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ON THE REGULARIZATION EFFECT OF STOCHASTIC GRADIENT DESCENT
APPLIED TO LEAST-SQUARES∗

STEFAN STEINERBERGER†

Abstract. We study the behavior of the stochastic gradient descent method applied to ‖Ax− b‖22 → min for
invertible matrices A ∈ Rn×n. We show that there is an explicit constant cA depending (mildly) on A such that

E ‖Axk+1 − b‖22 ≤
(
1 +

cA

‖A‖2F

)
‖Axk − b‖22 −

2

‖A‖2F

∥∥∥ATA(xk − x)
∥∥∥2
2
.

This is a curious inequality since the last term involves one additional matrix multiplication applied to the error xk−x
compared to the remaining terms: if the projection of xk − x onto the subspace of singular vectors corresponding to
large singular values is large, then the stochastic gradient descent method leads to a fast regularization. For symmetric
matrices, this inequality has an extension to higher-order Sobolev spaces. This explains a (known) regularization
phenomenon: an energy cascade from large singular values to small singular values acts as a regularizer.
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1. Introduction.

1.1. Stochastic gradient descent. In this paper, we consider the finite-dimensional linear
inverse problem

Ax = b,

where A ∈ Rn×n is an invertible matrix, x ∈ Rn is the (unknown) signal of interest, and b is
a given right-hand side. Throughout this paper, we will use a1, . . . , an ∈ Rn to denote the
rows of A. Equivalent to the stated problem, we may try to solve

‖Ax− b‖2 =

n∑
i=1

(〈ai, x〉 − bi)2 → min .

Following Needell, Srebro, and Ward [29], we can interpret this as

n∑
i=1

fi(x)2 → min, where fi(x) = 〈ai, x〉 − bi.

The Lipschitz constant of fi is ‖ai‖`2 , which motivates the following basic form of a stochastic
gradient descent method: pick one of the n functions with a likelihood proportional to the
Lipschitz constant, and then perform a gradient descent for this much simpler function. This
results in the Stochastic Gradient Descent (SGD) method,

xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖2

ai,

which is also known as the Algebraic Reconstruction Technique (ART) in computer tomogra-
phy [11, 14, 15, 25], the Projection onto Convex Sets Method [8, 4, 5, 9, 36], or the Randomized
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Kaczmarz method [2, 6, 7, 10, 13, 12, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 34, 37, 38, 39,
40, 41, 42]. Strohmer and Vershynin [39] showed that

E‖xk − x‖2 ≤
(

1− 1

‖A−1‖2‖A‖2F

)k

‖x0 − x‖2,

where ‖A‖2F is the Frobenius norm. In practice, the algorithm often converges a lot faster
initially, and this was studied in [17, 18, 37]. In particular, the authors in [37] obtain an identity
in terms of the behavior with regards to the singular values showing that the singular vectors
associated to large singular values are expected to undergo a more rapid decay. Motivated by
this, we provide rigorous bounds that quantify this energy cascade from large singular values
to small singular values by identifying an interesting inequality for the SGD method when
applied to the least-squares problem.

1.2. A motivating example. We discuss a simple example that exemplifies the phe-
nomenon that we are interested in. Let us take A ∈ R100×100 by picking each entry indepen-
dently at random from a standard normal distribution N (0, 1) and then normalizing the rows
to ‖ai‖ = 1. The right-hand side is b = (1, 1, . . . , 1), and we initialize with x0 = 0 ∈ Rn.
Figure 1.1 displays the magnitude of ‖Axk − b‖`2 over the first 10.000 iteration steps (left)
and the subsequent 10.000 iteration steps (right).
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FIG. 1.1. The size of ‖Axk − b‖`2 , for k = 1, . . . , 10000, (left) followed by the next 10000 iterations
‖Ax10000+k − b‖`2 (right). We observe a rapid initial decay, which then slows down.

The picture tells a very interesting story: the error in ‖Axk − b‖ initially decays quite
rapidly before stabilizing in a certain regime: there is still an additional decay but at a much
lower rate and with a larger amount of fluctuations. Moreover, for the example in Figure 1.1,
we have ‖x0‖ = 0 and ‖x20000‖ ∼ 28, which is not even close to the true solution ‖x‖ ∼ 128;
nonetheless, the approximation of Axk to b is quite good. This leaves us with a curious
conundrum: we have a good approximation xk of the true solution in the sense that Axk ∼ b
even though xk is not very close to x. One way this can be achieved is if xk − x is mainly
a linear combination of small singular vectors of A. This is related to the following result
recently obtained by the author.

THEOREM 1.1 ([37]). Let v` be a (right) singular vector of A associated to the singular
value σ`. Then, for the sequence (xk)∞k−0 obtained in this randomized manner, it holds that

E 〈xk − x, v`〉 =

(
1− σ2

`

‖A‖2F

)k

〈x0 − x, v`〉 .

Here, ‖A‖F denotes the Frobenius norm. This shows that we expect xk − x to be indeed
mainly a linear combination of singular vectors associated to small singular values since those
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are the ones undergoing the slowest decay. It also mirrors the bound obtained by Strohmer and
Vershynin [39] since σ` ≥ σn = ‖A−1‖−1. While being interesting in itself, this identity does
not fully explain the behavior shown above: it provides a bound only in expectation with no
control of the variance. Moreover, the inner product does initially undergo some fluctuations.
Taking the same type of matrix as above, we see an example of such fluctuations in Figure 1.2.

200 400 600 800 1000

-0.010

-0.005

0.005

0.010 〈
xk−x
‖xk−x‖ , v1

〉

FIG. 1.2. Evolution of the normalized error against the leading singular vector v1: fluctuations around the mean.

1.3. Related results. This type of question is well studied. We refer to Ali, Dobridan,
and Tibshirani [1], Defossez and Bach [3], Jain, Kakade, Kidambi, Netrapalli, Pillutla, and
Sidford [16], Neu and Rosasco [31], Oymak and Soltanolkotabi [33], Schmidt, Le Roux, and
Bach [35] and the references therein. The connection of the SGD method applied to least-
squares problems and the Randomized Kaczmarz Method has been pointed out by Needell,
Srebro, and Ward [29]. We also mention the papers by Jiao, Jin, and Lu [17] and Jin and
Lu [18], who studied a similar question and noted that there is an energy transfer from large
singular values to small singular values.

2. Results.

2.1. Main result. The main goal of this note is to provide a simple explanation for the
rapid initial regularization: the expected decay of the quantity ‖A(xk+1 − x)‖ under SGD can
be bounded from above by a term involving

∥∥ATA(xk − x)
∥∥

2
: this is the same term except

that a matrix has been applied to the existing quantity one more time. This increases the norm
of the underlying vector except when A(xk − x) is mainly the linear combination of singular
vectors with small singular values. So as long as this is not the case, we actually inherit strong
decay properties, and this leads to the rapid initial regularization.

THEOREM 2.1. Let A ∈ Rn×n be invertible, denote its rows by a1, . . . , an, and apply the
Stochastic Gradient Descent method introduced above to ‖Ax− b‖22 → min. Abbreviating

α = max
1≤i≤n

‖Aai‖2

‖ai‖2
,

we have

E ‖Axk+1 − b‖22 ≤
(

1 +
α

‖A‖2F

)
‖Axk − b‖22 −

2

‖A‖2F

∥∥AT (Axk − b)
∥∥2

2
.

The inequality also holds for A ∈ Rm×n with m ≥ n as long as Ax = b has a unique solution.
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The main point of the inequality is that the last term has an additional matrix multiplication
with AT : we can rewrite it as∥∥AT (Axk − b)

∥∥2

2
= ‖ATA(xk − x)‖22.

This shows that the presence of large singular vectors in xk − x induces a large decay for
‖A(xk − x)‖22. Conversely, once the algorithm has reached the plateau phase (see Figure 1.1),
the fact that the decay has slowed down implies that the terms

α‖A(xk − x)‖22 and ‖ATA(xk − x)‖22

are nearly comparable. Thus, this forces xk−x to be nearly orthogonal to most singular vectors
corresponding to large singular values, which, however, shows that it is mainly comprised of
small singular vectors and thus explains why ‖A(xk − x)‖ � ‖xk − x‖ is possible in cases
where xk is far away from x. In particular, this suggests why the method could be effective for
the problem of finding a vector x such that Ax ≈ b. One way is to initialize the SGD method
with x0 = 0 and run it for a while. Due to the difference in scales and as second-order norms
are regularizing first-order norms, we observe that Axk converges quite rapidly; whether it
converges to something sufficiently close to b for the purpose at hand, is a different question.

2.2. The value of α. It is clearly important to understand the role of α. The size of α
essentially governs at what range the algorithm enters the plateau phase. We first note that,
since ai is a row of the matrix A, we have

‖Aai‖2 =

n∑
k=1

〈ak, ai〉2 ≥ ‖ai‖2,

and therefore α ≥ 1. It is easy to see that α is a measure of whether any large singular vectors
of A have a large inner product with any of the rows—this may happen but in many settings
of interest does not. We can make this statement precise for random matrices.

PROPOSITION 2.2. Let A ∈ Rn×n be comprised of independent Gaussian entries
aij ∼ N (0, 1). Then

α ∼ (2 + o(1))n

with high probability as n→∞.
The proof of the proposition shows a slightly more precise result, which is not required

for the subsequent discussion. We can now analyze precisely what this means in terms of
Theorem 2.1. Let us abbreviate v = Axk − b. Theorem 2.1 guarantees a decay as long as
α‖v‖22 ≥ 2‖AT v‖22. We have that α ∼ 2n, and we have that

‖AT v‖22 =
〈
AT v,AT v

〉
=
〈
ATAv, v

〉
.

The eigenvalues of ATA are distributed in (approximately) [0, 4n]. This shows that the
Stochastic Gradient Descent method acts as an effective regularizer as long as the projection
of v onto the space of eigenvalues in [n, 4n] is large.

2.3. A Sobolev space interpretation. An interesting way to illustrate the result is in
terms of partial differential equations. Suppose we try to solve −∆u = f on some domain
Ω ⊂ Rn. After a suitable discretization, this results in a discrete linear system Lu = f , where
L ∈ Rn×n is a discretization of the Laplacian −∆. By an abuse of notation, u denotes a
discrete approximation of the continuous solution and f a discretization of the continuous
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right-hand side. However, we also have more information: since L discretizes the Laplacian,
we expect that

〈Lu, u〉 ∼
∫

Ω

|∇u|2dx and 〈Lu,Lu〉 ∼
∫

Ω

|∆u|2dx.

Here, the first term correspond to the norm of u in the Sobolev space Ḣ1, while the second
term is the norm of u in the Sobolev space Ḣ2. In fact, this is a common way to define
discretized approximations in Sobolev spaces, also known as the spectral definition, since
they are defined in terms of the spectrum of L. Suppose now we compute a sequence of
approximations uk via the method outlined above. Then Theorem 2.1 can be rephrased as

E‖uk+1 − u‖2Ḣ1 ≤
(

1 +
α

‖L‖2F

)
‖uk − u‖2Ḣ1 −

2

‖L‖2F
‖uk − u‖2Ḣ2 .

What is of great interest here is that the decay of the error in Ḣ1 is driven by the decay of the
error in Ḣ2 (which is usually larger).
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FIG. 2.1. ‖Axk − b‖`2 , for k = 1, . . . , 3000, (left) and the decay guaranteed by Theorem 2.1 in expectation
(right) over multiple runs.

2.4. An example. We illustrate this with an example. ChoosingA ∈ R500×500 at random
(and then, for convenience, normalize the rows to ‖ai‖ = 1), we solve Ax = (1, 1, . . . , 1)
starting with a random initial vector x0 where each entry is chosen independently from a
standardized N (0, 1)-distribution. We consider both the evolution of ‖Axk − b‖22 across
multiple runs as well as the size of

α

‖A‖2F
‖Axk − b‖22 −

2

‖A‖2F

∥∥AT (Axk − b)
∥∥2

2
,

which is the term from our theorem quantifying the expected decay at each step. We see in
Figure 2.1 that over 3000 periods, the approximation decays roughly by a factor ∼ 800 (with
little variation across multiple runs). The bound in the theorem implies an expected decay
of −0.23 per time-step, which, over 3000 time steps, leads to a total decay factor of roughly
∼ 696.

2.5. Higher powers. If the matrix A ∈ Rn×n is symmetric, then we can extend the
result to higher powers.
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THEOREM 2.3. Let A ∈ Rn×n be symmetric and invertible. When solving the problem
‖Ax− b‖22 → min via the Stochastic Gradient Descent method outlined above, we have, for
any ` ∈ N with

α` = max
1≤i≤n

‖A`ai‖2

‖ai‖2
,

the estimate

E ‖A`(xk+1 − x∗)‖22 ≤
(

1 +
α`

‖A‖2F

)
‖A`(xk − x∗)‖22 −

2

‖A‖2F

∥∥A`+1(xk − x∗)
∥∥2

2
.

This shows that the same phenomenon does happen at all scales of ‘smoothness’. The
applicability of the result is, naturally, depending on the growth of α` in `, though, generically,
one would not expect this to be badly behaved: there is no good reason to expect that the
row of a matrix happens to be the linear combination of singular vectors associated to large
singular values—though, naturally, this can happen (for example, if A has one very large entry
on the diagonal).

2.6. Open problem. The analysis of this particular scheme of gradient descent is some-
what distinguished insofar as picking a descent direction with likelihood proportional to the
Lipschitz constant ‖ai‖`2 leads to a distinguished scheme undergoing a certain algebraic
simplification. One could consider other schemes (see, e.g., [38] for the Random Kaczmarz
method), but it is not clear whether they might admit similar inequalities—we believe this to
be an interesting problem (both in the Random Kaczmarz setting as well as in the Stochastic
Gradient setting).

3. Proofs.

3.1. Proof of Theorem 2.1. Proof. To simplify the exposition, we introduce the error

rk = xk − x.

Plugging in, we obtain that if the i-th equation is chosen, then

x+ rk+1 = xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖2

ai = x+ rk +
bi − 〈ai, x+ rk〉

‖ai‖2
ai

= x+ rk −
〈ai, rk〉
‖ai‖2

ai +

(
bi − 〈ai, x〉
‖ai‖2

ai

)
.

Since x is the exact solution, we have bi − 〈ai, x〉 = 0 and

rk+1 = rk −
〈ai, rk〉
‖ai‖2

ai.

Recalling that the i-th row is chosen with probability proportional to ‖ai‖2,

E ‖Ark+1‖2 = E
∥∥∥∥A(rk − 〈ai, rk〉‖ai‖2

ai

)∥∥∥∥2

=

n∑
i=1

‖ai‖2

‖A‖2F

∥∥∥∥Ark − 〈ai, rk〉‖ai‖2
Aai

∥∥∥∥2

.

This norm can be explicitly squared out as∥∥∥∥Ark − 〈ai, rk〉‖ai‖2
Aai

∥∥∥∥2

= ‖Ark‖2 − 2
〈ai, rk〉
‖ai‖2

〈Ark, Aai〉+
〈ai, rk〉2

‖ai‖4
‖Aai‖2.
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This allows us to rewrite the summation as

E ‖Ark+1‖2 =

n∑
i=1

‖ai‖2

‖A‖2F

(
‖Ark‖2 − 2

〈ai, rk〉
‖ai‖2

〈Ark, Aai〉+
〈ai, rk〉2

‖ai‖4
‖Aai‖2

)

= ‖Ark‖2 −
2

‖A‖2F

n∑
i=1

〈ai, rk〉 〈Ark, Aai〉+
1

‖A‖2F

n∑
i=1

〈ai, rk〉2
‖Aai‖2

‖ai‖2
.

The second sum can be simplified. We observe that 〈ai, rk〉 is the i-th entry of Ark. Similarly,〈
ATArk, ai

〉
is the i-th entry fo AATArk. Therefore,

2

‖A‖2F

n∑
i=1

〈ai, rk〉 〈Ark, Aai〉 =
2

‖A‖2F

n∑
i=1

〈ai, rk〉
〈
ATArk, ai

〉
=

2

‖A‖2F

〈
Ark, AA

TArk
〉

=
2

‖A‖2F
‖ATArk‖2.

The last sum we bound from above via

1

‖A‖2F

n∑
i=1

〈ai, rk〉2
‖Aai‖2

‖ai‖2
≤
(

max
i

‖Aai‖2

‖ai‖2

)
‖Ark‖2

‖A‖2F
.

This results in the desired estimate.

3.2. Proof of Theorem 2.3. Proof. We again reduce the problem to that of the study of
the error

rk+1 = rk −
〈ai, rk〉
‖ai‖2

ai.

When looking at integer powers, we observe that, by the same reasoning,

E ‖A`rk+1‖2 = E
∥∥∥∥A`

(
rk −

〈ai, rk〉
‖ai‖2

ai

)∥∥∥∥2

=

n∑
i=1

‖ai‖2

‖A‖2F

∥∥∥∥A`rk −
〈ai, rk〉
‖ai‖2

A`ai

∥∥∥∥2

=

n∑
i=1

‖ai‖2

‖A‖2F

(
‖A`rk‖2 − 2

〈ai, rk〉
‖ai‖2

〈
A`rk, A

`ai
〉

+
〈ai, rk〉2

‖ai‖4
‖A`ai‖2

)

= ‖A`rk‖2 −
2

‖A‖2F

n∑
i=1

〈ai, rk〉
〈
A`rk, A

`ai
〉

+
1

‖A‖2F

n∑
i=1

〈ai, rk〉2
‖A`ai‖2

‖ai‖2
.

The first term is easy to analyze, and the third term can, as before, be bounded by

1

‖A‖2F

n∑
i=1

〈ai, rk〉2
‖A`ai‖2

‖ai‖2
≤ α`

‖A‖2F

n∑
i=1

〈ai, rk〉2 =
α`

‖A‖2F
‖Ark‖2.
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It remains to understand the second term: here, we can use the symmetry of the matrix to write

2

‖A‖2F

n∑
i=1

〈ai, rk〉
〈
A`rk, A

`ai
〉

=
2

‖A‖2F

n∑
i=1

〈ai, rk〉
〈
A2`rk, ai

〉
=

2

‖A‖2F

〈
Ark, A

2`+1rk
〉

=
2

‖A‖2F

〈
A`+1rk, A

`+1rk
〉

=
2

‖A‖2F
‖A`+1rk‖2.

3.3. Proof of Proposition 2.2. Proof. We write

‖Aai‖2

‖ai‖2
=

∥∥∥∥A ai
‖ai‖

∥∥∥∥2

.

The vector v = ai/‖ai‖ behaves like a randomly chosen vector with respect to the Haar
measure. Using independence of the rows, we have, for v = ai/‖ai‖,∥∥∥∥A ai

‖ai‖

∥∥∥∥2

= ‖ai‖2 +
∑
j 6=i

〈aj , v〉2 .

We note that the second sum is comprised of n− 1 independent objects. Each of these objects
〈aj , v〉2 has a distribution function that can be determined in closed form: both v and aj share
rotational symmetry. We can thus—to determine the distribution—set v = (1, 0, . . . , 0) and
obtain that 〈aj , v〉 is distributed as N (0, 1). Thus, for i fixed, the distribution of the sum is
given by a χ2-distribution ∑

j 6=i

〈aj , v〉2 ∼ χ2
n−1.

We use an inequality of Laurent and Massart [19] to argue that

P
(
χ2
n−1 − (n− 1) ≥ 2

√
(n− 1)x+ 2x

)
≤ e−x.

Setting x = c log n for some c > 1, we get

P
(
χ2
n−1 − (n− 1) ≥ 2

√
cn log n+ 2 log n

)
≤ 1

nc
,

and, by the union bound, the maximum over n different (possibly dependent) terms does not
violate this bound with likelihood ≤ n−(c−1). We also see that the value of c only affects the
lower-order terms.
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