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A TWO-LEVEL ITERATIVE SCHEME FOR GENERAL SPARSE LINEAR
SYSTEMS BASED ON APPROXIMATE SKEW-SYMMETRIZERS∗

MURAT MANGUOĞLU† AND VOLKER MEHRMANN‡

Abstract. We propose a two-level iterative scheme for solving general sparse linear systems. The proposed
scheme consists of a sparse preconditioner that increases the norm of the skew-symmetric part relative to the rest and
makes the main diagonal of the coefficient matrix as close to the identity as possible so that the preconditioned system
is as close to a shifted skew-symmetric matrix as possible. The preconditioned system is then solved via a particular
Minimal Residual Method for Shifted Skew-Symmetric Systems (MRS). This leads to a two-level (inner and outer)
iterative scheme where the MRS has short-term recurrences and satisfies an optimality condition. A preconditioner for
the inner system is designed via a skew-symmetry-preserving deflation strategy based on the skew-Lanczos process.
We demonstrate the robustness of the proposed scheme on sparse matrices from various applications.
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1. Introduction. We discuss the numerical solution of general linear systems

Ax = b,

where A ∈ Rn×n is a general large sparse invertible matrix. If the coefficient matrix is
symmetric and positive definite or symmetric and indefinite, then one can use the Conjugate
Gradient algorithm or the recently proposed two-level iterative scheme in [23], respectively.
In this paper, we propose a new robust two-level black-box scheme for solving general
systems without any assumption on the symmetry or definiteness of the coefficient matrix. In
contrast to most other iterative methods where preconditioning is often used to symmetrize the
system and to lower the condition number, our new approach consists of an initial step which
makes the system close to an identity-plus-skew-symmetric matrix that leads to an effective
shifted skew-symmetric preconditioner. Both the preconditioned system and the application
of the preconditioner is approached by an iterative method so that the method is a two-level
(inner-outer) iterative scheme.

Our main motivation to study identity-plus-skew-symmetric preconditioners are linear
systems arising in the time discretization of dissipative Hamiltonian differential equations of
the form

Eż = (J −R) z + f(t), z(t0) = z0,

where ż denotes the derivative with respect to time, J is a skew-symmetric matrix, R is
symmetric positive semidefinite, and E is the symmetric positive semidefinite Hessian of a
quadratic energy functional (Hamiltonian)H(z) = 1

2z
TEz; see, e.g., [2, 10, 14, 20, 31, 32]

for such systems in different physical domains and applications. If one discretizes such
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systems in time, e.g., with the implicit Euler method, and sets zk = z(tk), then in each time
step tk one has to solve a linear system of the form

(1.1) (E − h(J −R))zk+1 = Ezk + hf(tk).

Similar linear systems arise also when other discretization schemes are used. We note that
if the right-hand side vector or the coefficient matrix or both are slowly changing, then it is
possible to use recycling Krylov subspace methods [25]. In (1.1), the right-hand side vector is
changing, therefore our proposed method can easily adopt recycling Krylov subspace methods
as the outer iterative scheme, which we leave as a future work.

The matrixA = E+h(R−J) has a positive (semi)definite symmetric partM = E+hR.
If M is positive definite, then with a two-sided preconditioning with the Cholesky factor L
of M = LLT , the matrix L−1AL−T has the form I + J̃ , where J̃ = hL−1AL−T is skew-
symmetric [5, 35]. For such systems, structure-exploiting Krylov subspace methods with
three-term recurrences were derived and analyzed in [5, 19, 22, 29, 35]. Given a general
square matrix A, symmetrizers from right or left are, respectively, symmetric matrices Sr or
Sl such that ASr = ST

r A
T or SlA = ATST

l . Existing algorithms for constructing dense and
exact symmetrizers are studied and summarized in [8]. In this paper, however, we construct
two-sided preconditioners so that the preconditioned systems have the form D + Ĵ , where D
is diagonal and close to the identity and Ĵ is close to a skew-symmetric matrix (approximate
shifted skew-symmetrizers (ASSS)). To this preconditioned system we then apply a two-level
iterative method, where the inner iteration is a skew-symmetric Krylov subspace method.
We assume that both A and S ∈ {Sr, Sl} are sparse and nonsymmetric, with S having a
user-defined sparsity structure. The sparse ASSS preconditioner is obtained by first applying
a nonsymmetric permutation and scaling and then solving a sparse overdetermined linear
least squares (LLS) problem to obtain S. Similar approaches for dense symmetrizers [8] or
algorithms for improving the structural symmetry in the context of sparse direct solvers, as
proposed in [26, 30], do not have the latter property.

We note that while it is possible to obtain and use either Sr or Sl, in our experience, the
numerical results did not differ much for the test problems. Therefore, in the rest of the paper
we use the right variant and hereafter S refers to Sr.

The paper is organized as follows. The proposed sparse approximate skew-symmetrizer is
introduced in Section 2, a two-level Krylov subspace method based on the skew-symmetrizer
is introduced in Section 3, numerical results to show the robustness of the proposed method
and to show the timings for a large-scale problem are presented in Section 4 and Section 5,
respectively, and the conclusions follow in Section 6.

2. A sparse approximate shifted skew-symmetrizing preconditioner. Given a sparse
invertible matrix A ∈ Rn×n, then in order to achieve our goal of constructing a sparse ap-
proximate shifted skew-symmetrizing (ASSS) preconditioner, we first apply diagonal scalings
(Dr, Dc) and a row permutation (P),

(2.1) Ā = PDrADc

such that the diagonal entries of Ā have modulus one and the off-diagonal elements are of
modulus less than or equal to one. Such a permutation and scaling procedure is well established
in the code MC64 of the Harwell Subroutine Library (HSL) [18], and it is called the maximum
product transversal with scaling. It solves a weighted bipartite matching problem, and the
resulting matrix Ā is guaranteed to contain a zero-free main diagonal if A is structurally
nonsingular [9]. For a detailed description of this permutation and scaling, we refer the reader
to [24], where it was originally proposed to reduce the required amount of pivoting for dense
Gaussian elimination.
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After this, we look for a sparse matrix S such that

(ĀS)i,j = −(ĀS)j,i, for i 6= j,(2.2)

and

(ĀS)i,i = 1, for i = 1, 2, . . . , n,(2.3)

where S can have various sparsity structures, such as being diagonal, tridiagonal, banded,
having the sparsity of Ā, or any structure defined by the user.

The described problem can be formulated as a sparse over-determined LLS problem,
where by (2.2), each nonzero in the strictly upper triangular part of |ĀS| + |ĀS|T defines
a constraint of the LLS problem and additional n constraints are obtained via (2.3). Let nz
be the number of nonzeros in the strictly upper triangular part of |ĀS|+ |ĀS|T and nnz(S)
be the number of nonzeros in S. Then the LLS problem has nnz(S) unknowns and nz + n
equations, and if nz + n > nnz(S), then the problem is overdetermined.

As a first example of a sparsity structure, let us assume that S = diag(s1,1, . . . , sn,n), so
that nnz(S) = n. Then, (2.2) and (2.3) are given by

āi,jsj,j + āj,isi,i = 0,

and

āi,isi,i = 1,

respectively. With s = [s1,1, s2,2, . . . , sn,n]T , the resulting overdetermined system is given by

(2.4)
[
Bu

Bl

]
s =

[
0
1

]
,

where 0 and 1 are vectors of all zeros of size nz and all ones of size n, respectively. Bu is a
sparse matrix of size nz × n, where each row has only two nonzeros, āi,j and āj,i, in its ith
and jth columns, respectively, while Bl is just the diagonal of āi,i. So with

(s) :=

∥∥∥∥[Bu

Bl

]
s−

[
0
1

]∥∥∥∥2
2

,

the unique solution of the LLS problem is obtained by computing mins f(s). The unique
solution can be obtained via a direct or iterative sparse LLS solver. To gain more flexibility
with respect to the importance of the two constraints, we introduce a weighting parameter
(γ > 0) and solve the weighted problem

(2.5) f(s, γ) = ‖Bus‖22 + γ ‖Bls− 1‖22 =
∥∥∥(ĀS) + (ĀS)

T
∥∥∥2
F

+ γ
∥∥D(ĀS)− I

∥∥2
F
,

where D(X) denotes a diagonal matrix whose diagonal entries are those of X .
For a general sparse S, the LLS problem is formulated in a similar way as in the diagonal

case. The set of constraints is defined for each nonzero (i, j) in the strictly upper (or lower)
triangular nonzero pattern of the matrix |ĀS| + |ĀS|T via (2.2) (using MATLAB column
notation) via

Āi,:S:,j + Āj,:S:,i = 0,

and the diagonal constraints are obtained, for i = 1, 2, . . . , n, via (2.3). Note that one needs
to map the nonzero entries of S to a vector to form the LLS problem and map it back to S
after obtaining the solution vector. This can be done using the sparse matrix storage format.
In Appendix A, we present a MATLAB implementation which stores the nonzeros of sparse
matrices in column-major order, i.e., compressed sparse column format.
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3. A bilevel iterative scheme. Given a general sparse linear system

(3.1) Ax = b,

where A ∈ Rn×n is nonsingular. As discussed in the introduction, many preconditioners are
either applied or aim for a symmetric or symmetric positive definite system, since for these we
have short recurrences in Krylov subspace methods like the conjugate gradient method. Only
very few algorithms focus on skew-symmetric or shifted skew-symmetric structures. In this
section we present the theoretical basis for an algorithm that preprocesses the system such
that the coefficient matrix is as close as possible to a shifted skew-symmetric matrix and then
use the shifted skew-symmetric part of the matrix as preconditioner applying it as an iterative
solver with short recurrences and optimality property that requires only one inner product per
iteration.

Consider the splitting of the coefficient matrix into its symmetric and skew-symmetric
parts

A = M + J,

where M = MT and J = −JT . (In applications, J often is a matrix of small norm). If
M is positive definite, then one can precondition the system by computing the Cholesky
factorization M = LLT and solve the modified system

(I + L−1JL−T )LTx = L−1b,

where L−1JL−T is again skew-symmetric. However, in general, M is not positive definite;
it may be indefinite or singular. In this case we propose a black-box algorithm that employs
an ASSS preconditioner. This is a two-level procedure in which we first apply the discussed
nonsymmetric row permutation and scaling to obtain a zero-free diagonal with diagonal entries
of modulus one and off-diagonal entries of modulus less than or equal to one. The second step
applies a sparse matrix S obtained via the algorithm described in Section 2 by solving a sparse
LLS problem. After ASSS preconditioning, the modified system has the form

(3.2) Âx̂ = b̂,

where Â = PDrADcS, x̂ = S−1D−1c x, and b̂ = PDrb. Let M̂ = Â+ÂT

2 and Ĵ = Â−ÂT

2 .
Note that due to the ASSS preconditioning, even though M̂ is not guaranteed to be positive
definite, it has eigenvalues clustered around 1 and typically very few negative eigenvalues.
Furthermore, the skew-symmetric part Ĵ is more dominant now. One can now compute a
Bunch-Kaufman-Parlett factorization [4], M̂ = L̂D̂L̂T (where L̂ is a sparse lower triangular
matrix and D̂ is block-diagonal matrix with either 1 × 1 or 2 × 2 blocks) and modify the
factorization to obtain

|M̂ | = L̂|D̂|L̂T ,

where, as in [34], |D̂| = V |Λ|V T if D̂ has a spectral decomposition V ΛV T . Then, |D̂|
has a Cholesky factorization L|D̂|L

T
|D̂|

since it is positive definite. Setting L := L̂L|D̂| and

multiplying (3.2) from the left with L−1 and inserting I = L−TLT , we obtain the system
Ax = b, where A = L−1ÂL−T , x = LT x̂ and b = L−1b̂. We note that A can be split as

A = (L−1
|D̂|
D̂L−T
|D̂|
− I)︸ ︷︷ ︸

Mr

+(I + L−1ĴL−T︸ ︷︷ ︸
J

),
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where the rank ofMr is equal to the number of negative eigenvalues of D̂, which is expected
to be very small, and I+J is a shifted skew-symmetric matrix. Furthermore,Mr is symmetric
and block-diagonal with only a few nonzero blocks of size either 1× 1 or 2× 2, and is of rank
r � n. The 1× 1 blocks have the value −2, and the 2× 2 blocks have eigenvalues {−2, 0}.
Due to the (almost) diagonal and low-rank structure ofMr, it is easy to obtain a symmetric
low-rank decomposition

(3.3) Mr = UrΣrU
T
r ,

where Σr = −2Ir and Ur is a sparse (with either one or two nonzero entries per column) n×r
orthogonal matrix. A pseudocode for computing such low-rank decomposition is presented in
Algorithm 1.

Algorithm 1 Sparse low-rank decomposition ofMr = UrΣrU
T
r .

Input:Mr ∈ Rn×n, r (rank ofMr), Ind (set of indices of nonzeros ofMr)
Σr ← 0, Ur ← 0, U ← 0
i← 1, j ← 1
M′r ←M∇(Ind, Ind)
while (i < r) do

if (M′r(i, i+ 1) = 0) then
Σr(j, j)←M′r(i, i)
U(:, j)← ei
i← i+ 1

else
Compute the eigenpair {λ2, v2} ofM′r(i : i+ 1, i : i+ 1)
Σr(j, j)← λ2
U(:, j)← [ei, ei+1]v2
i← i+ 2

end if
j ← j + 1

end while
if (i = r) then

Σr(j, j)←M′r(i, i)
U(:, j)← ei

end if
Ur(Ind, :)← U
Output: Ur ∈ Rn×r,Σr ∈ Rr×r

The cost of this last step is O(r) arithmetic operations since it only needs to work with a
submatrix ofMr corresponding to the indices of the nonzero entries. Using this factorization,
we obtain A = UrΣrU

T
r + S, where S = I + J , so that A is a shifted skew-symmetric

matrix with a low-rank perturbation. Using the Sherman-Morrison-Woodbury formula [13],
we theoretically have the exact inverse

A−1 = S−1 − S−1Ur(Σ−1r + UT
r S−1Ur)

−1
UT
r S−1,

which can be applied to the right-hand side vector b to obtain x, by solving only shifted
skew-symmetric linear systems.

In practice, for large-scale sparse systems, it is too expensive to compute the full LDLT

factorization of M̂ . Instead, an incomplete factorization M̃ = L̃D̃L̃T can be utilized together
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with the Cholesky factorization of |D̃| = L|D̃|L
T
|D̃|

, where L̃ = L̃L|D̃|. This leads to a
modified system,

L̃−1ÂL̃−T L̃T x̂ = L̃−1b̂,

which then is solved iteratively using a Krylov subspace method with the preconditioner

(3.4) P = (L−1
|D̃|
D̃L−T
|D̃|
− I)︸ ︷︷ ︸

M̃r

+(I + L̃−1ĴL̃−T︸ ︷︷ ︸
J̃

)

or alternatively, if r is zero, with a preconditioner

(3.5) P = S̃ = I + J̃ .

One can in principle even apply P−1 exactly as described earlier. However, in a practical
implementation utilizing S̃−1 via a direct solver is expensive. Therefore one can apply it
inexactly by solving shifted skew-symmetric systems iteratively, where the coefficient matrix
is S̃. This gives rise to an inner-outer iterative scheme. In addition to solving a shifted
skew-symmetric system (where the coefficient matrix does not have to be formed explicitly)
with a single right-hand side vector, applying P−1 requires sparse matrix-vector/vector-vector
operations, the solution of a dense r × r system, as well as the one-time cost of computing a
low-rank decomposition of M̃r = ŨrΣ̃rŨ

T
r and solving a shifted skew-symmetric system

with multiple right-hand side vectors. The convergence rate of the outer Krylov subspace
method depends on the spectrum of the preconditioned coefficient matrix P−1L̃−1ÂL̃−T . The
incomplete factorization of M̂ is an approximation such that M̂ = L̃D̃L̃T +E, where E is a
small-norm error matrix. Assuming that we apply P−1 exactly, the preconditioned coefficient
matrix is P−1L̃−1ÂL̃−T = I+P−1L̃−1EL̃−T . Due to the sparse ASSS preconditioning step,
M̂ is already close to the identity and Ĵ is dominant. Therefore, the norm of the perturbation
of the preconditioned matrix from the identity (‖P−1L̃−1EL̃−T ‖) is expected to be small.

3.1. Solution of sparse shifted skew-symmetric systems. An application of the de-
scribed preconditioners involves the solution of linear systems, where the coefficient matrix
I+J̃ is shifted skew-symmetric. Specifically, we are interested in the iterative solution of such
systems. While general algorithms such as Biconjugate Gradient Stabilized (BiCGSTAB) [33],
Generalized Minimal Residual (GMRES) [27], Quasi-Minimal Residual (QMR) [12], and
Transpose-Free Quasi-Minimal Residual (TFQMR) [11] can be used, there are some itera-
tive solvers available for shifted skew-symmetric systems such as CGW [5, 29, 35] and the
Minimal Residual Method for Shifted Skew-Symmetric Systems (MRS) [19, 22]. We use
MRS since it has a short recurrence and satisfies an optimality property. Furthermore, MRS
requires only one inner product per iteration [19], which would be a great advantage if the
algorithm is implemented in parallel since inner products require all-to-all reduction operations
which create synchronization points. In addition to shifted skew-symmetric systems with
one right-hand side vector, we also need to solve such systems with multiple right-hand side
vectors. As far as we know, there is currently no “block” MRS available.

Even though block Krylov methods are more amenable to breakdown, there are also ways
to avoid the breakdown (for example, block-CG; see [21]). We instead implemented a version
of the MRS algorithm based on simultaneous iterations for multiple right-hand side vectors,
which is given in Appendix B. In the proposed scheme, the convergence rate of the MRS
iteration depends on the spectrum of the shifted skew-symmetric coefficient matrix I + J̃ .
In the next section, we propose a technique for improving this spectrum while preserving its
shifted skew-symmetry.
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3.2. Improving the spectrum of shifted skew-symmetric systems via deflation. One
disadvantage of the MRS algorithm is that if a preconditioner is used, then the preconditioned
system should also be shifted skew-symmetric, which might not be easy to obtain. Therefore,
we propose an alternative deflation strategy to improve the number of iterations of MRS. For a
shifted skew-symmetric system

(3.6) (I + J̃ )z = y,

we eliminate the extreme eigenvalues of I + J̃ by applying k iterations (k � n) of the
skew-Lanczos process on J̃ ; see [16, 19, 22]. A pseudocode for this procedure is presented in
Algorithm 2.

Algorithm 2 Skew-Lanczos procedure.

Input: J̃ ∈ Rn×n (J̃ = −J̃ T ) and k.
Let q1 be an arbitrary vector ∈ Rn

q1 ← q1/‖q1‖2
z ← J̃ q1
α1 ← ‖z‖2
if α1 6= 0 then
q2 ← −z/α1

for i = 2 to k − 1 do
z ← J̃ qi − αi−1qi−1
αi ← ‖z‖2
if αi = 0 then

break
end if
qi+1 ← −z/αi

end for
end if
Output: Qk = [q1, q2, . . . , qk] ∈ Rn×k and τ = [α1, α2, . . . , αk−1]T ∈ Rk−1

Considering the resulting matrices

Sk =


0 α1 0

−α1
. . . . . .
. . . . . . αk−1

0 −αk−1 0

 , Qk =
[
q1, q2, . . . , qk

]
,

we deflate the system in (3.6) by forming

[(I + J̃ )−QkSkQ
T
k +QkSkQ

T
k ]z = y

so that QT
k J̃Qk = Sk, where Qk is n × k with QT

kQk = I and Sk is a tridiagonal skew-
symmetric k× k matrix. Let J̄ = J̃ −QkSkQ

T
k , which is still skew-symmetric and in which

the largest (in modulus) eigenvalues have been set to zero. Then the system in (3.6) can be
written as a low-rank perturbation of a shifted skew-symmetric system

[(I + J̄ ) +QkSkQ
T
k ]z = y,
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which can be handled again by the Sherman-Morrison-Woodbury formula. In fact, this
low-rank perturbation can be combined with the low-rank perturbation in (3.4), i.e., the
preconditioner P can be rewritten as

(3.7) P =
[
Qk, Ũr

] [Sk

Σ̃r

] [
QT

k

ŨT
r

]
+ S̄,

where S̄ = I + J̄ . Then, the preconditioner can be applied directly as via

(3.8) P−1 = S̄−1 − S̄−1Ūr+k(Σ̄r+k + ŪT
r+kS̄−1Ūr+k)

−1
ŪT
r+kS̄−1,

where Ūr+k =
[
Qk, Ũr

]
and Σ̄r+k =

[
Sk

Σ̃r

]
. Note that P is the same preconditioner

as in (3.4) except that the perturbation is of rank r + k now and the shifted skew-symmetric
matrix (S̄) has a better spectrum; see Section 4.4.

4. Numerical results.

4.1. Implementation details for the numerical experiments. As a baseline of compar-
ison, we implemented a robust general iterative scheme that was proposed in [3]. It uses the
permutation and scalings given in (2.1) followed by a symmetric permutation. We use Reverse
Cutthill-McKee (RCM) reordering since RCM reordered matrices have better robustness in
subsequent applications of ILU-type preconditioners [3]. After the symmetric permutation,
we use ILU preconditioners with no fill-in (ILU(0)), with pivoting and threshold of 10−1

(ILUTP(10−1)) and 10−2 (ILUTP(10−2)), of MATLAB. We call this method MPS-RCM, and
it is implemented in MATLAB R2018a.

Our new method is also implemented in MATLAB R2018a in two stages: preprocessing
and iterative solution. In the preprocessing stage, we obtain the sparse ASSS preconditioner,
where we just need the coefficient matrix to obtain the permutation and scalings by calling
HSL-MC64 via its MATLAB interface. This is followed by solving the LLS problem in (2.4),
which we do directly via the MATLAB backslash operation. Then, we compute an incomplete
Bunch-Kaufman-Parlett factorization of M̂ via the MATLAB interface of the sym-ildl software
package [15]. We use its default parameters except that we disable any further scalings. Similar
to ILUTP, we use thresholds of 10−1 and 10−2 and allow any fill-in, and, similar to ILU(0), we
allow as many nonzeros as the original matrix per column with no threshold-based dropping.
We call these methods ILDL(10−1), ILDL(10−2), and ∼ILDL(0), respectively. We compute
the low-rank factorization in (3.3) and apply a few steps of the skew-Lanczos process to deflate
the shifted skew-symmetric part of the coefficient matrix. Finally, we iteratively solve the
shifted skew-symmetric linear system of equations that arise in (3.8) with multiple right-hand
side vectors via MRS,

S̄X = Ūr+k,

and form the (r + k)× (r + k) dense matrix

Σ̄r+k + ŪT
r+kS̄−1Ūr+k

explicitly. All of these preprocessing steps do not require the right-hand side vector, and they
are done only once if a sequence of linear systems with the same coefficient matrix but with
different right-hand side vectors needs to be solved.

After preprocessing, the linear system of equation in (3.2) is solved via a Krylov subspace
method with the preconditioner in (3.7). At each iteration of the Krylov subspace method,
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the inverse of the preconditioner is applied as in (3.8). This requires the solution of a shifted
skew-symmetric linear system. We use the MRS method for those shifted skew-symmetric
systems.

For the outer Krylov subspace method, some alternatives are BiCGSTAB, GMRES, and
TFQMR, even though they often behave almost the same [3], GMRES requires a restart
parameter that defies our objective toward obtaining a black-box solver and BiCGSTAB has
erratic convergence. Alternatively, TFQMR has a smoother convergence and does not require
restarting. We observe that TFQMR can stagnate, which is also noted in [36]. Therefore,
as a challenge for our new approach, we use TFQMR for both our proposed scheme and
MPS-RCM. The stopping criterion for TFQMR is set to 10−5, and for the inner MRS iterations
of the proposed scheme, we use the same stopping criterion. The right-hand side is determined
from the solution vector of all ones.

We note that even though we use MATLAB’s built-in functions as much as possible in
implementing the proposed iterative scheme, MPS-RCM is entirely using the built-in functions
of MATLAB or efficient external libraries. Therefore, no fair comparison in terms of the
running times in MATLAB is currently possible. An efficient and parallel implementation
of the proposed scheme requires a lower-level programming language such as C/C++ due to
the low-level algorithmic and data structural details that need to be addressed efficiently. For
example, the proposed scheme needs efficient accessing of rows and columns of a sparse matrix.
At first glance, one might tend to store the matrix both in Compressed Sparse Row and Column
formats, however, this approach is doubling the memory requirement. Therefore, a new storage
scheme without much increase in the memory requirements is needed. Also, efficient and
parallel implementation of sparse matrix-vector multiplications, where the coefficient matrix
is symmetric (and shifted skew-symmetric) and parallel sparse triangular backward/forward
sweeps are challenging problems. These are still active research areas by themselves [1, 6].
Therefore, we leave these issues as future work and focus on the robustness of the proposed
scheme in MATLAB.

4.2. Test problems. In this section we give the selection criterion and describe the
matrices that we use for numerical experiments. MPS-RCM makes incomplete LU -based
preconditioned iterative solvers very robust. Therefore, to identify the most challenging
problems, we use MPS-RCM to choose a highly indefinite and challenging set of 10 problems
from the SuiteSparse Matrix Collection [7], in which at least one instance of MPS-RCM
fails due to failure of incomplete factorization or stagnation of the Krylov subspace method.
Properties of the test problems and their sparsity plots are given in Table 4.1 and Figure 4.1,
respectively. All chosen problems are (numerically) nonsymmetric, and only a few of them are
structurally symmetric. Here, structural symmetry means that if the element (i, j) is nonzero,
then the element (j, i) is also nonzero. (The sparsity pattern of the matrix is symmetric.)
Numerical symmetry implies structural symmetry but not vice-versa.

The matrices Bp_200 and bp_600 come from a sequence of simplex basis matrices in
Linear Programming. West0989 and west1505 arise in a chemical engineering plant model
with seven and eleven stage column sections, respectively. Rajat19 is a circuit simulation
problem. Rdb1250l, rdb3200l, and rdb5000 occur in a reaction-diffusion Brusselator model.
Chebyshev2 is an integration matrix using the Chebyshev method for solving fourth-order
semilinear initial boundary value problems, and finally, Orani678 arises in the economic
modeling of Australia.

4.3. Effectiveness of the shifted skew-symmetrizer. The structure of the approximate
skew-symmetrizer (S) can be arbitrary. We experimented with a simple diagonal (Sd) and a
tridiagonal (St) structure. In Table 4.2, the dimensions and the number of nonzeros for the
LLS problem in (2.4) are given. After that, we obtain a shifted skew-symmetrized matrix
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TABLE 4.1
Size (n), number of nonzeros (nnz), structural symmetry (Struct. S.), numerical symmetry (Num. S.), and the

problem domains of the test problems.

Matrix n nnz Struct. S. Num. S. Problem Domain

bp_200 822 3802 – – Optimization
bp_600 822 4172 – – Optimization
west0989 989 3518 – – Chemical process simulation
rajat19 1157 3699 – – Circuit simulation
rdb1250l 1250 3802 X – Computational fluid dynamics
west1505 1505 5414 – – Chemical process simulation
chebyshev2 2053 18 447 – – Structural
orani678 2529 90 158 – – Economics
rdb3200l 3200 18 880 X – Computational fluid dynamics
rdb5000 5000 29 600 X – Computational fluid dynamics

(Â). To evaluate the effectiveness of the scaling and permutation followed by the approximate
skew-symmetrizer, we use three metrics: the skew-symmetry of the off-diagonals, the distance
of the main diagonal to the identity, and the condition number. In Table 4.3, we depict
these for the original matrix, for matrices after MC64 scaling and permutation, and for
those followed by applying Sd or St, which we call “Original”, “MC64”, “MC64+Sd”, and
“MC64+St”, respectively. As expected, for most cases MC64+St has successfully improved
the skew-symmetry of the off-diagonal part compared to the original matrix. One exception is
chebyshev2, which has a condition number of order 1015, and MC64+St has improved both
the condition number and the main diagonal. For all test problems, MC64+St has improved
the main diagonal, and for 8 of 10 cases, it has also improved the condition number compared
to the original matrix. In all cases, St improves the skew-symmetry of the off-diagonal part
and the diagonal compared to Sd except chebyshev2. The condition number becomes worse
for 6 cases out of 10 using St. However, this is not an issue since we further precondition the
system in our proposed method.

The spectra of the original, reordered, and skew-symmetrized matrices are given in
Figure 4.2. St (shown in red) does a better job moving the real part of most eigenvalues to the
right half complex plane and clustering them around one, compared to Sd. Therefore, in the
following numerical experiments we use St.

4.4. Effectiveness of the deflation. In Figure 4.3, we present the spectrum of the original
I + J̃ (by using incomplete LDLT factorization of Ĥ with zero fill-in) and of the deflated
shifted skew-symmetric I + J̄ after 10, 20, and 50 iterations of the skew-Lanczos process
for all test matrices. We note that the scale of the real axis is negligible for all cases and the
spectrum is purely imaginary. Even though case-by-case fine-tuning is possible by looking at
the spectra, we observe that deflating with 20 vectors gives a meaningful balance between the
number of iterations and the orthogonality between the Lanczos vectors for the test problems
since for 50 vectors the spectrum is worse and for 10 vectors it does not improve it as much as
for 20 vectors. Therefore, in the following experiments, we use 20 skew-Lanczos vectors.

4.5. Iterative solution of general sparse linear systems. In the following numerical
experiments we use the proposed method as described earlier. For the proposed method,
the number of Lanczos vectors is set to 20. Compared to the nondeflated version of the
proposed method, the number of MRS iterations is 30.8 % lower on average when the inner
system is deflated with 20 Lanczos vectors for the test problems. We have also experimented
with the skew-Lanczos method with full reorthogonalization for 20 Lanczos vectors and the
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(a) bp_200 (b) bp_600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

FIG. 4.1. Sparsity structures of the test matrices.

improvement in the number of iterations is negligible for the test problems. Since it is used
just as a preconditioner, we believe that in general it may not be necessary in the skew-Lanczos
process to fully or partially reorthogonalize. Therefore, we only report the proposed method
with deflation using 20 Lanczos vectors without any reorthogonalization.

In Table 4.4, the exact ranks of M̃r for various incomplete factorizations as well as the
percentages of the rank with respect to the matrix dimension are given. For the set of test
problems, the largest one is 56, which is only 3.7 % of the matrix dimension. They are roughly
invariant for incomplete factorization for all problems except rdbl1250l. For the cases when the
rank is zero, we use the preconditioner in (3.5); otherwise we use the preconditioner in (3.4).
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TABLE 4.2
Number of rows (nz + n), columns (nnz(S)), and nonzeros (nnz) of the coefficient matrix in the LLS problem

(2.4) associated with the test problems.

Sd St

Matrix nz + n nnz(Sd) nnz nz + n nnz(St) nnz

bp_200 3727 822 3802 8131 2464 11 404
bp_600 4007 822 4172 9604 2464 12 514
west0989 3491 989 3518 7529 2965 10 549
rajat19 3425 1157 3699 7422 3469 11 095
rdb1250l 4275 1250 7300 8570 3748 21 892
west1505 5382 1505 5414 11 598 4513 16 237
chebyshev2 14 344 2053 18 447 20 481 6157 55 331
orani678 87 358 2529 90 158 11 852 7585 270 465
rdb3200l 11 040 3200 18 880 22 115 9598 56 632
rdb5000 17 300 5000 29 600 34 645 14 998 88 792

We have also experimented with the preconditioner in (3.5) for problems where the rank is
not zero but relatively small. However, the number of iterations has increased significantly
even for the case where the rank is equal to one (rdbl3200l with ILDL(10−2)). We have tried
to solve the LLS problem with the regularization parameters (2.5) γ = 0.1, 1, and 10. Since
γ = 0.1 and 10 are worse in terms of the number of iterations, we only report the results with
γ = 1.

In Table 4.5, the number of TFQMR iterations for the proposed method and MPS-RCM
are given. For the proposed method, we also give the average number of inner iterations
in parenthesis. As seen in the table, for all test problems and regardless of the choice of
the dropping tolerance, the proposed method succeeds. On the other hand, MPS-RCM fails
for 80 %, 90 %, and 20 % of the problems using ILU(0), ILUTP(10−1), and ILUTP(10−2),
respectively. For ILU(0) the majority of the failures are due to TFQMR stagnating. For
ILUTP(10−1) it happens because of a zero pivot is encountered during factorization. As
expected, when the dropping tolerance decreases to 10−2, the number of failures decreases
since the incomplete factorization is more like a direct solver. Hence, MPS-RCM becomes
more robust. When it does not fail, the required number of TFQMR iterations for MPS-RCM
is quite low except for rdb5000. The proposed method, on the other hand, is robust regardless
of the quality of the incomplete factorization for the test problems. There are no failures during
the incomplete factorization and no failures of the iterative scheme. The required number of
TFQMR iterations improves as a more accurate incomplete factorization is used. The number
of iterations if ILDL(10−2) is used are comparable to those obtained by MPS-RCM with
ILUTP(10−2). Except for two cases (rdb3200l and rdb5000) for which the proposed method
is significantly better and for two other cases (orani678 and rdb1250l) for which MPS-RCM is
significantly better. For the proposed method, the number of average inner MRS iterations is
not dependent on the choice of the incomplete factorization for all test problems except for
rdb1250l; in this case, it is almost halved when ILDL(10−1) is used compared to ∼ILDL(0)
and ILDL(10−2). We believe this is due to the fact that for the same matrix using ILDL(10−1),
the rank of M̃r is 1, which is much smaller than those of ∼ILDL(0) and ILDL(10−1) (36
and 26, respectively).

5. Large scale problems. We have introduced a general-purpose black-box scheme
and shown that it is robust. There are, however, additional storage and computational costs
associated with forming and solving a large LLS problem for computing ASSS, and depending
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(a) bp_200 (b) bp_600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

FIG. 4.2. Spectrum of the original matrix after applying MC64 and shifted skew-symmetrizers.

on the sparsity structure of the preconditioner, ASSS might introduce additional fill-in. These
costs can be amortized not only if multiple linear systems with the same coefficient matrix
have to be solved, but also significantly reduced for problems in which the coefficient matrix is
shifted skew-symmetric or very close to shifted skew-symmetric form. To illustrate this point,
we study the effectiveness of the proposed method for large-scale problems that arise in interior-
point optimizations. The matrices are obtained from the SuiteSparse Matrix Collection [7]
from a matrix set called Schenk_I BMNA. These systems arise in damped Newton iteration
while solving an interior-point optimization problem [28]. The coefficient matrices of the
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TABLE 4.3
The effect of MC64 and the shifted skew-symmetrizer. In the table Skew-symmetry, Diagonal and Cond denote

‖(X − XT )/2‖F /‖X − D(X)‖F , ‖D(X) − I‖F and the condition number of X , respectively and rounded
to one decimal place where X is either the original matrix after applying MC64, MC64 followed by Sd or MC64
followed by St in which Sd and St are diagonal and tridiagonal shifted skew-symetrizers, respectively.

Matrix Original MC64 MC64+Sd MC64+St

bp_200
Skew-symmetry 70.7 % 71 % 70.7 % 86.2 %
Diagonal 28.7 35.8 12.2 11.6
Cond 6.4× 106 4.0× 102 4.8× 102 1.0× 104

bp_600
Skew-symmetry 70.7 % 70.7 % 71.3 % 74.8 %
Diagonal 28.7 36.6 13.2 12.7
Cond 1.5× 106 3.2× 102 3.5× 102 7.8× 103

west0989
Skew-symmetry 70.7 % 70.7 % 70.7 % 100 %
Diagonal 2.3× 104 28.8 13.4 12.6
Cond 9.9× 1011 6.7× 103 8.3× 103 9.3× 105

rajat19
Skew-symmetry 28.4 % 67.1 % 68.1 % 83.4 %
Diagonal 33.9 29.5 11.9 9.8
Cond 1.1× 1010 2.3× 1010 1.1× 1011 5.7× 1010

rdb1250l
Skew-symmetry 49 % 56.2 % 55.4 % 97.9 %
Diagonal 690.8 70.7 17.2 9.8
Cond 4.7× 102 4.9× 102 3.6× 102 3.1× 102

west1505
Skew-symmetry 70.7 % 70.7 % 70.7 % 100 %
Diagonal 2.3× 104 35.9 16.6 15.7
Cond 1.6× 1012 8.8× 103 1.1× 104 1.2× 106

chebyshev2
Skew-symmetry 70.7 % 11.8 % 7.6 % 37.4 %
Diagonal 898.5 3.5 21.9 21.9
Cond 5.5× 1015 8.6× 109 2.9× 1010 1.5× 1010

orani678
Skew-symmetry 70.7 % 70.8 % 70.6 % 100 %
Diagonal 53.5 97.5 15.2 15.1
Cond 9.6× 103 7.5× 103 1.2× 104 6.4× 106

rdb3200l
Skew-symmetry 21.9 % 27.9 % 27.1 % 99.7 %
Diagonal 2.5× 103 113.1 20.6 12
Cond 1.1× 103 9× 102 8.2× 102 7.3× 102

rdb5000
Skew-symmetry 14.4 % 18.3 % 17.9 % 99.9 %
Diagonal 4.8× 103 141.4 24.6 14.1
Cond 4.4× 103 3× 103 2.8× 103 3.6× 103

linear systems (3.1) are symmetric indefinite of size n× n with the 2× 2 block structure [28]

A =

[
D1 B
BT −D2

]
,

where D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 are diagonal positive definite and B ∈ Rn1×n2 .
These systems are not easy to solve neither directly [28] nor iteratively [17]. We select
a representative subset that consists of the three largest problems, and their properties are
given in Table 5.1. A sparsity plot of the largest coefficient matrix (c-big) is provided in
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TABLE 4.4
Rank of M̃r and its percentage with respect to the matrix dimension ( r

n
× 100) rounded to one decimal place

in parenthesis.

Matrix ∼ILDL(0) ILDL(10−1) ILDL(10−2)

bp_200 33 (4 %) 32 (3.8 %) 32 (3.8 %)
bp_600 48 (5.8 %) 46 (5.6 %) 45 (5.5 %)
west0989 35 (3.5 %) 32 (3.2 %) 35 (3.5 %)
rajat19 38 (3.3 %) 38 (3.3 %) 38 (3.3 %)
rdb1250l 36 (2.9 %) 1 (0.1 %) 26 (2.1 %)
west1505 54 (3.6 %) 55 (3.7 %) 56 (3.7 %)
chebyshev2 5 (2 %) 7 (0.3 %) 7 (0.3 %)
orani678 19 (0.8 %) 26 (1 %) 28 (1.1 %)
rdb3200l 0 (0 %) 0 (0 %) 1 (0 %)
rdb5000 0 (0 %) 0 (0 %) 0 (0 %)

TABLE 4.5
Number of TFQMR iterations. The average number of inner MRS iterations for the proposed method rounded

to one decimal place is given in parenthesis. ∗: TFQMR stagnated, †: TFQMR reached the maximum number of
iterations (2000) without reaching the required relative residual, ‡: zero pivot is encountered during factorization.

Proposed method MPS-RCM
Matrix ∼ILDL(0) ILDL(10−1) ILDL(10−2) ILU(0) ILUTP(10−1) ILUTP(10−2)

bp_200 26(53.6) 88(54.4) 3(55.8) † ‡ 2
bp_600 15(65.7) 33(66.6) 4(67) † ‡ 2
west0989 74(134.6) 45(106.9) 3(105.5) ∗ 20 1
rajat19 10(35.6) 46(35.8) 17(35.2) ‡ ‡ ‡
rdb1250l 90(66.7) 10(37.1) 49(71.8) ∗ ‡ 10
west1505 57(162.9) 75(166.9) 1(163) † ‡ 1
chebyshev2 10(15.9) 15(12) 14(15.6) 1 ‡ ‡
orani678 15(229.3) 13(235.9) 12(249) 15 ‡ 4
rdb3200l 9(63.6) 15(61) 3(69.1) ∗ ‡ 20
rdb5000 8(100.6) 16(101.5) 6(100.9) ∗ † 129

Figure 5.1; all matrices in the set have a similar sparsity structure. The application of the
ASSS preconditioner is strongly simplified by multiplying both sides of (3.1) from the left by[

In1×n1
0

0 −In2×n2

]
and obtaining the modified system Âx̂ = b̂, where x̂ = x,

Â =

[
D1 B
−BT D2

]
,

and, if bT = [bT1 , b
T
2 ] (b1 and b2 are vectors of size n1 and n2, respectively), then b̂T =

[bT1 ,−bT2 ]. As in Section 3, we consider splitting the coefficient matrix into it symmetric and
skew-symmetric parts Â = M̂ + Ĵ , where

M̂ =

[
D1 0
0 D2

]
, Ĵ =

[
0 B
−BT 0

]
.

Here, M̂ is not only positive definite but also a diagonal matrix. The rest of the proposed
method proceeds as described in Section 3, except that, with M̂ being a diagonal matrix, one
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(a) bp_200 (b) bp_600 (c) west0989

(d) rajat19 (e) rdb1250l (f) west1505

(g) chebyshev2 (h) orani678 (i) rdb3200l

(j) rdb5000

FIG. 4.3. Spectrum of the original skew-symmetric matrix and after deflation.

can compute its full Cholesky factorization M̂ = L̂L̂T with a cost of only O(n) arithmetic
operations. Then, we solve the modified system (I + L̂−1Ĵ L̂−T )L̂T x̂ = L̂−1b̂ iteratively
via TFQMR using the preconditioner P̂ = I + L̂−1Ĵ L̂−T , where the systems involving the
preconditioner are solved via MRS. Since the preconditioner is exact, instead of deflating to
improve the convergence rate, we relax the inner stopping criterion and stop the inner iterations
if the norm of the relative residual is smaller than εin. For comparison, we use MPS-RCM with
ILU and ILUTP preconditioners (as described in Section 4.1). Since the coefficient matrix is
symmetric, we use an incomplete LDLT factorization as preconditioner; we call this method
ILDL. For the incomplete LU and LDLT factorizations, we use the MATLAB implementation
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TABLE 5.1
Size (n), block sizes (n1 and n2), and number of nonzeros (nnz) of the large problems.

Matrix n n1 n2 nnz

c-big 345 241 201 877 143 364 2 340 859
c-73 169 422 86 417 83 005 1 279 274
c-73b 169 422 86 417 83 005 1 279 274

and the sym-ildl package [15], respectively, with their default parameters, but we vary the
dropping threshold. We use the same stopping criterion of 10−5 as in Section 4.1 for the outer
(TFQMR) iterations for all solvers. We obtain the following results on a server with 4 ×
2.3 GHz AMD Opteron 6376 processors, where each processor has 16 cores (64 cores total)
with a total 128 GB of memory and using MATLAB R2019b. We obtain the timing results as
the sole user of the server. In Table 5.2, the number of iterations are given for the proposed
method, MPS-RCM and ILDL. The methods MPS-RCM and ILDL fail in 5 cases each, while
our new method converges in all cases even when the inner stopping tolerance is 10−1. The
failure of MPS-RCM is due to encountering a zero pivot during the incomplete factorization,
and for ILDL it is due to either TFQMR stagnating or reaching the maximum number of
iterations (10 000) without converging. MPS-RCM requires fewer iterations than ILDL. The
amount of additional storage required by each solver for the full and incomplete factors are
given in Table 5.3, where MPS-RCM requires more memory compared to ILDL, while the
new method does not need any additional incomplete factorizations for these problems. For
comparison, we include a direct solver (sparse full LDLT factorization) that is available in
MATLAB. It is chosen automatically by the MATLAB backslash operation if the input matrix
is sparse symmetric and indefinite. Before computing the sparse LDLT factorization, we
apply the MATLAB symmetric approximate minimum degree reordering. We also compare
the required solution time for each of these methods in Table 5.4. Total run times (including
any reordering, scaling, factorization, and iterative or triangular solution time) reported in the
table are the average of 5 runs. Generally, the run times are proportional to the number of
nonzeros in the factors and the number of iterations except for MPS-RCM with ILUPT(10−2),
where the number of nonzeros of the incomplete factors are lower for c-73 compared to c-73b,
but the required solution time is higher since the computation of the incomplete factorization
requires more time even though the resulting factors are sparser. As expected, the direct solver
is faster for smaller problems, while for the largest problem (c-big) the new method is the
fastest.

6. Conclusions. A robust two-level iterative scheme has been presented for solving
general sparse linear system of equations. The robustness of the scheme is shown on challeng-
ing matrices that arise in various problems which are obtained from the SuiteSparse Matrix
Collection. While it requires some additional preprocessing steps, the results presented in
this paper indicate that the proposed scheme significantly improves the robustness of iterative
methods for general sparse linear systems compared to existing methods. This result holds
irrespectively of the quality of the incomplete factorization, even for a challenging set of test
problems. The proposed scheme requires some additional memory, but this is shown to be kept
within a small percentage of the problem size. Furthermore, for large-scale systems that arise
in interior-point optimizations, we show that the memory requirements of the proposed scheme
can be reduced without any degradation of its robustness. We believe that with the introduction
of the proposed scheme, iterative solvers will become much more viable alternatives for
solving problems in chemical engineering, optimizations, economics, etc. Its efficient parallel
implementation requires addressing some algorithmic challenges which we leave as future
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FIG. 5.1. Sparsity structure of c-big.

TABLE 5.2
Number of TFQMR iterations. The average number of inner MRS iterations for the proposed method rounded

to one decimal place is given in parenthesis. ∗: TFQMR stagnated, †: TFQMR reached the maximum number of
iterations (10 000) without reaching the required relative residual, ‡: zero pivot is encountered during factorization.

Matrix c-big c-73 c-73b

New method εin = 10−1 2(786.4) 2(855.2) 2(2, 139.4)
εin = 10−2 1(2570.3) 1(2102) 2(4681.5)
εin = 10−3 1(3856.5) 1(3325) 1(4885.5)

MPS-RCM ILU(0) ‡ ‡ ‡
ILUTP(10−1) 56 ‡ ‡
ILUTP(10−2) 4 29 30

ILDL ILDL(10−1) † † †
ILDL(10−2) 1771 ∗ 960
ILDL(10−3) 2553 ∗ 303

TABLE 5.3
Number of nonzeros of the full and incomplete LU and LDLT factors (‡: indicates that a zero pivot is

encountered during factorization).

Matrix c-big c-73 c-73b

MPS-RCM ILU(0) ‡ ‡ ‡
ILUTP(10−1) 2 865 786 ‡ ‡
ILUTP(10−2) 8 744 791 3 734 670 6 822 622

ILDL ILDL(10−1) 1 421 973 944 198 773 600
ILDL(10−2) 3 299 471 1 224 634 1 103 864
ILDL(10−3) 4 267 310 1 254 394 1 278 301

Direct LDLT 37 378 804 2 143 127 1 919 452
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TABLE 5.4
Total time (seconds) rounded to one decimal place. for each entry the method is executed 5 times and the average

running time is reported. Numbers in bold indicate the best time. ∗: TFQMR stagnated, †: TFQMR reached the
maximum number of iterations (10 000) without reaching the required relative residual, ‡: zero pivot is encountered
during factorization.

Matrix c-big c-73 c-73b

New method εin = 10−1 55.7 34.6 85.3
εin = 10−2 112.9 47.9 139.9
εin = 10−3 115.2 51.5 74.4

MPS-RCM ILU(0) ‡ ‡ ‡
ILUTP(10−1) 62.8 ‡ ‡
ILUTP(10−2) 1162.4 105.4 33.8

ILDL ILDL(10−1) † † †
ILDL(10−2) 2092.4 ∗ 106.7
ILDL(10−3) 2979.0 ∗ 39.9

Direct LDLT 65.5 2.0 2.0

work.
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Appendix A. Shifted skew-symmetrizer MATLAB code.
1 function S = skew_symmetrize_sparse_right(A, n, gamma, S)
2
3 AA = spones(A) * spones(S);
4
5 U = triu(AA + AA’,1);
6
7 neq = nnz(U);
8
9 [I, J] = find(U);

10
11 II = find(S);
12
13 nu = length(II);
14
15 S(II) = [1:nu];
16
17 B = sparse(neq + n, nu);
18
19 for i = 1:neq
20 ASij = spones(A(I(i), :))’.* spones(S(:,J(i)));
21 ASji = spones(A(J(i), :))’.* spones(S(:,I(i)));
22
23 INDij = find(ASij);
24 B(i, S(INDij, J(i))) = A(I(i), INDij);
25
26 INDji = find(ASji);
27 B(i, S(INDji, I(i))) = A(J(i), INDji);
28 end
29
30 for i = 1:n
31 ASii = spones(A(i, :))’.* spones(S(:,i));
32 INDii = find(ASii);
33 B(i + neq, S(INDii, i)) = sqrt(gamma) * A(i, INDii);
34 end
35
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36 v = [zeros(neq, 1); sqrt(gamma) * ones(n, 1)];
37
38 x = B \ v;
39
40 S(II) = x;
41
42 return

Appendix B. Shifted skew-symmetric iterative solver for multiple right-hand side
vectors based on simultaneous MRS iterations.
1 function [x, its, res, relres_hist] = mrs(alpha, S, b, maxit, tol)
2
3 [n, nrhs] = size(b)
4
5 x = zeros(n, nrhs);
6 r = b;
7
8 for j = 1:nrhs
9 r0(j) = norm(r(:, j), 2);

10 relres_hist(j) = [r0(j) / r0(j)];
11 s(j) = r0(j);
12 q(:, j) = r(:, j) / s(j);
13 beta(j) = 0;
14 theta1(j) = alpha;
15 c_old(j) = 1;
16 s_old(j) = 0;
17 delta(j) = 0;
18 delta_old(j) = 0;
19 end
20 q_old = zeros(n, nrhs);
21 p_old = zeros(n, nrhs);
22 p_old2 = zeros(n, nrhs);
23
24 for i = 1:maxit
25 q_new = S * q + q_old * diag(beta);
26 q_old = q;
27 for j = 1:nrhs
28 beta(j) = norm(q_new(:, j), 2);
29 if (beta(j) = 0)
30 q(:, j) = q_new(:, j) / beta(j)
31 end
32 end
33 theta = sqrt(theta1.* theta1 + beta.* beta);
34 c_k = theta1./ theta;
35 s_k = beta./ theta;
36 delta = - s_old.* beta;
37 theta1 = c_old.* theta;
38
39 p = (q_old - p_old2 * diag(delta_old)) * diag(1./ theta);
40
41 x = x + p * diag(s) * diag(c_k);
42 s = - s.* s_k;
43
44 relres_hist = [relres_hist; abs(s)./ r0];
45
46 if (max(abs(s)./ r0) < tol)
47 its = i
48 for j = 1:nrhs
49 res(j) = norm(b(:, j) - alpha * x(:, j) - S * x(:, j), 2);
50 end
51 relres = res./ r0;
52 break;
53 end
54
55 p_old2 = p_old;
56 p_old = p;
57 s_old = s_k;
58 c_old = c_k;
59 delta_old = delta;
60 end
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