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A MULTIGRID METHOD FOR ELASTO-HYDRODYNAMIC CONTACT
SIMULATIONS OF RADIAL SLIDER BEARINGS∗
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Abstract. The well-known Reynolds equation is typically used to compute the pressure distribution for elasto-
hydrodynamic contacts of parts, as, for instance, in radial slider bearings. In order to resolve local pressure phenomena
like edge loading, a higher spatial resolution is needed. This causes problems for stationary solvers, like Gauss-Seidel
iteration, which are well suited for the occurring nonlinearities. These problems can be overcome by applying
multigrid methods. Since the Reynolds equation is nonlinear, expensive nonlinear multigrid methods are expected
to be required. This paper introduces an approach to combine a linear multigrid method with a Gauss-Seidel solver
on the finest level, which yields a similar convergence behavior as a nonlinear multigrid method but at much lower
computational cost. The formulations are general so that analogous applications of the Reynolds equation, as, for
instance, for axial slider bearings or hydrodynamic piston-liner contacts, are straightforward.
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1. Introduction. Lubricated slider bearings of different types are an essential part of
various mechanisms. Applications can be found, for instance, in power plants, pumps,
transmissions, internal combustion engines, and turbo chargers. Probably the most common
type is the radial slider bearing, which is used as a model problem in this paper. The transient
simulation of such a bearing is an important task during the development process of the
mentioned mechanisms, targeting friction power loss, wear, acoustic excitation, as well as
the overall lubrication system. Nonlinear structural properties of the contact parts of journal
and shell in combination with nonlinear fluid properties define the characteristic of a bearing.
Consequently, applied mathematical models have to consider the dynamics of the overall
flexible body system in addition to the detailed properties of the contacts and the lubricant
itself. For a general introduction, see [7].

The governing equation for the simulation of the hydrodynamic contact pressure distri-
bution is the Reynolds equation [2]. It yields the oil film pressure distributions over time.
An example of a computed 2D pressure distribution at a certain point of time is depicted in
Figure 1.1.

Typically, multiple radial slider bearings—and therefore multiple Reynolds equations—
have to be considered within a mechanism. Figure 1.2 illustrates a 3D physical model of a
1.9 L four-cylinder diesel inline engine with a bore of 80 mm and a stroke of 92.8 mm, as
in [7]. In this model 15 bodies and 27 hydrodynamic contacts are used, which leads in this case
to 27 Reynolds equations to be considered. The complexity of this physical model underlines
the requirement of a fast Reynolds solver. Moreover, the trend throughout the last years to
use higher spatial resolutions in order to resolve local phenomena like edge loading in the oil
supply further underlines this necessity.

The main task of this work is to develop a fast numerical solver for the discretized
Reynolds equation. A well-established method for this purpose is the multigrid method, which
can be formulated for linear as well as for nonlinear problems. For a general introduction
to multigrid methods, see [4] or [10]. In particular, nonlinear multigrid methods have been
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FIG. 1.1. Calculated hydrodynamic pressure distribution for the unrolled main bearing 2 of a 1.9 liter four-
cylinder diesel engine with a bore of 80mm and a stroke of 92.8mm at a crank angle of 280° (between the firing of
the two neighboring cylinders). The engine is running at 3000 rpm at full load.

FIG. 1.2. 1.9 liter four-cylinder diesel engine with a bore of 80mm and a stroke of 92.8mm.

investigated for instance by Bobach in the context of flexible bodies and for the Reynolds
equation (see [3]). In his work the Reynolds equation and the elastic body deformations are
directly coupled. Also, further nonlinearities like variable viscosity and density are considered.
The resulting system is therefore highly nonlinear, and a nonlinear multigrid method, like FAS,
is appropriate. This is associated with high computational costs since on every grid level a
nonlinear problem has to be formulated. Moreover, the necessary steps on each grid level are
nonlinear.

General multi-body system solvers are designed more modularly, which allows to solve
the Reynolds equation without a direct consideration of elasticity. Furthermore, oil viscosity
and density are assumed to be constant during one iteration of the Reynolds solver. Usually,
they are determined by a fixed-point iteration.

Hence, the Reynolds equation is linear once the lubrication and the cavitation domains
are fixed. This leads to the idea of using a nonlinear solver only on the finest grid and a linear
multigrid method to accelerate the global propagation of the solution. The multigrid method
used in this work is based on the combination of a geometric and an algebraic approach. The
coarse grids and the corresponding restriction and prolongation operators are constructed
geometrically. The coarse-grid matrices are constructed in an algebraic way using the Galerkin
approach. This approach is highly modular and easy to implement.
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2. The Reynolds equation. The Reynolds equation is a simplification of the Navier-
Stokes equations. It describes the fluid behavior in oil-lubricated contacts. The quantity of
interest is the fluid pressure p. The equation is given as follows (see [2]):

− ∂

∂x

(
α2 ∂p

∂x

)
− ∂

∂z

(
α2 ∂p

∂z

)
︸ ︷︷ ︸

Poisseuille term

+
∂

∂x
β︸︷︷︸

Couette term

+
∂

∂t
γ︸︷︷︸

Displacement term

= 0,(2.1)

where

− α2 := −ρh
3

12η
, β := ρh

∆v

2
, γ := hρ,

with the fluid density ρ, the fluid viscosity η, the height of the bearing gap h, and the relative
circumferential sliding velocity of the bearing surfaces ∆v. Without loss of generality, x is
the circumferential sliding direction, and z is the axial direction of the bearing. The terms can
be interpreted as follows:

• Poisseuille term: Describes the distribution of the pressure without outer influences.
• Couette term: Describes the alteration of the pressure distribution caused by the

mass flow due to shear forces.
• Displacement term: Describes the alteration of the pressure distribution due to a

change of the clearance height.

2.1. Cavitation. If the pressure in a fluid drops below a certain pressure (the caviation
pressure pcav), then parts of it will evaporate. Cavitation is the formation of vapor cavities
due to this process. One distinguishes between soft (evaporation of gases dissolved in the
liquid) and transient (evaporation of the liquid due to critically low pressure) cavitation. The
latter is of major interest in engineering because the vapor cavities formed this way implode
with increasing pressure. This leads to shock waves, which damage the bearing. The classical
Reynolds equation (equation (2.1)) does not describe the phenomenon of cavitation, and it may
lead to pressures below the cavitation pressure. A well-established mass conserving approach
including cavitation is the JFO model going back to Jakobsson, Floberg and Olson (see [5]
and [8]). In this approach it is assumed that the pressure in the cavitation areas is constant
(p = pcav). Thus, the pressure is given by

p = max{pcav, p}.

Under the assumption that the oil density is constant, the occurrence of cavitation means that
the gap is not fully filled. This motivates the introduction of the fill ratio

0 ≤ θ ≤ 1,

which indicates the percentage of the filled volume. This leads to the modified Reynolds
equation by substituting ρ by θρ:

− ∂

∂x

(
α2 ∂p

∂x

)
− ∂

∂z

(
α2 ∂p

∂z

)
︸ ︷︷ ︸

Poisseuille term

+
∂

∂x
(θβ)︸ ︷︷ ︸

Couette term

+
∂

∂t
(θγ)︸ ︷︷ ︸

Displacement term

= 0,(2.2)

where the coefficients α, β, γ are as in equation (2.1). In the lubrication area (no cavitation),
θ ≡ 1 holds, and the equation is solved for p. In the caviation area, p ≡ pcav holds, and
the equation is solved for θ. This requires knowledge of these areas, which is not existent
beforehand. So a solver for this equation has to determine two things: the location of the
areas and the pressure or fill ratio, respectively (see [2]). The coefficient α does not need to be
adapted since in areas where θ < 1 holds, the pressure is constant, and hence its derivative
vanishes.
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FIG. 2.1. 2D cell grid with cell numbering.
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FIG. 2.2. Notation for neighboring cells and edges.

2.2. Discretization of the Reynolds equation. The Reynolds equation is discretized
using the finite volume method assuming equidistant divisions in the circumferential and axial
directions. For this purpose, the two-dimensional domain is subdivided into rectangular cells
of size ∆x×∆z, where ∆x is the circumferential and ∆z the axial direction cell size (see
Figure 2.1). Without loss of generality, the Couette flow direction is assumed to be in the
positive x-direction.

Notation. Originating from the cell of interest P , the neighboring cells are denoted by
N,E, S,W , and the edges of the cell are denoted by n, e, s, w (see Figure 2.2).

For the finite volumes discretization, a mass flow vector is defined as

ṁ :=

(
−α2 ∂p

∂x + θβ

−α2 ∂p
∂z

)
.

Equation (2.2) is then equivalent to

−div ṁ =
∂

∂t
(θγ) .
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Integrating over the area of the ith cell Ci leads to∫
Ci

∂

∂t
(θγ) dA = −

∫
Ci

div ṁ dA =︸︷︷︸
Gaussian theorem

−
∫
∂Ci

〈ṁ, n〉ds,(2.3)

where n denotes the normal vector pointing to the exterior of Ci and 〈·, ·〉 denotes the standard
scalar product. The flow through an edge is approximated to be constant. This leads to∫

∂Ci

〈ṁ, n〉ds ≈ ∆z (ṁe
x − ṁw

x ) + ∆x (ṁn
z − ṁs

z) .

The left-hand side of equation (2.3) is approximated by∫
Ci

∂

∂t
(θγ) dA ≈ ∆x∆z

(
∂

∂t

(
θP γP

))
.

This yields

∆x∆z

(
∂

∂t

(
θP γP

))
︸ ︷︷ ︸

Displacement term

= ∆z (ṁe
x − ṁw

x ) + ∆x (ṁn
z − ṁs

z)︸ ︷︷ ︸
Poisseuille and Couette terms

.(2.4)

The occurring terms in equation (2.4) are discretized in the following way:
Poisseuille term. The Poisseuille term on an edge of the cell is discretized by geometric

averaging in α, which has proven in practice to be better than arithmetic averaging. The
pressure derivative is discretized using a first-order differential quotient. For the east edge it
reads as (

−α2 ∂p
∂x

)e
≈ −αPαE · p

E − pP

∆x

and for the west edge as (
−α2 ∂p

∂x

)w
≈ −αPαW · p

P − pW

∆x
.

The north and the south edge terms are discretized analogously.
Couette term. The Couette term on an edge is approximated by an upwind scheme. This

means that the quantity of interest on an edge is assumed to have the value of the cell from the
Couette flow direction. Since it is here assumed to be from left to right, the value from the left
cell is taken. For the east edge, this leads to

(θβ)
e ≈ θPβP

and for the west edge to

(θβ)
w ≈ θWβW .

Displacement term. The displacement term is approximated by a backward differential
quotient, i.e., (

∂
∂t (θγ)

)
(t) ≈ θP (t) γP (t)− θP (t−∆t) γP (t−∆t)

∆t
,
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where ∆t is the time step size. Hence, the mass flow through the edges read as

ṁn
z ≈ αPαN ·

pP − pN

∆z
,

ṁs
z ≈ −αPαS ·

pP − pS

∆z
,

ṁe
x ≈ αPαE ·

pP − pE

∆x
+ θPβP ,

ṁw
x ≈ −αPαW ·

pP − pW

∆x
+ θWβW .

Therefore, the discrete Reynolds equation with the JFO cavitation model for one cell has the
following form:

−∆z

(
αPαE · p

P − pE

∆x
+ θPβP + αPαW · p

P − pW

∆x
− θWβW

)

−∆x

(
αPαN · p

P − pN

∆z
+ αPαS · p

P − pS

∆z

)

+ ∆x∆z · θ
P (t) γP (t)− θP (t−∆t) γP (t−∆t)

∆t
= 0.(2.5)

In the lubrication area, θ ≡ 1, and equation (2.5) has to be solved for p. In the cavitation area
it has to be solved for θ, and the pressure is set to p ≡ pcav. For the purpose of notational
simplicity, a cell-type vector ξ is introduced, which contains the information whether a cell is
currently defined as a pressure (lubrication) or a cavitation cell. Consequently, it has one of
the following states

ξi =

{
pressure,
cavitation,

corresponding to the state of the ith cell. For a fixed ξ, the system of equations resulting
from (2.5) can be written as a linear system

A (ξ)x (ξ) = f (ξ) ,(2.6)

where xi contains either the pressure or the fill ratio of the ith cell (depending on ξ).
Boundary Conditions. Boundary conditions are realized by setting cells on the grid to a

prescribed pressure. Imposing boundary conditions at the edges of the bearings is required,
but additional boundary conditions can be set inside of them. This is needed for instance to
represent oil supply drillings.

2.3. Solution techniques. Since the discretized Reynolds equation (equation (2.6)) is
of matrix type for fixed domains, linear solution schemes combined with an adaption of the
lubrication and cavitation domains during the iterations are promising. A simple approach
is to start with an initial ξ0, solve the associated linear system, alter the cell types according
to the solution, and repeat until convergence is reached. The major disadvantage of this
method is that it requires the solution of a linear system in every step. Furthermore, numerical
experiments have shown that it converges rather slowly. This is due to the fact that the
influence of the pressure cells on the cavitation area is very local. Therefore, cell switches
from cavitation to pressure only happen in the area very close to the boundary even if the
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surrounding pressure is high. Hence the domain adaption driven by the global solution is
dilatory. A method that utilizes this local character is the Reynolds-Gauss-Seidel iteration. The
classical Gauss-Seidel method is used for solving linear systems. The algorithm loops through
the matrix rows and solves for the variable matching the diagonal entry using the already
calculated values of the intermediate solution. For a general introduction into this topic, see,
for instance, [9]. The Gauss-Seidel method can be modified in order to solve the nonlinear
system of equations that arises from the discretization of the Reynolds equation. If during the
row iteration the cell type corresponding to the current row changes (i.e., the pressure falls
below pcav or the fill ratio above 1), then the entries of the system matrix associated with this
cell are recalculated. Based on the new matrix entries, the cell value is recomputed. Relaxation
methods help to improve convergence. For a more detailed description, see [6]. Parallelization
techniques like red-black labelling are also possible. However, this method suffers, like linear
relaxation methods, from decreasing efficiency with increasing grid resolution. A combination
of successively solving linear systems and the Reynolds-Gauss-Seidel method uses both the
global information propagation by directly solving the system and the rapid domain adaption
from the Gauss-Seidel-like iteration.

ALGORITHM 1 (Combined Algorithm). Let A (ξ)x(ξ) = f (ξ) be the discretized
Reynolds equation (equation (2.6)) depending on ξ and A(ξ) ∈ RN×N . Furthermore, let
RGS (x, ξ, ω, k) be the function that applies k Reynolds-Gauss-Seidel iterations with relax-
ation parameter ω (see [6]). Then the combined algorithm is given by

while domains change do
x =

(
A (ξ)

)−1
f (ξ)

adapt ξ with the information from x
(x, ξ) = RGS (x, ξ, ω, k)

end while
Here k is usually chosen in the range of 2 to 5.

This algorithm converges rapidly, but the computational effort of the direct inversion of A
is high, especially for large systems, and of order O(N3). The idea is to replace the matrix
inversion by a multigrid method which has optimal efficiency

(
O (N logN)

)
.

3. The multigrid method. In this section a multigrid method for the solution of the
nonlinear system of equations associated with equation (2.6) is developed. The general linear
multigrid cycle, the so-called µ-cycle, is used. For a general introduction into this topic, see
[4] or [10]. For notational purposes the grid system is formally defined as follows:

DEFINITION 3.1 (Grid System). Let Ax = b be the system to solve on a cell system
C0. Further, let there be given n coarser grids C1, . . . , Cn, where Cl is coarser than Cl−1,
prolongation operators P1, . . . , Pn, and restriction operators R1, . . . , Rn, where

Pl : Cl → Cl−1

prolongates a solution from the lth to the (l − 1)st grid and

Rl : Cl−1 → Cl

restricts from the (l − 1)st to the lth grid. Further, let A0, . . . , An be the system matrices on
each grid level. The grid system G is defined as

G := (G1, G2, . . . , Gn) ,

where

Gl := (Al, Pl, Rl).
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Then the µ-cycle can be defined as in Algorithm 2.
ALGORITHM 2 (µ-cycle). Let Ax = b be a linear system. Furthermore, let G be a grid

system as in Definition 3.1 and S(vl, Al, f
l) a smoother (e.g., a Gauss-Seidel iteration). Let

A0 = A, f0 = b. Denote the approximate solution on the lth level by vl. Then, the µ-cycle is
given by
vl ←Mµ

(
vl, f l, ν1, ν2

)
if Ωl is coarsest grid then

vl = A−1l f l

else
vl = S(vl, Al, f

l) ν1-times
f l+1 = Rl+1

(
f l −Alvl

)
restrict residual to coarser level

vl+1 = 0 set the initial guess for the coarser level
vl+1 = Mµ

(
vl+1, f l+1, ν1, ν2

)
µ-times

vl = vl + Pl+1v
l+1 correct solution on current level with coarse-grid information

vl = S(vl, Al, f
l) ν2-times

end if
The algorithm does not define how the prolongation, restriction, and system matrices

should be constructed. The efficiency of the algorithm depends heavily on these choices, and
there are various options. Hence, it is necessary to adapt them to the given problem.

3.1. Prolongation, restriction, and coarse-grid matrix. This section covers the prolon-
gation, the restriction, and the construction of the coarse-grid systems. Only 2D restriction and
prolongation operators are defined. A frequently-used approach is to construct a prolongation
operator P and then choose the restriction operator as R = cP>, where c is a constant.

3.1.1. Interpolation for cell-systems. Let Ω ⊂ R2 be a domain, which is partitioned
into a set Ch = {c1h, c2h, . . .} of finer cells with nh elements and a set CH = {c1H , c2H , . . .} of
coarser cells with nH elements, i.e.,⋃

cih∈Ch

cih =
⋃

ciH∈CH

ciH = Ω̄.

Furthermore, the elements of both sets shall be disjoint, i.e.,

(ciH)◦ ∩ (cjH)◦ = ∅ = (cih)◦ ∩ (cjh)◦ ∀i 6= j.

In addition, every cell in CH (parent cell) must consist of cells from Ch (children cells), i.e.,

∀cH ∈ CH : cH =
⋃

Ch3cih⊂cH

cih .

Let fH ∈ {gH | gH : CH → R} be a function represented as a vector (which is in RnH ; the
ith component of the vector corresponds to the value of fH(ciH)). Then, the prolongation
operator P assigns to every child cell the function value of its parent cell. This can be written
in matrix form as

P ∈ Rnh×nH , P [i, j] =

{
1 if cih ⊆ c

j
H ,

0 if cih * cjH .

The restriction operator R can be applied to a vector fh ∈ Rnh , which again represents a
function on the finer cell system, and is chosen to assign to every parent cell the averaged
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value of its children cells. In matrix form it can be written as

R ∈ RnH×nh , R[i, j] =

{
1
k(i) if cjh ⊆ ciH ,
0 if cjh * ciH ,

where k(i) denotes the number of child cells of ciH .

3.1.2. Construction of coarse-grid matrices. Based on the restriction and prolongation
operators, the coarse-grid matrix is constructed with the prolongation and restriction matrices.
Let the fine-grid system be denoted by Ahxh = bh, and let x̃h be the approximate solution
after the application of a smoother. Then the residual is given as

rh = Ahx̃h − bh = Ah (x̃h − xh) = Aheh,(3.1)

where eh denotes the error on the fine grid. Let R be the restriction from the fine grid to the
coarse grid and P the prolongation from the coarse grid to the fine grid. Since the highly
oscillating parts of eh have been removed by applying a smoother, it can be approximated by
the prolongation of the coarse-grid error

eh ≈ PeH ,

where eH denotes the error on the coarse grid. Then, for equation (3.1) it holds that

rh = Aheh ≈ AhPeH .(3.2)

Applying R to equation (3.2) leads to

rH := Rrh = RAhPeH =: AHeH .

In general the coarse-grid system matrix is often defined as

AH = cRAhP,

where c is a constant. RAhP is called the “Galerkin-Operator”. Here, the Galerkin operator
is multiplied by a constant for a better approximation of the discretization matrix, which is
directly constructed from the coarse grid.

3.2. Specific coarse-grid construction. The generation of the coarser grids is done by
merging, starting in the lower left corner of the cell grid. If possible, four cells are merged
together. If necessary, two cells are merged together or one cell is directly ported to the next
grid level. Figure 3.1 illustrates this scheme. The coarse-grid cell is the parent cell of the
fine-grid cells with the same index.

A suitable coarse-grid matrix can be defined by

AH =
1

2
RAhP.(3.3)

The factor 1
2 is motivated by the discretization of the Laplace equation. When discretizing

the Laplace equation using the finite volume method directly on the coarse and the fine grid,
the corresponding matrices fulfill equation (3.3) as one easily calculates (see [4]). Since the
Reynolds and the Laplace equation are very similar, it is also a good approximation for the
Reynolds coarse-grid matrix.
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FIG. 3.1. Merging fine grid cells.

3.3. Reynolds-Gauss-Seidel iteration with multigrid. Since the multigrid method can-
not be easily adapted to perform the cell alteration between cavitation and pressure cells, it
is advantageous to use it between the applications of the Reynolds-Gauss-Seidel algorithm
(described in [6]) as some sort of preconditioner. In contrast to the usual geometrical multigrid
approach, the proposed method constructs its hierarchy through the Galerkin operator instead
of rediscretizing the equation on the coarser grids. In this way the virtues of both approaches
are used since the algebraic coarse-grid construction is fast once prolongation and restriction
operators are defined. On the other hand, the usually more costly algebraic construction of
these operators is avoided.

ALGORITHM 3 (Reynolds-Gauss-Seidel iteration with multigrid.). LetA (ξ)x(ξ) = f (ξ)
be the discretized Reynolds equation (2.6) depending on ξ. Then the Reynolds-Gauss-Seidel
iteration with multigrid is given by

choose ξ
choose x(ξ)
while ||A(ξ)x(ξ)− f(ξ)|| > tolerance do

x(ξ) = Mµ

(
x(ξ), f(ξ), ν1, ν2

)
apply multigrid n-times

adapt ξ with the information from x
set the values in x whose cell types changed to the
equivalent pressure/cavitation
apply Reynolds-Gauss-Seidel algorithm m-times

end while
With this modifications, the Reynolds-Gauss-Seidel algorithm drastically accelerates the

determination of the lubrication and cavitation areas. One could think about turning it off after
the cell types are fixed, but numerical experiments have shown that it stabilizes and accelerates
the convergence of the procedure for a relatively low computational cost.

The parameters of this algorithm are listed in Table 3.1. Depending on the smoother,
the parameters ν1 and ν2 have to be chosen sufficiently large to maintain decent smoothing
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properties, but also not too large since after a certain amount of smoothing steps, the error will
not become significantly smoother, which only leads to higher computational costs without
benefit. In most cases, the value of n = 1 is the best choice because when the lubrication and
cavitation areas are not stable, a better solution of the linear system is useless since the system
changes in the next step.

TABLE 3.1
Parameters for the Reynolds-Gauss-Seidel iteration with multigrid (Algorithm 3).

parameter reasonable values comment

µ 1,2 V- or W-cycle
ν1 1-5 # Smoothing steps before restriction
ν2 1-5 # Smoothing steps after prolongation
n 1-2 # multigrid cycles in each iteration
m 1-4 # Reyn.-GS steps in each iteration

REMARK 3.2. The robustness and efficiency of the Reynolds-Gauss-Seidel iteration with
multigrid algorithm can be significantly improved by reformulating the discretized Reynolds
equation to an “equivalent pressure” formulation. In this formulation a “negative pressure”
is calculated for the cavitation cells of such amount that would be needed to fill the cell up
completely. Therefore, the diagonal of the matrix is invariant under cell changes, and the
diagonal values are usually of the same magnitude, which is beneficial to the multigrid method.
The “negative pressure” can be transformed to a fill ratio after the multigrid process. This
approach is used in this work.

4. Results. The Reynolds-Gauss-Seidel-multigrid algorithm (see Algorithm 3) is im-
plemented in a multi-body solver framework (AVL EXCITE™ [1]). The framework uses
backward differentiation formulas with adaptive time step size control (see [7]) in the time
domain. Each time step iterates over the body equations of motion and contact equations,
which are represented by a Reynolds equation in case of each particular oil-lubricated contact.

4.1. Physical model of a single radial slider bearing. The model, which is used for
demonstration, consists of a bearing wall, a bearing pin, and the oil layer between them. It
represents the main bearing 2 of the engine depicted in Figure 1.2. A topological representation
is given in Figure 4.1.

4.2. Convergence of the Reynolds-Gauss-Seidel iteration with multigrid algorithm.
Well-implemented multigrid methods for linear equation systems show an exponential con-
vergence (respectively, linear convergence in a logarithmic plot) independently of the system
size. A similar behavior is observed using the Reynolds-Gauss-Seidel iteration with multigrid
algorithm. In the phase when the cell types are not fixed (cycle 1 to 7), the convergence trend
is perturbed, but even in this region it is almost linear in the logarithmic plot, however with a
smaller gradient. This is illustrated in Figure 4.2(a). The initial guess is taken as all cells being
pressure cells with cavitation pressure. One observes that in the phase where the cell types are
massively changing, the convergence trend is nearly independent of the multigrid parameters.
However, after this phase, additional smoothing steps and the W-cycle (µ = 2) pay off. This is
illustrated in Figure 4.2(b), where only that part of the solution process is displayed where
the cell types are fixed. The used smoother is Gauss-Seidel-Red-Black; see [10]. Starting
with cycle 10, the relative residual stays approximately the same, which is most likely due to
floating-point accuracy. In practice, algorithms with fewer smoothing iterations can be faster.
Further, the initial guess is usually much better since it can be taken from the last time step,
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FIG. 4.1. Topological representation of the physical model.

which reduces the number of cycles needed for the domain determination. For the illustrations,
one Reynolds iteration of the multi-body solver is taken, the initial values are set accordingly,
and three gridlevels are used. A typical result of such a calculation is illustrated in Figure 1.1.

4.3. Comparison of the simulation times. The Reynolds-Gauss-Seidel method without
multigrid is compared to the Reynolds-Gauss-Seidel method with multigrid in terms of
simulation time. Here, 720° are simulated for different discretizations and journal speeds.
Furthermore, the mere solver time is also recorded. The stopping criterion for the algorithm
using multigrid is when the relative residual falls below 10−5, and the remaining parameters of
the Reynolds-Gauss-Seidel iteration with multigrid are as in Table 3.1 µ = 1, ν1 = 2, ν2 = 3,
n = 1, m = 3. The used smoother is Gauss-Seidel-Red-Black; see [10]. Due to historical
reasons of the multi-body framework, the convergence criteria for the Reynolds-Gauss-Seidel
iteration without multigrid are more complicated. The solver stops when the relative difference
between two iterations falls below a certain level. Furthermore, the number of iterations is
bounded by a lower and an upper limit. Since the simulation fails for higher grid resolutions, if
the parameters are chosen too weak, the first set of parameters that does not lead to simulation
crashes is chosen:

Relative Difference 0.001 %
Maximal Iterations 200
Minimal Iterations 4.

With these settings, the Reynolds-Gauss-Seidel method without multigrid also reaches
a relative residual of 10−5 in most solution procedures. It must furthermore be noted that
even if the convergence criterion of the Reynolds-Gauss-Seidel iteration with multigrid is set
to 10−5, it usually achieves a significantly smaller residual. With these convergence criteria,
the multigrid version outperforms the other solver. Performance results obtained for different
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(a) Overall solution process.
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(b) Fixed domains.

FIG. 4.2. Convergence trend of the Reynolds-Gauss-Seidel iteration with multigrid algorithm for different
parameters (n = 1, m = 3), 3 gridlevels, discretization: 1024x128.

engine running conditions (500, 3000, and 5000 rpm) are displayed in Figure 4.3-4.5. It is
visible that the percentage of the simulation time taken by the solver is increasing drastically
with the grid resolution of the non-multigrid solver, while the solver using multigrid takes up
an almost constant percentage for higher resolutions. The resolution in the diagrams is given
by the number of circumferential cells times the number of axial cells.

5. Conclusion. It has been shown that multigrid methods can drastically reduce the
simulation time and increase the robustness for the simulation of radial slider bearings with
high resolutions, even though the same equation system as for the Gauss-Seidel method is
solved hence yielding the same results. This facilitates the possibility to get a more detailed
view on the pressure distribution at a reasonable amount of simulation time. The presented
approach is generic so that it is also possible to implement this method for other elasto-
hydrodynamic contacts like axial slider bearings or hydrodynamic piston-liner contacts.
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FIG. 4.3. Engine running at 500 rpm, 720° crank angle simulated, discretizations: 128x16, 256x32, 512x64,
1024x128 (circumferential × axial cells).
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FIG. 4.4. Engine running at 3000 rpm, 720° crank angle simulated, discretizations: 128x16, 256x32, 512x64,
1024x128 (circumferential × axial cells).
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FIG. 4.5. Engine running at 5000 rpm, 720° crank angle simulated, discretizations: 128x16, 256x32, 512x64,
1024x128 (circumferential × axial cells).
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