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MODIFIED FILON-CLENSHAW-CURTIS RULES FOR OSCILLATORY
INTEGRALS WITH A NONLINEAR OSCILLATOR∗

HASSAN MAJIDIAN†

Abstract. Filon-Clenshaw-Curtis (FCC) rules rank among the rapid and accurate quadrature rules for computing
oscillatory integrals. In the implementation of the FCC rules, when the oscillator of the integral is nonlinear, its
inverse has to be evaluated at several points. In this paper we suggest an approach based on interpolation, which
leads to a class of modifications of the original FCC rules in such a way that the modified rules do not involve the
inverse of the oscillator function. In the absence of stationary points, two reliable and efficient algorithms based
on the modified FCC (MFCC) rules are introduced. For each algorithm, an error estimate is verified theoretically
and then illustrated by some numerical experiments. Also, some numerical experiments are carried out in order to
compare the convergence speed of the two algorithms. In the presence of stationary points, an algorithm based on
composite MFCC rules on graded meshes is developed. An error estimate is derived and illustrated by some numerical
experiments.

Key words. Filon-Clenshaw-Curtis rule, oscillatory integral, nonlinear oscillator, stationary point, graded mesh

AMS subject classifications. MSC 65D30, MSC 65T40

1. Introduction. Consider integrals of the form

(1.1) I
[a,b]
k (f, g) :=

∫ b

a

f(x) exp(ikg(x)) dx,

where f ∈ L1[a, b], k > 0, and g ∈ Cm[a, b] for some positive integer m. If g does not
oscillate rapidly in [a, b], then the integrand in (1.1) oscillates violently for larger values of k.
This class of integrals contains a large portion of highly oscillatory integrals appearing in
many areas of science and engineering, e.g., in Fourier series and transforms, special functions,
high-frequency acoustic scattering, etc.; see, e.g., [5, 19] and the references therein. Because
of their wide applications, computing oscillatory integrals of the form (1.1) has been the
subject of much research in the last two decades.

Filon-type methods are among the most efficient ones for computing (1.1), and they have
a long history. While highly accurate methods based on steepest descent (see, e.g., [7, 12, 13])
need some manual calculations regarding the steepest decent paths in the complex plane, the
Filon-type methods do not require complex calculus and can be performed automatically by
computers provided that the moments can be computed to desired accuracy. The idea, in
general, is to replace the amplitude function f by an interpolation polynomial pn and consider
I
[a,b]
k (pn, g) as an approximation to I [a,b]k (f, g). This idea originated from [10], where Louis

Napoleon George Filon (1875–1937) applied it to the Fourier integral
∫ b
a
f(x) sin kxdx.

After the work of Filon, many papers on his method appeared, but the 2005 paper [14]
proved to be a milestone in the history of research on Filon-type methods. In that work, the
asymptotic expansion of I [a,b]k (f, g) by negative powers of k was studied, and a generalization
of Filon’s method was developed. The paper has been the motivation for a lot of successive
research.

A successful implementation of a Filon-type method rests on the ability to compute the
moments I [a,b]k (xm, g). For the linear oscillator g(x) = x, the moments can be calculated by
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the following identity:

(1.2) I
[a,b]
k (xm, x) =

1

(−ik)m+1
[Γ(1 +m,−ika)− Γ(1 +m,−ikb)] ,

where Γ is the incomplete Gamma function [1]. However, formula (1.2) is useless mainly
because interpolation by the polynomial basis 1, x, x2, . . . is in general unstable. For a more
complex oscillator g, Olver [18] considered a g-dependent basis instead of the usual polynomial
basis xj . Then the moments can be written in closed forms, again in terms of incomplete
Gamma functions. Another approach, proposed in [29], is based on the transformation
τ = g(x). The method enables one to compute the moments by the identity (1.2) when g has
no stationary points in [a, b]; otherwise if g has a single stationary point, similar identities for
I
[0,y]
k (xm, xj) are employed (cf. [1, 14]).

Filon-Clenshaw-Curtis (FCC) rules, beside other advantages, enable one to compute the
moments stably and rapidly without a need to deal with (incomplete) Gamma functions, whose
evaluation is not trivial. The (N + 1)-point FCC rule can be described as follows: Consider
the oscillatory integral

(1.3) Ik(f) :=

∫ 1

−1
f(x) exp(ikx) dx.

In the (N + 1)-point FCC rule, the amplitude function f is interpolated at Clenshaw-Curtis
points tj,N := cos(jπ/N), j = 0, . . . , N, by the polynomial

QNf(s) :=

N∑
n=0

′′αn,N (f)Tn(s),

where Tn(s) = cos(n arccos(s)) are the Chebyshev polynomials of the first kind and
∑ ′′

means that the first and the last terms of the sum are to be halved. By the discrete orthogonality
of the cosine functions, the coefficients αn,N (f) can be written as

(1.4) αn,N (f) =
2

N

N∑
j=0

′′ cos (jnπ/N) f(tj,N ), n = 0, . . . , N.

If f in (1.3) is replaced by QNf , then the (N + 1)-point FCC rule is obtained as

(1.5) Ik,N (f) =

N∑
n=0

′′αn,N (f)ωn(k),

where the weights (modified moments) ωn(k) = Ik(Tn), n ≥ 0, can be computed recursively
thanks to the three-term recurrence relation for the Chebyshev polynomials Tn. As a general-
ization of the original Clenshaw-Curtis rules [6], this idea has been developed gradually by em-
ploying results of many earlier researchers, mainly Piessens’s contributions [20, 21, 22, 23, 24]
and Sloan’s works [27, 28]. By a simple affine-like change of variables, the FCC rules (1.5)
can also be applied to

(1.6) I
[a,b]
k (f) :=

∫ b

a

f(x) exp(ikx) dx.

The recent papers of Domínguez et al. [8, 9] contain important developments and results
for the FCC rules. In [9], beside an error bound in terms of both k and N , a stable algorithm
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with complexity of O(N logN) was proposed for computing the weights. The algorithm can
be employed for computing the general integral (1.1) in the following way (cf. [8]): If g has
no stationary points in [a, b], then we can assume that g′(x) > 0, x ∈ [a, b], without loss of
generality. In this case, the change of variables τ = g(x) reduces the integral to I [g(a),g(b)]k (F )
with F (τ) =

(
(f/g′) ◦ g−1

)
(τ), τ ∈ [g(a), g(b)]; otherwise, if g has some stationary points

in [a, b], a similar change of variables reduce the integral to a finite number of integrals of the
form (1.6) such that each integral has a single singularity at one of the endpoints and can be
computed efficiently by composite FCC rules on graded meshes [8].

Statement of the problem (or the motivation for this paper). In the implementation of
the algorithm proposed in [8], it is required to compute g−1 at several points. Expressing
g−1(x) in closed form, however, is not always possible. For example, consider the function
g(x) = x− sin(x). Thus, one has to resort to approximation methods, e.g., Newton iterations.
This, however, imposes extra errors and computational costs.

In this paper, we follow the idea of [29] and propose reliable and efficient methods for
computing (1.1), which are based on the FCC rules but without the need to compute g−1(x) at
any point. The modified FCC rules, as developed in this paper, play key roles when exponential
transformations are applied to the oscillatory integrals in order to treat singularities (see [17]
for details).

The authors of [15] have also used the ideas in [29] and suggest composite Filon-type
rules which do not require the evaluation of g−1, but they do not benefit from the advantages
of the FCC rule. Our idea in this paper is, however, essentially different in that it is based
on the FCC rules and exploits their fast and stable construction (cf. [9]) as well as their error
estimates in terms of k, N , and the Sobolev regularity of f (cf. [8]). These advantages are
gained by employing special interpolations such that the g-dependent interpolation nodes
of [29] approximately coincide with the Clenshaw-Curtis points.

The plan of this paper is as follows: In Section 2, which contains the main ideas, we
describe a class of quadrature rules for computing (1.1) in the absence of stationary points (i.e.,
g(x) 6= 0, for any x ∈ [a, b]). The rules can be considered modifications of the FCC rules [8]
which circumvent the necessity of computing g−1(x) by imposing an interpolation process.
Thus, an interpolation error is added to the total error. In order to decrease the interpolation
error, two efficient interpolation methods are employed, based on which two algorithms are
proposed. The next two sections deal with these algorithms, their error estimates, and some
numerical experiments. In Section 4, we compare the convergence speed of the two algorithms.
In Section 5, the case when g has a finite number of stationary points in [a, b] is studied.
We show how the modified FCC rules can be applied in this situation. An error estimate is
provided, and some numerical results are given. Finally, we state a conclusion.

Some general remarks. Throughout the paper, C and C ′ stand for generic constants
independent of k, and their values may differ from place to place. Their dependence on
other parameters (if exist) is declared in each section. Note also that the space of m-times
continuously differentiable functions is denoted by the common notation Cm[a, b]. Also, in all
of the numerical experiments, the reference values of the sample integrals have been computed
by Mathematica to at least 10 digits higher than the machine precision. All the numerical
experiments are performed in MATLAB R2015b on the author’s personal laptop.1

2. The general idea. Consider the integral (1.1) with g having no stationary points in
[a, b]. Then, we can assume that g′(x) > 0, x ∈ [a, b], without loss of generality. By this
assumption, the integral is changed into an integral with the linear oscillator. Indeed, by the

1Intel Core i7-8550 CPU with a clock speed between 1.80 GHz and 1.99 GHz with 8GB of RAM.
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change of variables τ = g(x), we obtain

I
[a,b]
k (f, g) :=

∫ g(b)

g(a)

F (τ) exp(ikτ) dτ = l exp(ikc)Ik̃(F̃ )

= l exp(ikc)

∫ 1

−1
F̃ (τ) exp(ik̃τ) dτ,(2.1)

where

F (τ) =
(
(f/g′) ◦ g−1

)
(τ), τ ∈ [g(a), g(b)](2.2)

c =
g(b) + g(a)

2
, l =

g(b)− g(a)

2
,

k̃ = lk, F̃ (τ) = F (c+ lτ).

The efficient and robust algorithm of [9] for constructing FCC rules can now be applied to (2.1).
However, evaluating g−1(x) for some x is required in this process, and this is not desirable.
For example, it may be impossible to express g−1(x) in closed form. In this situation, we
would have to apply Newton iterations, whose convergence is not guaranteed. Even if they
converge rapidly, this approach imposes extra errors and computational costs.

In the following, we develop a modification of the method in such a way that the need
for computing g−1(x) is relaxed. The approach can then be employed in the presence of
stationary points by means of composite rules on graded meshes as developed in [8]. The
details are discussed in Section 5.

2.1. The modified Filon-Clenshaw-Curtis (MFCC) rule. Employing the (N + 1)-
point FCC rule (1.5) for computing Ik̃(F̃ ) (which essential is (2.1)) necessitates the evaluation
of F̃ at the Clenshaw-Curtis points. We describe a method for the accurate approximation of
F̃ at the Clenshaw-Curtis points in which g−1 does not have to be evaluated at any point.

LetN be a positive integer and consider theN+1 Clenshaw-Curtis points t0,N , . . . , tN,N .
Let `1 : [−1, 1] → [a, b] and `2 : [−1, 1] → [g(a), g(b)] be the onto affine-like mappings.
By definition, F̃ = F ◦ `2. For a large integer N ′ > 1, choose a set of arbitrary points
−1 = u0 < · · · < uN ′ = 1, and define

(2.3) dj := `−12 (g(`1(uj))), j = 0, . . . , N ′.

Then, −1 = d0 < · · · < dN ′ = 1. One can compute F̃ (dj) without the need to compute dj
itself and to evaluate the inverse of g at any point. Indeed,

(2.4) F̃ (dj) = F (`2(dj)) =
f(`1(uj))

g′(`1(uj))
.

Now, we can approximate F̃ (tj,N ) by interpolation of F̃ at the nodes d0, . . . , dN ′ . Denote
by Q̃N ′ the interpolating projection corresponding to some method of interpolation at the
points −1 = d0 < · · · < dN ′ = 1, i.e.,

Q̃N ′ F̃ (dj) =
f(`1(uj))

g′(`1(uj))
, j = 0, . . . , N ′.

Then,

Q̃N ′ F̃ (tj,N ) ≈ F̃ (tj,N ), j = 0, . . . , N.
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If k̃ ≥ 1/2, i.e., k ≥ 1/(g(b)− g(a)), then the (N + 1)-point MFCC rule is defined by

(2.5) I
[a,b]
k,N (f, g) := l exp(ikc)Ik̃,N (Q̃N ′ F̃ ) = l exp(ikc)

N∑
n=0

′′αn,N (Q̃N ′ F̃ )ωn(k̃),

where the coefficients are expressed by (1.4), i.e.,

αn,N (Q̃N ′ F̃ ) =
2

N

N∑
j=0

′′ cos (jnπ/N) Q̃N ′ F̃ (tj,N ), n = 0, . . . , N.

Indeed, the vector (αn,N (Q̃N ′ F̃ ))Nn=0 is the discrete cosine transform (DCT) of type I of
(Q̃N ′ F̃ (tj,N ))Nj=0, which can be computed by the FFT algorithm in O(N lnN) flops. Also,
the weights ωn(k̃) are stably and rapidly computed by the two-phase algorithm [9].

In summary, the MFCC rule for computing (1.1) is defined as follows:
• If k̃ ≥ 1/2, then

I
[a,b]
k (f, g) = l exp(ikc)Ik̃(F̃ ) ≈ l exp(ikc)Ik̃,N (F̃ ) ≈ l exp(ikc)Ik̃,N (Q̃N ′ F̃ ).

• If k̃ < 1/2, then the integral Ik̃(F̃ ) and thus I [a,b]k (f, g) is no longer oscillatory and
can be computed by the standard Clenshaw-Curtis rule:

I
[a,b]
k,N (f, g) := I0,N (Hk), Hk(x) := f(x) exp(ikg(x)).

2.2. Error analysis. The accuracy of an MFCC rule is actually affected by the error
of the involved interpolation method. In this section, we study how the interpolation error
influences the total error of an MFCC rule. The results are then employed to choose efficient
interpolation methods such that the total error of the MFCC rule decays rapidly.

For any integer m ≥ 0 and a function ϕ defined on [a, b], consider the weighted seminorm

‖ϕ‖Hm
w [a,b] :=

{∫ b

a

|ϕ(m)(x)|2√
(b− x)(x− a)

dx

}1/2

,

as introduced in [8]. Clearly, the Hilbert space Hm
w [a, b] induced by ‖.‖Hm

w [a,b] contains
Cm[a, b].

LEMMA 2.1. Let CN and EN be (N + 1)× (N + 1) matrices with the entries

(2.6) CN (n+ 1, j + 1) = (2/N) cos(jnπ/N), n, j = 0, . . . , N,

and

EN (n+ 1, j + 1) =


1/2 if n = j ∈ {0, N},
1 if n = j ∈ {1, . . . , N − 1},
0 otherwise.

Then, AN :=
√
N/2E

1/2
N CNE

1/2
N is a symmetric orthogonal matrix.

Proof. Clearly, AN is symmetric since CN and EN are so. On the other hand, CNEN is
nothing but the matrix of the DCT of type I. Thus, (CNEN )2 = (2/N)IN , hence,

A>NAN =
N

2
E
1/2
N CNENCNENE

−1/2
N = IN .
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For all r ∈ [0, 2], define

ρ(r) =

{
r, 0 ≤ r ≤ 1,

(5r − 3)/2, 1 ≤ r ≤ 2.

The following theorem provides an error estimate for the MFCC rules (2.5):
THEOREM 2.2. Assume that f and g are smooth enough such that F ∈ Hm

w [g(a), g(b)]
for some integerm ≥ 1. Then, for any r ∈ [0, 2] withm > ρ(r), the error of the (N + 1)-point
MFCC rule with N ≥ m− 1 is estimated as follows:∣∣∣I [a,b]k (f, g)− I [a,b]k,N (f, g))

∣∣∣ ≤ Ck−rhm+1−rN−m+ρ(r)

+ C ′k−1
√
N sup

τ∈[−1,1]

∣∣∣(F̃ − Q̃N ′ F̃ )(τ)
∣∣∣ ,(2.7)

where h := b− a is the length of the integration interval and C,C ′ are constants independent
of N and N ′.

Proof. In the worst case when I [a,b]k (f, g) is oscillatory, i.e., k̃ ≥ 1/2, the total error is
bounded by∣∣∣I [a,b]k (f, g)− l exp(ikc)Ik̃,N (Q̃N ′ F̃ )

∣∣∣ ≤ ∣∣∣I [a,b]k (f, g)− I [g(a),g(b)]k,N (F )
∣∣∣

+ l
∣∣∣Ik̃,N (F̃ − Q̃N ′ F̃ )

∣∣∣ .(2.8)

(If k̃ < 1/2, then the second term on the right-hand-side of (2.8) drops.) By assumption,
F ∈ Hm

w [g(a), g(b)]. According to [8, Theorem 2.6],

(2.9)
∣∣∣I [a,b]k (f, g)| − I [g(a),g(b)]k,N (F )

∣∣∣ ≤ Cσm,Nk−rlm+1−rN−m+ρ(r),

where C is a constant independent of m and N , and

σm,N =

{∏m−1
j=1

(
N+1
N+1−j

)
, m > 1,

1, m = 1.

For a fixed m, one can see that σm,N → 1 as N →∞. Hence, Cσm,N is bounded by a
constant independent of N , and thus by the mean value theorem for g,∣∣∣I [a,b]k (f, g)| − I [g(a),g(b)]k,N (F )

∣∣∣ ≤ Ck−rlm+1−rN−m+ρ(r)

≤ Ck−rhm+1−rN−m+ρ(r),(2.10)

where C is independent of N .
On the other hand,

(2.11)
∣∣∣Ik̃,N (F̃ − Q̃N ′ F̃ )

∣∣∣ = |ω>NCNδN |,
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where CN is defined by (2.6) and ωN , δN are column vectors defined by

ωN = [ω0(k̃)/2, ω1(k̃), . . . , ωN−1(k̃), ωN (k̃)/2]>,

δN =

[
(F̃ − Q̃N ′ F̃ )(t0,N )

2
, (F̃ − Q̃N ′ F̃ )(t1,N ), . . . ,

. . . , (F̃ − Q̃N ′ F̃ )(tN−1,N ),
(F̃ − Q̃N ′ F̃ )(tN,N )

2

]>
.

(See [9, Remark 2.1]). By the Cauchy-Schwarz inequality, equation (2.11) yields

(2.12)
∣∣∣Ik̃,N (F̃ − Q̃N ′ F̃ )

∣∣∣ ≤ ‖ωN‖2‖CNδN‖2.
The well-known asymptotic expansion of highly oscillatory integrals in the absence of station-
ary points (see, e.g., [14]) yields |Ik̃(Tn)| = O(k̃−1), and thus,

(2.13) ‖ωN‖2 ≤ C ′l−1k−1
√
N.

Note that ‖Tn‖∞ ≤ 1 for all n, so C ′ in (2.13) can be assumed to be independent of N and
N ′. On the other hand, Lemma 2.1 implies that

‖CNEN‖2 ≤
∥∥∥E−1/2N

∥∥∥
2

∥∥∥E1/2
N CNE

1/2
N

∥∥∥
2

∥∥∥E1/2
N

∥∥∥
2

=
2√
N
.(2.14)

The upper bound (2.12) can be estimated by (2.13) and (2.14):∣∣∣Ik̃,N (F̃ − Q̃N ′ F̃ )
∣∣∣ ≤ ‖ωN‖2 ‖CNδN‖2 ≤ ‖ωN‖2 ‖CNEN‖2 ‖yN‖2

≤ 2√
N
‖ωN‖2 ‖yN‖2 ≤ C

′l−1k−1
√
N sup

τ∈[−1,1]

∣∣∣(F̃ − Q̃N ′ F̃ )(τ)
∣∣∣ ,(2.15)

where yN := E−1N δN . The result now follows by (2.8), (2.10), and (2.15).
The following corollary is immediately obtained from Theorem 2.2:
COROLLARY 2.3. Assume that f and g are smooth enough such thatF ∈HN+1

w [g(a), g(b)]
for some integer N ≥ 1. Then, for any r ∈ [0, 2], the error of the (N + 1)-point MFCC rule
is estimated as follows:∣∣∣I [a,b]k (f, g)− I [a,b]k,N (f, g))

∣∣∣ ≤ Ck−rhN+2−rN
−1+ρ(r)

N !2N
‖g′‖N∞

+ C ′k−1
√
N sup

τ∈[−1,1]

∣∣∣(F̃ − Q̃N ′ F̃ )(τ)
∣∣∣ ,(2.16)

where h := b− a, C,C ′ are constants independent of N,N ′, and ‖g′‖∞ = supx∈[a,b] |g′(x)|.
Proof. Note that

σN+1,N =
NN

N !

(
1 +

1

N

)N
and (1 + 1/N)

N is bounded for all N ≥ 1. Thus, by the mean value theorem for g, equa-
tion (2.9) with m = N + 1 is adjusted as∣∣∣I [a,b]k (f, g)| − I [g(a),g(b)]k,N (F )

∣∣∣ ≤ Ck−r (h‖g′‖∞
2

)N+2−r
N−1+ρ(r)

N !

= Ck−rhN+2−rN
−1+ρ(r)

N !2N
‖g′‖N∞.
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As it is seen by (2.7) or (2.16), the total error of the MFCC rule is bounded by the sum of
two terms: The first term is nothing but the error of the FCC rule, studied in detail in [8, 9].
It does not depend on N ′ and decays rapidly as k or N grow. The second term is associated
with the interpolation process, whose error may be quite large due to the Runge effect. In the
sequel, we present two strategies in order to treat the latter problem and obtain error bounds
which decay rapidly by increasing N or N ′.

3. The case of no stationary points. One popular remedy for treating the Runge phe-
nomenon lies in splines. In this section, we present a method of integration based on composite
MFCC rules on uniform meshes. Without loss of generality, we consider the integral (1.1) over
the interval [0, 1]. Recall from the previous section the assumption that g′(x) > 0, x ∈ [0, 1].

3.1. Algorithm I. Take a large integer M and divide the integration interval [0, 1] into
M subintervals of equal lengths h:

xn := nh, n = 0, . . . ,M, h := 1/M.

Then,

g(0) = g(x0) < · · · < g(xM ) = g(1).

Assume that f ∈ CN+1[0, 1] and g ∈ CN+2[0, 1] for some integer N ≥ 1. Then it is easy to
see that F , as defined by (2.2), lies in CN+1[g(0), g(1)]. In each panel [xn−1, xn], we employ
the (N + 1)-point MFCC rule (2.5) with N ′ = N , uj = tN−j,N , and Q̃N being the Lagrange
interpolating projection at the points −1 = d0 < · · · < dN = 1. The accuracy of this kind of
composite MFCC rules may be studied as follows.

3.1.1. Error analysis. Take an arbitrary subinterval [xn−1, xn], and for a simplification
of the notation, set [a, b] := [xn−1, xn]. We divide our discussion into two parts: first
we show that d0, . . . , dN are ‘good’ interpolation points for small [a, b] in the sense that
the corresponding Lebesgue constant grows only logarithmically with N provided that M
increases accordingly with N . In the second part, the total error of the composite MFCC rule
is estimated by Corollary 2.3 and an error bound for the interpolant Q̃N F̃ associated with
each panel.

Estimating the Lebesgue constant. By the mean value theorem, (2.3) yields

(3.1) di − dj =
b− a

g(b)− g(a)
g′(ηij)(tN−i,N − tN−j,N ),

for any i, j ∈ {0, . . . , N} and some ηij ∈ (a, b). Since d0 = tN,N = −1 and dN = t0,N = 1,
equation (3.1) implies that the points d0, . . . , dN can be considered ‘perturbed Clenshaw-
Curtis points’ when M is sufficiently large. This is because g′ is positive and uniformly
continuous on [a, b], so

b− a
g(b)− g(a)

g′(ηij) ' 1,

by the mean value theorem.
The Lebesgue constant for a set ΠN of N + 1 interpolation points in an interval I is

defined by

max
x∈I

N∑
i=0

|Li(x)|,
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where Li is the (i+ 1)-st Lagrange cardinal polynomial for the set ΠN . It is well-known that
the Lebesgue constant determines how relatively close the maximum error of an interpolation
is to that of the best approximation. Denote by ΛN and Λ̃N the Lebesgue constants associated
with the Clenshaw-Curtis points tN,N , . . . , t0,N and the perturbed Clenshaw-Curtis points
d0, . . . , dN , respectively. We show that Λ̃N ≤ eΛN provided that M increases accordingly
with N .

Consider the change of variables τ = `−12 (g(`1(x))). Then (3.1) implies that the (i+1)-st
Lagrange cardinal polynomial L̃i associated with the points d0, . . . , dN can be written as
follows:

(3.2) L̃i(τ) =

N∏
j=0
j 6=i

τ − dj
di − dj

=

N∏
j=0
j 6=i

g′(ηj(τ))

g′(ηij)

x− tN−j,N
tN−i,N − tN−j,N

,

where ηj(τ) ∈ (a, b) for all j = 0, . . . , N and τ ∈ [−1, 1]. Positivity and continuity of g′ on
the compact interval [0, 1] imply that there exists hN > 0 such that for all subintervals [a, b]
with b− a < hN ,

(3.3) 1− 1

N
<
g′(ηj(τ))

g′(ηij)
< 1 +

1

N
, τ ∈ [−1, 1], i, j = 0, . . . , N.

Thus, (3.2) with (3.3) implies that

(3.4) (1− 1/N)
N

N∑
i=0

|Li(x)| <
N∑
i=0

|L̃i(τ)| < (1 + 1/N)
N

N∑
i=0

|Li(x)|,

where Li is the (i+ 1)-st Lagrange cardinal polynomial for the Clenshaw-Curtis points. Since
τ = `−12 (g(`1(x))) is a bijective mapping on [−1, 1], taking the maximum over x ∈ [−1, 1]
(or over τ ∈ [−1, 1]) in (3.4) yields

(3.5) (1− 1/N)
N

ΛN < Λ̃N < (1 + 1/N)
N

ΛN .

Since (1 + 1/N)N is bounded, (3.5) implies that the Runge effect does not occur in the
interpolation of F̃ at the points d0, . . . , dN , and the error is comparable to that of Chebyshev
interpolation provided that M ≥ 1/hN , i.e., M is taken large enough in relation to N .

The total error bound. Clearly, the interpolating error is bounded by

sup
x∈[−1,1]

∣∣∣(F̃ − Q̃N F̃ )(x)
∣∣∣ ≤ (2l)N+1 max

x∈[g(a),g(b)]

∣∣∣F (N+1)(x)
∣∣∣ .

This is because F ∈ CN+1[g(a), g(b)], and hence F̃ ∈ CN+1[−1, 1]. Now, by the mean
value theorem for g, we have

sup
x∈[−1,1]

∣∣∣(F̃ − Q̃N F̃ )(x)
∣∣∣ ≤ C ′hN+1,

for N large enough. Here, C ′ is a generic constant independent of M but dependent on N .
Since F̃ ∈ CN+1[−1, 1] ⊆ HN+1

w [−1, 1], Corollary 2.3 can now be applied to estimate the
total error on an arbitrary panel [a, b]:∣∣∣I [a,b]k (f, g)| − l exp(ikc)Ik̃,N (Q̃N F̃ )

∣∣∣ ≤ Ck−rhN+2−rN
−1+ρ(r)

N !2N
‖g′‖N∞

+ C ′k−1hN+1,(3.6)
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TABLE 3.1

Application of Algorithm I to the model integral I[0,1]100 (f, g) with f and g defined by (3.8): Absolute error with
its decay rate.

N = 1 N = 2 N = 3
M error rate error rate error rate
2 1.87×10−4 — 1.27×10−5 — 2.22×10−6 —
4 2.72×10−5 2.8 3.87×10−6 1.7 4.43×10−7 2.3
8 3.42×10−5 -0.3 8.11×10−8 5.6 3.50×10−8 3.7

16 3.98×10−5 -0.2 1.40×10−7 -0.8 1.41×10−9 4.6
32 3.69×10−6 3.4 2.37×10−9 5.9 1.66×10−11 6.4
64 8.25×10−7 2.2 1.25×10−10 4.2 7.41×10−13 4.5

where C is independent of M and N . If one takes the sum over all the subintervals [xn−1, xn]
and takes into account that F ∈ CN+1[g(0), g(1)], then an error bound for Algorithm I is
obtained by (3.6):

(3.7) Ck−rhN+1−rN
−1+ρ(r)

N !2N
‖g′‖N∞ + C ′k−1hN .

REMARK 3.1. Note that C ′ in the error bound (3.7) may grows with N . Thus, the
recommended strategy in Algorithm I is to keep N fixed at a moderate value and increase M
until the required accuracy is achieved. This can, in addition, suppress the Runge effect as
discussed above.

A few words about the complexity of the algorithm is also necessary. The (N + 1)-point
FCC rule can be stably computed with O(N lnN) flops [9]. The Lagrange interpolation can
also be performed stably by an improved formula, the so-called “first form of the barycentric
interpolation formula” (see [3, 11, 26]). The evaluation of the formula at any point involve costs
of order O(N2), so the evaluation of all the values Q̃F̃ (tj,N ), j = 0, . . . , N , requires O(N3)
flops. Since this cost should be paid for each panel, and there exist M panels, Algorithm I
requires O

(
MN(N2 + lnN)

)
flops.

3.1.2. Numerical experiments. Throughout this section, we consider the model integral
I
[0,1]
k (f, g) with

(3.8) f(x) =
x4.5

1 + x2
, g(x) =

√
x2 + 3x+ 4,

for some k > 0. It can be seen that g′(x) > 0, x ∈ [0, 1], f ∈ C4[0, 1], and g ∈ C∞[0, 1].
We employ Algorithm I and illustrate the error estimate (3.7).

Experiment 1. Here we study the case when k andN are kept fixed and h→ 0. According
to the error bound (3.7), the convergence of the method is of order O(hN ), which can be
illustrated by the following example. Let k = 100. Since f ∈ C4[0, 1] and g ∈ C∞[0, 1],
we have that F ∈ C4[g(0), g(1)]. Thus, the error bound (3.7) is valid if the parameter N
does not exceed 3. The absolute error with its decay rate, as h→ 0, is given in Table 3.1 for
N = 1, 2, 3. As mentioned in Section 3.1, the distribution of the interpolation nodes in each
panel is so that the corresponding Lebesgue constant is rather small. Thus, the convergence
rate will be higher than what we expect. For coarser grids (corresponding to larger h), instead
the convergence rate of O(hN ) is not to be expected. Considering all these facts together, the
numerical results of Table 3.1 are in agreement with the theory.
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FIG. 3.1. Absolute error scaled by k of Algorithm I with some M and N , when applied to the model integral
I
[0,1]
k (f, g) with (3.8).
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FIG. 3.2. Algorithm I (solid line) and the CMFE rule of [15] with exponential order of convergence (dashed
line) when applied to the integral (3.9): Relative error vs. the execution time (in seconds).

Experiment 2. The error bound (3.7) suggests that for a fixed parameters N and M , the
maximum rate of convergence is O(k−1) as k →∞. In this experiment, we illustrate this rate
by a numerical example. For each M ∈ {4, 8, 16, 32, 64, 128} and N ∈ {1, 2, 3}, we apply
Algorithm I to the model integral I [0,1]k (f, g) with (3.8) when k varies in a wide band from 10
to 104. The absolute error is scaled by k, and the scaled error for each N and M is plotted as a
function of k (Figure 3.1). As it is seen, the error for each M and N does not deteriorate as k
increases, and this observation is in agreement with the maximum convergence order O(k−1)
suggested by the theory.

Experiment 3. Here, we compare the convergence rate of Algorithm I with the com-
posite Filon-type rules [15] for the integrals I [0,1]k (f, g) with smooth f and g. For a given
integer n ≥ 1, consider the graded mesh x0 = 0, xj = k(j−1)/(n−1)−1, j = 1, . . . , n. For
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the j-th panel [xj−1, xj ], define the parameters Mj := dmax{|g′(xj−1)|, |g′(xj)|}e and
Nj := n(n− 1)/(n+ 1− j), where dxe denotes the smallest integer greater than or equal
to x. Then, apply Algorithm I to the integral over [xj−1, xj ] with Nj + 1 Clenshaw-Curtis
points and a uniform mesh with Mj panels. This is a special kind (with Clenshaw-Curtis
points) of the CMFE rule proposed in [15] for I [0,1]k (f, g) with smooth f . In the absence of
harmful rounding, the rule converges exponentially. More precisely, when n→∞, the error
of the rule scales as O

(
(n− 1)−1/2k−n−1

)
provided that

(n− 1) (ln(n− 2 + e)− 1) ≥ ln k.

We apply Algorithm I and the CMFE rule, as described above, to the following sample
integral for k = 10d, d = 1, . . . , 6:

(3.9)
∫ 1

0

exp (ik(sin(πx/2) + 2x)/3) dx.

Figure 3.2 displays the relative error versus the execution time (in seconds) for each case. In
this example, the CMFE rule is in general faster than Algorithm I because it needs a smaller
number of subintervals to reach a given accuracy. This is due to the special graded meshes
which result in the exponential order of convergence of the CMFE rule. When higher accuracy
is required, however, it may exhibit unstable behavior due to rounding errors in the first few
panels. Indeed, the panels in a narrow neighborhood of 0 become too small for larger k. For
example, one can see that the first panel is [0, 1/k], which in turn is partitioned by a uniform
mesh of size M1, and in each subpanel, N1 := n− 1 interpolation points are involved. Thus,
one has to evaluate functions at a group of very close points, and this may deteriorate the
accuracy due to rounding. In the sample integral (3.9), f is constant; if it were not so, then
this effect might be even more apparent.

3.2. Algorithm II. In this section, we follow [4] and employ an efficient interpolation
method which does not allow for the Runge effect. In addition, one can always increase its
accuracy as high as desired without increasing the computational cost.

Consider the integral (1.1) on an arbitrary interval [a, b] (not necessarily of small length).
Here, we do not divide the integration interval [a, b] into smaller subintervals as in Algorithm I.
Instead, we consider the (N + 1)-point MFCC rule on the whole interval and approximate the
values F̃ (tj,N ) by interpolating F̃ at a limited number of points, selected from {d0, . . . , dN ′},
in such a way that they surround tj,N .

For a large integer N ′, choose a set of arbitrary points −1 = u0 < · · · < uN ′ = 1 and
consider the points −1 = d0 < . . . < dN ′ = 1 as defined by (2.3). Choose a positive in-
teger s < N ′ and fix it throughout the process. For each j = 0, . . . , N , select an s-tube
Nn,s = (dn, . . . , dn+s−1) such that dn ≤ tj,N ≤ dn+s−1. Note that n depends (not uniquely)
on j. Thus, such a selection is not necessarily unique, while it is always possible since s < N ′.
In [4], some selecting strategies are introduced, and in [16] a MATLAB code for a certain
selecting strategy has been provided. Now, consider the approximation

F̃ (tj,N ) ≈ pn,s(tj,N ), j = 0, . . . , N,

where pn,s is the Lagrange interpolation polynomial of F̃ at the points of Nn,s. This means
that pn,s is of at most degree s− 1, and it may change with j.

For computing pn,s(tj,N ), we recommend the so-called “first form of the barycentric
interpolation formula” [26] that is a reformulation of the Lagrange interpolation polynomials.
In [11] it has been proved that the formula is backward stable for any set of interpolation
points.
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Based on (2.5), one can introduce the rule

(3.10) I
[a,b]
k (f, g) ≈ l exp(ikc)

N∑
n=0

′′αn,N (pn,s)ωn(k̃),

where (αn,N (pn,s))
N
n=0 is the DCT of type I of (pn,s(tj,N ))Nj=0.

3.2.1. Error analysis. If f ∈ Cs[a, b] and g ∈ Cs+1[a, b], it follows that F̃ ∈ Cs[−1, 1],
and thus

(3.11) max
0≤n≤N

|(F̃ − pn,s)(tj,N )| ≤ C ′λs,

where

λ = max
1≤j≤N ′

|dj − dj−1|,

and C ′ is independent of N and N ′, but dependent of s (see, e.g., [4]).
On the other hand, F ∈ Cs[g(a), g(b)] ⊆ Hs

w[g(a), g(b)]. Thus, for any r ∈ [0, 2],
s > ρ(r), and N ≥ s − 1, one can obtain the total error of the rule (3.10) by Theorem 2.2
and (3.11) as

(3.12) Ck−r(b− a)s+1−rN−s+ρ(r) + C ′k−1λs
√
N,

where C is independent of N , N ′.
One can easily see from (3.1) that λ decreases with the rate of O(1/N ′) as N ′ →∞.

Therefore, if we take N ′ ≥ kN , the error bound (3.12) is reduced to

(3.13) Ck−r(b− a)s+1−rN−s+ρ(r) + C ′k−s−1N−s+1/2.

The discussion about the complexity of the method is the same as that of Algorithm I.
Since the total interpolation process requites O(Ns2) flops, the whole algorithm is performed
at the cost of O

(
N(lnN + s2)

)
. In order to increase the accuracy of the interpolation, one

needs to increase N ′ only, while the parameter s is usually kept fixed at a moderate value.
In practice, one should compute only Ns members of {d0, . . . , dN ′}, not all of them. Thus,
the cost of computation does not grow with N ′. Also, the (N + 1)-point FCC rule converges
rapidly as N increases, so by a moderate value of N , one can reach a rather high accuracy.
Therefore, the integral (1.1) can be accurately approximated by Algorithm II at a rather low
cost. We carry out a set of numerical experiments in Section 4 to illustrate our claim here.

3.2.2. Numerical experiments. Throughout this section, we consider the model integral
I
[−1,1]
k (f, g) with

(3.14) f(x) =
x− 1

1 + x2
, g(x) =

√
x2 + 3x+ 4,

and some k. It is easy to see that g′(x) > 0, for x ∈ [−1, 1], and f, g ∈ Cs[−1, 1] for
all s ≥ 1. Thus, Algorithm II can be applied. The aim of this section is to illustrate the
convergence estimate (3.13).

Experiment 1. If k is kept fixed, then the error bound (3.13) decays with the maximum
rate of O(N−s+1/2) as N increases. We consider the assumed model integral with k = 100
and employ the algorithm with s = 2, 3, 4, 5, some increasing N , and N ′ = kN . The absolute
error with its decay rate is given in Table 3.2. As it is seen, the experimental convergence rate
for each s is in agreement with the theoretical one.
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TABLE 3.2
Application of Algorithm II withN ′ = 100N to the model integral I[−1,1]

100 (f, g) with f and g defined by (3.14):
Absolute error with its decay rate.

s = 2 s = 3 s = 4 s = 5
N error rate error rate error rate error rate
2 6.42×10−4 — 6.42×10−4 — 6.42×10−4 — 6.42×10−4 —
4 5.42×10−4 0.2 5.42×10−4 0.2 5.42×10−4 0.2 5.42×10−4 0.2
8 9.91×10−5 2.5 9.91×10−5 2.5 9.91×10−5 2.5 9.91×10−5 2.5

16 2.93×10−6 5.1 2.93×10−6 5.1 2.93×10−6 5.1 2.93×10−6 5.1
32 1.48×10−8 7.6 1.77×10−9 10.7 1.73×10−9 10.7 1.73×10−9 10.7
64 1.21×10−9 3.6 1.71×10−12 10.0 2.22×10−15 19.6 1.17×10−15 20.5
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FIG. 3.3. Absolute error scaled by k2 of Algorithm II with some s and N , when applied to the model integral
I
[−1,1]
k (f, g) with (3.14).

Experiment 2. If N , N ′, and s are kept fixed, then the error estimate (3.13) suggests that
the rate of convergence as k →∞ is not higher than O(k−2) provided that N ′ ≥ kN . Here,
we consider the model integral I [−1,1]k (f, g) with (3.14) when k varies in a wide band from
10 to 104. Algorithm II with s = 2, . . . , 7 and N = 2, 4, 8, 16, 32 is applied while N ′ = kN .
The absolute error is scaled by k2, and the scaled error for each s andN is plotted as a function
of k (see Figure 3.3). The horizontal trend of the scaled error, corresponding to each pair
(s,N), illustrates the maximum convergence rate of O(k−2).

4. Comparisons. In this section, we compare Algorithms I and II to see which one
achieves a given accuracy faster in practice. Our answer to this question is based on some
numerical results accompanied by a rough theoretical discussion.

Recall from Section 3.1 that Algorithm I requires O
(
MN(N2 + lnN)

)
flops. From the

error bound (3.7), one can see that a rather large N may reduce the error effectively even
if h < 1 is not too small. This is because N is appearing in the exponents. Also, it is not
recommended to use a very large N since the complexity of the algorithm increases rapidly.
Thus, it is preferable to choose moderate values for N while M should be rather small.

Similarly, we recall from Section 3.2 that the number of required flops for Algorithm II
is O

(
N(lnN + s2)

)
. Note that the exponents in the error bound (3.13) may not be as large
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FIG. 4.1. Average CPU time (in seconds) vs. the relative error of Algorithms I and II when applied to the model
integral (4.1). The number M of subintervals in Algorithm I and the interpolation parameter s in Algorithm II are
kept fixed in each plot while the accuracy increases with growing N . In Algorithm II, N ′ = kN .

as those in the error bound (3.7) because in practice, s usually takes on rather small values;
larger values increase the complexity of the algorithm rapidly.

Based on the discussion above, our guess is that Algorithm I may be faster than Algo-
rithm II provided that M is rather small. In the following, we carry out a set of numerical
experiments to support this guess.

Experiment 1. Recalling the model integral in Section 3.2.2 with k = 1000, consider the
integral

(4.1)
∫ 1

−1

x− 1

1 + x2
exp

(
1000 i

√
x2 + 3x+ 4

)
dx.

In Algorithm I, M is kept fixed, and the accuracy increases by letting N →∞ (Figure 4.1).
The algorithm for each set of the parameters {M,N} is executed 10 times, and the average of
the CPU times (in seconds) versus the relative error is displayed as a solid line. In Algorithm II,
s is kept fixed and the accuracy increases by letting N →∞ while N ′ = kN . The algorithm
for each set of the parameters {s,N} is executed 10 times, and the average of the CPU times
(in seconds) versus the relative error is displayed by a dashed line. Figure 4.1 consists of nine
subplots for some increasing values of M (for Algorithm I) and s (for Algorithm II). As it is
seen, Algorithm I is more accurate only when M is not too large.

Experiment 2. Here, we repeat Experiment 1 now for the model integral of Section 3.1.2
with k = 100, i.e.,

(4.2)
∫ 1

0

x4.5

1 + x2
exp

(
100 i

√
x2 + 3x+ 4

)
dx.

Note that the amplitude function is of classC4[0, 1]. Thus, the error bound (3.7) of Algorithm I
is valid when N ≤ 3, and the error bound (3.12) of Algorithm II is valid when s ≤ 4.
Regardless of the error bounds, we employ both of the algorithms with larger N and s
(Figure 4.2). Here again, as in Experiment 1, it is seen that Algorithm I is more accurate only
when M is not too large.
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FIG. 4.2. Average CPU time (in seconds) vs. the relative error of Algorithms I and II when applied to the model
integral (4.2). The number M of subintervals in Algorithm I and the interpolation parameter s in Algorithm II are
kept fixed in each plot while the accuracy increases with growing N . In Algorithm II, N ′ = kN .

5. The case of the presence of stationary points. Consider the integral (1.1), and
assume that g′(x) vanishes at a finite number of points in [a, b]. Recall that a function ϕ has a
stationary point of order n ≥ 1 at ξ ∈ [a, b] if

ϕ′(ξ) = · · · = ϕ(n)(ξ) = 0, ϕ(n+1)(ξ) 6= 0.

Assume that g has a finite number of stationary points in [a, b]. Then, we can always divide
[a, b] into subintervals such that g has a single stationary point in each subinterval located at
one of its endpoints. Thus, without loss of generality, we consider the integral I [0,1]k (f, g),
where g has a single stationary point of order n at 0 and g′(x) > 0 for any x ∈ (0, 1].

Under the change of variables τ = g(x), the integral is reduced to I [g(0),g(1)]k (F ), with F
defined by (2.2). Again by the change of variables τ = g(0) + 2lx̂, with l = (g(1)− g(0))/2,
the integral is transformed into one over the standard interval [0, 1]:

I
[g(0),g(1)]
k (F ) = 2l exp(ikg(0))I

[0,1]
2lk (F̂ ),

where

F̂ (x̂) = F (g(0) + 2lx̂).

By [8, Theorem 4.1 ], if f and g are smooth enough, then F̂ ∈ Cmβ [0, 1], for β = −n/(n+ 1)
and some m, depending on the degrees of smoothness of f and g. Recall from [8] that for any
β < 0, Cmβ [0, 1] is defined as the space of all ϕ ∈ C(0, 1] such that

‖ϕ‖m,β := max

{
sup

x∈(0,1]

∣∣∣xj−βϕ(j)(x)
∣∣∣ , j = 0, . . . ,m

}
<∞.

Now the composite algorithm, introduced in [8], can be employed for computing I [0,1]2lk (F̂ ).
The algorithm uses the classical graded mesh

(5.1) ΠM,q :=

{
xj :=

(
j

M

)q
: j = 0, 1, . . . ,M

}
,
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for some parameter q > 1 sufficiently large. Then in each panel [xj−1, xj ], the (N + 1)-point
FCC rule is applied.

Our proposed algorithm here is almost the same. The only difference is that we employ
the (N + 1)-point MFCC rule in each panel. In the following we show how the (N + 1)-point
MFCC rule may be applied, and how it affects the total error of the algorithm.

5.1. The composite MFCC rules on graded meshes. We divide the integration interval
[0, 1] by the graded mesh ΠM,q into M panels, and in each panel we use the (N + 1)-point
MFCC rule (2.5) with N ′ = N and uj = tN−j,N , i.e., N + 1 Clenshaw-Curtis points. As it
is seen, the only difference of the algorithm here from Algorithm I lies in the partitioning
0 = x0 < · · · < xM = 1: uniform meshes for Algorithm I and graded meshes for the current
algorithm. The following theorem provides an error bound for the composite MFCC rules on
graded meshes.

THEOREM 5.1. Let f and g be smooth enought such that F̂ ∈ CN+1
β [0, 1], and let g have

a single stationary point at 0 of order n ≥ 1. Let 0 ≤ r < 1 + β with β = −n/(n+ 1), and
choose

(5.2) q > (N + 1− r)/(β + 1− r).

Then, the composite MFCC rule on the graded mesh (5.1) has the following error bound
provided that M is large enough:

(5.3) Ck−rM−N−1+r‖F̂‖N+1,β + C ′k−1
√
NM−N ,

where C and C ′ are constants independent of k and M .
Proof. Theorem 2.2 implies that the total error of a composite MFCC rule is the sum

of the error of the composite FCC rule and the sum over all the panels of the maximum
interpolation errors multiplied byC ′k−1

√
N . The error of the composite FCC rule is estimated

by [8, Theorem 3.6] as

(5.4) Ck−rM−N−1+r‖F̂‖N+1,β .

The largest panel of ΠM,q, i.e., the last one, is [(1− 1/M)q, 1], and it is rather small only if
M is large enough. For the second term of the error, the results in [25] or [2, Section 8.3],
and the inequalities (3.5) for small subintervals imply that the maximum interpolation error in
each panel is of orderO

(
M−N−1

)
. Note that, since β < 0, the integration over the first panel

[x0, x1] is simply approximated by 0 (see [8, equation (3.5)]), hence, the interpolation error in
the first panel vanishes. Thus, the second term of the bound for the total error can be written as

C ′k−1
√
N(M − 1)M−N−1,

and this together with (5.4) yields the result.

5.2. Numerical experiments. We try to illustrate the error estimate (5.3) by a set of
numerical experiments. Consider the following sample integral

(5.5)
∫ 1

0

x− 1

1 + x2
exp

(
ikx4

)
dx,

with some k > 0. Clearly 0 is the only stationary point of the oscillator function, and it is of
order 3. So, β = −3/4. Also, the amplitude and the oscillator functions are so smooth that
F̂ ∈ CN+1

β [0, 1] for any N > 0. Thus, Theorem 5.1 is applicable.
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TABLE 5.1
Application of the composite MFCC rules with the graded meshes ΠM,q to the integral (5.5) with k = 1000:

Absolute error with its decay rate.

N = 2 N = 4 N = 6 N = 8
M error rate error rate error rate error rate
32 9.89×10−3 — 3.27×10−2 — 2.95×10−1 — 1.50×102 —
64 5.99×10−4 4.0 8.80×10−5 8.5 3.02×10−4 9.9 2.81×10−3 15.7

128 5.35×10−5 3.5 8.25×10−6 3.4 2.78×10−6 6.8 1.06×10−6 11.4
256 4.77×10−6 3.5 1.15×10−7 6.2 1.16×10−8 7.9 1.17×10−9 9.8
512 1.99×10−6 1.3 6.45×10−9 4.2 2.62×10−11 8.8 6.05×10−13 10.9
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FIG. 5.1. Absolute error scaled by k as a function of k for the composite MFCC rule on the graded mesh (5.1)
with q = b(N + 1)/(β + 1)c + 1 when applied to the model integral (5.5).

Experiment 1. If M increases while the other parameters are kept fixed, then Theorem 5.1
implies that the convergence rate is at least of order O(M−N+1). In order to illustrate this
result, consider the sample integral (5.5) with k = 1000. We employ the composite MFCC
rule on the graded mesh (5.1) with q = b(N + 1)/(β + 1)c+ 1 for some N and M . By bxc
we mean the largest integer not greater than x. Then, condition (5.2) is satisfied. The absolute
error with its decay rate, as M grows, is given in Table 5.1.

Experiment 2. If k → ∞ and the other parameters remain fixed, then the error esti-
mate (5.3) implies that the rule converges with the rate of O(k−1). In order to illustrate this
rate, we again consider the sample integral (5.5) with k varying in a wide band from 10 to 104.
For M = 32, 64, 128, 256 and N = 2, 3, 4, 5, we employ the composite MFCC rule with the
graded mesh (5.1) and q = b(N + 1)/(β + 1)c+ 1. In Figure 5.1, for each pair (M,N), the
absolute error scaled by k is displayed as a function of k.

6. Conclusions. We have introduced a general method, which can generate various
modifications of the FCC rules and their composite versions. The modified rules can be
applied to the oscillatory integral (1.1), while they do not require the inverse of g explicitly.
The main tool that allows us to design such modifications is interpolation; all our modifications
correspond to a certain interpolation method.

When g has no stationary points in [a, b], two algorithms based on MFCC rules have been
introduced. For each one, an error estimate has been given theoretically, and then illustrated
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by some numerical experiments. Overall, we found both the algorithms reliable and efficient
for any regular integral (1.1) where g′(x) 6= 0, x ∈ [a, b].

When g has a finite number of stationary points in [a, b], it is possible to develop composite
rules based on MFCC rules and graded meshes. Similarly to the previous case, an error estimate
has been given theoretically and then illustrated by some numerical experiments. Such rules
are reliable only for finely graded meshes. Especially, when the grading parameter q in ΠM,q

is rather large, the number M of panels should be large enough. Thus, such rules are not
recommended when β is too close to −1 because in this case the panels become too small in
a narrow neighborhood of 0. Then, evaluating functions at the interpolation points in such
panels may result in large rounding error. This is the same effect as happens for the composite
FCC rules (see [8, Section 4.1]).
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