detectable, Q(λ) maybe weakly hyperbolic
26: end if
27: determine an eigenvector xk of Q(ωk−1) corresponding to its largest eigenvalue
28: if d(xk) = (xHk Bxk)2 − 4(xHk Axk)(xHk Cxk) < 0 then
29: STOP: Q(λ) is not hyperbolic
30: end if
31: determine ωk = p−(xk)
32: if ωk < ωk−1 then
33: STOP: Q(λ) is not hyperbolic
34: end if
35: end for

REMARK 5.3. A weakly hyperbolic eigenvalue problem has 2n real eigenvalues, and if
γ = 0 (i.e., Q(λ) is not hyperbolic), then it holds that

λ−n ≤ λ−n−1 ≤ · · · ≤ λ
−
1 = λ+

1 ≤ λ
+
2 ≤ . . . λ+

n .

Obviously, p+ as defined in (6.3) is a Rayleigh functional of Q(λ) with respect to the
interval J̃+ := (λ+

1 ,∞) satisfying (A1) and (A2), and all eigenvalues in J̃+ are minmax and
maxmin values of p+.

If σk−1 ∈ J̃+ and xk is an eigenvector corresponding to the maximal eigenvalue of
Q(σk−1), then xHk Q(σk−1)xk ≥ 0, and therefore the maximal solution σk of the quadratic
equation xHk Q(λ)xk = 0 satisfies σk = p+(xk) or σk = λ+

1 . Hence, the safeguarded
iterations either stop after a finite number of steps with σk = λ+

1 , or {σk} ⊂ J̃+ is a
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monotonically decreasing sequence converging to some σ̂ ∈ J̃+. In the latter case, we obtain
in the same way as in the proof of Theorem 3.1 that σ̂ = λ+

1 . Likewise, the sequence {ωk}
constructed in the same way for the interval (−∞, λ−1 ) converges to λ−1 and is monotonically
increasing.

We now assume that Q(·) is hyperbolic and a parameter µ has been found such that Q(µ)
is negative definite. Then the following transformation yields a definite linearization of Q(·).
Shifting by µ yields a quadratic matrix polynomial

Q̃(λ) := Q(λ+ µ) = λ2A+ λ(B + 2µA) + (C + µ2A+ µB) =: λ2A+ λB̃ + C̃,

where C̃ = Q̃(0) = Q(µ) is negative definite and the well-known linearizations [85, 137]

(5.1) L1(λ) := λ

[
A 0

0 −C̃

]
+

[
B̃ C̃

C̃ 0

]
and L2(λ) := λ

[
0 A

A B̃

]
+

[
−A 0

0 C̃

]
of Q̃(λ) are obviously definite. By employing the Cholesky factorization of diag{A,−C̃},
it can be transformed to a standard eigenvalue problem and solved by the QR algorithm
preserving the reality of its eigenvalues.

EXAMPLE 5.4. To compare our method to the cyclic reduction of Guo, Higham, and
Tisseur [85], we use the following method for constructing quadratic matrix polynomials with
prescribed eigenvalues and eigenvectors (cf. [138]): For (λj , vj), j = 1, . . . , 2n, let

Λ1 := diag{λ1, . . . , λn}, Λ2 := diag{λn+1, . . . , λ2n},
V1 := [v1, . . . , vn], V2 := [vn+1, . . . , v2n] ∈ Rn×n.

Assume that V1 and V2 are nonsingular, V1V
T
1 = V2V

T
2 , and Γ := V1Λ1V

T
1 − V2Λ2V

T
2 is

nonsingular. Then the quadratic polynomial Q(λ) with

A = Γ−1, B = −A(V1Λ2
1V

T
1 − V2Λ2

2V
T
2 )A,

C = −A(V1Λ3
1V

T
1 − V2Λ3

2V
T
2 )A+BΓB

has eigenpairs (λj , vj), j = 1, . . . , 2n.
We constructed a test set of 80 quadratic matrix functions Q(λ) ∈ R500×500 of this type,

where λj , for j = 1, . . . , 500, are normally distributed with mean value −3 and standard
variation 1, and, for j = 501, . . . , 1000, λj are uniformly distributed in [−106,−6]. If
λmax := maxj λj > 0, then the eigenvalues λj were shifted to the left by 1.1λmax (then
all eigenvalues λj are negative, and the hyperbolic examples are even overdamped [85];
this is not needed in Algorithm 9 but is only used to compare it to the cyclic reduction
in [85]). With random orthogonal matrices U1, U2 we chose V1 = U1 and V2 = V1U2 so that
V1V

T
1 = V2V

T
2 . For 51 of these examples maxj=501,...,1000 λj < minj=1,...,500 λj , and the

corresponding Q(λ) are hyperbolic; actually they are overdamped; cf. [85]. For the remaining
29 problems, the matrix A turned out to be positive definite, but Q(λ) was not hyperbolic.

Algorithm 9 detected the type of Q(λ) in all examples correctly. The average CPU time
on a Pentium D Computer with 3.2 GHz and 2 GB RAM was 0.65 seconds, minimal 0.47,
and maximal 1.05 seconds. The safeguarded iteration required at least 2 steps, at most 3 steps,
and the average number of steps was 2.06. The Nonlinear Arnoldi method constructed search
spaces of minimal dimension 31, maximal dimension 67, and the average dimension was
44.8. Since we allowed for a maximal dimension of 100 of the search spaces, no restarts were
necessary. Also the cyclic reduction algorithm of Guo, Higham, and Tisseur [85] detected
the type of the pencils in all cases correctly. It required at most 23 iterations and at least no
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iteration with an average of 8.95, and the average CPU time was 2.55 seconds, with minimal
0.27 and maximal 6.19 seconds. In 61 (resp. 28 non-hyperbolic) examples the safeguarded
iteration was faster, whereas in 19 (resp. 1 non-hyperbolic) examples the cyclic reduction was
the winner.

5.3. Definite polynomials. In a recent paper Higham, Mackey, and Tisseur [103] gener-
alized the concept of hyperbolic quadratic polynomials, waiving the positive definiteness of
the leading matrix A.

DEFINITION 5.5. The quadratic matrix polynomial

Q(λ) := λ2A+ λB + C

is definite if A = AH , B = BH , C = CH are Hermitian, there exists µ ∈ R∪ {∞} such that
Q(µ) is positive definite, and for every fixed x 6= 0, the real equation

f(λ;x) := λ2xHAx+ λxHBx+ xHCx = 0

has two distinct roots in R ∪ {∞}.
The following theorem was proved in [103]:
THEOREM 5.6 ([103]). The Hermitian matrix polynomial Q(λ) is definite if and only if

any two (and hence all) of the following properties hold:
(i) d(x) := (xHBx)2 − 4(xHAx)(xHCx) > 0 for every x ∈ Cn \ {0}.

(ii) Q(η) > 0 for some η ∈ R ∪ {∞}.
(iii) Q(ξ) < 0 for some ξ ∈ R ∪ {∞}.
Hence, to detect that a pencil is definite, one has to find ξ, η ∈ R ∪ {∞} such that

Q(ξ) < 0 < Q(η). The article [183] presents an approach for this task, which is again based
on the safeguarded iteration. The only additional problem is that one does not know in advance
whether ξ < η or η < ξ. The paper [183] discusses these two cases and demonstrates that by
taking advantage of the safeguarded iteration, one can decide safely whether the problem is
definite or not.

6. Sylvester’s law of inertia. The inertia of a Hermitian matrix A is the triplet of non-
negative integers In(A) := (np, nn, nz), where np, nn, and nz are the number of positive,
negative, and zero eigenvalues of A counting multiplicities. Sylvester’s classical law of iner-
tia [218] states that two Hermitian matrices A,B ∈ Cn×n are congruent (i.e., A = SHBS for
some nonsingular matrix S ∈ Cn×n) if and only if they have the same inertia In(A) = In(B).

An obvious consequence of the law of inertia is the following corollary.
COROLLARY 6.1. If A has an LDLH factorization A = LDLH , then np and nn equals

the number of positive and negative entries of D, respectively, and if only a block LDLH

factorization exists, where D is a block diagonal matrix with 1× 1 and indefinite 2× 2 blocks
on its diagonal, then one has to increase the number of positive and negative 1× 1 blocks of
D by the number of 2× 2 blocks to get np and nn, respectively.

Hence, the inertia of A can be computed easily, and this is particularly advantageous if
the matrix is banded. If B ∈ Cn×n is positive definite and A − σB = LDLH is the block
diagonal LDLH factorization of A − σB for some σ ∈ R, from which we get the inertia
In(A− σB) = (np, nn, nz) as described in the last corollary, then the generalized eigenvalue
problem Ax = λBx has nn eigenvalues smaller than σ. Hence, the law of inertia yields a
tool to locate eigenvalues of Hermitian matrices or definite matrix pencils. Combining it with
bisection or the secant method, one can determine all eigenvalues in a given interval or initial
approximations for fast eigensolvers, and it can be used to test whether a method has found all
eigenvalues in an interval of interest or not.
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The law of inertia was first proved in 1858 by J. J. Sylvester [218], and several different
proofs can be found in the literature [53, 80, 108, 181, 190], one of which is based on the min-
max characterization of eigenvalues of Hermitian matrices. Here we discuss generalizations
of the law of inertia to nonlinear eigenvalue problems allowing for a minmax characterization
of its eigenvalues.

The following location result for real eigenvalues, generalizing Sylvester’s law of iner-
tia [218], was proved in [118].

THEOREM 6.2 ([118]). Assume that T : J → Rn×n satisfies the conditions of the
minmax characterization in Theorem 2.2.

(i) Let T (·) be overdamped. For σ ∈ J , let (π, ν, δ) be the inertia of T (σ). Then T (·)
has π eigenvalues that are smaller than σ, ν eigenvalues that exceed σ, and if δ 6= 0,
then σ = λπ+1 = · · · = λπ+δ is an eigenvalue of geometric multiplicity δ.

(ii) Assume that T (µ) is negative definite for some µ ∈ J , and for σ > µ, let (π, ν, δ) be
the inertia of T (σ). Then T (·) has exactly π eigenvalues λ1 ≤ · · · ≤ λπ in J that
are smaller than σ.

(iii) Let µ ∈ J , and assume that for every r-dimensional subspace V ⊂ Rn with
V ∩ D(p) 6= ∅, there exists x ∈ V ∩ D(p) with p(x) > µ. For σ ∈ J , σ > µ, let
(π, ν, δ) be the inertia of T (σ). Then for j = r, . . . , π, there exists a jth eigenvalue
λj of T (·) in [µ, σ).

REMARK 6.3. Without using the minmax characterization of eigenvalues, Neumaier [181]
proved part (iii) of Theorem 6.2 for matrices T : J → Cn×n that are Hermitian and (element-
wise) differentiable in J with positive definite derivative T ′(λ), λ ∈ J . Obviously, such T (·)
satisfies the conditions of the minmax characterization. Further location results generalizing
Theorem 6.2 were obtained by Y. Nakatsukasa and V. Noferini [179] without using variational
characterizations.

EXAMPLE 6.4. Consider the rational eigenvalue problem

T (λ)x := −Kx+ λMx+

p∑
j=1

λ

σj − λ
CjC

T
j x = 0,

where K,M ∈ Rn×n are symmetric and positive definite, Cj ∈ Rn×kj has rank kj , and
0 < σ1 < · · · < σp, which models the free vibrations of certain fluid-solid structures; cf. [49].

In each interval J` := (σ`, σ`+1), ` = 0, . . . , p, σ0 = 0, σp+1 = ∞, the function
f`(λ, x) := xTT (λ)x is strictly monotonically increasing, and therefore all eigenvalues in J`
are minmax values of the Rayleigh functional p` corresponding to J`.

For the first interval J0, item (ii) in Theorem 6.2 applies. Hence, if τ ∈ J0 and (np, nn, nz)
is the inertia of T (τ), then there are exactly np eigenvalues in J0 which are less than τ .
Moreover, if τ1 < τ2 are contained in one interval Jj , then the number of eigenvalues in the
interval (τ1, τ2) can be obtained from the inertia of T (τ1) and T (τ2) according to Theorem 6.2,
item (iii).

6.1. Quadratic eigenvalue problems. We now apply Sylvester’s law of inertia to quad-
ratic matrix pencils

(6.1) Q(λ) := λ2A+ λB + C,

with Hermitian matrices A,B,C ∈ Cn×n, where additional conditions guarantee that (some
of) its real eigenvalues allow for a variational characterization and hence for a slicing of its
spectrum using the inertia. Some of the presented results can be generalized to polynomials of
higher degree.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

VARIATIONAL CHARACTERIZATION FOR NONLINEAR EIGENPROBLEMS 25

6.1.1. C < 0 and A ≥ 0. Let C be negative definite and A positive semidefinite. Mul-
tiplying Q(λ)x = 0 by λ−1, one gets the equivalent nonlinear eigenvalue problem

(6.2) Q̃(λ)x := λAx+Bx+ λ−1Cx = 0.

Differentiating f(λ;x) := xHQ̃(λ)x with respect to λ yields

∂

∂λ
f(λ;x) = xHAx− λ−2xHCx > 0, for every x 6= 0 and every λ 6= 0.

Hence, the pencil Q̃ satisfies the conditions of the minmax characterization for both intervals
J− := (−∞, 0) and J+ := (0,∞). For the corresponding Rayleigh functional p± with
domain D±, it holds that λ+

1 = infx∈D+
p+(x) ∈ J+ and λ−n = supx∈D− p−(x) ∈ J−, and

therefore the following location result follows from Theorem 6.2.
THEOREM 6.5 ([118]). Let C be negative definite and A positive semidefinite.
(i) For σ > 0, let In(Q̃(σ)) = (np, nn, nz) be the inertia of Q̃(σ). Then the quadratic

pencil (6.1) has np positive eigenvalues smaller than σ.
(ii) For σ < 0, let In(Q̃(σ)) = (np, nn, nz) be the inertia of Q̃(σ). Then problem (6.2)

has nn negative eigenvalues larger than σ.
If A is positive definite, then Q̃ is overdamped with respect to J+ and J−, and therefore

there exist exactly n positive and n negative eigenvalues. If A 6= 0 is positive semidefinite and
r = rank(A), then∞ is an infinite eigenvalue of multiplicity n− r, and there are only n+ r
finite eigenvalues.

If B is positive definite, then the Rayleigh functional

p+(x) = −2
xHCx

xHBx+
√

(xHBx)2 − 4(xHAx)(xHCx)

is defined on Cn \ {0}. Hence, (Q̃, J+) is overdamped, and there exist n positive and r
negative eigenvalues. Theorem 6.5 can be strengthened according to:

THEOREM 6.6 ([118]). Assume that A is positive semidefinite, B is positive definite, and
C is negative definite.

(i) For σ > 0, let In(Q̃(σ)) = (np, nn, nz) be the inertia of Q̃(σ). Then the quadratic
pencil (6.1) has np positive eigenvalues less than σ, nn finite eigenvalues exceeding
σ, and if nz 6= 0, then σ is an eigenvalue of Q(·) with multiplicity nz .

(ii) For σ < 0, let In(Q̃(σ)) = (np, nn, nz) be the inertia of Q̃(σ). Then (6.1) has nn
negative eigenvalues exceeding σ, np − r eigenvalues smaller than σ, and if nz 6= 0,
then σ is an eigenvalue of Q(·) with multiplicity nz .

REMARK 6.7. In [118] we discussed how to use Theorem 6.2 to slice the spectra of
hyperbolic polynomial eigenvalue problems and in particular hyperbolic quadratic eigenvalue
problems.

6.1.2. Nonoverdamped quadratic pencils. We consider the quadratic pencil (6.1),
where A, B, and C are positive definite. Then, for x 6= 0, the two complex roots of the
function f(λ;x) := xHQ(λ)x are

(6.3) p±(x) =
1

2xHAx

(
−xHBx±

√
(xHBx)2 − 4(xHAx)(xHCx)

)
.

Let

δ− := sup{p−(x) : p−(x) ∈ R}, δ+ := inf{p+(x) : p+(x) ∈ R},
J− := (−∞, δ+), J+ = (δ−, 0), and D± := {x ∈ Cn : p±(x) ∈ J±}.
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If f(λ, x) > 0, for x 6= 0, and λ ∈ R, then δ− = −∞ and δ+ = ∞, and the eigenvalue
problem Q(λ)x = 0 has no real eigenvalues, but this does not need to be known in advance.
Theorem 6.8 below applies to this case as well.

It is obvious that −Q and Q both satisfy the conditions of the minmax characterization of
their eigenvalues in J− and J+, respectively. Hence, all eigenvalues in J− are minmax values
of p−

λ−j = min
dimV=j, V ∩D− 6=∅

max
x∈V ∩D−

p−(x), j = 1, 2, . . .

Taking advantage of the minmax characterization of the eigenvalues of Q̃(λ) := −Q(−λ)
in J̃ := J+ with the Rayleigh functional p̃ := −p+, we obtain the following maxmin
characterization

λ+
2n+1−j = max

dimV=j, V ∩D+ 6=∅
min

x∈V ∩D+

p+(x), j = 1, 2, . . .

of all eigenvalues of Q in J+.
Hence, for σ < δ+ and for σ > δ−, we obtain slicing results for the spectrum ofQ(·) from

Theorem 6.2 (ii). If In(Q(σ)) = (np, nn, nz) and σ < δ+, then there exist nn eigenvalues
of Q(·) in (−∞, σ), and if σ ∈ (δ−, 0), then there are nn eigenvalues in (σ, 0). However, δ+
and δ− are usually not known. The following theorem contains upper bounds of δ− and lower
bounds of δ+, thus yielding subintervals of (−∞, δ+) and (δ−, 0), where the above slicing
applies.

THEOREM 6.8 ([118]). Let A,B,C ∈ Cn×n be positive definite, and let p+ and p− be
defined in (6.3). Then it holds that

(i)

δ̃+ := −

√
max
x 6=0

xHCx

xHAx
≤ δ+ = inf{p+(x) : p+(x) ∈ R}(6.4)

and

δ− = sup{p−(x) : p−(x) ∈ R} ≤ −

√
min
x 6=0

xHCx

xHAx
=: δ̃−.(6.5)

(ii)

(6.6) δ̂+ := −2 max
x 6=0

xHCx

xHBx
≤ δ+ and δ− ≤ −2 min

x 6=0

xHCx

xHBx
=: δ̂−.

EXAMPLE 6.9. The matrices A, B, and C were obtained by the following MATLAB
expressions:

randn(’state’,0); A = eye(30); B = randn(30); C = randn(30);

B = B’*B; C = C’*C;

Then Q(λ)x = 0 has 36 real eigenvalues, 18 in the domain of p− and 18 in the domain of p+.
So, Sylvester’s law of inertia can be applied to all of them.

From Theorem 6.8 we obtain the following information: For both intervals the bounds
from the estimates given in (6.4) and (6.5) are stronger than the ones from (6.6). 16 eigen-
values are contained in (−∞, δ̃+) = (−∞,−

√
max(λ(C,A))) = (−∞,−10.5022) and 8

eigenvalues in (δ̃−, 0) = (−
√

min(λ(C,A)), 0) = (−0.3103, 0).
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7. Low-rank modifications of symmetric eigenvalue problems. We consider a non-
linear low-rank modification of a symmetric eigenvalue problem

(7.1) (A+ φ(λ)H)x = λx,

where A,H ∈ Cn×n are Hermitian matrices, H has low rank k � n, and φ is real-valued and
continuous. We denote by α1 ≤ · · · ≤ αn the eigenvalues of A, and set αj = −∞ for j < 1
and αj =∞ for j > n.

7.1. Rank-1 modifications. We first consider the case H = ccH , i.e., rank-1 mod-
ifications and generalize methods obtained by Huang, Bai, and Su in [109]. For constant
modificationsB := A+τccH it is well known (cf. [80]) that for the eigenvalues β1 ≤ · · · ≤ βn
of the matrix B, the following interlacing properties hold:

If τ > 0, then α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αn ≤ βn, and
if τ < 0, then β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ βn ≤ αn.

In case A has n distinct eigenvalues and c 6= 0 is not orthogonal to any of the corresponding
eigenvectors, then, for τ > 0, exactly one eigenvalue βk is in each of the intervals (αk, αk+1),
and, for τ < 0, there is exactly one eigenvalue of B in (αk−1, αk), for k = 1, . . . , n.

The following existence and inclusion results are contained in [250]. We consider only
nonnegative modifications; the analogous results for nonpositive modifications are clear. For
nonlinear rank-one modifications we immediately get the following theorem:

THEOREM 7.1 ([250]). For k ∈ {1, . . . , n − 1}, let φ ∈ C[αk, αk+1] be nonnegative.
Then the nonlinear eigenvalue problem

(7.2) (A+ φ(λ)ccH)x = λx

has an eigenvalue λ̂ ∈ [αk, αk+1].
REMARK 7.2. Notice that differently from a constant rank-one modification of A, there

does not necessarily exist an eigenvalue of (7.2) in [αn,∞) for φ ≥ 0. If c is an eigenvector of
A corresponding to αn, then (A+φ(λ)ccT )c = (αn+φ(λ)‖c‖2)c, and αn+φ(λ)‖c‖2 ≥ αn
is the maximal eigenvalue of

(7.3) (A+ φ(λ)ccH)x = µx.

Hence, if φ(λ)‖c‖2 > λ − αn for every λ ≥ αn, then there does not exist an eigenvalue
of (7.2) in [αn,∞).

The following theorem assures the existence of an eigenvalue in the extreme interval
[αn,∞):

THEOREM 7.3. Let φ ∈ C[αn,∞) be nonnegative, and assume that there exists η ≥ αn
such that for some δ > 0 it holds that

(7.4)
φ(λ)− φ(η)

λ− η
‖c‖2 ≤ 1− δ for every λ > η.

Then the nonlinear eigenvalue problem (7.2) has an eigenvalue λ̂ ∈ [αn,∞), which is the
largest eigenvalue of (7.3) with λ = λ̂.

Notice that the condition (7.4) cannot be relaxed to δ = 0. Choosing the function
φ(λ) = (λ− αn + exp(−λ))/‖c‖2 yields that the maximum eigenvalue µn = λ+ exp(−λ)
of (7.3) has no fixed point in [αn,∞).

The uniqueness theorem also holds for the unbounded interval (αn,∞).
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THEOREM 7.4 ([250]). For k ∈ {1, . . . , n}, let φ ∈ C[αk, αk+1] be nonnegative, and
assume that the condition

φ(λ)− φ(λ̃)

λ− λ̃
‖c‖2 < 1

is satisfied for λ, λ̃ ∈ I := (αk, αk+1), λ 6= λ̃. Then the problem (7.2) has at most one
eigenvalue λ̂ ∈ I .

7.2. Low-rank modifications. We now consider low-rank modifications (7.1), where
A,H ∈ Rn×n are symmetric, H has low rank, and τ > 0. Again we denote the eigenvalues of
A by α1 ≤ · · · ≤ αn, and we set αj =∞ for j > n and αj = −∞ for j < 1. The inertia of
H is denoted by (π, ν, ζ) and its eigenvalues by σ1 ≤ · · · ≤ σν < 0 < σn−π+1 ≤ · · · ≤ σn.
The following bounds for the eigenvalues of A+ τH are due to Weyl [256] and can be found
in the book of Parlett [190, Corollary 10.3.1].

THEOREM 7.5. Let β1 ≤ · · · ≤ βn denote the eigenvalues of B := A+ τH . Then for
τ > 0 it holds that

αi−ν ≤ βi ≤ αi+π, for i = 1, . . . , n.

From this we immediately get the existence result for the nonlinear modification of A:
THEOREM 7.6. For k ∈ {1 + ν, . . . , n − π}, let φ ∈ C[αk−ν , αk+π] be nonnegative.

Then the nonlinear eigenvalue problem

(A+ φ(λ)H)x = λx

has an eigenvalue λ̂ ∈ [αk−ν , αk+π], which is the kth-smallest eigenvalue of the linear
eigenvalue problem

(7.5) (A+ φ(λ)H)x = µx

with λ = λ̂.
From the minmax characterization of eigenvalues one immediately obtains the following

inequalities:
LEMMA 7.7 ([250]). Let µk(λ) be the kth-smallest eigenvalue of (7.5), and denote by

σ1 ≤ σ2 ≤ · · · ≤ σn the eigenvalues of H .
(i) If φ(λ) ≥ 0, then it holds that

α1 + φ(λ)σk ≤ µk(λ) ≤ αn + φ(λ)σk, k = 1, . . . , n.

(ii) For φ(λ) ≥ φ(λ̃), we have

µk(λ) ≤ µk(λ̃) + (φ(λ)− φ(λ̃))σn, and

µk(λ̃) ≤ µk(λ)− (φ(λ)− φ(λ̃))σ1.

The following theorem guarantees the existence of eigenvalues of (7.1) in the extreme
intervals.

THEOREM 7.8 ([250]).
(i) For 1 ≤ k ≤ ν, let φ ∈ C(−∞, αk+π] be nonnegative, and assume that there exists

η ≤ α1 such that for some δ > 0 it holds that

φ(λ)− φ(η)

λ− η
σk ≤ 1− δ,

for every λ < η. Then the nonlinear eigenvalue problem (7.1) has an eigenvalue
λ̂ ∈ (−∞, αk+π], which is the kth-smallest eigenvalue of (7.5) with λ = λ̂.
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(ii) For n − π < k ≤ n, let φ ∈ C[αk−ν ,∞) be nonnegative, and assume that there
exists η ≥ αn such that for some δ > 0 it holds that

φ(λ)− φ(η)

λ− η
σk ≤ 1− δ,

for every λ > η. Then the nonlinear eigenvalue problem (7.1) has an eigenvalue
λ̂ ∈ [αk−ν ,∞), which is the kth-smallest eigenvalue of (7.5) with λ = λ̂.

The uniqueness result obtains the following form:
THEOREM 7.9 ([250]). For k ∈ {1, . . . , n}, let φ ∈ C[αk−ν , αk+π] be nonnegative, and

assume that

(7.6) max

(
φ(λ)− φ(λ̃)

λ− λ̃
σn,

φ(λ)− φ(λ̃)

λ− λ̃
σ1

)
< 1, λ 6= λ̃,

holds in [αk−ν , αk+π].
Then problem (7.1) has at most one eigenvalue λ̂ ∈ (αk−ν , αk+π), which is the kth-

smallest eigenvalue of (7.5) with λ = λ̂.
The global behavior of the spectrum of the nonlinear eigenvalue problem (7.1) is described

in the next theorem.
THEOREM 7.10 ([250]). Let φ : R→ R be a continuous and nonnegative function such

that condition (7.6) holds for all λ, λ̃ ∈ R with λ 6= λ̃, and assume that the conditions of
Theorem 7.8 are satisfied.

Then the nonlinear eigenvalue problem

(A+ φ(λ)H)x = λx

has exactly n eigenvalues λ1 ≤ · · · ≤ λn, and λk ∈ [αk−ν , αk+π], k = 1, . . . , n.
The interval [αk, αk+1] contains at most ν + π + 2 eigenvalues λj , where it holds that

j ∈ {k − π, k − π + 1, . . . , k + ν, k + ν + 1}.

7.3. Numerical considerations. We now consider numerical methods that are variants
of safeguarded iterations for general nonlinear eigenvalue problems. Under the conditions of
the minmax characterization (which are not necessarily satisfied here), it was shown in [183]
that the safeguarded iteration converges quadratically, and the convergence is global for
extreme eigenvalues but only local for the remaining ones. For the low-rank modifications
of symmetric problems considered here, safeguarding can be included to guarantee global
convergence for the interior eigenvalues.

Methods for rank-1 modifications are discussed in [250]. We only consider methods for
computing a kth eigenvalue λ̂ and a corresponding eigenvector x̂ of

(A+ φ(λ)H)x = λx,

i.e., an eigenvalue λ̂ which is the kth-smallest eigenvalue of the linear problem

(A+ φ(λ̂)H)x = µx.

The proof of Theorem 7.9 demonstrates that for λ ∈ Ik = (αk−ν , αk+π), it holds that

λ ≤ λ̂ ⇐⇒ µk(λ) ≥ λ,

which together with the following theorem yields a safeguarding.
THEOREM 7.11 ([250]). Assume that condition (7.6) holds in an interval I ⊂ R. Let

f(λ, x) := xH(A+ φ(λ)H − λI)x.
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If f(λ̃, x) = 0 for some λ̃ ∈ I and x 6= 0, then it holds that

(λ− λ̃)f(λ, x) < 0 for every λ ∈ I, λ 6= λ̃.

Hence an approximation of λ̂ can be updated by the solution of f(λ, x) = 0, and the following
Algorithm 10 is obtained.

Algorithm 10 Determining an inner eigenpair of a low rank modified symmetric eigenproblem.

Require: initial bounds λ` := αk−ν , λu := αk+π and initial guess λ ∈ [λ`, λu] of λ̂
γ = max(0,maxλ∈[λ`,λu] φ

′(λ)σn,maxλ∈[λ`,λu] φ
′(λ)σ1)

1: determine an eigenpair (µ, x) corresponding to the kth-smallest eigenvalue of

(A+ φ(λ)H)x = µx

2: while |λ− µ|/(1− γ) > tol do
3: if µ > λ then
4: λ` = λ
5: else
6: λu = λ
7: end if
8: if f(λ`, x)f(λu, x) > 0 then
9: λ = 0.5(λu + λ`)

10: else
11: solve xH(A+ φ(λ)H − λI)x = 0 for λ
12: end if
13: determine an eigenpair (µ, x) corresponding to the kth-smallest eigenvalue of

(A+ φ(λ)H)x = µx

14: end while
15: λ̂ := λ, x̂ := x

Algorithm 10 computes an eigenpair (λ̂, x̂) with λ̂ as the kth-smallest eigenvalue of
B(λ) := A+φ(λ)H . Assuming the conditions given in Theorem 7.11 above and given that φ
is continuously differentiable in a neighborhood of λ̂, the local convergence of Algorithm 10
is quadratic.

Replacing the eigenpair (µ, x) corresponding to the kth-smallest eigenvalue of the problem
(A+ φ(λ)H)x = µx in line 13 by the eigenpair (νλ, x) corresponding to the kth-largest
eigenvalue of

(A+ (φ(λ)− λφ′(λ))H)x = νλ(I − φ′(λ)H)x,

one can even get cubic convergence. This follows from Theorem 3.1 (iii) and the relation
νλ := λ− µ.
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EXAMPLE 7.12. Consider the nonlinear modification (A+ φ(λ)H)x = λBx of

Ax :=
1

h
tridiag{−1, 2,−1}x = λ

h

6
tridiag{1, 4, 1}x =: λBx,

where A,B ∈ R100×100 and H is a symmetric rank-three matrix with one negative and 2
positive eigenvalues. Let φ(λ) = 0.9(1− sin(λ)) and

γ = max(0,maxφ′(λ)σn,maxφ′(λ)σ1) = 0.996

such that Theorem 7.6 applies. Although the initial value λ = αk−ν is quite far away from the
eigenvalue under consideration, the method has no problem to converge. Table 7.1 contains
the 5 smallest eigenvalues, the number of iterations, and the final residual. The initial value of
λ is 0, for k = 1, and αk−1, for k = 2, 3, 4, 5.

TABLE 7.1
Five smallest eigenvalues of Example 7.12 via Algorithm 10.

k λ iter (αk−1, αk+2) res
1 3.33307908052349 3 (-∞ , 61.7167) 6.6e-11
2 23.6619469468822 3 (2.46745, 121.024) 8.4e-11
3 61.5752941605781 3 (22.2107, 200.192) 1.1e-10
4 121.024515451116 2 (61.7167, 299.299) 8.9e-11
5 200.192841286577 2 (121.024, 418.441) 8.6e-11

8. Automated Multi-Level Substructuring. The Automated Multi-Level Substructur-
ing (AMLS) method has been developed by Bennighof [27, 28] to reduce the computational
demands in a frequency response analysis involving large and complex models. An efficient
implementation by Gao, Li, Yang, and Bai can be found in [73].

AMLS automatically divides a large finite element model into many substructures on a
number of levels based on the sparsity structure of the system matrices. Assuming that the
interior degrees of freedom depend quasistatically on the interface degrees of freedom and
modeling the deviation from quasistatic dependence in terms of a small number of selected
substructure eigenmodes, the size of the finite element model is reduced substantially while
yielding satisfactory accuracy over a wide frequency range of interest.

Recent studies (e.g., [116, 122]) in the vibro-acoustic analysis of passenger car bodies,
where very large FE models with more than one million degrees of freedom appear and
several hundreds of eigenfrequencies and eigenmodes are needed, have shown that AMLS is
considerably faster than Lanczos-type approaches.

We stress the fact that substructuring does not mean that it is obtained by a domain
decomposition of a real structure, but it is understood in a purely algebraic sense, i.e., the
dissection of the matrices can be derived by applying a graph partitioner to the matrix under
consideration. However, because of its pictographic nomenclature, we will use terms like
substructure or eigenmode from frequency response problems when introducing the AMLS
method.

From a mathematical point of view AMLS is a projection method where the ansatz space
is constructed exploiting Schur complements of submatrices and the truncation of spectral
representations of subproblems. In this presentation, we will take advantage of the fact that the
original eigenproblem is equivalent to a rational eigenvalue problem of the same dimension
as the projected problem in AMLS, which can be interpreted as exact condensation of the
original eigenproblem with respect to an appropriate basis. Its eigenvalues at the lower end of
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the spectrum can be characterized as minmax values of a Rayleigh functional of this rational
eigenproblem. Hence, comparing the Rayleigh quotient of the projected problem and the
Rayleigh functional of the rational problem, we derive an a priori bound for the error of the
AMLS method.

8.1. Substructuring of eigenproblems. We are concerned with the linear eigenvalue
problem

(8.1) Kx = λMx,

where K ∈ Rn×n and M ∈ Rn×n are symmetric and positive definite matrices.
We first consider one-level versions of the substructuring methods. Assume that the joint

graph of the matrices K and M is partitioned into r substructures such that the rows and
columns of K can be reordered in the following way:

K =


K``1 O . . . O K`i1

O K``2 . . . O K`i2

...
...

. . .
...

...
O O . . . K``r K`ir

Ki`1 Ki`2 . . . Ki`r Kii

 ,

andM after reordering has the same block form. HereK``j , j = 1, . . . , r, is the local stiffness
matrix corresponding to the jth substructure, i denotes the set of interface vertices, and K`ij

describes the interaction of the interface degrees of freedom and the jth substructure.
Distinguishing only between local and interface degrees of freedom, K and M have the

following form:

(8.2) K =

[
K`` K`i

Ki` Kii

]
and M =

[
M`` M`i

Mi` Mii

]
.

We transform the matrix K into block diagonal form using block Gaussian elimination, i.e.,
we apply the congruent transformation with

P =

[
I −K−1

`` K`i

0 I

]
to the pencil (K,M), obtaining the equivalent pencil

(8.3) (PTKP,PTMP ) =

([
K`` 0

0 K̃ii

]
,

[
M`` M̃`i

M̃i` M̃ii

])
.

We further transfer the pencil (8.3), taking advantage of a modal basis for the local degrees of
freedom. To this end consider the substructure eigenvalue problems

(8.4) K``Φ = M``ΦΩ, ΦTM``Φ = I,

where Ω is a diagonal matrix containing the eigenvalues of the `th substructure. Changing
the basis for the local degrees of freedom to a modal one, i.e., applying the further congruent
transformation diag{Φ, I} to problem (8.3), one gets

(8.5)
([

Ω 0

0 K̃ii

]
,

[
I ΦT M̃`i

M̃i`Φ M̃ii

])
.
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In structural dynamics (8.5) is called the Craigh-Bampton form of the eigenvalue prob-
lem (8.1) corresponding to the partitioning (8.2); cf. [51]. In terms of linear algebra it results
from a block Gaussian elimination to reduce K to block diagonal form and a diagonalization
of the block K`` using a spectral basis.

Selecting some eigenmodes of the problem (8.4) (usually the ones according to eigen-
values which do not exceed a cut-off threshold) and dropping the rows and columns in (8.5)
corresponding to the other modes, one arrives at the component mode synthesis method (CMS)
introduced by Hurty [110] and Craigh and Bampton [51]. Hence, if the diagonal matrix Ω1

contains at its diagonal the eigenvalues to be dropped and Φ1 the corresponding eigenvectors
and if Ω2 and Φ2 contain the eigenvalues and eigenvectors to keep, respectively, then the
eigenproblem (8.5) can be rewritten as

(8.6)

Ω1 0 0
0 Ω2 0

0 0 K̃ii

x1

x2

x3

 = λ

 I 0 M̃`i1

0 I M̃`i2

M̃i`1 M̃i`2 M̃ii

x1

x2

x3


with

M̃`ij = ΦTj (M`i −M``K
−1
`` K`i) = M̃T

i`j , j = 1, 2,

and the CMS approximations of the eigenpairs of (8.1) are obtained from the reduced eigen-
value problem

(8.7)
[
Ω2 0

0 K̃ii

]
y = λ

[
I M̃`i2

M̃i`2 M̃ii

]
y.

AMLS generalizes CMS in the following way. Again the graph of |K|+ |M | is partitioned
into a small number of subgraphs, but more generally than in CMS, these subgraphs in turn
are substructured on a number p of levels yielding a tree topology for the substructures. This
induces the following partitioning of the index set I = {1, . . . , n} of the degrees of freedom:
Let I1 be the set of indices corresponding to interface degrees of freedom on the coarsest level,
and for j = 2, . . . , p, define Ij to be the set of indices of interface degrees of freedom on
the jth level that are not contained in Ij−1. Finally, let Ip+1 be the set of interior degrees of
freedom on the finest level.

With these notations AMLS works as follows: Its first step is the CMS method with a
cut-off frequency τ1 applied to the finest substructuring, i.e., Ip+1 is the set of local degrees
of freedom and Ĩp+1 :=

⋃p
j=1 Ij is the set of interface degrees of freedom. After j steps,

1 ≤ j ≤ p− 1, one derives a reduced pencil
Ωf O O

O K
(j)
`` K

(j)
`i

O K
(j)
i` K

(j)
ii

 ,
M

(j)
ff M

(j)
f` M

(j)
fi

M
(j)
`f M

(j)
`` M

(j)
`i

M
(j)
if M

(j)
i` M

(j)
ii


 ,

where f denotes the degrees of freedom obtained in the spectral reduction in the previous
steps, ` collects the indices in Ip+1−j , and i corresponds to the index set

⋃p−j
k=1 Ik of interface

degrees of freedom on levels which are not yet treated. Applying the CMS method to the
south-east 2× 2 blocks of the matrices, i.e., annihilating the off-diagonal block K(j)

`i by block
Gaussian elimination and reducing the set of `-indices by spectral truncation with a cut-off
frequency τj+1, one arrives at the next level.
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After p CMS steps we obtain the reduced problem([
Ωp O

O K
(p)
``

]
,

[
M

(p)
ff M

(p)
f`

K
(p)
`f M

(p)
``

])
,

and a final spectral truncation of the lower-right blocks with cut-off frequency τp+1 yields the
reduction of problem (8.1) by AMLS.

We have chosen this unusual description of AMLS because it is very convenient for
deriving the error bound in Section 8.2. Note that this description neglects the algorithmically
important fact that all matrices K(j)

`` and M (j)
`` are block diagonal. Hence, the annihilation of

the off-diagonal blocks K(j)
`i and the spectral reduction on each level is quite inexpensive. A

matrix and variational analysis of AMLS is contained in [28]; implementation details can be
found in [73, 116].

8.2. A priori bounds for AMLS. We first consider the component mode synthesis
method (8.7). If λ is not a diagonal entry of Ω1, then the first equation of (8.6) yields

x1 = λ(Ω1 − λI)−1M̃`i1x3,

and λ is an eigenvalue of (8.1) if and only if it is an eigenvalue of the rational eigenproblem

(8.8) T (λ)y = 0,

where

T (λ) = −
[
Ω2 0

0 K̃ii

]
+ λ

[
I M̃`i2

M̃i`2 M̃ii

]
+ λ2

[
0

M̃i`1

]
(Ω1 − λI)−1

[
0 M̃`i1

]
.

We denote by

ω := min diag Ω1

the smallest eigenvalue of problem (8.4) neglected in the CMS method, which can be replaced
by the cut-off threshold. Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of problem (8.1)
ordered by magnitude, and let m ∈ N such that λm < ω ≤ λm+1. Then λ1, . . . , λm ∈ J
are the eigenvalues of the nonlinear eigenproblem (8.8) in J , and it can be shown that these
eigenvalues satisfy the minmax principle.

The eigenvalues λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃ν of the reduced problem (8.7) are minmax values of
the Rayleigh quotient ρ(x) corresponding to problem (8.7). Comparing p and ρ on appropriate
subspaces of Rν , we arrive at the following a priori bound for the relative errors of the CMS
approximations λ̃j to λj .

THEOREM 8.1 ([62]). Let K,M ∈ Rn×n be symmetric and positive definite, and let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of problem (8.1), which we assume to be ordered by
magnitude.

Denote by λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃ν the eigenvalues of the CMS approximation (8.7) of
problem (8.1) corresponding to some partition of the graph |K| + |M | and some cut-off
threshold ω.

Assume that the interval (0, ω) containsm eigenvalues λ1, . . . , λm of (8.1). Then it holds
that

(8.9) 0 ≤ λ̃j − λj
λj

≤ λj
ω − λj

≤ λ̃j

ω − λ̃j
, j = 1, . . . ,m.
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REMARK 8.2. Numerical examples demonstrate that the error bound in (8.9) overes-
timates the true relative error of CMS by one or two orders of magnitude. The paper [62]
contains an example that demonstrates that the bound cannot be improved without further
assumptions.

REMARK 8.3. Bekas and Saad [25] identified the level-one version of AMLS as a
linearization of a rational eigenproblem, which motivated them to suggest three modifications:
a second-order approximation, expanding the projection space by Krylov subspaces, and a
combination of these two modifications. For the multi-level substructuring method, however,
these modifications do not seem to be useful.

REMARK 8.4. Yang et al. [257] considered the component mode synthesis method, and
they obtained a simple heuristic for choosing spectral components from each substructure
suggesting to drop all eigenpairs (ω, φ) of substructures in the reduction process such that

ρ1(ω) :=
λ1

ω − λ1
≤ τ,

where λ1 is the smallest eigenvalue of the problem under consideration and τ is a given
tolerance. Theorem 8.1 guarantees that with this choice, the relative error of the CMS
approximation λ̃1 of λ1 is less than τ .

Since AMLS can be understood as a sequence of p consecutive CMS steps and a terminat-
ing spectral truncation, it is clear how to obtain an a priori bound for the general AMLS method.
Every reduction step in which a quasistatic/modal representation is obtained and the dimension
is reduced by spectral truncation is identical to a CMS step utilizing the substructuring of the
next level. Hence, one obtains the following error bound for AMLS.

THEOREM 8.5 ([62]). Let K, M and λj , j = 1, . . . , n, be given as in Theorem 8.1. Let
the graph of |K|+ |M | be substructured with p levels, and denote by λ̃(ν)

1 ≤ λ̃(ν)
2 ≤ . . . the

eigenvalues obtained by AMLS with a cut-off threshold ων on the level ν.
If m ∈ N such that λm < minν=0,...,p ων ≤ λm+1, then it holds that

λ̃j − λj
λj

≤
p∏
ν=0

(
1 +

λ
(ν)
j

ων − λ
(ν)
j

)
− 1, j = 1, . . . ,m.

Since the final problem is a projection of each of the intermediate eigenproblems in the
AMLS reduction, it follows from the minmax characterization that λ(ν)

j ≤ λ̃j , for ν = 0, . . . , p.
Therefore the a priori bound (8.9) can be replaced by the computable bound

λ̃j − λj
λj

≤
p∏
ν=0

(
1 +

λ̃j

ων − λ̃j

)
− 1, j = 1, . . . ,m.

8.3. AMLS reduction for nonlinear eigenproblems. We consider the nonlinear eigen-
value problem

(8.10) T (λ)x = 0,

where T (λ) ∈ Cn×n is a large and sparse matrix depending on a parameter λ ∈ D ⊂ C. To
generalize the AMLS method, we identify an essential linear part of T (·), i.e., we rewrite the
problem (8.10) as

Kx− λMx−R(λ)x = 0,
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where K ∈ Cn×n and M ∈ Cn×n are Hermitian and positive definite matrices and

R(λ) = K − λM − T (λ)

is a perturbation of the linear eigenproblem Kx = λMx, which should be small in the
eigenparameter set of interest.

Once the multi-level substructuring transformation of the linear pencil (K,M) has been
accomplished with a given cut-off frequency, we obtain a matrix ΦAMLS of substructure modes
and a projected eigenproblem

(8.11) Ky = λMy

of much smaller dimension, where K = ΦHAMLSKΦAMLS andM = ΦHAMLSMΦAMLS.
This information can be used in two ways to solve the nonlinear eigenvalue problem

approximately: First, we may project the nonlinear eigenproblem (8.10) to the subspace of Cn
spanned by the substructure modes which were kept in the AMLS reduction, i.e.,

(8.12) ΦHAMLST (λ)ΦAMLSy = Ky − λMy − ΦHAMLSR(λ)ΦAMLSy = 0.

In particular this projection can be performed easily if the remainder R(λ) has the form

R(λ) =

p∑
j=1

fj(λ)Cj ,

where fj(λ) are given complex functions and Cj ∈ Cn×n are given matrices, which quite
often have the same sparsity structure as the pencil (K,M) or some other simple structure. In
this case the projection ΦHAMLSR(λ)ΦAMLS could be determined simultaneously with the matrices
K andM in the course of the AMLS reduction.

Secondly, we may determine Ritz pairs (λj ,ΦAMLSyj), j = 1, . . . ,m, of the linear prob-
lem Kx = λMx corresponding to eigenvalues in the wanted region from the projected
problem (8.11) and project the nonlinear problem to the subspace spanned by these Ritz
vectors. Thus, we get

(8.13) XHT (λ)Xz = Λz − λz −XHR(λ)Xz = 0,

where Λ = diag{λ1, . . . , λm} and X = (x1, . . . , xm).
Problem (8.13) is equivalent to the projection of the problem (8.12) to the space spanned

by the eigenvectors y1, . . . , ym of (8.11) corresponding to λ1, . . . , λm. Hence, we can expect
that the first approach will yield better approximations. Examples, however, demonstrate that
the loss of accuracy often is negligible.

In either case we arrive at a projected nonlinear eigenvalue problem of much smaller
dimension which can be solved by an appropriate method, i.e., a dense solver if the projected
problem is small or by linearization if the underlying problem is a polynomial eigenproblem
or by an iterative projection method of Arnoldi- or Jacobi-Davidson type.

Applications of AMLS to gyroscopic eigenproblems including numerical experiments are
contained in [63] and to applications to nonlinear eigenproblems (nonproportional damping,
vibrations of fluid-solid structures) can be found in [64].

REMARK 8.6. We discussed the relation between AMLS and a subspace iteration, i.e.,
enhancing the eigenvector approximation from AMLS with a subspace iteration, in [251, 260]
and preconditioning the subspace iteration with AMLS in [252].
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9. Large-scale Tikhonov regularization via reduction by orthogonal projection. This
section considers an approach for computing an approximate solution of a Tikhonov-regularized
large-scale ill-posed least-squares problem

(9.1) min
x∈Rn

‖Ax− b‖,

with a severely ill-conditioned and possibly singular matrix A ∈ Rm×n, m ≥ n, and an
observation vector b ∈ Rm.

Due to the ill-conditioning of A, the straightforward least-squares solution of (9.1) often
does not yield a meaningful approximation of a solution, but it is necessary to stabilize the
computation by regularization. One of the most popular regularizations methods is due to
Tikhonov [224], which replaces (9.1) by

(9.2) min
x∈Rn

{
‖Ax− b‖2 + µ−1‖Lx‖2

}
with a scalar µ ∈ (0,∞) and a general regularization matrix L ∈ Rp×n. The normal equations
associated with (9.2) are given by

(9.3) T (λ)x := (ATA+ µ−1LTL)x = AT b.

If rank
[
AT , LT

]
= n, then for any µ > 0, the problem (9.3) has the unique solution

(9.4) xµ = (ATA+ µ−1LTL)−1AT b.

When the matrices A and L are small, the solutions xµ of (9.4) can easily be determined
for many values of µ > 0 by first computing the generalized singular value decomposition
(GSVD) [233] of the matrix pair {A,L}. For large-scale problems and a fixed µ > 0, an
approximation of xµ can be determined by applying an iterative method, such as LSQR [189],
to (9.3). However, generally, a suitable value of the parameter µ is not known a priori and has
to be determined during the solution process. Many approaches to determining an appropriate
value of µ, including the L-curve criterion [96, 97, 141], the discrepancy principle [65, 178],
generalized cross validation [47, 78], and information criteria [10, 205], require the normal
equations (9.3) to be solved repeatedly for many different values of the parameter µ. This can
make applications of LSQR costly.

For the Tikhonov regularization problem in standard form, i.e., when L = I , approximate
solutions of (9.4) can be computed by partial Lanczos bidiagonalization of A (see e.g., [42,
43, 44, 95]), i.e., by projecting the problem onto the Krylov subspace

(9.5) K`(ATA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)`−1AT b}

for some ` ≥ 1. Due to the shift invariance of Krylov subspaces, the subspace (9.5) can be
used for several parameter values µ. A solution by partial Lanczos bidiagonalization can
also be applied to the Tikhonov regularization problems (9.2) with L 6= I , provided that the
regularization matrix can be transformed to standard form without too much effort. This
transformation is carried out with the aid of the substitutions y = Lx and x = L†Ay, where for
p ≤ n,

L†A := (I − (A(I − L†L))†A)L†.

This matrix is referred to as the A-weighted pseudoinverse of L [60].
In [127] we proposed an iterative projection method that computes an approximate

solution of (9.4) in a generalized Krylov subspace. The regularization parameter is determined
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by the discrepancy principle. Given an estimate δ of the norm of the error in the vector b, i.e.,
δ ≈ ‖∆b‖ with b = btrue + ∆b, the regularization parameter µ = µ(δ) is determined such
that the computed approximation x̃µ of the solution xµ satisfies

‖Ax̃µ − b‖ = δ.

Introduce the function

φ(µ) := ‖Axµ − b‖2,

where xµ is given by (9.4), and let µ̄ satisfy

φ(µ̄) = δ2.

The function φ(µ) is convex and monotone. A numerical method for inexpensively computing
upper and lower bounds for µ̄ when L = I is described in [44]. Note that the evaluation of
φ(µ) is expensive when A is large. Assume that L is a regularization matrix such that the
computation with L†A is costly.

Let V be a subspace of small dimension k � n, and let the columns of V ∈ Rn×k be an
orthonormal basis of V . We propose to approximate φ(µ) by the function

φ(µ;V ) := ‖Axkµ − b‖2,

where xkµ is obtained by solving the Tikhonov problem (9.2) restricted to V . Specifically, let

ykµ := argminy∈Rk{‖AV y − b‖2 + µ−1
k ‖LV y‖

2}, xkµ := V ykµ.

The regularization parameter µk is determined as the zero of the function

f(µ;V ) := ‖Axkµ − b‖2 − δ2

and can be computed, e.g., by Newton’s method, by rational inverse iteration (see [130, 133]),
or by a cubically convergent zero finder [192]. Let µk be an available approximation of µ̄, and
let

rkµ = (ATA+ µ−1
k LTL)xkµ −AT b

be the residual of (9.3) corresponding to xkµ = V ykµ. In the absence of round-off errors, rkµ is
orthogonal to the search space V . To enforce orthogonality in the presence of round-off errors,
we reorthogonalize and obtain the expanded search space Vnew, i.e.,

r̃kµ := (I − V V T )rkµ, vnew := r̃kµ/‖r̃kµ‖, Vnew := [V, vnew].

The resulting Generalized Krylov Subspace Tikhonov Regularization Method [127] is
given in Algorithm 11.
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Algorithm 11 Generalized Krylov Subspace Tikhonov Regularization Method.
Require: initial basis V0, V T0 V0 = I

1: for i = 0, 1, . . . until convergence do
2: find the root µi of f(µ;Vi) = 0
3: solve (V Ti T (µi)Vi)y

i
µ = V Ti A

T b

4: compute riµ = T (µi)Viy
i
µ −AT b

5: reorthogonalize (optional) r̃iµ = (I − ViV Ti )riµ
6: normalize vnew = r̃iµ/‖r̃iµ‖
7: enlarge the search space Vi+1 = [Vi, vnew]
8: end for
9: determine the approximate Tikhonov solution xiµ = Viy

i
µ

EXAMPLE 9.1. The inverse heat equation heat(5) from Hansen’s Regularization
Tools [98] has been used to generate a test problem with ill-determined rank (i.e., with singular
values that gradually decay to zero) and a numerically singular matrix A ∈ R400×200 and a
vector b containing Gaussian noise with level σ = 1 · 10−2 together with a regularization
matrix

L = L1 =

−1 1
. . .
−1 1

 ∈ R(n−1)×n.

The initial search space is the Krylov subspace span{V0} = K`(ATA,AT b) with ` = 7.
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FIG. 9.1. Convergence histories of Algorithm 11 for Example 9.1.

On the left-hand side of Figure 9.1, the sequence {µi} is displayed, from which it can
be observed that the value µ̄ ≈ 8.07 is approached very quickly as dim(V) increases. The
corresponding relative residual norms, ‖r(xiµ)‖/‖AT b‖, i = 0, 1, 2, . . . , are displayed in
Figure 9.1 on the right; cf. line 4 of Algorithm 11. Notice that the convergence of the
regularization parameter is not monotonic; the sequence {µi} oscillates around µ̄ also when
the dimension of V (i.e., dim(V) = i+ 7) increases, but this is not visible in the figure.

10. Regularized total least-squares problems. Many problems in data estimation are
governed by overdetermined linear systems Ax ≈ b, A ∈ Rm×n, b ∈ Rm,m ≥ n, where
both the matrix A and the right-hand side b contain some noise. An appropriate approach to
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this problem is the total least-squares (TLS) method [3, 79], which determines perturbations
∆A ∈ Rm×n of the coefficient matrix A and ∆b ∈ Rm of the vector b such that

(10.1) ‖[∆A,∆b]‖2F = min! subject to (A+ ∆A)x = b+ ∆b,

where ‖ · ‖F denotes the Frobenius norm of a matrix. An overview of total least-squares
methods and a comprehensive list of references is contained in [167, 230, 231, 232].

The TLS problem (10.1) can be analyzed in terms of the singular value decomposition
(SVD) of A and [A, b]; cf. [80, 232]. For discretizations of ill-posed problems such as integral
equations of the first kind (cf. [65, 84, 97]), least-squares or total least-squares methods often
yield physically meaningless solutions, and regularization is necessary to stabilize the solution.

Motivated by Tikhonov regularization, a well-established approach is to add a quadratic
constraint yielding the regularized total least squares (RTLS) problem

(10.2) ‖[∆A,∆b]‖2F = min! subject to (A+ ∆A)x = b+ ∆b, ‖Lx‖ ≤ δ,

where δ is a regularization parameter and L ∈ Rk×n, k ≤ n, defines a (semi-)norm for
the solution by which the size of the solution is bounded or a certain degree of smoothness
for the solution can be imposed. Throughout this section it is assumed that the condition
σmin([AK, b]) < σmin(AK) holds, where K is an orthonormal basis of the kernel of L,
which guarantees that a solution of the RTLS problem (10.2) is attained; cf. [22]. Notice
that the condition is empty if the regularization matrix L is nonsingular. Stabilization by
introducing a quadratic constraint was extensively studied in [23, 77, 88, 126, 129, 130, 131,
132, 133, 194, 207, 208]. Tikhonov regularization was considered in [22, 134].

It is assumed that the regularization parameter δ > 0 is smaller than ‖LxTLS‖, where
xTLS denotes the solution of the total least-squares problem (10.1); otherwise no regularization
would be necessary. Then at the optimal solution of (10.2), the constraint ‖Lx‖ ≤ δ holds
with equality. Under this condition Golub, Hansen, and O’Leary [77] derived the following
first-order necessary conditions of the RTLS problem (10.2): The solution xRTLS of (10.2) is
a solution of the problem

(10.3) (ATA+ λIIn + λLL
TL)x = AT b,

where the parameters λI and λL are given by

(10.4) λI = −‖Ax− b‖
2

1 + ‖x‖2
, λL =

1

δ2

(
bT (b−Ax)− ‖Ax− b‖

2

1 + ‖x‖2
)
.

This condition was used in the literature in two ways to solve problem (10.2): In [77, 88,
131, 194], the value of λI is chosen as a free parameter. Then for fixed λL, problem (10.3)
is solved for (x, λI), and then λL is updated in a way that the whole process converges
to the solution of (10.2). Conversely, in [129, 130, 207, 208], for a chosen parameter λI ,
problem (10.3) is solved for (x, λL), which yields a convergent sequence of updates for λI .

In the first case one has to determine in every iteration step the eigenvector of a symmetric
matrix corresponding to its smallest eigenvalue, and in the latter approach, one has to find the
rightmost eigenvalue and the corresponding eigenvector of a symmetric quadratic eigenprob-
lem in every iteration step. Hence, in both cases one has to solve a sequence of eigenvalue
problems, which converge as the methods approach the solution of (10.2).

Results for employing the sequence of QEPs are contained in Section 10.1, whereas
results for the sequence of linear EVPs are contained in Section 10.2. Computational meth-
ods for solving RTLS problems based on eigenproblems are given in Section 10.3 and the
corresponding numerical examples in Section 10.4.
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10.1. Regularized total least-squares based on a sequence of QEPs. It is well known
(cf. [23, 232]) that the RTLS problem (10.2) is equivalent to

(10.5) f(x) :=
‖Ax− b‖2

1 + ‖x‖2
= min! subject to ‖Lx‖2 ≤ δ2.

Let us first consider the parameter λI to be fixed for one iteration step, and let λ := λL be a
free parameter. The fixed parameter is updated and initialized as suggested in (10.4),

λI = λI(x
k) = −‖Ax

k − b‖2

1 + ‖xk‖2
.

The first-order optimality conditions then reads

(10.6) B(xk)x+ λLTLx = AT b, ‖Lx‖2 = δ2,

with

B(xk) = ATA− f(xk)I, f(xk) =
‖Axk − b‖2

1 + ‖xk‖2
= −λI(xk),

which suggests the following Algorithm 12.

Algorithm 12 RTLSQEP.
Require: initial vector x1.

1: for k = 1, 2, . . . until convergence do
2: with Bk := B(xk) solve

(10.7) Bkx
k+1 + λLTLxk+1 = AT b, ‖Lxk+1‖2 = δ2

for (xk+1, λ) corresponding to the largest λ ∈ R
3: end for

Sima, Van Huffel, and Golub [208] proposed to solve (10.6) via a quadratic eigenvalue
problem similarly to the approach of Golub [76] for regularized least-squares problems. This
motivates the name RTLSQEP of the algorithm. With an active constraint at the solution
of (10.2), i.e., ‖Lx∗‖2 = δ2, the following global convergence result holds.

THEOREM 10.1 ([130]). Any limit point x∗ of the sequence {xk} constructed by Al-
gorithm 12 is a global minimizer of the optimization problem (10.5) and thus of the RTLS
problem (10.2).

If L is square and nonsingular, then with z = Lxk+1, problem (10.7) is equivalent to

Wkz + λz := L−TBkL
−1z + λz = L−TAT b =: h, zT z = δ2.

Assuming that Wk + λI is positive definite and denoting u := (Wk + λI)−2h, one gets
hTu = zT z = δ2, and the identity h = δ−2hhTu yields that (Wk + λI)2u = h is equivalent
to the quadratic eigenvalue problem

(10.8) T (λ)u := (Wk + λI)2u− δ−2hhTu = 0.

The choice of the rightmost eigenvalue can be motivated as the maximal Lagrange multiplier
that minimizes an underlying quadratic function; cf. [71, 130].
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In [129] it is shown that the rightmost eigenvalue λ̂ of (10.8) is real and that Wk + λ̂I is
positive semidefinite. We are considering the generic case of Wk + λ̂I being positive definite.
In this case the solution of the original problem (10.7) is recovered from z = (Wk + λ̂I)u

and xk+1 = L−1z, where u is an eigenvector corresponding to λ̂ which is scaled such that
hTu = δ2.

The case that Wk + λ̂I ≥ 0 is singular is discussed for constrained symmetric eigenprob-
lems, i.e., with linear equality constraints for the eigenvector, in [72] and in [126] for solving
the sequence (10.7).

REMARK 10.2. When Wk + λ̂I is singular it holds that ‖(Wk + λ̂I)†h‖ < δ for any k
happens if and only if the solution in this iteration step is nonunique. In this case the solutions
can be constructed from the eigenspace corresponding to the rightmost eigenvalue λ̂ of the
QEP (10.8) and the minimum-norm solution of the consistent system (Wk + λ̂I)†h. Thus,
the RTLS problem (10.2) is nonunique if and only if at the limit value f(x∗) = f∗, with
Wk→∞ := W (f∗), it holds that ‖(W (f∗) + λ̂I)†h‖ < δ.

If rank(L) = k < n, then problem (10.7) has to be reduced to the range of L correspond-
ingly, which does not effect the obtained results; see [129, 208].

With a symmetric matrix W and h ∈ Rn, it holds that, for any fixed x 6= 0,

f(λ, x) := xHT (λ)x = λ2‖x‖22 + 2λxHWx+ ‖Wx‖22 − |xHh|2/δ2

is a parabola which attains its minimum at λ = −x
HWx

xHx
.Hence, we choose J = (−λmin,∞),

where λmin is the minimum eigenvalue of W . Then f(λ, x) = 0 has at most one solution
p(x) ∈ J for every x 6= 0, and the Rayleigh functional p of (10.8) corresponding to J is de-
fined. Obviously, it holds that xHT ′(p(x))x > 0 for every x ∈ D, and the general conditions
of the maxmin characterization are satisfied.

THEOREM 10.3 ([129]). Let λmin be the minimal eigenvalue of W and xmin be a
corresponding eigenvector. Let J = (−λmin,∞), and denote by p the Rayleigh functional of
T (·) and by D its domain of definition.

(i) If xTminh = 0 and T (−λmin) is positive semidefinite, then λ̂ := −λmin is the maximal
real eigenvalue of (10.8) and xmin is a corresponding eigenvector.

(ii) Otherwise, the maximal real eigenvalue is the unique eigenvalue λ̂ of (10.8) in J ,
and it holds that

λ̂ = max
x∈D

p(x).

(iii) λ̂ is the rightmost eigenvalue of (10.8), i.e.,

real(λ) ≤ −λmin ≤ λ̂ for every eigenvalue λ of (10.8).

The following theorem characterizes the case that this rightmost eigenvalue of (10.8) is
negative.

THEOREM 10.4 ([129]). The maximal real eigenvalue λ̂ of problem (10.8) is negative if
and only if W is positive definite and

‖W−1h‖ < δ.

A negative rightmost eigenvalue of problem (10.8) may appear for any δ > 0. Since it
holds that ‖W−1h‖ = ‖L(ATA−f(x)In)−1AT b‖, the condition of Theorem 10.4 can easily
be fulfilled for a singular regularization matrix L and the vector (ATA− f(x)In)−1AT b in
the nullspace of L. Small perturbations of this case show that a negative rightmost eigenvalue
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may appear for a nonsingular matrix L as well. Theorem 10.4 demonstrates also that in the
standard case L = I , the rightmost eigenvalue λ̂ is always nonnegative if δ ≤ ‖xTLS‖; cf. [129].

Since the constraint is assumed to be active, the meaning of λ as Lagrange parameter
implies λ̂ > 0 at any limit point x∗. Thus, a negative rightmost eigenvalue can only occur
before convergence of Algorithm 12. The meaning of a negative Lagrange parameter can
be understood by formulating equation (10.7) in Algorithm 12 as the following equivalent
quadratic optimization problem (cf. [130]),

(10.9) g(x;xk) := ‖Ax− b‖2 − f(xk)(1 + ‖x‖2) = min! subject to ‖Lx‖2 = δ2,

yielding the same sequence of iterates {xk}. By replacing the equality constraint in equa-
tion (10.9) by ‖Lx‖2 ≤ δ2, a different globally convergent algorithm for solving RTLS
problems is derived; cf. [24]. The computational effort per iteration is larger since the mini-
mization problem with the inequality constraint cannot be solved by a QEP.

REMARK 10.5. A negative rightmost eigenvalue within Algorithm 12 occurs if and only
if the minimum of the corresponding quadratic optimization problem (10.9) with inequality
constraints is located in the interior of the feasible region ‖Lx‖2 ≤ δ2.

EXAMPLE 10.6. Let

A =

[
1 2
3 −4

]
, b =

[
2
1

]
, L =

[
0.95 −1.74
−0.94 1.73

]
, δ = 0.99‖LxTLS‖.

For the unconstrained solution it holds that xTLS = xLS = [1, 0.5]T , and the initial
vector is chosen as x1 = [3, 2]T · (δ/‖L[3, 2]T ‖) ≈ [0.36, 0.24]T with ‖Lx1‖ = δ and
‖f(x1)‖ = 1.768. The unique solution xRTLS ≈ [0.9999, 0.5004]T is close to xTLS , with
the corresponding function value f(xRTLS) ≈ 1.763e-6.

TABLE 10.1
Convergence history of f(xk).

iter f(xk) rightmost λk f(x̂k)

1 1.768e-0
2 6.840e-1 -2.551515 6.632e-1 (interior)
3 7.793e-2 -0.841702 7.911e-2 (interior)
4 8.845e-4 -0.048918 8.937e-4 (interior)
5 1.874e-6 0.032408 1.874e-6 (bound.)
6 1.763e-6 0.033315 1.763e-6 (bound.)

Table 10.1 contains the convergence history of f(xk) and the rightmost eigenvalues λk

determined by Algorithm 12 in the second and third column. In the last column the function
values f(x̂k) are displayed with the iterates x̂k as minimizers of the quadratic optimization
problem g(x;xk) = min! s.t. ‖Lx‖ ≤ δ, showing that the occurrence of interior solutions
corresponds to a negative sign of the rightmost λk of the QEPs.

10.2. Regularized total least-squares based on a sequence of EVPs. The second algo-
rithm is based on keeping the parameter λL fixed for one iteration step and letting λ := −λI
be a free parameter. The following version of the first-order optimality conditions was proved
by Renaut and Guo in [194].

THEOREM 10.7. The solution xRTLS of the RTLS problem (10.2) subject to the active
constraint satisfies the augmented eigenvalue problem

(10.10) B(λL(xRTLS))

[
xRTLS
−1

]
= −λI(xRTLS)

[
xRTLS
−1

]
,
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with

B(λL) = M + λLN, M := [A, b]T [A, b], N :=

[
LTL 0

0 −δ2,

]
and λL and λI as given in (10.4). Conversely, if ((x̂T ,−1)T ,−λ̂) is an eigenpair ofB(λL(x̂)),
where λL(x̂) is recovered according to (10.4), then x̂ satisfies (10.3) and λ̂ = −f(x̂).

Algorithm 13 RTLSEVP.
Require: initial guess λ0

L > 0 and B0 = B(λ0
L)

1: for k = 1, 2, . . . until convergence do
2: solve

Bk−1y
k = λyk

for the eigenpair (yk, λ) corresponding to the smallest λ

3: scale yk such that yk =

[
xk

−1

]
4: update λkL = λL(xk) and Bk = B(λkL)
5: end for

This condition suggested Algorithm 13 called RTLSEVP for obvious reasons. The choice
of the smallest eigenvalue is motivated by aiming at

λ = −λI = f(x) = (‖Ax− b‖2)/(1 + ‖x‖2),

which is the function to be minimized; see (10.5) and (10.10). The straightforward idea in [88]
to update λL in line 4 with (10.4), i.e.,

λk+1
L =

1

δ2

(
bT (b−Axk+1)− ‖Ax

k+1 − b‖2

1 + ‖xk+1‖2

)
does not lead in general to a convergent algorithm.

To enforce convergence, Renaut and Guo [194] proposed to determine a value θ such
that the eigenvector (xTθ ,−1)T of B(θ) corresponding to the smallest eigenvalue of B(θ)

satisfies the constraint ‖Lxθ‖2 = δ2, i.e., find a non-negative root θ̂ of the real function
g(θ) := (‖Lxθ‖2 − δ2)/(1 + ‖xθ‖2). Then the corresponding eigenvector (xT

θ̂
,−1)T is a

solution of (10.10). But the last component of an eigenvector corresponding to the smallest
eigenvalue of B(θ) need not be different from zero, and then g(θ) is not necessarily defined.
To fill this gap the following generalization has been stated in [131]:

DEFINITION 10.8. Let E(θ) denote the eigenspace of B(θ) corresponding to its smallest
eigenvalue. Then

g(θ) := min
y∈E(θ)

yTNy

yT y
= min

(xT ,xn+1)T∈E(θ)

‖Lx‖2 − δ2x2
n+1

‖x‖2 + x2
n+1

is the minimal eigenvalue of the projection of the matrix N from (10.10) onto E(θ).
This extends the definition of g to the case of eigenvectors with zero last components.

The following theorem was shown in [131].
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THEOREM 10.9. The function g : [0,∞)→ R has the following properties:
(i) If σmin([A, b]) < σmin(A), then g(0) > 0.

(ii) limθ→∞ g(θ) = −δ2.
(iii) If the smallest eigenvalue of B(θ0) is simple, then g is continuous at θ0.
(iv) g is monotonically not increasing on [0,∞).
(v) Let g(θ̂) = 0, and let y ∈ E(θ̂) be such that g(θ̂) = yTNy/‖y‖2. Then the last

component of y is different from 0.
(vi) g has at most one root.
Theorem 10.9 demonstrates that if θ̂ is a positive root of g, then x := −y(1 : n)/yn+1

solves the RTLS problem (10.2), where y denotes an eigenvector of B(θ̂) corresponding to its
smallest eigenvalue.

REMARK 10.10. If the smallest eigenvalue λmin(θ̃) of B(θ̃) is simple, then it follows
from the differentiability of λmin(θ) and its corresponding eigenvector that

dλmin(B(θ))

dθ

∣∣
θ=θ̃

= g(θ̃) and g(θ̃) = 0⇔ θ̃ = max
θ

λmin(B(θ)).

Hence, searching for the root of g(θ) can be interpreted as searching for the maximum of the
minimal eigenvalues of B(θ) with respect to θ.

REMARK 10.11. Notice that g is not necessarily continuous. A necessary condition for
a jump discontinuity of g at θ0 is a multiple smallest eigenvalue λmin(B(θ0)). The function
g might not even have a root but jumps below zero at some θ0. This indicates a nonunique
solution of the RTLS problem (10.2); cf. [126, 131].

In this nonunique case, it follows by the interlacing theorem that λmin is also the smallest
eigenvalue of ATA+ θ0L

TL corresponding to an eigenvector v. Then v̄ = (vT , 0)T ∈ E(θ0)
is an eigenvector of B(θ0). For the Rayleigh quotient of N at v̄ it holds that ρ(v̄) =
(v̄TNv̄)/(v̄T v̄) = ‖Lv‖2 > 0; cf. Theorem 10.9. With g(θ0) < 0, there exist w ∈ E(θ0),
with ρ(w) = g(θ0) < 0, and a nonzero last component. Thus, the space E(θ0) consists of two
parts: the eigenspace corresponding to λmin(B(θ0−)) with only zero last components and the
one-dimensional eigenspace corresponding to λmin(B(θ0+)) with nonzero last component.
The RTLS solutions can be constructed from a linear combination of v̄ and w such that
ρ(αv̄ + βw) = 0 with suitable parameters α, β ∈ R.

10.3. Computational methods for RTLS. Typically, the occurring eigenproblems
in (10.8) and (10.10) are solved by inverse iteration, Rayleigh quotient iteration, the im-
plicitly restarted Lanczos method presented in Section 3, or alternatively, by second-order
Krylov subspace solvers that are briefly presented here. Thus, the only information that can be
recycled from previous iterations in these methods is the eigenvector of the preceding step that
can be used as initial vector. Much more information can be exploited when using general
iterative projection methods such as the Nonlinear Arnoldi method from Section 4.3, which
can be initialized with the entire search space of the previous eigenvalue problem.

10.3.1. RTLSQEP. In this section we discuss different approaches for solving the se-
quence of quadratic eigenvalue problems (10.8). For large-scale problems, iterative projection
methods are quite efficient, where in each step the underlying problem (10.8) is projected to a
search space V = span{V }, which is expanded until the approximation obtained by solving
the projected problem

V T
(

(Wk + λI)2 − δ−2hkh
T
k

)
V u = 0

is sufficiently accurate. Expanding the subspace by some vector v obviously only requires
appending a new vector Wkv and a new component hTk v to the current projected matrix WkV
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and the vector hTk V , respectively. Hence, in these algorithms one does not need the explicit
matrix Wk but only a procedure to evaluate Wkv for a given vector v.

A straightforward approach for solving the QEP (10.8) at the kth iteration step of Algo-
rithm 12 is linearization, i.e., solving[

−2Wk −W 2
k + δ−2hkh

T
k

I 0

] [
λu
u

]
= λ

[
λu
u

]
,

for the maximal real eigenvalue and the corresponding u-part of the eigenvector, which
is an eigenvector of (10.8). In [199, 200], methods especially designed for obtaining the
rightmost eigenvalue of a matrix are presented, which are based on an approximation of the
matrix exponential and which allows the rightmost eigenvalue to be captured more easily
with an iterative projection method due to better separation. However, it is a drawback of
linearization that symmetry properties of the quadratic problem are destroyed. Two structure-
preserving linearizations are given in (5.1) in Section 5.2 leading to symmetric generalized
linear eigenproblems. In the following, three structure-preserving methods suited for solving
the sequence of QEPs are presented, which are not based on linearization.

A Krylov subspace-type method for monic QEP. Li and Ye [152] presented a Krylov
subspace projection method for the monic quadratic eigenproblem (λ2I − λA1 −A0)u = 0,
with A1, A0 ∈ Rn×n. The method has particularly favorable properties if some linear
combination of A1 and A0 is a matrix of small rank q. Then with ` + q + 1 steps of an
Arnoldi-type process, a matrix Q ∈ Rn×`+q+1 with orthonormal columns and two matrices
H1 ∈ R`+q+1×` and H0 ∈ R`+q+1×` with lower bandwidth q + 1 are determined such that

A1Q(:, 1 : `) = Q(:, 1 : `+ q + 1)H1 and A0Q(:, 1 : `) = Q(:, 1 : `+ q + 1)H0,

and approximations of eigenpairs of the quadratic eigenproblem are obtained from its orthogo-
nal projection onto span{Q(:, 1 : `)}, which reads

(λ2I` − λH1(1 : `, :)−H0(1 : `, :))z = 0.

With regard to the QEP (10.8), it holds that A1 = 2Wk and A0 = W 2
k − δ−2hkh

T
k .

Usually no linear combination of A1 and A0 is of small rank, and thus the matrices H0 and
H1 will become full. By applying `+ 2 steps of the algorithm of Li and Ye with A1 = Wk

and A0 = hkh
T
k , one obtains a matrix Q ∈ Rn×`+2 with orthonormal columns such that

AiQ(:, 1 : `) = Q(:, 1 : `+ 2)Hi(1 : `+ 2, 1 : `), for i = 1, 2.

Hence, the orthogonal projection of problem (10.8) to Q := span{Q(:, 1 : `)} reads(
λ2I − 2λH1(1 : `, 1 : `)− Ĥ0

)
ũ = 0,

with Ĥ0(1 : `, 1 : `) = δ−2H0(1 : `, 1 : `)−H1(1 : `+ 2, 1 : `)TH1(1 : `+ 2, 1 : `). As a
consequence of rank{A0} = q = 1, it follows that H1 and Ĥ0 are symmetric pentadiagonal
matrices, and the cost for expanding the subspace Q by one vector is essentially one matrix-
vector product (MatVec); cf. [152].

Second-Order Arnoldi Reduction for QEP. The Second-Order Arnoldi Reduction
(SOAR) has been introduced by Bai and Su [18] for solving large scale QEP of the form
(λ2M + λD +K)u = 0, with M,D,K ∈ Rn×n, assuming a regular M . The main idea is
based on the observation that the information of the Krylov space K` of the linearization

(10.11)
[
A1 A0

I O

] [
λu
u

]
= λ

[
λu
u

]
,
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with A1 = −M−1D, A0 = −M−1K, and the initial vector [rT0 , 0]T , with r0 ∈ Rn, is
contained in the second-order Krylov space

G`(A1, A0; r0) = span{r0, r1, . . . , r`−1},

where

r1 = A1r0,

rj = A1rj−1 +A0rj−2, for j ≥ 2.

The orthogonal projection of the QEP onto G`(A1, A0; r0) is the structure-preserving variant
of projecting the linearized problem (10.11) onto K`.

Since the QEPs (10.8) are monic, there is no need to perform a LU decomposition
of the matrix M = I , and the matrices A1 = −2Wk and A0 = −W 2

k + δ−2hkh
T
k are

directly available. The current second-order Krylov space G`(A1, A0; r0) is expanded by
q̃ := A1q`+A0p`, where p` = Q`s` is some vector p` ∈ span{Q`}. Orthogonalization yields
the direction of the new basis element

q`+1 = (I −Q`QT` )(A1q` +A0p`) = (I −Q`QT` )(−2Wkq` −W 2
kQ`s` + δ−2hkh

T
kQ`s`),

where WkQ`s` can be updated from the previous step. Hence, expanding the search space
G`(A1, A0; r0) requires 2 MatVecs. Thus, a single step of the SOAR method costs essentially
twice as much as the one of the Krylov-type method of Li and Ye. A variant of SOAR that
is approximating the second-order Krylov space G`(A1, A0; r0) only by G`(A1, Ã0; r0), with
Ã0 = δ−2hkh

T
k , is suggested in [133], which reduces the cost to 1 MatVec per search space

expansion. Since a sequence of converging QEPs has to be solved, it is favorable to use the
solution vector of the preceding QEP as initial vector of the current Krylov subspace.

REMARK 10.12. It has been shown in [157] that the two-level orthogonal Arnoldi
procedure (TOAR) for QEPs has a much better numerical stability behavior, i.e., it is backward
stable when computing the corresponding orthonormal basis. In [121] and [229], this two-level
orthogonal Arnoldi approach has been extended to general polynomial eigenvalue problems,
which is beneficial in terms of numerical stability and memory savings compared to the
higher-order methods using straightforward linearization in [70, 125].

Nonlinear Arnoldi method for QEPs. For the two Krylov-type subspace methods
above, the only degree of freedom is the choice of the initial vector, whereas the Nonlinear
Arnoldi method allows thick restarts, i.e., when solving Tk(λ)u = 0 in step k, Algorithm 7
can be initialized with the orthonormal basis V that was used in the preceding step when
determining the solution uk−1 = V ũ of V TTk−1(λ)V ũ = 0.

The projected eigenvalue problem

V TTk(µ)V ũ = ((Wk + µI)V )T ((Wk + µI)V )ũ− δ−2(hTk V )T (hTk V )ũ = 0

can be updated cheaply by appending one column and one entry to the current matrices and
vector, respectively, at the essential cost of 1 MatVec with Wk in every iteration step. The
determination of the residual r = Tk(µ)V ũ costs another MatVec with Wk.

The considerations above demonstrate that due to search space recycling, it is rather
inexpensive to provide V TTk(λ)V if V TTk−1(λ)V is known. This suggests early updates,
i.e., to leave the inner loop of the Nonlinear Arnoldi method for determining the rightmost
eigenpair long before convergence. Fast convergence typically is obtained even without
preconditioning, i.e., with M = I .
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TABLE 10.2
Example heat(1), average CPU time in seconds.

noise n QEPs LiYe QEPs SOAR QEPs NLArn EVPs NLArn
1% 1000 0.47 0.63 0.36 0.19

2000 1.19 1.02 0.99 0.60
4000 4.68 3.78 3.88 2.65

10% 1000 0.46 0.45 0.32 0.19
2000 1.18 0.99 0.98 0.61
4000 4.67 3.73 3.92 2.54

10.3.2. RTLSEVP. Renaut and Guo [194] proposed to determine the minimum eigen-
value of B(θk)y =

(
M + θkN

)
y = λy in Algorithm 13 via the Rayleigh quotient iteration,

initialized by the eigenvector found in the preceding iteration step. Although one uses in-
formation from the previous step, an obvious drawback of this method is the fact that each
iteration step requires O(n3) operations providing the LU factorization of B(θk). An efficient
root-finding algorithm for solving g(θ) = 0 is suggested and analyzed in [131, 133], also
covering the case of a discontinuity at the root.

Nonlinear Arnoldi method for EVPs. Similarly to the approach in RTLSQEP, the
entire information gathered in previous iteration steps can be employed solving (10.8) via the
Nonlinear Arnoldi method with thick restarts applied to

Tk(µ)u := (M + θkN − µI)u = 0.

This time, in lines 1 and 8 of Algorithm 7, we aim at the minimum eigenvalue of Tk(µ). The
projected problem

V TTk(µ)V ũ =
(
([A, b]V )T ([A, b]V ) + θkV

TNV − µI
)
ũ = 0

can be updated efficiently if the search space is expanded by a new vector and if the iteration
counter k is increased; i.e., a new θk is chosen. Thereby, the explicit form of the matrices M
and N is not needed. In case of a sparse or structured regularization matrix L, the essential
cost for determining the projected problem is 1 MatVec with [A, b]. The evaluation of the
residual r = Tk(µ)V ũ in lines 5 and 11 costs another MatVec with [A, b]T . Hence, one inner
iteration step of the Nonlinear Arnoldi in RTLSEVP costs 2 MatVecs, which is half the cost of
an inner iteration step of the Nonlinear Arnoldi applied in the RTLSQEP.

For the preconditioner in line 2, it is appropriate to chose M ≈ N−1, which usually can
be implemented very cheaply and can be kept constant throughout the whole algorithm.

10.4. Numerical examples. To evaluate the performance of Algorithms 12 and 13 for
large dimensions, we use 1D and 2D test examples from Hansen’s Regularization Tools [98].
Two functions heat(1) and tomo, which are both discretizations of integral equations, are
used to generate matrices A ∈ Rm×n, right-hand sides b ∈ Rm, and solutions x ∈ Rn such
that Ax = b. In all cases the matrices A and [A, b] are ill-conditioned. In all examples, we
let m = 2n, and a certain level of white noise has been added to the data. The numerical
tests were run on a PentiumR4 computer with 3.4 GHz and 8GB RAM using MATLAB
R2007b [133].

When using the RTLSQEP for problem heat(1) (see Table 10.2), roughly 100 MatVecs
are carried out in about 3 outer iterations. This is the case for all tested eigensolvers, both
noise levels, and different problem sizes. A matrix vector multiplication is the most expensive
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TABLE 10.3
Example tomo, average CPU time in seconds.

noise n QEPs LiYe QEPs SOAR QEPs NLArn EVPs NLArn
1% 30x30 0.77 1.01 1.02 0.20

40x40 2.62 2.55 2.07 0.54
50x50 6.93 6.44 4.78 3.86

10% 30x30 0.77 1.02 1.00 0.21
40x40 2.63 2.56 2.02 0.56
50x50 6.89 6.38 4.80 3.83

operation within these algorithms, so the computation times are about equal. RTLSEVP
requires approximately 50 MatVecs, which results in roughly half the computation time.

For the 2D problem tomo (see Table 10.3), RTLSQEP needs roughly 200–300 MatVecs
due to a large number of outer iteration steps. The computation time is much shorter when
using the RTLSEVP algorithm with about 60 MatVecs for the smaller problems and about 150
MatVecs for the 50× 50 example. Note that in all examples the residuals and relative errors
of the computed solutions are similar for the investigated methods.

11. Dual regularized total least-squares. Image reconstruction typically involves solv-
ing a (linear) inverse problem. In case the blurring matrix A and the blurred image b are
contaminated by some noise, the total least-squares (TLS) method is an appropriate choice. Of-
ten this problem is ill-posed, thus regularization is necessary to stabilize the computed solution.
Adding a quadratic constraint yields the regularized total least-squares (RTLS) problem (10.2)
that has been discussed in Section 10. In case estimates for the norms of the errors in A and b
are available, the dual RTLS (DRTLS) problem is obtained (cf. [135, 158, 159, 223]):

‖Lx‖ = min! subject to (A+ ∆A)x = b+ ∆b, ‖∆b‖ ≤ hb, ‖∆A‖ ≤ hA,

with given hA, hb, which requires solving a sequence of linear problems.
We consider a reconstruction of a greyscale image that is represented by an array of n×n

pixels, with n = 197. The pixels are stored columnwise as a vector in RN with N = n2. Let
the vector xtrue represent the original image. A block Toeplitz blurring matrixAtrue ∈ RN×N
with Toeplitz blocks is determined by the function blur from [98] using the parameter values
band = 3, which is the half-bandwidth of each n × n Toeplitz block, and σ = 1.5, which
determines the width of the underlying Gaussian point spread function. Thus, the matrix
Atrue ∈ R38,809×38,809 has 9.6 · 105 nonzero entries. Gaussian noise of level σ = 10−4 is
added to Atrue and btrue = Atruextrue. Two regularization matrices L are compared, i.e., the
first- and second-order discrete derivative operator for two space dimensions,

L1,2D =

[
L1 ⊗ In
In ⊗ L1

]
, L2,2D =

[
L2 ⊗ In
In ⊗ L2

]
,

with L1 =

−1 1
. . .
−1 1

 ∈ R(n−1)×n, L2 =

−1 2 −1
. . . . . .
−1 2 −1

 ∈ R(n−2)×n.

The RTLSEVP Algorithm 13 from Section 10.2 and the generalized Krylov subspace dual
RTLS method introduced in [135] have been applied for solving the RTLS and the correspond-
ing dual RTLS problem, respectively.
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(f) Restored by DRTLS with L = L2,2D

FIG. 11.1. Original, blurred, and restored Lothar [135].

Figure 11.1 displays the original (blur- and noise-free) image, the blurred and noisy image,
and several reconstructions. The first row of Figure 11.1 depicts the original image as well
as the blur- and noise-perturbed image. The relative error of the blurred and noisy image
is ‖b − xtrue‖/‖xtrue‖ = 20.46%. The images restored in the second row are obtained by
using the discrete first-order derivative operator L1,2D. The reconstructed images have relative
errors of ‖xL1,2D

RTLS − xtrue‖/‖xtrue‖ = 7.45% and ‖xL1,2D
DRTLS − xtrue‖/‖xtrue‖ = 6.20%,

when using search space dimensions of 42 and 32, respectively. The last row of Figure 11.1
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displays two restored images obtained with the discrete Laplace operator L = L2,2D; the first
one corresponds to RTLSEVP with a relative error of 9.55%, while the DRTLS restoration
is ‖xL2,2D

DRTLS − xtrue‖/‖xtrue‖ = 6.34%, both with search space dimensions of 41. The
quality of the restorations obtained by the DRTLS method with L1,2D and L2,2D is about
the same, whereas the corresponding restorations by RTLS are clearly inferior. We find the
images obtained with L1,2D to be slightly sharper than the image determined with L2,2D.
Also the relative error is slightly smaller. In Section 10 total least-squares methods based on
eigenproblems are discussed in more detail.

12. Electronic behavior of quantum dots. Semiconductor nanostructures have attracted
tremendous attention in the past few years because of their unique physical properties and
their potential for applications in micro- and optoelectronic devices. In such nanostructures,
the free carriers are confined to a small region of space by potential barriers, and if the size of
this region is smaller than the electron wavelength, then the electronic states become quantized
at discrete energy levels. The ultimate limit of low-dimensional structures is the quantum dot,
in which the carriers are confined in all three directions of space, and their electronic behavior
is similar to that of an atom [20, 46, 169].

12.1. Kane formula of the electron effective mass. We consider the problem to deter-
mine a few relevant energy states of a quantum dot (InAs, e.g.) embedded in a matrix (GaAs,
e.g.). According to the 8× 8 k · p theory from [160], these are the eigenvalues λ of a linear
eigenvalue problem

(H + V )φ = λφ,

where φ contains as its components wave functions of the electron, heavy-, light-, and spin-
orbit split-off hole bands (each of them appearing twice due to the spin), and the Hamiltonian
operator H is an 8×8 matrix containing Hamiltonian operators of the subbands in its diagonal
and the coupling of the subbands in its off-diagonal elements.

Projecting the 8× 8 Hamiltonian onto the conduction band results in a single Schrödinger
equation describing the electronic behavior of an electron in the quantum dot [20, 46, 151, 160],

(12.1) −∇ ·
(

~2

2m(x, λ)
∇Φ

)
+ V (x)Φ = λΦ, x ∈ Ωq ∪ Ωm.

Here Ωq and Ωm is the region occupied by the quantum dot and the matrix (the surrounding
material), respectively, ~ is the reduced Planck constant, and V (x) is the confinement potential.
The electron effective mass becomes energy dependent and is given by the Kane formula [115]:

m(x, λ) =

{
mq(λ), x ∈ Ωq,

mm(λ), x ∈ Ωm,

where

(12.2)
1

mj(λ)
=
P 2
j

~2

(
2

λ+ gj − Vj
+

1

λ+ gj − Vj + δj

)
, j ∈ {m, q},

Vj is the confinement potential, Pj the momentum, gj the main energy gap, and δj the spin-
orbit splitting in the jth region. Other types of effective masses (taking into account the effect
of strain, e.g.) appear in the literature. They are all rational functions of λ where 1/m(x, λ) is
monotonically decreasing with respect to λ.
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Because the wave function Φ is essentially concentrated on the quantum dot, we assume
homogeneous Dirichlet conditions on the outer boundary of the matrix. On the interface, we
consider the so called BenDaniel-Duke conditions

(12.3)
1

mm

∂Φ

∂n

∣∣∣∣
∂Ωm

=
1

mq

∂Φ

∂n

∣∣∣∣
∂Ωq

,

which guarantee continuity of the wave function Φ on the interface.
Multiplying (12.1) by Ψ ∈ H1

0 (Ω), Ω := Ωq ∪Ωm, and integrating by parts, one gets the
weak form of the generating eigenvalue problem [240]:

Find λ ∈ R and Φ ∈ H1
0 (Ω), Φ 6= 0, such that for every Ψ ∈ H1

0 (Ω)

a(Φ,Ψ;λ) :=
~2

2

∫
Ωq

1

mq(x, λ)
∇Φ · ∇Ψ dx+

~2

2

∫
Ωm

1

mm(x, λ)
∇Φ · ∇Ψ dx

+

∫
Ωq

Vq(x)ΦΨ dx+

∫
Ωm

Vm(x)ΦΨ dx = λ

∫
Ω

ΦΨ dx =: λb(Φ,Ψ),

(12.4)

which can be rewritten by the Lax-Milgram lemma as Schrödinger equation (12.1) with the
effective Hamiltonian

Ĥ = −~2

2
∇ ·
(

1

m(λ, x)
∇
)

+ V (x).

12.2. Full Approximation Method. To determine the relevant energy states and the
corresponding wave functions, Li et al. [151] suggested the following method given in Al-
gorithm 14, called the Full Approximation Method (FAM). Based on many examples, they
reported that the method converges.

Algorithm 14 Full Approximation Method (FAM).
Require: initial energy level λ0

k

1: determine the effective masses mq(λ
0
k) and mm(λ0

k) for the quantum dot and the matrix
2: for n = 1, 2, . . . until convergence do
3: determine the kth-smallest eigenvalue λnk and the corresponding eigenfunction Φk of

the linear eigenvalue problem

(12.5) −∇ ·
(

~2

2mj(λ
n−1
k )

∇Φ

)
+ V (x)Φ = λΦ, x ∈ Ωq ∪ Ωm,

with the Ben Daniel-Duke condition (12.3)
4: update the effective masses mj(λ

n
k ), j ∈ {m, q}

5: end for

In [239] we proved linear convergence of the FAM and its enclosure properties such that
error bounds are at hand in every iteration step.

THEOREM 12.1 ([239]). Assume that cj := λ + gj − Vj > 0, for j ∈ {m, q}, and
let λk and λk(λn−1

k )) be the kth-smallest eigenvalue of the nonlinear Schrödinger equa-
tion (12.1) and of the parameter-dependent equation (12.5), both with the BenDaniel-Duke
condition (12.3) on the interface Ωq ∩Ωm and homogeneous boundary condition on the outer
boundary of Ωm.
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Let λ0
k ≥ 0 be any initial value, and, for n ∈ N, let λnk := λk(λn−1

k ) be the kth-smallest
eigenvalue of (12.5). Then it holds that

λ0
k < λ2

k ≤ · · · ≤ λ2n−2
k ≤ λ2n

k ≤ λk ≤ λ2n+1
k ≤ λ2n−1

k ≤ . . . λ3
k ≤ λ1

k,

lim
n→∞

λnk = λk,

and the convergence is linear, i.e., there exists a constant C, 0 < C < 1, and N ∈ N such that

|λnk − λk| ≤ C|λn−1
k − λk|, for every n ∈ N, n ≥ N.

The convergence behavior of the FAM can be improved considerably if we take advantage
of the Rayleigh functional. With a and b as in equation (12.4), the function λ 7→ a(Φ,Φ, λ) is
monotonically decreasing and positive for every fixed Φ ∈ H1

0 (Ω), Φ 6= 0, and therefore the
real equation

(12.6) f(λ; Φ) := λb(Φ,Φ)− a(Φ,Φ, λ) = 0

has a unique positive solution λ =: p(Φ). Hence, equation (12.6) defines a real functional p
on H1

0 (Ω) \ {0}, which is the Rayleigh functional of the nonlinear eigenvalue problem (12.4).
The Rayleigh functional is defined on the whole space H1

0 (Ω) \ {0}, and the conditions
of the minmax Theorem 2.2 are satisfied. Hence, the following theorem holds:

THEOREM 12.2.
(i) The Schrödinger equation (12.1) modeling the quantum dot with electron effective

mass mj given in (12.2) has a countable set of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

which all have finite multiplicity, and the only cluster point of which is∞.
(ii) The kth-smallest eigenvalue λk can be characterized as

(12.7) λk = min
dimV=k

max
u∈V,u6=0

p(u).

These properties suggest the modification of the Full Approximation Method for comput-
ing the kth energy level of problem (12.4) presented in Algorithm 15.

Algorithm 15 Modified Full Approximation Method (MFAM).
Require: initial energy level λ0

k

1: determine the effective masses mq(λ
0
k) and mm(λ0

k) for the quantum dot and the matrix
2: for n = 1, 2, . . . until convergence do
3: determine the kth-smallest eigenvalue λ̃nk and the corresponding eigenfunction Φk of

the linear eigenvalue problem

−∇ ·
(

~2

2mj(λ
n−1
k )

∇Φ

)
+ V (x)Φ = λΦ, x ∈ Ωq ∪ Ωm,

with the BenDaniel-Duke condition (12.3)
4: determine the Rayleigh functional λnk =: p(Φk) at Φk
5: update the effective masses mj(λ

n
k ), j ∈ {m, q}

6: end for
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The Modified Full Approximation Method (MFAM) is nothing else but the fixed point
iteration λn+1

k = h(λnk ) := p(Φk(λ̃n−1
k )), and since Φ(λk) is a stationary element of p, it

follows that h′(λk) = 0. Hence [185], the Modified Full Approximation Method converges
quadratically to λk, i.e., there exist some constant C > 0 such that

|λnk − λk| ≤ C|λn−1
k − λk|2 for every n ∈ N.

12.3. Iterative projection methods for quantum dot problems. If the Schrödinger
equation (12.1) is discretized by a Galerkin method (finite elements, e.g.), then one gets a
rational matrix eigenvalue problem

(12.8) S(λ)x := λMx− 1

mq(λ)
Aqx−

1

mm(λ)
Amx−Bx = 0,

where

Aj =
(∫

Ωj

∇φk · ∇φ` dx
)
k,`
, j ∈ {q,m},

M =
(∫

Ω

φkφ` dx
)
k,`

and B =
(
Vq

∫
Ωq

φkφ` dx+ Vm

∫
Ωm

φkφ` dx
)
k,`
,

and φk denotes a basis of the ansatz space. Aq, Am, and B are symmetric and positive
semidefinite, and M is positive definite, and for λ ≥ 0, the matrix

~2

2mq(λ)
Aq +

~2

2mm(λ)
Am

is positive definite. Hence, the eigenvalues of the discretized problem (12.8) satisfy a minmax
principle as well, and it follows from the minmax characterization (12.7) of the nonlinear
Schrödinger equation that the kth-smallest eigenvalue of the discretized problem (12.8) is an
upper bound for the corresponding eigenvalue of problem (12.1).

The dimension of the discretized Schrödinger equation usually will be quite large, and the
FAM method will not be a reasonable choice since in every iteration step a linear eigenvalue
problem has to be solved.

EXAMPLE 12.3. Consider a pyramidal quantum dot with width 12.4 nm and height 6.2 nm
embedded in a cubic matrix of size 24.8 nm×24.8 nm×18.6 nm with the following parameters
Pq = 0.8503, gq = 0.42, δq = 0.48, Vq = 0, Pm = 0.8878, gm = 1.52, δm = 0.34, and
Vm = 0.7. This model was already treated by Hwang, Lin, Wang, and Wang in [111], who
multiplied the rational eigenvalue problem by its common denominator to obtain a polynomial
eigenvalue problem of degree 5. After discretizing with linear elements on an equidistant grid,
they obtained a huge non-symmetric linear eigenvalue problem.

In [240] we considered the following finite element model: Using FEMLAB [48] we
discretized (12.4) by cubic Lagrangian elements on a tetrahedral grid with 96,640 degrees of
freedom such that 43,615 DoFs where located in the quantum dot, 43,897 DoFs in the matrix,
and 9,128 DoFs on the interface.

We determined the 5 smallest eigenvalues of the rational eigenproblem (12.8) by the
Nonlinear Arnoldi method and the Jacobi-Davidson method. We started the methods with
a constant vector on Ωq ∪ Ωm which is far away from an eigenvector, and we terminated
the iteration for an eigenvalue if the residual norm was less than 10−8. Table 12.1 contains
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the approximations of the five smallest eigenvalues, the number of iterations to obtain these
approximations, and the CPU times using MATLAB 7.0.4 on an AMD Opteron processor
with 4 GByte RAM and 2.2 GHz. Notice that one gets upper bounds for the corresponding
eigenvalues of problem (12.4).

TABLE 12.1
Five smallest eigenvalues of a finite element discretization of dimension 96,640.

dim λ1 λ2 λ3 λ4 λ5 CPU time
96,640 0.39779 0.57411 0.57411 0.68547 0.69714

Arnoldi 44 it. 29 it. 29 it. 24 it. 21 it. 189 sec.
JD 9 it. 7 it. 9 it. 5 it. 6 it. 205 sec.

The following Figure 12.1 contains the convergence history of the Jacobi-Davidson and of
the Nonlinear Arnoldi method. Notice that the second/third eigenvalue is a double eigenvalue,
which does not influence the rate of convergence of both methods.
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FIG. 12.1. Convergence history of Example 12.3.

We also solved the problem with an incomplete LU preconditioner with cut-off threshold τ .
Table 12.2 contains the CPU time for determining the five smallest eigenvalues and for the
preconditioner for several values of τ . The behavior is typical for many examples: For
τ = 0.1, the Jacobi-Davidson method is much faster than the Nonlinear Arnoldi method, but
as τ descends, the Nonlinear Arnoldi method becomes the clear winner.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

56 J. LAMPE AND H. VOSS

TABLE 12.2
Computational times for different incomplete LU preconditioners and solvers.

τ JD Arnoldi precond.
0.1 261.4 1084.1 3.4

0.01 132.7 117.1 71.7
0.001 118.9 61.2 246.6

REMARK 12.4. We considered here the quantum dot problem (12.1), (12.2), and (12.3),
which is overdamped. More general quantum dot problems are described in [33], where we
considered stationary Schrödinger equations in the presence of spin-orbit splitting (a non-
overdamped problem), in [34], which examines coupled quantum dots on wetting layers, and
in [36] for the stationary Schrödinger equation governing electronic states of quantum dots
and rings in magnetic fields.

13. Viscoelastic damping. The nature of energy dissipation mechanisms in a vibrating
structure has always been very difficult to explain: damping models have been developed trying
to fit experimental and mathematical results. The viscous approach proposed by Lord Rayleigh
assuming that dissipative forces are proportional to the velocity of the systems degrees of
freedom is the damping model used for the great majority of structural solid materials (metal,
concrete, wood, glass, etc.) [4].

The weakness of the pure viscous model becomes evident when applying it to the so-
called viscoelastic materials such as polymer derivatives and rubbers or rubber-like materials,
which are characterized by a time-dependent constitutive model and by frequency-dependent
Young’s and shear moduli. Viscoelastic damping is introduced into the system assuming
that the dissipative forces are proportional to the history of the velocity via kernel hereditary
functions [4, 5, 114].

For small displacements, the most general form of a viscoelastic damped oscillator
becomes [4, 5]

(13.1) Mü(t) +

t∫
0

G(t− τ)u̇(τ)dτ +Ku(t) = f(t),

together with initial conditions u(0) = u0, u̇(0) = u̇0, where u ∈ RN is the displacement
vector, f ∈ RN is the forcing vector, M ∈ RN×N and K ∈ RN×N are the positive semi-
definite mass and stiffness matrix, respectively, and G ∈ RN×N is the symmetric kernel
function of damping.

The modes of the system can be determined as non-trivial solutions of the free-motion
problem. With functions of the form u(t) = uest, we get

(13.2) T (s)u :=
(
s2M + s

n∑
k=1

Gk(s)Ck +K
)
u = 0,

where Ck ∈ RN×N are the symmetric coefficient matrices of frequency-dependent damping
and Gk(s) are the frequency-dependent nonviscous damping functions.

Many different damping models have been proposed to describe the dissipative behavior
of viscoelastic materials, the Biot model [41], the inelastic displacement field model [146],
exponential damping [4], and the generalized Maxwell model [193], to name just a few. In
practice, mechanical engineering systems with two or more parts with significantly different
levels of energy dissipation are encountered frequently in dynamical design, so these damping
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systems often involve multiple damping models [55, 148, 150]. It was noticed in [119] that if
the term sGk(s)Ck appearing in (13.2) is rational, then it can be transformed equivalently to
sG̃k(s)C̃k, where

(13.3) G̃k(s) :=
µk

s+ µk

is the exponential damping model.
The following results for the structure of the set of nonviscous eigenvalues of (13.2) with

damping (13.3) are contained in [175, 176]. We consider the parameter-dependent problem

(13.4) T (s; γ)u :=
(
s2M + γs

n∑
j=1

µj
s+ µj

Cj +K
)
u = 0, γ > 0,

with 0 < µ1 < µ2 < · · · < µn. Then it follows from Wagner and Adhikari [253] that for
every γ > 0, with rj = rank(Cj), the problem (13.4) has r :=

∑n
j=1 rj real eigenvalues

λ(γ), and clearly each of them depends continuously on γ.
For sufficiently small γ > 0, the problem (13.4) has exactly rj eigenvalues in the interval

Ij = (−µj ,−µj−1), which are close to−µj , for j = 1, . . . , n, with µ0 = 0, and the following
monotonicity result holds:

LEMMA 13.1. Let 0 < γ1 < γ2, and assume that Ij contains an ith eigenvalue λ(j)
i (γ2).

Then it holds that

λ
(j)
i (γ1) ≤ λ(j)

i (γ2).

As γ increases all eigenvalues λ(j)
i in Ij grow, and this holds true in particular for the maximal

eigenvalue λ(j)
1 . It may happen that λ(j)

1 (γ) is bounded away from µj−1 (this is for instance
always the case for j = 1) or there exists a γ̄ such that limγ→γ̄−0 λ

(j)
1 (γ) = µj−1. Then for

γ > γ̄ sufficiently close to γ̄, there does no longer exist a first eigenvalue of T (·; γ) in Ij , but
(due to the existence and continuity of eigenvalues of the linearization of T (·; γ) considered
in [253]) a new eigenvalue of T (·; γ) appears in the interval Ij−1, and it follows from the
maxmin characterization of the eigenvalues in Ij−1 that this must be a (rj−1 + 1)st eigenvalue
unless the interval Ij−1 is free of eigenvalues.

After the first eigenvalue λ(j)
1 has passed µj−1, the same may happen for further eigen-

values. The following theorem summarizes preliminary results for the distribution of the real
eigenvalues of T (·) found so far:

THEOREM 13.2 ([176]). Consider the viscoelastic vibration problem

(13.5) T (λ)u :=
(
λ2M + λ

n∑
j=1

µj
λ+ µj

Cj +K
)
u = 0,

where the general conditions for K, M , Cj , and µj given in (13.1), (13.2), and (13.4) are
satisfied. Assume that rj = rank(Cj) and that the interval Ij = (−µj ,−µj−1) contains sj
real eigenvalues of the problem (13.5).

Then the following statements are true:
(i) Each interval Ij = (−µj ,−µj−1), j = 1, . . . , n, contains at most N eigenvalues.

(ii) If rj = N , for every j ∈ {1, . . . , n}, then each interval (−µj ,−µj−1) contains
exactly N eigenvalues.

(iii) The interval (−µj , 0) contains at least
∑j
k=1 rk eigenvalues.
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(iv) In particular, the interval I1 = (−µ1, 0) contains at least r1 eigenvalues λ(1)
k ,

k = 1, . . . , s1, r1 ≤ s1 ≤ N , and all eigenvalues in I1 can be characterized as

λ
(1)
k = max

V ∈Sk,V⊂D1

inf
u∈V

p1(u), k = 1, . . . , s1.

(v) Assume that I1 contains s1 > r1 eigenvalues and r2 > s1− r1. Then the eigenvalues
λ

(2)
k ∈ (−µ2,−µ1), k = s1−r1 +1, . . . , s2, allow for a variational characterization

λ
(2)
k = max

V ∈Sk,V ∩D2 6=∅
inf

u∈V ∩D2

p2(u).

(vi) The interval (−µn,−µj) contains at most
∑n
k=j+1 rk eigenvalues; in particular, the

interval (−µn, µn−1) contains at most rn eigenvalues.
(vii) If In contains sn, 0 < sn ≤ rn, eigenvalues, then they allow for the characterization

λ
(n)
k = sup

V ∈Sk,V ∩Dn 6=∅
inf

u∈V ∩Dn

pn(u), k = rn, rn − 1, . . . , rn − sn + 1.

In the following we present improved results on whether all eigenvalues stay in an interval
Ij or can leave it as the parameter γ increases.

THEOREM 13.3 ([176]). Suppose that the value

θj :=

(
µj min‖u‖=1 u

T (
∑n
k=j Ck)u

µn − µj−1
+
µj−2 max‖u‖=1 u

T (
∑j−2
k=1 Ck)u

µj−2 − µj−1

)
, j = 2, . . . , n,

corresponding to Ij , j = 2, . . . , n, is positive and that the set

Fj = {u : uTCju 6= 0, uTCj−1u = 0},

is nonempty. Then, at least the first eigenvalue in Ij leaves this interval if

γ >
max‖u‖=1 u

T
(
µ2
j−1M +K

)
u

θjµj−1
.

The following theorem provides a better understanding of the problem of staying in an
interval Ij or leaving it.

THEOREM 13.4 ([176]). With

Nj(u) :=

j−2∑
k=1

µku
TCku

µk − µj−1
+

n∑
k=j

µku
TCku

µk − µj−1
,

the following statements hold:
(i) If F+

j := {u ∈ Fj : Nj(u) ≤ 0} 6= ∅, then Ij contains at least one eigenvalue of
T (·; γ), for every γ > 0.

(ii) If F+
j = {u : uTCju 6= 0}, then no eigenvalue of T (·; γ) transfers to Ij−1 as γ

increases.
(iii) If F−j := {u ∈ Fj : Nj(u) > 0} 6= ∅, then at least one eigenvalue leaves the

interval Ij .
Theorem 13.5 demonstrates how the number of negative eigenvalues of the matrix T (·; γ)

changes as an eigenvalue λ(γ) crosses one of the poles −µj .
THEOREM 13.5 ([176]). The number of negative eigenvalues of the matrix T (λ; γ)

increases (at least) by one as λ(γ) grows beyond −µj .
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If for very small γ > 0, an interval Ij contains N eigenvalues λ(j)
1 ≥ · · · ≥ λ(j)

N , then as
γ increases, one eigenvalue after another can cross µj−1, and then its number increases by
one. But clearly this is impossible for λ(j)

N , which is an N th eigenvalue.
COROLLARY 13.6 ([176]). Assume that rj = N , for some j ∈ {1, . . . , n}. Then Ij

contains at least one eigenvalue λ(j)
N (γ) for every γ > 0, and the number of eigenvalues in the

preceding intervals
⋃n
i=j+1(−µi,−µi−1) is

∑n
i=j+1 ri, for every γ > 0, i.e., no eigenvalue

can enter the interval (−µj , 0) from (−µn,−µj).
By comparing the eigenvalues of T (·; γ) and of

S(λ) := λ

n∑
i=1

µi
µi + λ

Ci,

we can determine bounds for some of the eigenvalues which are not able to leave their initial
interval Ij as γ increases.

THEOREM 13.7 ([176]). Assume that S(·) has a kth eigenvalue κk ∈ Ij and T (·) has a
kth eigenvalue λ(j)

k ∈ Ij . Then it holds that

κ
(j)
k −

1

γ
‖µ2

j+1M +K‖2 ≤ λ(j)
k ≤ κ

(j)
k .

We motivated problem (13.2) by viscoelastic damping appearing in very large engineering
structures. However, usually the nonviscous damping does not appear in the entire structure
but only in relatively small substructures. Therefore, the dimension of the numerical examples
in the literature is usually quite small (3 in [6, 7, 8, 9, 149, 253], 4 in [82, 143, 144, 147, 209],
and 5 in [142]). We consider an example of dimension 3, which gives us insight into the
behavior of the real eigenvalues while the damping level is changing.

EXAMPLE 13.8. Let

M = I, K =

 3 −2 0
−2 3 −2
0 −2 3

 , C1 = e1e
T
1 , C2 = e2e

T
2 , C3 = I, C4 = e3e

T
3 ,

and µ = [1, 2, 3, 4].
Then rj := rank(Cj) = 1, for j = 1, 2, 4, and r3 = 3, and for γ > 0, the rational

eigenvalue problem

(13.6) T (λ; γ) =
(
λ2M + λγ

4∑
j=1

µj
λ+ µj

Cj +K
)
u = 0

has
∑4
j=1 rj = 6 real eigenvalues. Figure 13.1 displays these eigenvalues as γ grows from

γ = 0 to γ = 4. For small γ there are rj eigenvalues in Ij := (−µj ,−µj−1) for j = 1, 2, 3, 4.
Theorem 13.3 enables us to predict whether an eigenvalue leaves its corresponding interval

when γ becomes large. For example, for the second interval I2, we have F2 = {[0, 1, 0]T },
and we easily calculate θ2 = 4/3. Actually, Figure 13.1 shows that the second eigenvalue has
left I2 already for some γ < 0.7. For the last interval I4, Corollary 13.6 yields F4 = ∅, and no
eigenvalue can enter I3 from I4. For the interval I3, we see that F3 = {[1, 0, 0]T , [0, 0, 1]T },
and hence Lemma 13.3 yields that two eigenvalues leave the interval I3 when γ tends to
infinity.

The rational eigenvalue problem

S(λ)u := λ

4∑
i=1

µi
µi + λ

Ciu = 0
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FIG. 13.1. Real eigenvalue curves of Example 13.8. Blue, red, and green curves denote first, second, and third
eigenvalues.

has 3 negative eigenvalues κ(j)
k in (−µ4,−µ2). Table 13.1 demonstrates that they are upper

bounds for the corresponding eigenvalues λ(j)
k (γ) of (13.6) and that these eigenvalues get

close to κ(j)
k for large γ.

TABLE 13.1
Bounds for real eigenvalues of Example 13.8.

j k λ
(j)
k (4) λ

(j)
k (104) κ

(j)
k

2 3 -1.699 -1.500065 -1.500000
3 3 -2.446 -2.400018 -2.400000
4 1 -3.467 -3.428586 -3.428571

14. Vibrations of fluid-solid structures. In this section vibrations of fluid-solid struc-
tures are considered that allow for a variational characterization of its eigenvalues although
the corresponding eigenproblem is non-symmetric. This is an extension of the results from
Section 2, where the considered eigenproblems are required to be self-adjoint. In Section 14.1
the corresponding variational characterization is derived, and in Section 14.2 we write down a
finite-dimensional model. Section 14.3 discusses the Automated Multi-Level Substructuring
for fluid-solid vibrations followed by a numerical example in Section 14.4.

14.1. Variational characterization of eigenvalues for a non-symmetric eigenprob-
lem. Consider free vibrations of an elastic structure coupled with a fluid. The interaction
between the structure and the fluid can significantly affect the response of the whole system
and has to be taken into account properly.

Different formulations have been proposed to solve this problem: The pure displacement
formulation [26], which leads to a simple symmetric eigenvalue problem, which, however,
suffers from the presence of zero-frequency spurious circulation modes with no physical

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

VARIATIONAL CHARACTERIZATION FOR NONLINEAR EIGENPROBLEMS 61

meaning. These non-physical modes can be removed by modeling the fluid by the pressure
field p and the structure by the displacement field u; cf. [54]. Thus, one arrives at a non-
symmetric variational formulation of the problem.

Symmetric models of coupled fluid-structure vibration problems without spurious solu-
tions have been achieved by describing the structure-acoustic system by a three-field formula-
tion complementing the structural displacement and the fluid pressure with the fluid velocity
potential [184] or the fluid displacement potential [177]. Finite element approximations based
on this type of modeling are favoured today since one obtains symmetric matrix eigenvalue
problems, and hence, variational characterizations of eigenvalues allow for using standard
spectral approximation theory (see Babuska and Osborne [15]) to obtain convergence results
for the eigenvalues and eigenvectors for Galerkin-type projection methods; cf. [30, 195].

In [216] we considered the elastoacoustic vibration problem describing the fluid by
its pressure field and the structure by its displacement field. We proved that, although the
resulting eigenvalue problem is non-symmetric, it shares many important properties with the
symmetric model: taking advantage of a Rayleigh functional, its eigenvalues allow for the
variational characterizations known from the linear theory. Namely, they can be characterized
by Rayleigh’s principle and are minmax and maxmin values of the Rayleigh functional.

We consider free vibrations of an elastic structure completely filled with a homogeneous,
inviscid, and compressible fluid neglecting gravity effects. The fluid and the solid occupy
Lipschitz domains Ωf ⊂ Rd and Ωs ⊂ Rd, respectively, which we assume non-overlapping,
Ωf ∩ Ωs = ∅.

The boundary shall be divided by ∂Ωs = ΓD ∪ ΓI and ∂Ωf = ΓN ∪ ΓI into pairwise
disjoint parts ΓD, ΓN , ΓI , where ΓD and ΓN are Dirichlet- and Neumann-type boundaries
and ΓI is a common interface that is responsible for the coupling effect. The linear-elastic
solid is modeled by its displacement function u : Ωs → Rd, d = 2, 3. The incompressible,
inviscid, and homogeneous fluid is described by the relative pressure p : Ωf → R. This yields
a formulation as a system of homogeneous time-independent partial differential equations

Div σ(u) + ω2ρsu = 0 in Ωs,

∇2p+
ω2

c2
p = 0 in Ωf ,

with boundary conditions

u = 0 on ΓD and ∇p · nf = 0 on ΓN

and interface conditions

σ(u) n− p n = 0 on ΓI and ω2ρfu · n+∇p · n = 0 on ΓI ,

where ω is the eigenfrequency of the vibrations, σ is the stress tensor of the solid, nf is the unit
normal vector on ΓN , and n denotes the unit normal vector on ΓI oriented towards the solid
part. The interface boundary conditions are a consequence of an equilibrium of acceleration
and force densities at the contact interface.

We assume that the fluid density ρf > 0 is constant in Ωf and that the solid density
ρs : Ωs → R satisfies 0 < C1 < ρs < C2, where C1 and C2 denote positive generic constants.
To take into account homogeneous Dirichlet boundary conditions, we introduce the space
Hk

Γ(Ω) for Γ ⊂ ∂Ω as the completion of C∞Γ (Ω) in Hk(Ω), where C∞Γ (Ω) denotes the space
of infinitely differentiable functions u on Ω with u = 0 in a neighborhood of Γ.
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The variational forms can be obtained separately for the solid and the fluid and yield the
following forms: Find λ ∈ C and nonzero (u, p) ∈ H1

ΓD
(Ωs)

d ×H1(Ωf ) such that∫
Ωs

σ(u) : ∇v dx−
∫

ΓI

p n · v ds = λ

∫
Ωs

ρsuv dx,(14.1a) ∫
Ωf

1

ρf
∇p · ∇q dx = λ

(∫
ΓI

q n · u ds+

∫
Ωf

1

ρfc2
p q dx

)
,(14.1b)

for all (v, q) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ), where A : B =

∑
ij aijbij denotes the scalar matrix

product.
We can immediately formulate the adjoint eigenvalue problem: Find λ ∈ C and nonzero

(u, p) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ) such that∫

Ωs

σ(u) : ∇v dx = λ

(∫
Ωs

ρsuv dx+

∫
ΓI

p n · v ds
)
,(14.2a) ∫

ΓI

q n · u ds+

∫
Ωf

1

ρf
∇p · ∇q dx = λ

∫
Ωf

1

ρfc2
p q dx,(14.2b)

for all (v, q) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ).

For the linearized strain tensor ε in the solid, we assume that the strain-stress relationship
satisfies

σ(v) : ∇v ≥ C1ε(v) : ε(v)

for some constant C1 > 0, such that Korn’s second inequality implies that as is a coercive
bilinear form.

Problem (14.1) can be written in operator notation. The aim is to find λ ∈ C and nonzero
(u, p) ∈ H1

ΓD
(Ωs)

d ×H1(Ωf ) so that

Ksu+ Cp = λMsu

Kfp = λ(−C′u+Mfp),

where the operators are defined corresponding to the variational formulation in (14.1).
Some elementary properties of the fluid-solid interaction eigenvalue problem can be given

as follows:
LEMMA 14.1.
(i) The eigenvalue problem and its adjoint problem have a zero eigenvalue with corre-

sponding one-dimensional eigenspaces (u0, p0) and (0, p0), where p0 ≡ 1 and u0 is
determined in the proof provided in [216].

(ii) The function (u, p) is an eigensolution of the right eigenvalue problem (14.1) cor-
responding to an eigenvalue λ 6= 0 if and only if (λu, p) is an eigensolution of the
adjoint eigenvalue problem (14.2) corresponding to the same eigenvalue.

(iii) Eigenfunctions (u1, p1) and (u2, p2) of (14.1) corresponding to distinct eigenvalues
λ1 6= λ2 are orthogonal with respect to the inner product

〈(u, p), (v, q)〉 := as(u, v) + bf (p, q).

(iv) Assume that (u1, p1) is an eigensolution of (14.1) and (û2, p̂2) an eigensolution of
the adjoint problem (14.2) corresponding to the eigenvalues λ1 and λ2, respectively.
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If λ1 6= λ2, then it holds that

as(û2, u1) + c(û2, p1) + af (p̂2, p1) = bs(û2, u1)− c(u1, p̂2) + bf (p1, p̂2) = 0.

If λ1 = λ2 and (û2, p̂2) = (λ1u1, p1), then it holds that

as(û2, u1) + c(û2, p1) + af (p̂2, p1) ≥ 0 and

bs(û2, u1)− c(u1, p̂2) + bf (p1, p̂2) > 0.

(v) The eigenvalue problem (14.1) has an infinite countable number of eigenvalues, which
are all real and non-negative and which converge to infinity.

Lemma 14.1 states the relationship between the eigenfunctions of the problem (14.1) and
the adjoint problem (14.2). The adjoint eigenfunction (λu, p) can be used as a test function in
equation (14.1), so that we obtain

λas(u, u) + λc(u, p) + af (p, p) = λ2bs(u, u)− λc(u, p) + λbf (p, p)

for any eigensolution (λ, (u, p)), i.e., it is a zero of the function

g(λ, (u, p)) := λ2bs(u, u) + λ (bf (p, p)− as(u, u)− 2c(u, p))− af (p, p).

If bs(u, u) > 0, then this equation is quadratic in λ, and one can easily show that the maximal
one is an eigenvalue λ of (14.1) corresponding to (u, p). This suggests to introduce an
eigenvalue approximation for some general nonzero (u, p) ∈ H1

ΓD
(Ωs)

d ×H1(Ωf ), and we
define the nonlinear Rayleigh functional as the maximal root of g(·, (u, p)).

DEFINITION 14.2. The functional r : H1
ΓD

(Ωs)
d × H1(Ωf )\{0} → R, where any

nonzero (u, p) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ) is mapped to the maximal root of g(·, (u, p)) is called

the nonlinear Rayleigh functional, i.e.,

r(u, p) =

∆ +
√

∆2 +
af (p,p)
bs(u,u) if bs(u, u) 6= 0,

af (p,p)
bf (p,p) if bs(u, u) = 0,

where

∆ =
1

2

−bf (p, p) + as(u, u) + 2c(u, p)

bs(u, u)
.

Although fluid-solid eigenvalue problems are not self-adjoint, one obtains variational
characterizations using the nonlinear Rayleigh functional. These results generalize variational
principles known from the linear self-adjoint case.

THEOREM 14.3 ([216]). Let λ1 ≤ λ2 ≤ · · · be the eigenvalues of (14.1) in ascending
order and (u1, p1), (u2, p2), . . . the corresponding eigenfunctions. Then it holds that

(i) (Rayleigh’s principle)

λk = min{r(u, p) : as(u, uj) + bf (p, pj) = 0, j = 1, . . . , k − 1};

(ii) (minmax characterization)

λk = min
Sk⊂H1

ΓD
(Ωs)d×H1(Ωf )

dimSk=k

max
06=(u,p)∈Sk

r(u, p);

(iii) (maxmin characterization)

λk = max
Sk−1⊂H1

ΓD
(Ωs)d×H1(Ωf )

dimSk−1=k−1

min
06=(u,p)∈S⊥k−1

r(u, p),

where

S⊥ := {(u, p) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ) : as(u, v) + bf (p, q) = 0 for (v, q) ∈ S}.
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14.2. Discretizing fluid-solid problems. Discretizing (14.1) by finite elements respect-
ing the domains of the fluid and of the structure yields the non-symmetric matrix eigenvalue
problem [15, 99]

(14.3) Kx :=

[
Ks C
0 Kf

] [
xs
xf

]
= λ

[
Ms 0
−CT Mf

] [
xs
xf

]
=: λMx.

Here xs is the structure displacement vector with s degrees of freedom, xf is the fluid pressure
vector with f degrees of freedom, and λ = ω2 denotes the eigenvalue. Ks ∈ Rs×s and
Kf ∈ Rf×f are the symmetric stiffness matrices, with Ks > 0,Kf ≥ 0, and Ms ∈ Rs×s and
Mf ∈ Rf×f are the positive definite mass matrices of the structure and the fluid, respectively,
and C ∈ Rs×f describes the coupling of structure and fluid.

Several authors [11, 29, 30, 31, 57] emphasize that the non-symmetric structure of the
problem (14.3) makes it inconvenient from the numerical point of view. However, since
the discrete eigenproblem (14.3) inherits the variational characterization of its eigenvalues
from (14.1), all methods in Chapters 3 and 4 apply. The paper [214] describes the behavior of
the Nonlinear Arnoldi method and the Jacobi-Davidson method for a fluid-solid problem of
dimension 143,082.

A common approach for solving problem (14.3) [14, 122] (for example in the automotive
industry), which works well for weakly coupled systems is as follows: One first determines
the eigenpairs of the symmetric and positive definite and semidefinite eigenvalue problems

(14.4) Ksxs = ω2
sMsxs and Kfxf = ω2

fMfxf

by the Lanczos method or Automated Multi-Level Substructuring and then projects the
problem (14.3) to diag{Xs, Xf}, where the columns of Xs and Xf are the eigenmodes of the
problem (14.4) not exceeding a given cut-off level. The projected problem[

XT
s KsXs XT

s CXf

0 XT
f KfXf

] [
ys
yf

]
= λ

[
XT
s MsXs 0

−XT
f C

TXs XT
f MfXf

] [
ys
yf

]
has the same structure as the original problem but is of much smaller dimension. An example
in [247], however, demonstrates that this approach is not appropriate for strongly coupled
problems.

14.3. AMLS for fluid-solid interaction problems. Our AMLS variant for the fluid-
solid interaction problem (14.3) is based on the symmetric eigenproblem

(14.5) T (λ)x :=




0 C Ks 0
CT 0 0 Kf

Ks 0 0 0
0 Kf 0 0

− λ

Ms 0 0 0
0 Mf 0 0
0 0 Ks 0
0 0 0 Kf


x = 0,

whose eigenpairs resemble those from (14.3). If (λ2, (xTs , x
T
f )T ) solves problem (14.3), then

(±λ,
[
λ2xTs ±λxTf ±λxTs xTf

]T
)

are solutions of (14.5) unless λ = 0.
We introduce the following numbering of the eigenvalues of (14.5) in the interval

J := (−ω, ω) of interest:

−ω < · · · ≤ λ−3 ≤ λ−2 < 0 < λ2 ≤ λ3 ≤ · · · < ω
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and λ−1 = λ1 = 0. The matrix T (0) has rank n − 2 and a symmetric spectrum, i.e., the
two zero eigenvalues have the enumeration n/2 and n/2 + 1, and in terms of the theory of
nonlinear eigenvalue problems, the following variational characterization holds

λ+j = min
dim V=n/2+j

sup
x∈V ∩D

p(x) and λ−j = min
dim V=n/2−j+1

sup
x∈V ∩D

p(x).

The CMS a priori bounds in Theorem 14.4 can be derived by comparing the nonlinear
Rayleigh functional of problem (14.3) with the Rayleigh quotient r of the truncated linear
eigenproblem

(14.6)
[
Λ2 0

0 K̂11

] [
x2

x3

]
= λ

[
I M̌21

M̌T
21 M̂11

] [
x2

x3

]
on appropriate subspaces.

THEOREM 14.4 ([215]). Denote by 0 = λ+1 < λ+2 ≤ λ+3 ≤ · · · < ω one zero
eigenvalue and the positive eigenvalues of the nonlinear eigenvalue problem T (λ)x = 0 and
by 0 = λ̃+1 < λ̃+2 ≤ λ̃+3 ≤ · · · < ω the corresponding eigenvalues of the truncated linear
eigenproblem (14.6).

Then for every j ≥ 2 such that λ+j , λ̃+j ∈ J := (−ω, ω), it holds that

λ+j −
λ2

+j

ω + λ+j
≤ λ̃+j ≤ λ+j +

λ2
+j

ω − λ+j
,

i.e.,

− λ+j

ω + λ+j
≤ λ̃+j − λ+j

λ+j
≤ λ+j

ω − λ+j
.(14.7)

The upper bound in (14.7) for the relative error has the same structure as the error
bound given in Theorem 8.1 for CMS applied to a definite eigenvalue problem. In the
definite case, the lower bound is 0 due to the fact that CMS is a projection method and the
eigenvalues under consideration are at the lower end of the spectrum. CMS for the indefinite
eigenproblem (14.3) discards eigenmodes corresponding to eigenvalues which exceed a cut-off
frequency in modulus. Since we are approximating an interior eigenvalue λ+j of the eigenvalue
problem (14.3) by an interior eigenvalue λ̃+j of the linear eigenvalue problem corresponding
to (14.5), which may have different numbers with respect to the natural enumeration (smallest
eigenvalue first one, second smallest second one, etc.), it may happen that λ̃+j < λ+j . The
paper [215] contains an example that this can actually happen.

AMLS on p partitioning levels is mathematically equivalent to p CMS steps, so that in the
CMS step at level k = p, . . . , 1, the eigenmodes at level k are truncated and the eigenmodes
on all other levels are retained. We denote by λ(k)

+j the eigenvalue approximation if the lowest

k partitioning levels have been handled, i.e., λ(0)
+j denotes the exact eigenvalues and λ(p)

+j the
approximation when the reduction process has terminated. Then we apply the CMS bound in
Theorem 14.4 recursively and obtain the following error bound for AMLS.

THEOREM 14.5 ([215]). Consider the AMLS algorithm for fluid-solid interaction eigen-
problems on p levels. Denote by λ(k)

+j the eigenvalues after the k lowest partitioning levels have

been handled (k = 0, . . . , p), and assume that the cut-off frequency satisfies ω > pλ
(0)
+j ≥ 0.

Then the eigenvalues can be bounded by

ωλ
(p)
+j

ω + pλ
(p)
+j

≤ λ(0)
+j ≤

ωλ
(p)
+j

ω − pλ(p)
+j

.
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14.4. Numerical example. To evaluate the modified AMLS algorithm for fluid-solid
interaction problems, we consider a two-dimensional model with 120,473 degrees of freedom.
The solid is steel, and its discretization has 67,616 degrees of freedom. As fluid we consider
water, whose discretization leads to 52,857 degrees of freedom. To investigate the coupling
effects, the underlying geometry was chosen with a rather large interface between fluid and
solid; cf. [215].
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FIG. 14.1. The relative error of adapted AMLS for fluid-solid interaction problems and the relative error of
standard AMLS applied to fluid-solid interaction problems.

We applied the AMLS variant described in Section 14.3 for the coupled fluid-solid
problem and compared the eigenvalue approximations to those obtained from the standard
AMLS. In both cases, the algorithm was performed on 10 sub-structuring levels and 751
structures using a cut-off frequency corresponding to 10,000 Hz on each partitioning level.
The errors are displayed in Figure 14.1.

Eigenvalues with large accuracy improvements (e.g., λ ≈ 100 Hz) turned out to belong
to eigenforms with significant influence of the coupling. Eigenforms corresponding to larger
eigenfrequencies were less influenced by the coupling, and in some cases, the eigenvalue
approximations are slightly worse compared with the AMLS variant neglecting the coupling
effects in the reduction process. In all cases, the eigenvalue approximations were of larger
magnitude than the exact eigenvalues.

15. Conclusions. Variational characterization of eigenpairs is a powerful tool for linear
eigenvalue problems to derive localization and monotonicity results, error bounds, comparison,
and interlacing results for eigenvalues. In this paper we collect several generalizations for
eigenvalue problems which are nonlinear with respect to the eigenparameter: we present a
method for detecting hyperbolic matrix polynomials that allow for a definite linearization
and can be solved by standard methods, we generalize Sylvester’s law of inertia to locate
eigenvalues and give bounds for low-rank modifications of eigenvalue problems. We analyze
the electronic behavior of quantum dots, of viscoelastic operators, and the vibration of fluid-
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solid structures. We present an error bound for automated multi-level substructuring for huge
eigenvalue problems and present methods for the regularization of total least-squares problems.
Numerical examples accompany the various methods.
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