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A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD:
STABILIZATION STRATEGIES AND EXAMPLES∗

DIFENG CAI† AND JIANLIN XIA‡

Abstract. The fast multipole method (FMM) is an efficient method for evaluating matrix-vector products related
to certain discretized kernel functions. The method involves an underlying FMM matrix given by a sequence of smaller
matrices (called generators for convenience). Although there has been extensive work in designing and applying FMM
techniques, the stability of the FMM and the stable FMM matrix factorization have rarely been studied. In this work,
we propose techniques that lead to stable operations with FMM matrices. One key objective is to give stabilization
strategies that can be used to provide low-rank approximations and translation relations in the FMM satisfying some
stability requirements. The standard Taylor expansions used in FMMs yield basis generators susceptible to instability.
Here, we introduce some scaling factors to control the relevant norms of the generators and give a rigorous analysis of
the bounds of the entrywise magnitudes. The second objective is to use the one-dimensional case as an example to
provide an intuitive construction of FMM matrices satisfying some stability conditions and then convert an FMM
matrix into a hierarchically semiseparable (HSS) form that admits stable ULV-type factorizations. This bridges the
gap between the FMM and stable FMM matrix factorizations. The HSS construction is done analytically and does
not require expensive algebraic compression. Relevant stability studies are given, which show that the resulting
matrix forms are suitable for stable operations. Note that the essential stabilization ideas are also applicable to higher
dimensions. Extensive numerical tests are given to illustrate the reliability and accuracy.

Key words. numerical stability, fast multipole method, FMM matrix, scaling factor, low-rank approximation,
HSS matrix
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1. Introduction. Let κ(x, y) be a kernel function in a form such as 1/(x−y), 1/(x−y)2,
log(x− y) , or log |x− y|, where x, y ∈ C, x 6= y. Given a set of points

(1.1) s ≡ {x1, . . . , xn}, xi ∈ C,

let A be an n× n discretized matrix with entries

(1.2) Aij = κ(xi, xj), i 6= j.

The diagonal entries Aii are defined separately and do not concern us so far. It is well known
that the fast multipole method (FMM) [14, 27] can be used to evaluate the product of A with
a vector to a given accuracy in linear complexity. As shown in [30], the FMM essentially
yields a hierarchical structured approximation of A to a given accuracy. Such a structured
approximation is also an example of anH2-matrix [17, 19]. For convenience, we refer to this
approximation derived with the FMM procedure as an FMM matrix.

The construction of an FMM matrix often involves appropriate degenerate approximations
or truncated expansions of κ(x, y). Commonly used expansions are Taylor expansions,
multipole expansions, and spherical harmonic expansions. Such expansions provide convenient
ways to obtain low-rank approximations of the off-diagonal blocks (κ(xi, yj)))xi∈x1,yj∈x2

of
A that correspond to well-separated subsets x1 and x2 of s. This will be made more precise
later.
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Practical implementations of the FMM have usually been very successful in achieving
both high efficiency and nice accuracy. On the other hand, it has also been noticed that
numerical stability issues may arise under certain circumstances [8, 9, 10, 15, 26]. Here in
particular, we are interested in the stability of the FMM based on Taylor expansions of κ(x, y).
Taylor expansions can produce low-rank basis matrices with very large entries, although
the original matrix entries κ(xi, yj) may only have modest magnitudes. Examples of such
terms are factorials and powers. The artificially large terms may lead to stability issues in the
relevant matrix operations, as pointed out in [15]. They can cause a loss of accuracy (due
to the magnification of numerical errors) or even overflow. Note that these stability risks
can arise even if κ(x, y) is non-oscillatory as considered here. This happens especially when
the data points are not nicely distributed, like in the case in [26], where accuracy is crucial
when dealing with data points that are clustered eigenvalues. Thus, it is important to study the
relevant numerical stability. A heuristic strategy to improve the stability is briefly mentioned
in [15], but it lacks a rigorous justification or a guarantee of performance. Note that, despite
the stability risks, the FMM has worked well for many different problems, likely due to the
use of certain basis or translation operators that have some structure or sparsity.

Here, for the FMM based on Taylor expansions, our first objective is to provide a stabi-
lization strategy by analytically obtaining low-rank basis matrices and translation matrices
that satisfy some stability requirements. More specifically, we design a scaling strategy where
some appropriate scaling factors are chosen to modify the individual terms in the Taylor ex-
pansions. Then, for well-separated subsets x1,x2 ⊂ s, the block (κ(xi, yj)))xi∈x1,yj∈x2

can
be approximated by a low-rank form Û B̂V̂ T , where the entries of Û and V̂ have magnitudes
bounded by 1, and, moreover, the entries of B̂ have magnitudes bounded by a small multiple
of |κ(x, y)| evaluated at appropriate centers of x1 and x2. See Theorem 2.5 for details. The
low-rank approximations in the FMM also involve the key concept of a translation matrix. We
give one specific form of the translation matrix and further show that, after scaling with our
scaling factors, the entries of the translation matrix also have entrywise magnitudes bounded
by 1. See Theorem 2.7. Based on these bounds, the stability of matrix operations with the
resulting structured forms can be naturally shown. We illustrate a basic idea of the backward
stability analysis in Theorem 2.9.

Our second objective is to extend the stabilization to another structured matrix form
so as to bridge the gap between the FMM and stable direct factorizations. We use the
one-dimensional (1D) case as an example to provide an intuitive way to express the FMM
matrix in an explicit form based on the stabilization strategies. Then the 1D FMM matrix
is converted into a hierarchical semiseparable (HSS) form [4, 5, 36] that is frequently used
to design structured direct solvers. The 1D case is very useful for computations of PDE
solutions, Toeplitz solutions, polynomial computations, and eigenvalue solutions. See, e.g.,
[4, 6, 11, 23, 24, 29, 31]. The original FMM [14] explains the method in terms of potential
evaluations. Here, we illustrate a stable matrix version that can be conveniently understood
based on appropriate basis matrices called contributions, organized at different hierarchical
levels by a nested basis relation. This matrix form is convenient for non-experts to grasp the
FMM. An FMM matrix Â ≈ A is given in terms of a sequence of smaller matrices (which we
call FMM generators), such as Û , B̂, V̂ as above and some translation matrices. Â enables fast
matrix-vector multiplications, but the stable factorization has been unknown. By converting Â
into an HSS form, we can take advantage of many fast and stable HSS algorithms, especially
the so-called HSS ULV factorization [5] with proven nice backward stability [32, 33]. The
FMM to HSS conversion is done analytically and avoids explicit algebraic compression like
expensive truncated SVDs or randomized sampling used in [21, 22, 28, 36, 37]. The resulting
HSS form is represented by a sequence of so-called HSS generators and can be factorized
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in O(n) complexity. All the FMM and HSS generators satisfy some norm bounds (see
Corollary 3.4) that can be used to show the stability of the FMM and HSS algorithms. The
techniques can also be generalized to the 2D case.

Overall, this work provides useful stability safeguards for matrix operations using FMM
matrices. We show how and why the stabilization works and point out some essential ideas
for the relevant backward stability analysis. We further give an example to illustrate an
intuitive matrix version of the stable FMM. An analytical construction of HSS matrices
from FMM matrices is also given so as to facilitate stable direct ULV factorizations. Our
stabilization strategies are derived in terms of 2D point sets. We would like to emphasize
that the stabilization strategies and the stability studies are not restricted to 2D cases and are
also applicable to higher dimensions. Also, the use of the 1D example to illustrate the FMM
matrix form is merely for convenience. The stabilization can also be applied to several kernel
functions with related Taylor series expansions.

The structure of the paper is as follows. Section 2 is devoted to the ideas of stabilizing the
FMM via stable analytical low-rank approximations and translation operations. In Section 3,
the ideas are then used for the construction of the FMM matrix, which is further converted
into an HSS matrix. Some discussions and extensive numerical tests are given in Section 4 to
illustrate the stability and accuracy.

2. Stabilization of the FMM: stable low-rank approximation and translation oper-
ation. In this section, we show how to obtain low-rank kernel matrix approximations that are
suitable for stable operations. We further provide a stable translation relation to derive nested
basis matrices. The techniques give essential components for stabilizing the FMM.

2.1. Kernel expansions and low-rank kernel matrix approximations. Suppose a ker-
nel function κ(x, y) has a degenerate approximation of the following form for some points
x, y:

(2.1) κ(x, y) ≈
r−1∑
k=0

k∑
l=0

αk,lφl(x)ψk−l(y).

We suppose that the points are taken from 2D point sets, and they are treated as complex
numbers. This assumption can be modified to accommodate higher dimensions. It is well-
known that, if r is small compared to the numbers of x, y points, (2.1) yields a low-rank
approximation of the kernel matrix (defined by the evaluation of κ(x, y) at those x, y points).
Here for simplicity, we mainly illustrate our techniques in terms of the following kernel:

(2.2) κ(x, y) =
1

x− y
, x 6= y.

Note that the use of this kernel is only for convenience since the ideas can be immediately
extended to several other kernels with similar degenerate approximations (see Section 2.4
below). For such kernels, Taylor expansions can be used to obtain (2.1).

We provide some details of the expansion following a strategy in [30] so as to facilitate
our later derivations. For a set of points x ⊂ C, a point z ∈ C is said to be a center for x with
a corresponding radius if |x − z| ≤ δ for any x ∈ x. Such a definition for z and δ is used
in [30] and some other FMM work. It is clear that z and δ may not be unique. In case a unique
z and δ is required, we may use a disk enclosing the points with the smallest radius. Since
the uniqueness is not a concern here, we simply follow the tradition in [30]. The following
definition from [30] is a generalization of the classical definition of well-separated sets.
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DEFINITION 2.1 ([30]). Suppose x1 and x2 are two sets of points in C respectively
corresponding to centers z1 ∈ C and z2 ∈ C and radii δ1 > 0 and δ2 > 0. x1 and x2 are said
to be (well) separated (with separation ratio τ ) if the following admissibility condition holds:

(2.3) δ1 + δ2 ≤ τ |z1 − z2|, τ ∈ (0, 1).

For two well-separated sets x1,x2 ⊂ s as in Definition 2.1 with s in (1.1), the condi-
tion (2.3) implies that, for any x ∈ x1 and y ∈ x2,

(2.4)
∣∣∣∣ (x− z1)− (y − z2)

z2 − z1

∣∣∣∣ ≤ δ1 + δ2
|z2 − z1|

≤ τ.

Applying a Taylor expansion leads to

κ(x, y) =− 1

(z2 − z1)[1− (x−z1)−(y−z2)
z2−z1 ]

=− 1

z2 − z1

r−1∑
k=0

[
(x− z1)− (y − z2)

z2 − z1

]k
+ εr

=−
r−1∑
k=0

k!

(z2 − z1)k+1

k∑
j=0

(−1)k−j
(x− z1)

j

j!

(y − z2)
k−j

(k − j)!
+ εr

=

r−1∑
k=0

αk

k∑
j=0

(−1)k−jfj(x− z1)fk−j(y − z2) + εr,

(2.5)

where

(2.6) fj(x) =
xj

j!
, αk = − k!

(z2 − z1)k+1
, |εr| ≤

τ r

|z2 − z1|(1− τ)
.

Note that, by (2.4),

|κ(x, y)| ≥ 1

|(x− z1)− (y − z2)|+ |z1 − z2|

≥ 1

τ |z1 − z2|+ |z1 − z2|
=

1

1 + τ
|κ(z1, z2)|.

(2.7)

Hence, the truncation error εr can be estimated by

|εr| ≤
τ r

1− τ
|κ(z1, z2)| ≤ τ r 1 + τ

1− τ
|κ(x, y)|,

which indicates that the relative error of approximation in (2.5) is bounded by τ r
1 + τ

1− τ
. This

is consistent with a conclusion in [30].
According to (2.5) and (2.6), we can then write

(2.8) κ(x, y) = uT B̄v + εr,
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where

u =
[
f0(x− z1) f1(x− z1) · · · fr−1(x− z1)

]T
,

v =
[
f0(y − z2) f1(y − z2) · · · fr−1(y − z2)

]T
,

B̄ =


α0 α1 · · · αr−1

α1
... ...

...
...

αr−1 0

diag
(
(−1)0, (−1)1, . . . , (−1)r−1

)
.(2.9)

Here, diag(. . . ) is used to represent a diagonal matrix (or a block diagonal matrix later).
Then, we consider the low-rank approximation of the discretized matrix defined by the

evaluation of κ(x, y) on x1,x2:

(2.10) K = (κ(xi, xj))xi∈x1,xj∈x2
,

which has the (i, j)th entry κ(xi, yj). K is of size m × p with m = |x1|, p = |x2|, and is
sometimes referred to as the interaction (matrix) between x1 and x2. Based on (2.8), K has a
low-rank approximation

(2.11) K = Ū B̄V̄ T +K � E ≈ Ū B̄V̄ T ,

where � denotes the entrywise (Hadamard) product and

Ū = (fj−1(xi − z1))m×r , V̄ = (fj−1(yi − z2))p×r ,(2.12)

|Eij | ≤ τ r
1 + τ

1− τ
.(2.13)

Here, the notation (Aij)m×n means an m × n matrix having the (i, j)th entry Aij . We see
that Ū and V̄ are fully determined by the sets x1 and x2, respectively. The matrix B̄ is an
r × r matrix that depends only on z2 − z1.

2.2. The stable low-rank approximation with scaling factors and an analysis of en-
trywise magnitudes. According to (2.9) and (2.12), the matrices Ū , B̄, V̄ in the low-rank
approximation (2.11) may have large entrywise magnitudes. This is because of the powers
and factorials in (2.6). As mentioned in the introduction, directly using the forms of Ū , B̄, V̄
may cause stability issues in the low-rank approximation (2.11) and later operations. The
stability issue gets more severe when r or the size of K increases. To ensure numerical stabil-
ity, we introduce a scaling strategy so as to bound the entries of the factors in the low-rank
approximation. We further rigorously justify the effectiveness of the scaling.

One set of scaling parameters is used for each set of points xi ⊂ s for s in (1.1). Suppose
that xi has the center zi and radius δi. (Here, we use subscripts in bold fonts to denote indices
of point sets.) For a set xi, define the scaling factors

(2.14) ηi,j =

1, j = 0,(
j
e (2πr)

1
2r

1
δi

)j
, j = 1, 2, . . . , r − 1.

We would like to point out that we first proposed these scaling factors ηi,j in our earlier
preprint [3]. Later, the paper [2] briefly mentioned ηi,j by citing [3]. Such a form is motivated
by Stirling’s formula:

lim
r→∞

r!√
2πr (r/e)

r = 1, or r! ∼
√

2πr
(r
e

)r
for large r.
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We use ηi,j to modify the approximation of K in (2.10) with two separated sets x1 and x2.
For x ∈ x1 and y ∈ x2, the expansion in (2.5) can be rewritten as
(2.15)

κ(x, y) =

r−1∑
k=0

αk

k∑
j=0

(−1)k−j(η1,j)
−1(η2,k−j)

−1(η1,jfj(x−z1)
)(
η2,k−jfk−j(y−z2)

)
+εr.

Compared with (2.11), the approximation of K now becomes

(2.16) K = Û B̂V̂ T +K � E ≈ Û B̂V̂ T ,

where

Û = (η1,j−1fj(xi − z1))m×r ≡ ŪS1,

V̂ = (η2,j−1fj(yi − z2))p×r ≡ V̄ S2,

B̂ = S−11 B̄S−12 ,

(2.17)

and, for i = 1, 2,

(2.18) Si = diag (ηi,0, ηi,1, . . . , ηi,r−1) .

REMARK 2.2. Here, Û is a basis matrix that only depends on x1. In fact, if K is replaced
by the interaction between x1 and any other separated set, Û remains the same. Thus, Û can be
viewed as the contribution of x1 (to the FMM). V̂ can be viewed similarly. An intuitive way of
understanding the matrix form of the FMM is to treat the basis matrices as such contributions
to the FMM.

To investigate how the new approximation (2.16) enhances the stability, we give bounds
for the entries of the matrices Û , V̂ , B̂. The following lemmas will be used.

LEMMA 2.3. For any integer r > 0 and any number τ ∈ (0, 45 ),

(2.19) gj ≡
1

j!

(
j

e
(2πr)

1
2r

)j
≤ 1, hj ≡

τ j

gj
< 3τ, j = 1, 2, . . . , r.

Proof. Let s = 1
e (2πr)

1
2r . Then 1

e < s < 1 and gj = jj

j! s
j . Since

gj+1

gj
= s

(
1 +

1

j

)j
,

as j increases, gj either increases monotonically, decreases monotonically, or first decreases
and then increases, depending on r. Thus,

gj ≤ max{g1, gr} = max

{
s,

(r/e)r
√

2πr

r!

}
≤ 1.

To show the second inequality in (2.19), notice that for any j > 1,

hj+1

hj
= τ

gj
gj+1

= τs−1
(

1 +
1

j

)−j
<

4

5
e

(
1 +

1

j

)−j
< 1.

Then for j > 1, hj decreases as j increases. Thus,

max
j=1,...,r

hj ≤ max{h1, h2} = max

{
eτ(2πr)−

1
2r ,

1

2
(eτ)2(2πr)−

1
r

}
< 3τ.
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LEMMA 2.4. Let k be any positive integer and τ > 0. Then

(2.20) max
t∈(0,τ)

tj(τ − t)k−j = τk
(
j

k

)j (
k − j
k

)k−j
, j = 1, 2, . . . , k − 1.

Proof. Let ϕ(t) = tj(τ − t)k−j , t ∈ (0, τ). Since

d

dt
(logϕ(t)) =

j

t
− k − j
τ − t

,

we can see that logϕ(t) has only one critical point t0 = jτ/k in (0, τ) for j < k. It can be

verified that ϕ(t0) is the maximum in (0, τ). Since ϕ(t0) = τk
(
j
k

)j (k−j
k

)k−j
, we get (2.20).

Based on the lemmas, we can estimate the magnitudes of the entries of the matrices
Û , V̂ , B̂ in (2.17).

THEOREM 2.5. Let K be given by (2.10), and let x1 and x2 be two separated sets
with separation ratio τ ∈ (0, 45 ) and with centers z1 and z2, respectively. Then for the
approximation in (2.16)–(2.17), the (i, j)th entries of the matrices Û , V̂ , B̂ satisfy

|Ûij | ≤ 1, |V̂ij | ≤ 1, |B̂ij | ≤ max{1, 3τ}|κ(z1, z2)|.

Proof. According to (2.17), Ûij = η1,j−1fj−1(xi− z1), where η1,j−1 is defined in (2.14).
Clearly, |Ûij | = 1, for j = 1. For j = 2, . . . , r,

|Ûij | = |η1,j−1fj−1(xi − z1)| =
(
j − 1

e
(2πr)

1
2r

1

δ1

)j−1 |xi − z1|j−1
(j − 1)!

(2.21)

=
1

(j − 1)!

(
j − 1

e
(2πr)

1
2r

)j−1( |xi − z1|
δ1

)j−1
= gj−1 ·

(
|xi − z1|

δ1

)j−1
,

where gj−1 is defined following (2.19). By Lemma 2.3, gj−1 ≤ 1. This together with
|xi − z1| ≤ δ1 leads to |Ûij | ≤ 1. Similarly, |V̂ij | ≤ 1. We then estimate |B̂ij |. According
to (2.9) and (2.17),

|B̂ij | = |αk|η−11,i−1η
−1
2,j−1, i+ j ≤ r + 1,

where k = i + j − 2 and αk is given in (2.6). For k = 0 or i = j = 1, we simply have
|B̂11| = 1

|z1−z2| . For k ≥ 1, we look at different cases for i, j. For i = 1 and j > 1, we have
η1,i−1 = 1 and

|B̂1j | = |αkη−12,j−1| =
(j − 1)!

|z2 − z1|j

(
(j − 1)

e
(2πr)

1
2r

1

δ2

)−j+1

=
1

|z1 − z2|
(j − 1)!

(
(j − 1)

e
(2πr)

1
2r

)−j+1(
δ2

|z1 − z2|

)j−1
=

1

|z1 − z2|
1

gj−1

(
δ2

|z1 − z2|

)j−1
.
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According to (2.3),

(2.22)
δ2

|z1 − z2|
≤ τδ2
δ1 + δ2

.

Then

|B̂1j | ≤
1

|z1 − z2|
τ j−1

gj−1

(
δ2

δ1 + δ2

)j−1
≤ 3τ

|z1 − z2|
= 3τ |κ(z1, z2)|,

where Lemma 2.3 is used. For j = 1, the derivation is similar to the case when i = 1. For
i, j > 1, we have 2 < k < r and

|B̂ij | = |αkη−11,i−1η
−1
2,j−1|

=
k!

|z1 − z2|k+1

(
i− 1

e
(2πr)

1
2r

1

δ1

)−i+1(
j − 1

e
(2πr)

1
2r

1

δ2

)−j+1

=
1

|z1 − z2|
k!

(
1

e
(2πr)

1
2r

)−k
(i− 1)−i+1(j − 1)−j+1

×
(

δ1
|z1 − z2|

)i−1(
δ2

|z1 − z2|

)j−1
=

1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1

(
δ1

|z1 − z2|

)i−1(
δ2

|z1 − z2|

)j−1
≤ 1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1

(
τδ1

δ1 + δ2

)i−1(
τδ2

δ1 + δ2

)j−1
,

where
δ1

|z1 − z2|
≤ τδ1
δ1 + δ2

and (2.22) are used. By setting t =
τδ1

δ1 + δ2
< τ in Lemma 2.4,

we further get

|B̂ij | ≤
1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1τk

(
i− 1

k

)i−1(
j − 1

k

)j−1
=

1

|z1 − z2|
τk

gk
≤ 3τ

|z1 − z2|
= 3τ |κ(z1, z2)|,

where Lemma 2.3 is used. This completes the proof.
Hence, the entries of the basis matrices Û and V̂ in (2.17) have magnitudes bounded

by 1. B̂ is just a small matrix of size r × r and its entries have magnitudes bounded by a
small multiple of |κ(z1, z2)| which depends on the two centers only. These bounds ensure the
stability of matrix operations with the low-rank approximation Û B̂V̂ T . See Section 2.5 later.

REMARK 2.6. It is clear that our scaling strategy can control the entrywise magnitudes
of not only Û , V̂ , but also B̂. This is a significant advantage over simple methods such as
a straightforward scaling/normalization of the columns of Ū , V̄ . The latter can make the
entries of the resulting B̂ matrix poorly scaled or even cause numerical overflow. Even if the
simple scaling factors from the latter strategy can be represented as separate diagonal matrices,
forming these scaling factors and the entries of B̄ in a separate manner can pose numerical
issues (since they may still be very large for some cases). The entries of B̄ may still be much
larger than the original entries in K and thus not be well controlled. With our strategy, the
entrywise magnitudes of B̂ are under control, and we can integrate our scaling factors into the
computation of the entries of B̂ if needed.
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2.3. A stable translation relation and an analysis of entrywise magnitudes. A key
idea for the FMM to reach linear complexity is to exploit a translation relation between the
so-called local expansions associated with one point set and its subsets [14]. This is essentially
using nested basis matrices in the off-diagonal approximations. Here, we give an explicit
matrix relation that ensures stable operations. To facilitate later discussions, we assume that a
set xi ⊂ s has center zi and radius δi, as mentioned at the beginning of Section 2.2 and that a
subset xc ⊂ xi has center zc and radius δc.

As mentioned in Remark 2.2, we can regard a basis matrix Ûi as the contribution of xi

and a basis matrix Ûc as the contribution of xc. In the FMM, the translation relation is used to
connect Ûc to the contribution of xc to Ûi. Specifically, the translation relation in our context
can be derived for fj in (2.6) as follows:

fj(x− zi) =
(x− zi)j

j!
=

((x− zc) + (zc − zi))j

j!
(2.23)

=

j∑
i=0

(x− zc)
i

i!

(zc − zi)j−i

(j − i)!
=

j∑
l=0

(
ηc,ifi(x− zc)

)(
η−1c,i fj−i(zc − zi)

)
,

where we have included the scaling factor ηc,i for stability purposes. Therefore, a row in Ûi

can be written as [
ηi,0f0(x− zi) · · · ηi,r−1fr−1(x− zi)

]
(2.24)

=
[
ηc,0f0(x− zc) · · · ηc,r−1fr−1(x− zc)

]
Tc,i,

where
[
ηc,0f0(x− zc) · · · ηc,r−1fr−1(x− zc)

]
is a row of Ûc and Tc,i is the translation

matrix

(2.25) Tc,i = S−1c

f0(zc − zi) · · · fr−1(zc − zi)
. . .

...
f0(zc − zi)

Si,

with Si in (2.18) and Sc defined in the same way. With the translation matrix Tc,i, the
contribution of x to Ûc is related to the contribution of x to Ûi as in (2.24).

We then study the entrywise magnitudes of Tc,i. To accommodate the general situation
that xc may be any subset of xi resulting from the partitioning of xi, we suppose that

(2.26) δi − δc ≥ |zc − zi|,

so that the disk defined by |x − zc| ≤ δc (that encloses xc) is fully located inside the disk
|x− zi| ≤ δi (that encloses xi).

THEOREM 2.7. Suppose that (2.26) holds. Then the (i, j)th entry (Tc,i)i,j of Tc,i defined
in (2.25) satisfies |(Tc,i)i,j | ≤ 1.

Proof. Tc,i is an upper triangular matrix, and the (i, j)th entry for 1 ≤ i ≤ j ≤ r is

(Tc,i)i,j = ηi,j−1η
−1
c,i−1fj−i(zc − zi).

If j = 1, then (Tc,i)i,j = 1. Now suppose that j > 1. We look at different cases of i.
1. When i = 1, just like in the derivation in (2.21), we have

|(Tc,i)i,j | = |ηi,j−1fj−1(zc − zi)| =
(
j − 1

e
(2πr)

1
2r

1

δi

)j−1 |zc − zi|j−1
(j − 1)!

= gj−1 ·
(
|zc − zi|

δi

)j−1
≤ 1,

where Lemma 2.3 and (2.26) are used.
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2. When 1 < i < j,

|(Tc,i)i,j | = (j − 1)j−1(i− 1)−i+1

(
1

e
(2πr)

1
2r

)j−i
δi−1c

δj−1i

|zc − zi|j−i

(j − i)!

≤ (j − 1)j−1(i− 1)−i+1 1

(j − i)!

(
1

e
(2πr)

1
2r

)j−i(
δc
δi

)i−1(
1− δc

δi

)j−i
(by (2.26))

≤ (j − 1)j−1(i− 1)−i+1 1

(j − i)!

(
1

e
(2πr)

1
2r

)j−i(
i− 1

j − 1

)i−1(
j − i
j − 1

)j−i
(by Lemma 2.4)

=
1

(j − i)!

(
j − i
e

(2πr)
1
2r

)j−i
= gj−i ≤ 1,

where the last inequality is due to Lemma 2.3.
3. When i = j,

|(Tc,i)i,j | = |ηi,i−1η−1c,i−1| =
(
δc
δi

)i−1
≤ 1.

In Section 3.1, we show how the translation matrix Tc,i is used to build a nested basis
form for Ûi.

REMARK 2.8. It is worth pointing out that there are also other analytical methods that can
produce translation matrices that satisfy similar entrywise bounds. For example, the method
in [13] uses an integral form and quadrature approximation to obtain translation operators in
diagonal forms with entrywise magnitudes bounded by 1. On the other hand, the resulting
basis matrices depend on the quadrature weights, and the bounds for their entries are not
studied in [13]. Here, our idea is to integrate the scaling into a simple Taylor expansions so as
to control the entrywise magnitudes of all the relevant matrices.

2.4. Generalizations. It can be shown that our results can be generalized to various
relevant kernels like 1/(x − y)k with an integer k > 0, log(x − y) , log |x − y|, and other
kernels with expansions similar to (2.5). In fact, by using the same set of scaling factors as in
Section 2.2, we can get bounds similar to those in Theorem 2.5. That is, the entrywise bound
for the Û , V̂ basis matrices remain to be 1. The relative entrywise bound for the B̂ generators
only changes slightly. In our numerical tests in Section 4, tests for different kernels will be
given. For some kernels that do not have similar Taylor expansions, the stabilization is beyond
the scope of this work.

2.5. Stability. Our stabilization strategies ensure the stability of operations involving
the resulting structured forms in the FMM. For example, the stability of applying Û B̂V̂ T to
vectors can be shown as follows.

THEOREM 2.9. For the m × p interaction matrix K in (2.10), suppose that the same
conditions as in Theorem 2.5 hold, and let K̂ = Û B̂V̂ T be the approximation of K as
in (2.16)–(2.17). Then the matrix-vector multiplication b̂ = Û B̂V̂ Tw ≈ Kw for a vector w
satisfies

fl(b̂) = (Û B̂V̂ T + ∆K̂)w, with

‖∆K̂‖F ≤ max{1, 3τ}(1 + τ)r2
√
mpγp+2r‖K‖F +O(ε2mach),
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where fl(·) denotes the numerical result in floating point arithmetic, εmach denotes the machine

epsilon, and γk =
kεmach

1− kεmach
.

Proof. It is commonly known that (see, e.g., [20]) for a matrix C with column size p, the
matrix-vector multiplication Cw satisfies the following backward error bound:

fl(Cw) = (C + ∆C)w, |∆C| ≤ γp|C|.

Thus, when the matrix-vector multiplication K̂w = Û B̂V̂ Tw is considered, we have

b1 = fl(V̂ Tw) = (V̂ T + ∆V̂ T )w, |∆V̂ T | ≤ γp|V̂ T |,
b2 = fl(B̂b1) = (B̂ + ∆B̂)b1, |∆B̂| ≤ γr|B̂|,

b̂ = fl(Ûb2) = (Û + ∆Û)b2, |∆Û | ≤ γr|Û |.

Note that K̂ is of size m× p and B̂ of size r × r. Combining these results, we get

fl(Û B̂V̂ Tw) = (Û + ∆Û)(B̂ + ∆B̂)(V̂ T + ∆V̂ T )w ≡ (Û B̂V̂ T + ∆K̂)w,

where

‖∆K̂‖F ≤ ‖Û B̂(∆V̂ T )‖F + ‖Û(∆B̂)V̂ T ‖F + ‖(∆Û)B̂V̂ T ‖F +O(ε2mach)

≤ (γp + 2γr)‖Û‖F ‖B̂‖F ‖V̂ ‖F +O(ε2mach).

Here, we use the Frobenius norm in the backward error instead of the max-norm since the
former is sub-multiplicative but the latter is not. According to Theorem 2.5, we have

‖Û‖F ≤
√
mr‖Û‖max ≤

√
mr, ‖V̂ ‖F ≤

√
rq‖V̂ ‖max ≤

√
rq,

‖B̂‖F ≤ r‖B̂‖max ≤ rmax{1, 3τ}|κ(z1, z2)|,

where z1 and z2 are the centers of x1 and x2 in (2.10), respectively. Due to the separation
condition in Definition 2.1, we have (2.7) for any x ∈ x1 and y ∈ x2. Thus,

‖B̂‖F ≤ rmax{1, 3τ}(1 + τ)|κ(x, y)| ≤ rmax{1, 3τ}(1 + τ)‖K‖F .

Accordingly,

‖∆K̂‖F ≤ (γp + 2γr)
√
mr
√
rp(rmax{1, 3τ}(1 + τ)‖K‖F ) +O(ε2mach)

= max{1, 3τ}(1 + τ)r2
√
mp

(p+ 2r)εmach − 3rpε2mach

1− (p+ r)εmach + rpε2mach

‖K‖F +O(ε2mach)

≤ max{1, 3τ}(1 + τ)r2
√
mpγp+2r‖K‖F +O(ε2mach).

This theorem shows the backward stability of using the low-rank approximation K̂ to
compute the matrix-vector product K̂w that approximates Kw. For this reason, it makes
somewhat more sense to use K in the backward error bound.

Note that if no scaling is used like in the usual FMM, then ‖Û‖max, ‖V̂ ‖max, and/or
‖B̂‖max may potentially get very large, leading to significantly larger backward error bounds.
The impact can be observed in the numerical results later.

3. Extension of the stabilization result from FMM to HSS matrices. We now provide
an example of an intuitive analytical construction of an FMM matrix satisfying some stability
requirements and, moreover, extend the stabilization result from the FMM matrix to an HSS
form. This further connects the FMM with stable and fast ULV-factorizations for HSS matrices.
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3.1. An example of an FMM matrix representation. We first integrate the stabilization
strategy in the previous section into the FMM framework for constructing an FMM matrix
example. For convenience, we consider the 1D case and suppose that the set of points
s in (1.1) is located in an interval I ⊂ R. Note that 1D cases are very useful in many
different situations [4, 6, 11, 23, 24, 29, 31]. The 1D point set is also just used to simplify
the presentation. The strategy below can be easily adapted to more general 1D curves. The
essential ideas can also be extended to 2D sets. We consider A in (1.2) being the discretization
of κ in (2.2) on s. Given an accuracy ε, we follow the general framework in [30] and use the
1D FMM scheme to produce an FMM matrix Â such that

(3.1) A = Â+A� E, with |Eij | ≤ ε.

According to (2.13), r can be chosen to make τ r
1 + τ

1− τ
≤ ε.

3.1.1. Set partitioning and far-field interaction. To conveniently organize the FMM
matrix representation, we use a postordered binary tree T with nodes i = 1, 2, . . . , root(T ),
where root(T ) denotes the root node. See Figure 3.1. Suppose that T has L levels such that
n/2L−1 = O(r) and root(T ) is at level 0. Partition the set s hierarchically following T .
That is, suppose that each node i is associated with a subset xi ⊂ s so that xroot(T ) = s and
xi = xc1

∪ xc2
, xc1

∩ xc2
= ∅ for any nonleaf node i with children c1 and c2. Based on the

subinterval where xi is located, we can conveniently determine a center zi and a radius δi of
xi. For each leaf i, the cardinality of xi satisfies mi ≡ |xi| = O(r).

1 2 4 5

3 6

7 14 22 29

l = 1

l = L

...

l = 0

...

FIG. 3.1. Example of a postordered tree T used for the FMM.

Later for convenience, when xi is used, we may simply refer to the node i of T . For
example, given two nodes i and j of T corresponding to two separated sets xi and xj (as
defined in Definition 2.1), respectively, we just say i and j are separated.

Suppose that xi corresponds to the index set Ii so that the submatrix of A corresponding
to the row index set Ii and column index set Ij is A|Ii×Ij ≡ (κ(xi, xj))xi∈xi,xj∈xj

, which is
the interaction between i and j. When i and j are separated, A|Ii×Ij can be approximated by a
low-rank form like in (2.16) and is said to be a far-field interaction. For notational convenience,
we rewrite (2.16) as

(3.2) A|Ii×Ij = ÛiB̂i,jV̂
T
j +A|Ii×Ij � Ei,j ≈ ÛiB̂i,jV̂

T
j ,

where appropriate sets used for the definition of the matrices in (2.17) are replaced by xi

and xj. Correspondingly, the centers zi, zj, the radii δi, δj, and the scaling factors ηi,j , ηj,j as
in (2.14) are used for the definition of Ûi, B̂i,j, V̂

T
j in (3.2).

As mentioned in Remark 2.2, we call Ûi the contribution (matrix) from node i. Clearly,
Ûi = V̂i. However, to accommodate more general matrix forms, we still use V̂ Ti for the row
basis matrix in (3.2).
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When i and j are not separated, they are said to be near neighbors, and A|Ii×Ij is a
near-field interaction. Near-field interactions may be further partitioned so as to generate
far-field interactions at finer levels.

3.1.2. The levelwise low-rank approximation. In the FMM, far-field interactions are
organized with the aid of interaction lists [14], which encode the interactions to consider at
each level of partition. Specifically for our case, the interaction list Li for node i of T is
the set of nodes j at the same level as i but well-separated from i, and with its parent a near
neighbor of i.

Corresponding to level l of T , let A(l) be the submatrix extracted from A by retaining
only the blocks A|Ii×Ij for all nodes i at level l and j ∈ Li and zeroing out other blocks in
A. For example, for l = 2, the four nodes in Figure 3.1 have interaction lists L7 = {22, 29},
L14 = {29}, L22 = {7}, L29 = {7, 14}. The corresponding far-field interactions are
displayed in Figure 3.2(a). Similarly, the far-field interactions for l = 3, 4 are displayed
in Figure 3.2(b–c). Correspondingly, the matrix A can be decomposed levelwise into the
following sum of matrices corresponding to far-field interactions and near-field interactions:

(3.3) A = A(2) + · · ·+A(L) +A(N),

where A(N) denotes all the near-field interactions at the leaf level L of the partition. A(N) is a
block-banded matrix.

(a) A(2) (b) A(3) (c) A(4) (d) A

FIG. 3.2. The nonzero patterns of A(l) and how A(l) appears in A, where the grey band in (d) corresponds to
A(N).

For l ≥ 2, the nonzero block A|Ii×Ij for each node i at level l and j ∈ Li has a low-rank
approximation as in (3.2). For convenience, let i1, . . . , iβ be the nodes at level l of T , ordered
from left to right. Then, we can write

A(l) = Û (l)B̂(l)(V̂ (l))T +A(l) � E(l) ≈ Û (l)B̂(l)(V̂ (l))T , with(3.4)

Û (l) = diag(Ûi1 , . . . , Ûiβ ), V̂ (l) = diag(V̂i1 , . . . , V̂iβ ),(3.5)

and B̂(l) and E(l) have the same block nonzero patterns as A(l) with the nonzero blocks
A|Ii×Ij of A(l) replaced by B̂i,j and Ei,j, respectively. See Figure 3.3.

From (3.3) and (3.4), we have the following approximation of A:

(3.6) A =

L∑
l=2

Û (l)B̂(l)(V̂ (l))T +A(N) +A� E ≈
L∑
l=2

Û (l)B̂(l)(V̂ (l))T +A(N) ≡ Â,

where E = E(2) + · · ·+E(L). Since the nonzero blocks of E(l) for different l do not overlap,
E satisfies the bound in (3.1).
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A
(l) ~~ =

FIG. 3.3. The nonzero patterns of Û(l), B̂(l), and V̂ (l) in (3.4) for A(l) with l = 2 in Figure 3.2(a).

Thus, Â is an approximation of A with entrywise relative accuracy ε as in (3.1). It can be
easily seen that Â can be used to compute matrix-vector products in O(rnL) = O(rn log n)
flops with r = O(| log ε|). Assuming ε fixed, then this cost becomes O(n log n).

3.1.3. Nested basis matrices and the FMM matrix in a telescoping expansion form.
The essential strategy to reduce the matrix-vector multiplication cost from O(n log n) to O(n)
in the FMM is to use nested basis matrices in the off-diagonal approximations. This utilizes
the translation relation in Section 2.3. According to the relation in (2.24), the basis matrices or
contributions from a parent node i of T and its children c1 and c2 are related by

Ûi =

[
Ûc1

Ûc2

] [
R̂c1

R̂c2

]
, V̂i =

[
V̂c1

V̂c2

] [
Ŵc1

Ŵc2

]
, with(3.7)

R̂c1
= Ŵc1

= Tc1,i, R̂c2
= Ŵc2

= Tc2,i.(3.8)

Equation (3.7) shows how the nested basis matrices are obtained.
REMARK 3.1. Note that the translation relation (2.23) is a result of the binomial expansion.

Although here c1 and c2 are children of i, the translation relation in Section 2.3 is not restricted
to the case that c is a child of i. That is, Tc,i in (2.25) can be used for any descendant c of i.

The approximation in (3.6) can then be converted into a nested form. That is, let

Û (l) = Û (l+1)R̂(l+1), V̂ (l) = V̂ (l+1)Ŵ (l+1), l = 1, 2, . . . , L− 1, with

R̂(l+1) = diag

([
R̂c1

R̂c2

]
, c1, c2: children of each node i at level l

)
,

Ŵ (l+1) = diag

([
Ŵc1

Ŵc2

]
, c1, c2: children of each node i at level l

)
.

We can rewrite the approximation in (3.4) as a recursive relation

(3.9) Û (l)B̂(l)(V̂ (l))T = Û (L)R̂(L−1) · · · R̂(l)B̂(l)(Ŵ (l))T · · · (Ŵ (L−1))T (V̂ (L))T ,

where Û (L) and V̂ (L) are defined for the leaf level L as in (3.5).
Inserting (3.9) into (3.6), we obtain the following telescoping expansion of Â:

Â = Û (L)

(
R̂(L−1)

(
· · · (R̂(2)B̂(2)(Ŵ (2))T + B̂(3))(3.10)

· · ·
)

(Ŵ (L−1))T + B̂(L)

)
(V̂ (L))T +A(N),

which is the hierarchical matrix form produced by the FMM or the FMM matrix. For conve-
nience, we call the matrices Ûi, V̂i, R̂i, Ŵi, B̂i FMM generators. We also suppose that each
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node i of the FMM tree T is associated with FMM generators Ûi, V̂i, R̂i, Ŵi, B̂i. Due to the
nested bases, the Ûi, V̂i generators associated with a nonleaf node i are not explicitly stored.
The total storage for the FMM matrix Â is then just O(rn). The cost for multiply the FMM
matrix and a vector now becomes O(rn).

3.2. The general idea of transforming FMM into HSS matrices. We now consider
the conversion of the FMM matrix Â in (3.10) into an HSS form. Note that in [2, 36, 37],
the construction of HSS matrices is based on algebraic strategies. It is also possible to use
analytical compression as done in [23, 39, 40, 41] for HSS constructions, but it is unclear
whether the resulting HSS forms satisfy the stability requirements or not. Here, we use an
analytical way to convert the FMM matrix into an HSS form. The resulting HSS form has a
generator representation with the generators satisfying proper norm bounds.

An HSS matrix can be organized with the aid of a binary tree called HSS tree [36]. Here,
we can use the same binary tree T as in Figure 3.1. An HSS form for Â can be defined with
the aid of a set of HSS generators Di, Ui, Vi, Ri,Wi, Bi:

Â = Droot(T ), Di =

[
Dc1 Uc1Bc1V

T
c2

Uc2
Bc2

V Tc1
Dc2

]
,(3.11)

Ui =

[
Uc1

Uc2

] [
Rc1

Rc2

]
, Vi =

[
Vc1

Vc2

] [
Wc1

Wc2

]
,(3.12)

where c1, c2 are the left and right children of a nonleaf node i, respectively.
We use {1 : n} to denote the set {1, 2, . . . , n}. Also, let Ii be the index set associated

with Di such that Di = Â|Ii×Ii . Then we see from (3.11)–(3.12) that the columns of Ui span
the column space of the block A|Ii×({1:n}\Ii). Similarly, the columns of Vi span the column
space of the block (A|({1:n}\Ii)×Ii)T . Equation (3.12) indicates that the Ui, Vi basis matrices
have nested forms.

The HSS form also has a telescoping expansion [22]:

Â = U (L)
(
R(L−1)( · · · (R(2)B(1)(W (2))T +B(2)) · · ·

)
(W (L−1))T +B(L−1)

)
(3.13)

· (V (L))T +D(L),

where

D(L) = diag(Di, i: each node at level L),

U (L) = diag(Ui, i: each node at level L),

V (L) = diag(Vi, i: each node at level L),

R(l) = diag

([
Rc1

Rc2

]
, c1, c2: children of each node i at level l < L

)
,

W (l) = diag

([
Wc1

Wc2

]
, c1, c2: children of each node i at level l < L

)
,

B(l) = diag
([

0 Bc1

Bc2 0

]
, c1, c2: children of each node i at level l < L

)
.

The telescoping expansion in (3.13) is similar to the expansion in (3.10) for the FMM. These
two telescoping expansions have the following differences:

• In (3.10), the last term A(N) for the near-field interactions has a block-banded form,
while in (3.13) only the diagonal blocks are considered as near-field interactions so
that the last term D(L) has a block-diagonal form.
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• Accordingly, the Û (L), V̂ (L) basis matrices in (3.10) are different from U (L), V (L)

in (3.13), respectively, since they are basis matrices for different off-diagonal blocks.
The matrices R̂(l), Ŵ (l) in (3.10) are also different from R(l), W (l) in (3.13), respec-
tively.

• In (3.10), B̂(l) has a block nonzero pattern similar to A(l), illustrated in Figure 3.2,
while in (3.13), B(l) has a block-diagonal form.

We will resolve these differences by showing how to construct an HSS form from the
FMM form. It should be noted that the HSS form that is generated is for the FMM matrix Â
in (3.10). That is, we are design an HSS approximation to A.

The basic idea of constructing the HSS form of Â is to find HSS representations for the
far-field matrix Â(F ) ≡ Â−A(N) and the near-field matrix A(N) separately and then to merge
the two sets of HSS generators. In Figure 3.2(d), A(N) corresponds to the grey banded matrix
along the diagonal and Â(F ) corresponds to the remaining part of the matrix. To distinguish
the generators for different matrices, we use the following notation.

• Û , V̂ , etc.: FMM generators of Â(F ) from the FMM procedure in Section 3.1.
• U, V , etc.: HSS generators for the HSS form of Â.
• Ũ , Ṽ , etc.: HSS generators for the HSS form of Â(F ).
• Ǔ , V̌ , etc.: HSS generators for the HSS form of Â(N).

The HSS representation for the near-field part A(N) can be explicitly written out based on
its block-banded form. The main task is then to find the HSS representation of the far-field
part Â(F ). We do this in two steps:

1. First, we write each off-diagonal block in a low-rank form

(3.14) Â(F )|Ii×Ij = ŨiB̃iṼ
T
j ,

where i and j are sibling nodes in T (denoted as j = sib(i)) with the corresponding
index sets Ii and Ij in A, respectively. As in Section 3.1, we suppose each node i is
associated with a set of points xi ∈ s.

2. Then we write the Ũ , Ṽ basis matrices in nested forms. That is, we obtain the R̃, W̃
generators in (3.12).

The two steps above will be elaborated in Sections 3.3 and 3.4, respectively. The HSS
representations for Â(F ) and Â(N) will be merged to form an HSS representation for Â in
Section 3.5.

3.3. Low-rank forms of the off-diagonal blocks of Â(F ). For sibling nodes i, j of T ,
we find the HSS generators Ũi, B̃i, Ṽj so as to write Â(F )|Ii×Ij in the form of (3.14).

The FMM procedure yields a partition that accounts for all far-field interactions between
subsets of xi and s\xi. Accordingly, Ii is partitioned into subsets following the partitioning
of xi. Later for convenience, we consider the partition of the index set Ii instead of xi. Note
that subsets resulting from the partitioning of Ii correspond to the descendants of the node i in
T . Figure 3.4 illustrates the partitioning of Ii, and the subsets correspond to the nodes marked
in Figure 3.5. These nodes form a set which we call the partition list associated with i.

DEFINITION 3.2. Suppose that T is a postordered full binary tree. Let c1 and cβ be the
leftmost and rightmost leaf descendants of a node i, respectively. Let P1 be the set of all the
nodes in the path from par(c1) (the parent of c1) to the left child of i and P2 be the set of all
the nodes in the path from par(cβ) to the right child of i. Then the partition list associated
with i of T is

Ωi = {c1} ∪ {the right child of each j ∈ P1} ∪ {the left child of each j ∈ P2} ∪ {cβ}.
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Ii

c1 c2 cρ· · · · · ·cρ+1 cβ

FIG. 3.4. Partitioning of the index set Ii associated with node i.

c1 c2

cρ cρ+1

cβcβ−1

i

FIG. 3.5. Nodes in the partition list Ωi (marked as red solid nodes) corresponding to the partition of Ii in
Figure 3.4.

Thus, Ωi consists of nodes c1 and cβ corresponding to the boundaries of Ii and nodes at
levels as high as possible for the interior subsets of Ii. When we study the interaction between
i and other nodes, Ωi is used to provide a way to systematically organize the partition of Ii.
The resulting partition similar as in Figure 3.4 is also used in [5].

We then find Ũi, Ṽj, and B̃i in (3.14). The FMM procedure yields a partition of Ii ∪ Ij,
leading to a blockwise agglomeration [18] of Â(F )|Ii×Ij . For convenience, suppose that Ωi

has the following form as marked in Figures 3.4–3.5:

(3.15) Ωi = {c1, c2, . . . , cρ, cρ+1, . . . , cβ},

where cρ and cρ+1 are the left and right children of i, respectively. Similarly, suppose that Ωj

has the following form:

(3.16) Ωj = {d1,d2, . . . ,dξ,dξ+1, . . . ,dθ},

where dξ and dξ+1 are the left and right children of j, respectively. As shown in Section 3.1.1,
for each pair of separated sets ci and dj , we can find a low-rank form

(3.17) Â(F )|Ici×Idj = ÛciB̂ci,dj V̂
T
dj .

Note that Â(F )|Ici×Idj = 0 if ci and dj are near neighbors. In such a case, we can set

B̂ci,dj = 0 so that (3.17) still holds. Then we can assemble all the blocks Â(F )|Ici×Idj for

i = 1, . . . , β, j = 1, . . . , θ, into ŨiB̃iṼ
T
j in (3.14), where

Ũi = diag(Ûc1
, . . . , Ûcβ ), Ṽj = diag(V̂d1

, . . . , V̂dθ ),(3.18)

B̃i =

B̂c1,d1 . . . B̂c1,dθ
... · · ·

...
B̂cβ ,d1 . . . B̂cβ ,dθ

 .(3.19)

An illustration of (3.14) with (3.18)–(3.19) is provided in Figure 3.6.

3.4. Nested Ũ , Ṽ basis matrices. We then derive the nested forms of the basis matrices.
Suppose that i and j are a pair of sibling nodes with parent p = par(i). Suppose that the
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d1 dξ· · · · · ·dξ+1 dθ

c1

cρ

cρ+1

cβ

...

...

= Ũi

B̃i Ṽ T
j

Â(F )|Ii×Ij

FIG. 3.6. Illustration of (3.14) with (3.18)–(3.19) for the low-rank form of Â(F )|Ii×Ij , where j = sib(i).

partition lists Ωi and Ωj associated with i and j are given in (3.15) and (3.16), respectively,
which are used for the partitioning of the corresponding index sets Ii and Ij. Let the index set
associated with p in A be Ip = Ii ∪ Ij. Then the partition list Ωp associated with p can be
obtained by merging and modifying Ωi and Ωj. This is illustrated in Figure 3.7. We can then
let

Ωp = {c1, c2, . . . , cρ, e1, e2,dξ+1, . . . ,dθ},

where e1 = par(cρ+1) and e2 = par(dξ). Note that the nodes cρ+1, . . . , cβ are descendants
of e1 and d1, . . . ,dξ are descendants of e2.

Ii

c1 c2 cρ· · · · · ·cρ+1 cβ

Ij

d1d2 dξ· · · · · ·dξ+1 dθ

Ip

c1 c2 cρ· · · e1 e2 · · ·dξ+1 dθ

︷ ︸︸ ︷ ︷ ︸︸ ︷

FIG. 3.7. Merging the partitions of Ii and Ij to form the partition of Ip.

As in (3.18), we have

Ũp = diag(Ûc1
, . . . , Ûcρ , Ûe1

, Ûe2
, Ûdξ+1

, . . . , Ûdθ ).

From the translation relations in (2.24) and (3.8) and noticing Remark 3.1, Ûe1
and Ûe2

satisfy

Ûe1 = diag(Ûcρ+1Tcρ+1,e1 , . . . , ÛcβTcβ ,e1), Ûe2 = diag(Ûd1Td1,e2 , . . . , ÛdξTdξ,e2),

where the translation matrices Tc,e1
, Td,e2

are defined similar as in (2.25). Then

Ũp = diag(Ûc1
, . . . , Ûcρ , Ûcρ+1

Tcρ+1,e1
, . . . , ÛcβTcβ ,e1

,

Ûd1
Td1,e2

, . . . , ÛdξTdξ,e2
, Ûdξ+1

, . . . , Ûdθ )

= diag(ŨiR̃i, ŨjR̃j),

where

R̃i =

diag

I,
Tcρ+1,e1

...
Tcβ ,e1


 0

 , R̃j =

0 diag


Td1,e2

...
Tdξ,e2

 , I

 .
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Here, the zero blocks are chosen to make R̃i and R̃j have the same column size as Ũp. Thus
we get the nested basis relationship

Ũp =

[
Ũi

Ũj

] [
R̃i

R̃j

]
.

This yields the nested relation for the Ũ basis matrices. We can similarly derive a nested
basis relationship for Ṽi. Since the translation matrices only depend on the relevant centers
of subsets, R̃i and W̃i are only determined by the partition of Ii and are independent of the
actual points in Ii. It follows that the HSS generator satisfy

(3.20) W̃i = R̃i.

At this point, we obtain all the Ũ , Ṽ , R̃, W̃ , B̃ generators for Â(F ). The D̃ generators of
Â(F ) are zero blocks. Clearly, the generators have block structures that can be explored to
save storage and computational costs.

3.5. HSS representation for Â. We now construct an HSS representation for A(N) so
as to get an HSS form for A = Â(F ) +A(N). A(N) is a block-banded matrix. Suppose that
A(F ) and A(N) are partitioned conformably. Then the HSS form of A(N) can be explicitly
written as [34]:

(3.21)

Ǔi = I, V̌i = I, for a leaf i,

Ři =


[I 0] if i is a leaf and i < sib(i),
[0 I] if i is a leaf and i > sib(i),

diag (I, 0) , if i is a nonleaf node and i < sib(i),
diag (0, I) , if i is a nonleaf node and i > sib(i),

W̌i: in the same form as Ři,

B̌i =



A|Ii×Isib(i)
, if i is a leaf and i < sib(i),

A|Isib(i)×Ii , if i is a leaf and i > sib(i),[
0

A|Ii×Isib(i)

]
, if i is a nonleaf node and i < sib(i),[

A|Isib(i)×Ii
0

]
, if i is a nonleaf node and i > sib(i).

With the HSS generators for A(F ) and A(N) at hand, it is easy to verify (see, e.g., [34])
that the HSS generators for Â are given by:

Di = D̃i + Ďi, Bi = diag(B̃i, B̌i),

Ui =
[
Ũi Ǔi

]
, Vi =

[
Ṽi V̌i

]
,(3.22)

Ri = diag(R̃i, Ři), Wi = diag(W̃i, W̌i).

Due to the summation, the sizes of some generators such as Bi may be larger than necessary.
If a more compact HSS form is desired, then a recompression step may be applied as done in
some other HSS methods [7, 12, 35].

It can be shown that the cost to construct the HSS matrix is also O(rn). The ULV
factorization of the resulting HSS form costs O(r2n).

REMARK 3.3. Here in the 1D case, both the FMM and the HSS forms use binary trees.
For 2D problems, quad-trees are typically used for the FMM. If there is a need to convert a
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2D FMM matrix to an HSS form, then we may rederive the FMM matrix form based on the
repeated bisection of the domain so as to generate a binary tree structure. Then the conversion
to an HSS form can follow a procedure similar to the 1D case by agglomerating low-rank
subblocks to form an approximation to an off-diagonal block. However, there will be a lot
more of such subblocks (as many as O(

√
n)) than in the 1D case (at most O(log n)). The

maximum off-diagonal rank in the HSS form will be as large as O(
√
n). This makes the

resulting HSS form less attractive than for the 1D case. In three dimensions, the off-diagonal
rank will be even higher.

3.6. Norm bounds for the generators and additional stability discussions. Now we
would like to briefly illustrate that the structured representations given in the previous sections
satisfy some stability requirements needed for several computations such as matrix-vector
multiplications (with the FMM or HSS form) and ULV factorizations (with the HSS form). The
backward stability of several commonly used HSS algorithms has been studied in [5, 32, 33],
where the stability analysis essentially relies on the following conditions:

• The U, V generators have bounded norms.
• The B generators have norms bounded by a small constant times the norm of A.

Thus, our purpose is to show that the FMM and HSS generators that we obtain using our
stabilization strategy satisfy such norm requirements. Based on the analysis in Section 2, we
have the following bounds for the norms of the FMM and HSS generators.

COROLLARY 3.4. Suppose that (2.26) holds for any descendant c of a nonleaf node i in
T . Then for the approximation Â to A in (1.2) with (2.2) and τ ∈ (0, 45 ), the FMM generators
Û , V̂ , B̂ in (2.17) and R̂, Ŵ in (3.8) satisfy

‖Û‖max ≤ 1, ‖V̂ ‖max ≤ 1, ‖R̂‖max ≤ 1, ‖Ŵ‖max ≤ 1,

‖B̂‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

The HSS generators U, V,R,W,B in (3.22) satisfy

‖U‖max ≤ 1, ‖V ‖max ≤ 1, ‖R‖max ≤ 1, ‖W‖max ≤ 1,

‖B‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

Proof. The max-norm results for the generators Û , V̂ , R̂, Ŵ are immediate from Theo-
rems 2.5 and 2.7. When Â|Ii×Ij = ÛiB̂i,jV̂

T
j , as in (3.2), for two separated point sets xi and

xj, we can use Theorem 2.5 and the derivation in the proof of Theorem 2.9 to get

(3.23) ‖B̂i,j‖max ≤ max{1, 3τ}(1 + τ)‖A|Ii×Ij‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

Next, it is clear from (3.21) that the HSS generators Ǔ , V̌ , Ř, W̌ for Â(N) have entrywise
magnitudes bounded by 1. Thus, it can be seen from (3.22) that the HSS generators U, V,R,W
for Â have entrywise magnitudes bounded by 1. The HSS generators B̃ as in (3.19) also
satisfy the bound in (3.23). Then,
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‖B‖max ≤ max{‖B̃‖max, ‖B̌‖max} ≤ max{max{1, 3τ}(1 + τ)‖A‖max, ‖A‖max}
≤ max{1, 3τ}(1 + τ)‖A‖max.

We thus get the bound for ‖B‖max.
Based on these norm bounds and the stability study in Section 2.5, the stability of the

overall FMM algorithm and the HSS matrix-vector multiplication can be naturally shown. The
stability analysis is similar to that in [32]. In fact, such stability can be conveniently understood
based on the telescoping expansions in (3.10) and (3.13). The stability of ULV factorizations
and solutions for the HSS form of Â can be shown similarly to the work in [32, 33]. The actual
derivations involve lengthy technical details and thus the readers are referred to [32, 33].

4. Numerical tests. Here, we use some numerical examples to demonstrate the per-
formance of our techniques and support the analysis. We show how our stable FMM/HSS
constructions with the scaling strategy control the norms of the generators and the approxi-
mation accuracy. We also test the accuracy of a direct solution. Different types of kernels as
follows are tested:

κ1(x, y) =

{
1

x−y , if x 6= y,
1, otherwise,

(4.1)

κ2(x, y) =

{
1

(x−y)2 , if x 6= y,

1, otherwise,
κ3(x, y) =

{
log |x− y|, if x 6= y,

1, otherwise.
(4.2)

To account for factors like the scale and the distribution of point sets, the kernels are
evaluated at various 1D and 2D point sets.

• Set s1: A set of uniform grid points in [0, 1].
• Set s2: A set of randomly generated points in [0, 1].
• Set s3: A set of points on the boundary curve of a stingray shape defined by the

coordinates(
40 sin

(2i− 1)π

n
+ 40 cos4

2(2i− 1)π

n
, 40 cos5

(2i− 1)π

n

)
, i = 1, 2, . . . , n.

See Figure 4.1(a) for an illustration.
• Set s4: A set of uniform grid points in [0, 400]× [0, 400].
• Set s5: A set of randomly generated points in [0, 400]× [0, 400]. See Figure 4.1(b)

for an example.
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(a) s3 (b) s5

FIG. 4.1. Illustration of the points in examples of s3 and s5.
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To generate a binary tree T for the FMM/HSS matrix construction, we hierarchically
bisect each set. Separated subsets are adaptively identified in the partitioning process.

4.1. Entrywise magnitudes of the generators. We illustrate the benefit of the proposed
stable FMM/HSS matrix construction by investigating the entrywise magnitudes of the genera-
tors with and without applying the scaling strategy (denoted New and Unscaled in the tests,
respectively). According to (3.22) and Corollary 3.4, we just need to report the entrywise
magnitudes for the HSS version since the results are almost the same for the FMM case. To
inspect how New differs from Unscaled, we report the entrywise magnitudes of the HSS
generators of Â(F ) as follows:

(4.3) B ≡ max
i∈T
‖B̃i‖max, U ≡ max

i∈T
‖Ũi‖max, R ≡ max

i∈T
‖R̃i‖max.

Results for the generators Ṽ and W̃ are not shown since they are similar to those for Ũ and R̃,
respectively.

We pick the number of points in each point set (or the order of A) as n = 4096 and set
each leaf level partition to include at most 256 points. The separation ration τ in Definition 2.1
is set to 1

2 for the sets s1, s2 and
√
2
2 for s3, s4, s5. The number of expansion terms r increases

from 5 to 30 to illustrate how the standard Taylor series expansion leads to large entrywise
magnitudes of the generators.

For the kernel κ1(x, y) in (4.1), the results for the maximum entrywise magnitudes (4.3)
are given in Tables 4.1 and 4.2. As r increases, the maximum entrywise magnitudes of some
generators from Unscaled becomes quite large. For some cases, even a small increase in r
leads to a rapid increase in the entrywise magnitudes, and the magnitudes become significantly
larger than ‖A‖max. Such large magnitudes occur for different generators, depending on
the point set. On the other hand, New fully resolves this issue and produces generators with
uniformly bounded matrix entries regardless of the scale and the distribution of the point sets.
That is, all U ,R are bounded by 1, which is consistent with Corollary 3.4. The B-values are
also bounded by modest constants.

TABLE 4.1
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for κ1(x, y)

discretized on the sets s1, s2.

Set ‖A‖max r
Unscaled New

B max{U ,R} B max{U ,R}

s1 4.10e3

5 1.04e05 1.00 5.33 1.00
10 6.77e12 1.00 5.33 1.00
15 7.03e21 1.00 5.33 1.00
20 4.24e31 1.00 5.33 1.00
25 9.34e41 1.00 5.33 1.00
30 5.75e52 1.00 5.33 1.00

s2 3.60e7

5 1.06e08 1.00 21.3 1.00
10 7.09e18 1.00 21.3 1.00
15 7.52e30 1.00 21.3 1.00
20 4.64e43 1.00 21.3 1.00
25 1.05e57 1.00 21.3 1.00
30 6.58e70 1.00 21.3 1.00
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TABLE 4.2
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for κ1(x, y)

discretized on the sets s3, s4, s5.

Set ‖A‖max r
Unscaled New

B U R B max{U ,R}

s3 4.71e13

5 2.35e-02 1.49e04 1.96e02 2.35e-02 1.00
10 2.35e-02 8.59e06 5.49e02 2.69e-02 1.00
15 2.35e-02 3.12e08 5.49e02 3.00e-02 1.00
20 2.35e-02 1.95e09 5.49e02 3.20e-02 1.00
25 2.35e-02 3.34e09 5.49e02 3.32e-02 1.00
30 2.35e-02 3.34e09 5.49e02 3.42e-02 1.00

s4 1.00

5 3.59e-03 9.78e05 1.00 3.59e-03 1.00
10 3.59e-03 1.06e11 1.00 4.39e-03 1.00
15 3.59e-03 7.19e14 1.00 4.90e-03 1.00
20 3.59e-03 8.42e17 1.00 5.21e-03 1.00
25 3.59e-03 2.70e20 1.00 5.42e-03 1.00
30 3.59e-03 3.09e22 1.00 5.57e-03 1.00

s5 2.98e1

5 9.30e-03 5.90e06 1.00 9.30e-03 1.00
10 9.30e-03 6.02e12 1.00 1.09e-02 1.00
15 9.30e-03 3.86e17 1.00 1.22e-02 1.00
20 9.30e-03 4.27e21 1.00 1.30e-02 1.00
25 9.30e-03 1.29e25 1.00 1.35e-02 1.00
30 9.30e-03 1.40e28 1.00 1.39e-02 1.00

Similar results can also observed for other kernel functions. We repeat some tests with
the kernels κ2(x, y) and κ3(x, y) in (4.2). The results are shown in Table 4.3. Again, while
some generators from Unscaled have large magnitudes, the generators from New always have
well-controlled entrywise magnitudes.

Other than increasing r, another way to demonstrate the advantage of New over Unscaled
is to increase the number of points n in a set while keeping the points still within the given
interval. In this way, the points get more clustered, and the entries in (2.9) and (2.12) used in
Unscaled get larger. For example, for κ1(x, y) discretized on s2, we fix r = 20 and increase
n. The B-magnitudes are displayed in Figure 4.2. It can be observed that B from Unscaled
increases quickly with n, while it remains well bounded for New. We can observe similar
comparisons for the other sets and kernels.

REMARK 4.1. In practice, even if r is very small (say, smaller than 10), Unscaled
may still provide generators with huge entries that pose stability risks. Also, we have used
computational domains with different sizes to show that Unscaled is susceptible to the problem
setting but New is much more robust.

4.2. Accuracy and efficiency. The large magnitudes of the entries of the generators can
cause a loss of accuracy for structured algorithms using the generators. To demonstrate this,
we perform some operations for the generators in (3.22). The recompression step mentioned
after (3.22) is first applied with full machine precision as tolerance to avoid introducing extra
approximation errors. The resulting generators are used for matrix-vector multiplications and
linear system solutions via ULV factorizations and solutions. Without the recompression,
the unscaled version can often give reasonable accuracies in matrix-vector multiplications.
However, it is quite sensitive to more complicated operations such as recompression. In
addition, it can encounter overflow for larger ranks.
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TABLE 4.3
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for the kernels

in (4.2) discretized on the sets s2, s5.

Kernel Set ‖A‖max r Unscaled New

κ2(x, y)

B max{U ,R} B max{U ,R}
5 1.13e10 1.00 5.63e02 1.00

10 1.51e21 1.00 7.41e02 1.00
s2 1.30e15 15 2.41e33 1.00 8.28e02 1.00

20 1.98e46 1.00 8.80e02 1.00
25 5.57e59 1.00 9.16e02 1.00
30 4.21e73 1.00 9.41e02 1.00

B U R B max{U ,R}
5 8.65e-05 5.90e06 1.00 2.22e-04 1.00

10 8.65e-05 6.02e12 1.00 2.93e-04 1.00
s5 8.90e02 15 8.65e-05 3.86e17 1.00 3.33e-04 1.00

20 8.65e-05 4.27e21 1.00 3.65e-04 1.00
25 8.65e-05 1.29e25 1.00 3.87e-04 1.00
30 8.65e-05 1.40e28 1.00 4.03e-04 1.00

κ3(x, y)

B max{U ,R} B max{U ,R}
5 1.24e06 1.00 3.06 1.00

10 3.69e16 1.00 3.06 1.00
s2 1.74e01 15 2.52e28 1.00 3.06 1.00

20 1.14e41 1.00 3.06 1.00
25 2.04e54 1.00 3.06 1.00
30 1.06e68 1.00 3.06 1.00

B U R B max{U ,R}
5 5.76 5.90e06 1.00 5.76 1.00

10 5.76 6.02e12 1.00 5.76 1.00
s5 8.90e02 15 5.76 3.86e17 1.00 5.76 1.00

20 5.76 4.27e21 1.00 5.76 1.00
25 5.76 1.29e25 1.00 5.76 1.00
30 5.76 1.40e28 1.00 5.76 1.00

For each matrix-vector multiplication, we generate a random vector w and multiply the
approximate matrix with w to get a vector b̂, which approximates the exact vector b = Aw.
For κ1(x, y) discretized on the point sets as above, the resulting matrix-vector multiplication
errors ‖b̂−b‖1‖b‖1 are given in Table 4.4. In exact arithmetic, when r increases, the approximate

matrix gets more accurate, and the error ‖b̂−b‖1‖b‖1 should decrease. However, with Unscaled,
only modest accuracies are achieved. Specifically for the sets s1, s2, the accuracy in Table 4.4
does not improve much for increasing r. For the sets s3, s4, s5, the accuracy in Table 4.4
initially improves with increasing r but then decreases. On the other hand, such situations
do not occur with New. For all the sets, the accuracy increases with r to near the machine
precision. For the kernels κ2(x, y) and κ3(x, y), the results are given in Table 4.5.

We then fix r = 20 and increase n. Figure 4.3(a) displays the relative errors of the
matrix-vector multiplications for one case. Much higher accuracies are achieved for all n with
New than with Unscaled.
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FIG. 4.2. Maximum entrywise magnitude B in (4.3) from Unscaled and New for Â(F ) with κ1(x, y) discretized
on s2 of different sizes n.

TABLE 4.4
‖b̂−b‖1
‖b‖1

: accuracy of matrix-vector multiplications based on Unscaled and New with the kernel κ1(x, y).

r s1 s2 s3 s4 s5

Unscaled

5 7.03e-06 1.34e-06 4.13e-13 1.11e-04 1.20e-04
10 8.30e-08 5.55e-08 1.50e-10 6.32e-07 6.93e-07
15 8.35e-08 5.50e-08 1.05e-08 7.18e-09 1.98e-01
20 8.47e-08 5.49e-08 7.24e-06 2.95e-01 2.62e-01
25 7.61e-08 5.49e-08 9.78e-02 3.21e-01 2.91e-01
30 7.65e-08 5.49e-08 2.13e-01 3.25e-01 2.99e-01

New

5 7.03e-06 1.33e-06 6.84e-14 1.11e-04 1.20e-04
10 1.14e-08 2.67e-09 1.78e-14 6.32e-07 6.93e-07
15 2.72e-11 5.55e-12 3.26e-14 7.18e-09 7.20e-09
20 7.84e-14 1.81e-14 3.17e-14 9.93e-11 1.08e-10
25 1.62e-15 1.83e-15 2.16e-14 1.76e-12 1.92e-12
30 1.54e-15 1.81e-15 4.60e-14 3.49e-14 4.17e-14

We can similarly compare the accuracy for solving linear system by ULV factorization
and ULV solution. We form the right-hand side vector b = Aw with a random vector w and
suppose that ŵ is the approximate solution. For κ1(x, y) discretized on the five sets as above,
Table 4.6 gives the relative residuals ‖Aŵ−b‖1‖b‖1 . With Unscaled, only modest accuracies can be
achieved for some cases and very inaccurate results are produced for the other cases. With
New, the relative residuals reduce with increasing r to near the machine precision.

Similarly, with r = 20 and varying n, the accuracy results for one test is given in
Figure 4.3(b). While the accuracy with Unscaled remains modest and gets worse with
increasing n, the accuracy with New stays high for all the values of n.

Finally, it is convenient to verify the efficiency of some relevant structured algorithms.
Such efficiency studies have been done extensively in the existing literature. Here, we just
use Figure 4.4 with r = 20 to present the storage needed for the generators for Â(F ), which
essentially reflects the cost needed to multiply Â(F ) with a vector. The storage in Figure 4.4 is
roughly linear in n.

5. Conclusions. In this paper, stabilization strategies and backward stability studies are
given for relevant low-rank approximations and translation relations in an intuitive matrix
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TABLE 4.5
‖b̂−b‖1
‖b‖1

: accuracy of matrix-vector multiplications based on Unscaled and New with the kernels κ2(x, y) and
κ3(x, y).

r
κ2(x, y) κ3(x, y)

s2 s5 s2 s5

Unscaled

5 2.66e-11 4.40e-06 1.11e-04 2.11e-05
10 1.26e-12 4.76e-08 2.80e-06 6.07e-08
15 1.26e-12 1.55e-02 2.80e-06 5.43e-01
20 1.26e-12 1.94e-02 2.80e-06 6.67e-01
25 1.26e-12 1.97e-02 2.80e-06 7.14e-01
30 1.26e-12 2.03e-02 2.80e-06 6.71e-01

New

5 2.66e-11 4.40e-06 1.11e-04 2.11e-05
10 7.88e-14 4.76e-08 9.99e-08 6.07e-08
15 2.14e-15 7.26e-10 1.71e-10 4.22e-10
20 1.89e-15 1.45e-11 3.60e-13 4.98e-12
25 1.89e-15 3.16e-13 3.97e-15 6.22e-14
30 1.89e-15 9.29e-15 4.00e-15 4.14e-15
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‖b‖1

for matrix-vector multiplications. (b) ‖Aŵ−b‖1
‖b‖1

for linear system solutions.

FIG. 4.3. Accuracies of matrix-vector multiplications and linear system solutions based on Unscaled and New
with the kernel κ1(x, y) discretized on s2 for different sizes n.

10 4
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FIG. 4.4. Storage costs (number of nonzero entries) for the D̃, Ũ , Ṽ , R̃, W̃ , B̃ generators for Â(F ) from New
for κ1(x, y) discretized on s2 for different numbers of points n.
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TABLE 4.6
Residuals of ULV solutions after ULV factorizations based on New with the kernel κ1(x, y).

r s1 s2 s3 s4 s5

Unscaled

5 7.03e-06 1.34e-06 4.75e-10 8.85e-04 2.54e-04
10 8.30e-08 5.55e-08 3.62e-07 2.47e-06 1.41e-06
15 8.35e-08 5.50e-08 4.40e-04 1.42e-08 5.34e+02
20 8.47e-08 5.49e-08 9.20e+01 1.32e+01 4.13e+02
25 7.61e-08 5.49e-08 3.08e+10 1.36e+01 2.59e+02
30 7.65e-08 5.49e-08 6.73e+08 2.55e+01 8.92e+03

New

5 7.03e-06 1.33e-06 4.79e-09 8.85e-04 2.54e-04
10 1.14e-08 2.67e-09 2.10e-12 2.47e-06 1.41e-06
15 2.72e-11 5.55e-12 1.04e-12 1.42e-08 1.82e-08
20 7.96e-14 2.01e-14 2.33e-13 2.53e-10 2.22e-10
25 4.41e-15 6.77e-15 2.93e-13 2.61e-12 2.13e-12
30 4.90e-15 6.49e-15 4.23e-13 4.83e-14 8.30e-14

version of the FMM. An FMM matrix example is also presented, followed by ideas to convert
the FMM matrix into an HSS form that admits stable factorizations. The stable matrix version
FMM employs a scaling strategy to revise the low-rank approximations based on Taylor
expansions for some kernel functions. Rigorous norm bounds are provided for the FMM and
HSS generators. These bounds lead to backward stability of fast matrix-vector multiplications
with these matrices. The HSS form can be used for stably solving linear systems via an ULV
factorization.

Since the approximation based on Taylor expansions can be substituted by other approxi-
mations such as polynomial interpolations [11, 16, 38], numerical integrations [1, 39], and
kernel-independent FMM [23, 40, 41], we expect that our ideas can also be generalized to
various other types of FMM. Our stabilization strategies are derived based on 2D point sets but
can also be extended to higher dimensions. It is convenient to generalize the norm bounds and
the stability analysis in Sections 2.5 and 3.6. Although we only give the FMM matrix using
one-dimensional sets as an example, the essential ideas can be directly modified for higher
dimensions. Some details will appear in [25].
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