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ADDITIVE SCHWARZ PRECONDITIONERS FOR A LOCALIZED
ORTHOGONAL DECOMPOSITION METHOD∗

SUSANNE C. BRENNER†, JOSÉ C. GARAY†, AND LI-YENG SUNG†

Abstract. We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim,
[Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014),
pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite
element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber,
Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz
domain decomposition preconditioners for the resulting discrete problems.
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1. Introduction. Let the bounded open set Ω ⊂ Rd (d = 1, 2, 3) be an interval (d = 1),
a polygonal domain (d = 2), or a polyhedral domain (d = 3). The continuous problem is to
find u ∈ H1

0 (Ω) such that

(1.1) a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω),

where f ∈ L2(Ω),

a(u, v) =

∫
Ω

(A∇u) · ∇v dx, and (f, v) =

∫
Ω

fv dx.

We assume that (1.1) is an elliptic problem with rough coefficients, i.e., the components of the
symmetric diffusion matrix A only belong to L∞(Ω) and the eigenvalues of A are bounded
below (resp., above) by the positive constant α (resp., β). We will use ‖ · ‖a to denote the
energy norm

√
a(·, ·).

REMARK 1.1. Throughout the paper we will follow the standard notation for differential
operators, function spaces, and (semi-)norms that can be found, for example, in [3, 7, 8].

Note that

(1.2)
√
α |v|H1(Ω) ≤ ‖v‖a ≤

√
β |v|H1(Ω) ∀ v ∈ H1(Ω),

and hence, by (1.1) and a standard Poincaré-Friedrichs inequality,

(1.3) ‖u‖a ≤ (CPF/
√
α)D‖f‖L2(Ω),

where D = diam Ω and the positive constant CPF only depends on the shape of Ω.
Let TH be a quasi-uniform simplicial (or quadrilateral/hexahedral) triangulation of Ω

and VH ⊂ H1
0 (Ω) be the (coarse scale) P1 (or Q1) finite element space associated with TH .

The fine scale P1 (or Q1) finite element space Vh ⊂ H1
0 (Ω) is associated with a uniform

refinement Th of TH .
We assume that (i) the approximate solution uh ∈ Vh defined by

(1.4) a(uh, v) = (f, v) ∀ v ∈ Vh

∗Received February 6, 2020. Accepted January 15, 2021. Published online on March 17, 2021. Recommended
by O. Widlund.

†Department of Mathematics and Center for Computation & Technology, Louisiana State University, Baton
Rouge, LA 70803, USA ({brenner, sung}@math.lsu.edu, jgaray@cct.lsu.edu).

234

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol54s234


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADDITIVE SCHWARZ PRECONDITIONERS FOR LOD 235

is a good approximation of u, (ii) the computation of uh is too expensive, and (iii) the
approximate solution uH ∈ VH defined by

(1.5) a(uH , v) = (f, v) ∀ v ∈ VH

is a poor approximation of u. Therefore, we need a generalized finite element space that
bridges the two scales.

Elliptic problems with rough coefficients such as (1.1) appear in many multiscale problems.
There is a large body of literature on the numerical solutions of these problems by finite element
methods, which includes the variational multiscale method (cf. [21, 22, 23] and the references
therein), the multiscale finite element method (cf. [13, 19, 20] and the references therein),
the heterogeneous multiscale method (cf. [1, 2, 11, 12] and the references therein), and the
method of approximate component synthesis (cf. [17, 18] and the references therein).

Here we will consider the method of Localized Orthogonal Decomposition (LOD) in [16,
25] that does not require periodic structure or scale separation and at the same time can deliver
optimal convergence without any elliptic regularity assumption. It is based on the observation
that if ũH is the Galerkin approximation defined by (1.5) with VH replaced by a generalized
finite element space ṼH , then

a(u− ũH , u− ũH) = a(u, u− ũH) = (f, u− ũH),

and hence

(1.6) ‖u− ũH‖a ≤ ‖f‖L2(Ω)

(‖u− ũH‖L2(Ω)

‖u− ũH‖a

)
.

Therefore, if we can modify the basis functions of VH so that the resulting ṼH is orthogonal
(with respect to a(·, ·)) to a subspace of Vh consisting of highly oscillatory functions, then
u− ũH , which is orthogonal to ṼH , is highly oscillatory, and the quotient on the right-hand
side of (1.6) would be small. It was established in [25] that such modifications can be obtained
by solving local problems and that the magnitude of the quotient on the right-hand side of
(1.6) is O(H). This is in great contrast to the fact that the convergence of the standard finite
element method based on VH can be arbitrarily slow for problems with rough coefficients [4].

More precisely, we will consider a variant of LOD motivated by the approach in [24],
where the modification of the basis functions is based on domain decomposition techniques.
Our key finding is that this variant of LOD has similar properties as the original version in [25]
and that standard domain decomposition preconditioners for (1.5) are also effective for this
variant of the LOD. The success of this method in bridging the two scales is illustrated in
Figure 5.2.

The rest of the paper is organized as follows. We present the variant of LOD in Section 2
and its analysis in Section 3. Preconditioning is discussed in Section 4, and numerical results
are presented in Section 5 for a problem whose coefficients exhibit high contrast and in
Section 6 for a problem with highly oscillatory coefficients. We end with some concluding
remarks in Section 7. For the convenience of the readers, we also include some standard
results in Appendix A so that this paper is self-contained with respect to LOD.

All the constants in this paper only depend on the shape regularity of TH unless specified
otherwise. The dependence on α, β, h, and H are always explicitly stated. To avoid the
proliferation of constants, we also use the notation A . B (B & A) to represent the statement
that A ≤ (constant)×B, where the constant only depends on the shape regularity of TH . The
notation A ≈ B is equivalent to the statement that A . B and B . A.
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2. Multiscale methods based on orthogonal decomposition. We will denote the di-
mension of TH (resp., Th) by m (resp., n).

2.1. The ideal multiscale finite element space V
ms,h

H . The construction of V ms,h
H in-

volves an operator Π : H1
0 (Ω) −→ VH . Following the suggestion in [24], the function

Πv ∈ VH is defined by taking the nodal average of the local L2-orthogonal projections of v
into the space of linear/bilinear polynomials. More precisely,

(2.1) (Πv)(p) =
1

|Tp|
∑
T∈Tp

ṽT (p),

where p is any interior vertex of TH , Tp is the set of the elements in TH that share p as a
common vertex, and ṽT ∈ P1(T ) (or Q1(T )) is determined by

(2.2)
∫
T

ṽTw dx =

∫
T

vw dx ∀w ∈ P1(T ) (or Q1(T )).

We have

(2.3) Πv = v ∀ v ∈ VH ,

and, by a direct calculation and the Bramble-Hilbert lemma (cf. Appendix A),

(2.4) H−1‖v −Πv‖L2(Ω) + |Πv|H1(Ω) ≤ C†|v|H1(Ω) ∀ v ∈ H1
0 (Ω),

where C† only depends on the shape regularity of TH . In view of (1.2), we also have

(2.5) ‖Πv‖a ≤ C†
√
β/α ‖v‖a ∀ v ∈ H1

0 (Ω).

We will denote by KΠ
h the kernel of the restriction of Π to Vh, i.e.,

K
Π
h = {v ∈ Vh : Πv = 0}.

REMARK 2.1. Let ` = n −m and ϕ1, . . . , ϕ` be the nodal basis functions in Vh that
vanish at the nodes of VH (cf. Figure 2.1 for a two-dimensional example with the Q1 finite
element). Then {(I −Π)ϕ1, . . . , (I −Π)ϕ`} is a basis of KΠ

h . Indeed, if

0 =
∑̀
j=1

cj(I −Π)ϕj =
∑̀
j=1

cjϕj −Π
∑̀
j=1

cjϕj ,

then the function Π
∑`
j=1 cjϕj = 0 because it is a function in VH that vanishes at the nodes

of VH . It follows that
∑`
j=1 cjϕj = 0 and hence c1 = · · · = c` = 0.

Let the operator Ch : Vh −→ KΠ
h be the orthogonal projection with respect to a(·, ·), i.e.,

(2.6) a(Chv, w) = a(v, w) ∀ v ∈ Vh, w ∈ KΠ
h .

There are two obvious relations between Π and Ch:

ΠCh = 0 on Vh,(2.7)
(I − Ch)(I −Π) = 0 on Vh.(2.8)
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FIG. 2.1. Nodes for the Q1 finite element spaces: the nodes for φ1, . . . , φm ∈ VH are represented by the
circles and the nodes for ϕ1, . . . , ϕ` ∈ Vh are represented by the solid dots.

The multiscale finite element space V ms,h
H ⊂ Vh is the orthogonal complement of KΠ

h

with respect to the bilinear form a(·, ·), i.e.,

V
ms,h
H = {v ∈ Vh : a(v, w) = 0 ∀w ∈ KΠ

h }.

Note that V ms,h
H has the same dimension as VH and

(2.9) I − Ch : Vh −→ V
ms,h
H is the orthogonal projection with respect to a(·, ·).

The restriction of I − Ch to VH is an isomorphism between VH and V ms,h
H because

the restriction of Π(I − Ch) to VH is the identity operator by (2.3) and (2.7). Therefore, if
{φ1, . . . , φm} is the nodal basis of VH , then {(I − Ch)φ1, . . . , (I − Ch)φm} is a basis of
V

ms,h
H .

The approximate solution ums,h
H ∈ V ms,h

H of (1.4) is defined by

(2.10) a(ums,h
H , v) = (f, v) ∀ v ∈ V ms,h

H .

It follows from (1.4), (2.9), and (2.10) that

(2.11) ums,h
H = (I − Ch)uh, or equivalently, uh − ums,h

H = Chuh,

from which we can derive the following error estimates (cf. [24, 25] and Appendix A):

‖uh − ums,h
H ‖a ≤ (C†/

√
α)H‖f‖L2(Ω),(2.12)

‖uh − ums,h
H ‖L2(Ω) ≤ (C2

† /α)H2‖f‖L2(Ω),(2.13)

where C† is the constant that appears in (2.4).
One can treat the ideal multiscale finite element method as a reduced-order method

where the functions ψ1 = Chφ1, . . . , ψm = Chφm that correct the original basis functions
φ1, . . . , φm of VH can be computed in parallel and off-line. However, the computation of ψi
involves solving the equation

(2.14) a(ψi, w) = a(φi, w) ∀w ∈ KΠ
h ,

which is expensive. Fortunately, the function ψi decays exponentially (cf. [25]), and it is
possible to replace ψi by a localized version. A two-dimensional example of a Q1 finite
element basis function φi and the corrected basis function φi − ψi is provided in Figure 2.2,
where Ω is the unit square (0, 1)× (0, 1), h = 1/160, and H = 1/20.
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FIG. 2.2. φi (left) and φi − ψi (right), with h = 1/160 and H = 1/20.

2.2. A localized multiscale finite element space V ms,h
H,k . We will replace ψi by the ap-

proximation ψi,k obtained by k steps of a preconditioned conjugate gradient (PCG) algorithm
(cf. [14, 28]) applied to the equation (2.14) with 0 as the initial guess.

We use an additive Schwarz preconditioner (cf. [9]) based on the subspacesKi (1 ≤ i ≤ m)
of KΠ

h defined by

(2.15) Ki = {(I −Π)v : v ∈ Vh and v vanishes outside ωxi
}.

Here ωxi
is the union of the elements in TH that share the interior node xi as a common

vertex (cf. Figure 2.3 for a two-dimensional example with the Q1 element). The functions in
Ki are supported on the patch ω̃xi

generated by adding one layer of elements in TH to ωxi

(cf. Figure 2.3).
REMARK 2.2. Let ϕi,1, . . . , ϕi,mi be the nodal basis functions of Vh that vanish outside

ωxi
and at xi (cf. Figure 2.3). Then, as in Remark 2.1, {(I −Π)ϕi,1, . . . , (I −Π)ϕi,mi

} is a
basis of Ki.

FIG. 2.3. The patches ωxi (left) and ω̃xi (right), where the node xi is represented by the circle and the nodes
for ϕi,1, . . . , ϕi,mi are represented by the solid dots.

The preconditioned operator P : KΠ
h −→ KΠ

h for (2.14) is given by (cf. [26, 30, 31])

(2.16) P =

m∑
j=1

Pj ,

where Pj is the orthogonal projection from KΠ
h onto Kj with respect to the bilinear form

a(·, ·). Note that the support of Pv is a subset of the union of all the ω̃xj
’s whose intersections
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with the support of v have nonempty interiors. Since the function φi on the right-hand side
of (2.14) is supported on ωxi

, at the end of k PCG steps the function ψi,k is supported in a
patch around xi (with respect to TH ) whose diameter is proportional to k. Thus, ψi,k is a
localized version of ψi.

Let the linear operator Ch,k : VH −→ KΠ
h be defined by

(2.17) Ch,kφi = ψi,k, for 1 ≤ i ≤ m.

Then Ch,k is a localized version of Ch, and we define V ms,h
H,k to be the subspace of Vh spanned

by the functions φi − ψi,k = (I − Ch,k)φi, for 1 ≤ i ≤ m.
Again we have an obvious relation

(2.18) ΠCh,k = 0 on VH

that together with (2.3) implies that Π(I − Ch,k) is the identity operator on VH . Hence, the
operator I−Ch,k : VH −→ V ms,h

H,k is an isomorphism, and the dimension of V ms,h
H,k is identical

to the dimension of VH .
The approximate solution ums,h

H,k ∈ V
ms,h
H,k is then defined by

(2.19) a(ums,h
H,k , w) = (f, w) ∀w ∈ V ms,h

H,k .

REMARK 2.3. The matrix representing a(v, w) with respect to the basis {φi − ψi,k}mi=1

of V ms,h
H,k is less sparse than the matrix representing a(v, w) with respect to the basis {φi}mi=1

of VH .

3. Analysis of the localized multiscale finite element method. First we observe that
(2.4) implies

(3.1) H−1‖v‖L2(Ω) = H−1‖v −Πv‖L2(Ω) ≤ C†|v|H1(Ω) ∀ v ∈ KΠ
h .

Therefore, the one-level additive Schwarz preconditioner based onK1, . . . ,Km in fact behaves
like a two-level additive Schwarz preconditioner with generous overlap, as demonstrated in
the analysis below.

The condition number of the preconditioned operator P in (2.16) is determined by the
formulas (cf. [5, 7, 26, 30, 31])

λmax [P ] = max

v∈KΠ
h

a(v, v)

min
v=

∑m
j=1vj

vj∈Kj

m∑
j=1

a(vj , vj)

,

λmin [P ] = min

v∈KΠ
h

a(v, v)

min
v=

∑m
j=1vj

vj∈Kj

m∑
j=1

a(vj , vj)

.(3.2)

Since we are using an overlapping domain decomposition preconditioner, we have a standard
estimate (cf. [7, 26, 30, 31])

(3.3) λmax [P ] ≤ C[,

where C[ is determined by the maximum number of the subspaces K1, . . . ,Km that have a
nonempty intersection, which in turn is determined by the shape regularity of TH .
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We can construct a partition of unity (cf. [31, Section 3.2]) consisting of nonnegative
Lipschitz continuous functions ρ1, . . . , ρm such that

m∑
j=1

ρj(x) = 1 ∀x ∈ Ω̄,(3.4)

ρj vanishes outside ωxj ,(3.5)
‖∇ρj‖L∞(Ω) ≤ Cρ/diam(ωxj ),(3.6)

where Cρ only depends on the shape regularity of TH .
Given any v ∈ KΠ

h , we define

vj = (I −Π)Ih(vρj),

where Ih : C(Ω̄) −→ Vh is the nodal interpolation operator associated with Th. Then,
vj ∈ Kj by (2.15) and (3.5), and

m∑
j=1

vj = (I −Π)Ih

(
v

m∑
j=1

ρj

)
= (I −Π)v = v

by (3.4). Furthermore, by (1.2), (3.1), (3.6) and direct calculations (cf. [31, Section 3.6],
[26, Section 2.5.3], or [7, Section 7.4]), we have,

m∑
j=1

a(vj , vj) ≤ β
m∑
j=1

|(I −Π)Ih(vρj)|2H1(Ω)

. β

m∑
j=1

|Ih(vρj)|2H1(Ω)(3.7)

. β

m∑
j=1

[
|v|2H1(ωxj

) + ‖∇ρj‖2L∞(ωxj
)‖v‖

2
L2(ωxj

)

]
. β

(
|v|2H1(Ω) +H−2‖v‖2L2(Ω)

)
. β|v|2H1(Ω) . (β/α)a(v, v),

which implies through (3.2)

(3.8) λmin [P ] & (β/α)−1.

Putting (3.3) and (3.8) together, we have

(3.9) κ [P ] =
λmax [P ]

λmin [P ]
≤ C](β/α),

where C] only depends on the shape regularity of TH . The theory for PCG (cf. [14, 28]) then
yields

‖ψi,k‖a ≤ ‖ψi‖a = ‖Chφi‖a ≤ ‖φi‖a,(3.10)

‖ψi − ψi,k‖a ≤
2qk

1 + q2k
‖ψi‖a ≤

2qk

1 + q2k
‖φi‖a,(3.11)

where

(3.12) q =

√
κ [P ]− 1√
κ [P ] + 1

≤
√
C](β/α)− 1√
C](β/α) + 1

is bounded away from 1 uniformly with respect to h and H .
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REMARK 3.1. In the case of a large quotient β/α, the number q defined by (3.12) is close
to 1, and the performance of the localized multiscale finite element method would be adversely
affected by the estimate (3.11). However, there are two mitigating factors. The first factor
is that the condition number estimate (3.9) may be too pessimistic. The reason is that the
functions vj that appear in (3.7) belong to the subspaces Kj of KΠ

h , and hence the diameters
of their supports are of order O(H). Consequently, the effective contrast for such functions
can be much smaller than β/α due to averaging. The second factor is that the estimate (3.11)
can be improved if the operator P has outlying eigenvalues (cf. [14]).

The following lemma converts the estimates (3.10) and (3.11) into estimates for the
operator Ch,k defined in (2.17), which are useful for the error analysis and the preconditioning
of the localized multiscale finite element method. It is based on the observation that

(3.13) |φi|H1(Ω) ≈ Hτd , where τd =


− 1

2 d = 1,

0 d = 2,
1
2 d = 3.

LEMMA 3.2. The following estimates hold for the operator Ch,k :

‖Ch − Ch,k‖a .
√
β/α qk(H/D)

−d+τd ,(3.14)

‖Ch,k‖a . 1 +
√
β/α qk(H/D)

−d+τd ,(3.15)

where ‖Ch−Ch,k‖a (resp., ‖Ch,k‖a) is the operator norm of Ch−Ch,k (resp., Ch,k) induced
by the energy norm ‖ · ‖a and D = diam Ω.

Proof. We have, by (1.2), (3.11), and (3.13),

∥∥∥(Ch − Ch,k)

m∑
i=1

ciφi

∥∥∥
a
≤

m∑
i=1

|ci| ‖ψi − ψi,k‖a(3.16)

. qk
m∑
i=1

|ci| ‖φi‖a .
√
β qkHτd

m∑
i=1

|ci|,

and by a standard discrete estimate together with a standard Poincaré-Friedrichs inequality
(and scaling), we also have

m∑
i=1

|ci| . H−d
∥∥∥ m∑
i=1

ciφi

∥∥∥
L1(Ω)

(3.17)

. H−dDd−τd
∣∣∣ m∑
i=1

ciφi

∣∣∣
H1(Ω)

. (1/
√
α)H−dDd−τd

∥∥∥ m∑
i=1

ciφi

∥∥∥
a
.

The estimate (3.14) follows from (3.16) and (3.17), and the estimate (3.15) follows from (3.14),
the triangle inequality, and the fact that ‖Ch‖a = 1.

Next we derive error estimates for ums,h
H,k .

THEOREM 3.3. The solution ums,h
H,k of (2.19) satisfies the estimate

(3.18) ‖uh − ums,h
H,k ‖a ≤ ‖uh − u

ms,h
H ‖a +

[
C\(β/α)‖u‖a

]
(H/D)

−d+τdqk,

where the constant C\ depends only on the shape regularity of TH and D = diam Ω.
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Proof. Since (I − Ch,k)Πuh belongs to V ms,h
H,k , we can use the Galerkin error estimate

‖uh − ums,h
H,k ‖a = min

v∈V ms,h
H,k

‖uh − v‖a

together with (2.8), (2.11), and (3.14) to obtain

‖uh − ums,h
H,k ‖a ≤ ‖uh − (I − Ch,k)Πuh‖a

= ‖[uh − (I − Ch)Πuh] + [(I − Ch)− (I − Ch,k)]Πuh‖a
= ‖[uh − (I − Ch)uh] + (Ch,k − Ch)Πuh‖a
≤ ‖uh − ums,h

H ‖a + C♦
√
β/α qk(H/D)

−d+τd‖Πuh‖a.

The proof is completed by the observation that (1.1), (1.4), and (2.5) imply

(3.19) ‖Πuh‖a ≤ C†
√
β/α ‖uh‖a ≤ C†

√
β/α ‖u‖a.

REMARK 3.4. The dependence on H in the error estimate (3.18) can be eliminated at the
expense of increasing the dimension of the localized finite element space (cf. [24]).

It follows from (1.3), (2.12), and (3.18) that

‖uh − ums,h
H,k ‖a ≤ (C†/

√
α)H‖f‖L2(Ω) + C\(CPF/

√
α)(β/α)D‖f‖L2(Ω)(H/D)

−d+τdqk.

In particular, by choosing k sufficiently large such that

(3.20) qk ≤ (α/β)(H/D)
1+d−τd ,

we have

(3.21) ‖uh − ums,h
H,k ‖a ≤ (1/

√
α)(C† + C\CPF)H‖f‖L2(Ω),

i.e., the performance of the localized multiscale finite element method would be similar to that
of the ideal multiscale finite element method.

A standard duality argument then yields

(3.22) ‖uh − ums,h
H,k ‖L2(Ω) ≤ (1/α)(C† + C\CPF)2H2‖f‖L2(Ω).

REMARK 3.5. In the case of a large contrast β/α, the smallest k that satisfies (3.20)
would be quite large if both the condition number estimate (3.9) and the error estimate (3.11)
are sharp. As mentioned in Remark 3.1, the condition number estimate (3.9) might not be
sharp, and the estimate (3.11) can be improved if the operator P has outlying eigenvalues. If
the effective value of q in (3.11) is independent of the contrast, then the estimate (3.20) will
be satisfied if we choose k to be larger than a multiple of log(β/α) + log(D/H), a number
dominated by log(β/α) log(D/H) for large β/α and small H/D.

4. Preconditioning the multiscale finite element methods. Both the ideal and the lo-
calized multiscale finite element methods are ill-conditioned when H is small, and therefore
effective iterative solvers for the discrete problems would require preconditioning.
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4.1. The ideal multiscale finite element method. Let the linear SPD operator
A

ms,h
H : V

ms,h
H −→

[
V

ms,h
H

]′
be defined by

(4.1) 〈Ams,h
H v, w〉 = a(v, w) ∀ v, w ∈ V ms,h

H ,

where 〈·, ·〉 denotes the canonical bilinear form between a vector space and its dual. Similarly,
the linear SPD operator AH : VH −→ V ′H is defined by

(4.2) 〈AHv, w〉 = a(v, w) ∀ v, w ∈ VH .

Let Q : VH −→ V
ms,h
H be the restriction of I − Ch to VH , and Qt : [V

ms,h
H ]′ −→ V ′H be the

transpose of Q with respect to the canonical bilinear form, i.e.,

〈Qtζ, v〉 = 〈ζ,Qv〉 ∀ ζ ∈ [V
ms,h
H ]′, v ∈ VH .

THEOREM 4.1. The SPD operator QA−1
H Qt : [V

ms,h
H ]′ −→ V

ms,h
H is an optimal

preconditioner of Ams,h
H . More precisely, we have

(4.3) κ
[
(QA−1

H Qt)A
ms,h
H

]
=
λmax

[
(QA−1

H Qt)A
ms,h
H

]
λmin

[
(QA−1

H Qt)A
ms,h
H

] ≤ C2
† (β/α),

where C† is the constant in (2.4).
Proof. We will use the following Rayleigh quotient formulas (cf. [28]):

λmax

[
(QA−1

H Qt)A
ms,h
H

]
= λmax

[
A−1
H (QtA

ms,h
H Q)

]
= max
v∈VH

〈Ams,h
H Qv,Qv〉
〈AHv, v〉

,(4.4)

λmin

[
(QA−1

H Qt)A
ms,h
H

]
= λmin

[
A−1
H (QtA

ms,h
H Q)

]
= min
v∈VH

〈Ams,h
H Qv,Qv〉
〈AHv, v〉

.(4.5)

It follows from (2.9), (4.1), and (4.2) that

(4.6) 〈Ams,h
H Qv,Qv〉 = a

(
(I − Ch)v, I − Ch)v

)
≤ a(v, v) = 〈AHv, v〉 ∀ v ∈ VH .

From (2.3), (2.5), (2.7), (4.1), and (4.2), we also have

〈AHv, v〉 = a(v, v) = a
(
Π(I − Ch)v,Π(I − Ch)v

)
≤ C2

† (β/α) a
(
(I − Ch)v, (I − Ch)v

)
(4.7)

= C2
† (β/α) 〈Ams,h

H Qv,Qv〉 ∀ v ∈ VH .

The estimate (4.3) follows from (4.4)–(4.7).
REMARK 4.2. Note that the estimate (4.7) (and consequently the estimate (4.3)) can be

pessimistic. This is due to the fact that the bound (2.5) for functions in H1
0 (Ω) may be too

restrictive for the functions (I − Ch)v ∈ V ms,h
H that actually appear in (4.7).

COROLLARY 4.3. We have

κ
[
(QBQt)A

ms,h
H

]
= κ

[
(BAH)A−1

H (QtA
ms,h
H Q)

]
≤ C2

† (β/α)κ(BAH),

where B is any linear SPD operator that maps V ′H into VH .
Therefore a good preconditioner forAH has a similar effect onAms,h

H as the preconditioner
A−1
H .
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4.2. The localized multiscale finite element method. Here we want to construct a
preconditioner for the SPD operator Ams,h

H,k : V ms,h
H,k −→ [V ms,h

H,k ]′ defined by

(4.8) 〈Ams,h
H,k v, w〉 = a(v, w) ∀ v, w ∈ V ms,h

H,k .

We assume that k is sufficiently large so that (3.20) is satisfied and therefore the error esti-
mates (3.21) and (3.22) are valid.

Let Qk = I − Ch,k : VH −→ V ms,h
H,k and Qtk : [V ms,h

H,k ]′ −→ V ′H be the transpose of Qk
with respect to the canonical bilinear forms. We have the following analog of Theorem 4.1.

THEOREM 4.4. The SPD operator QkA−1
H Qtk : [V ms,h

H,k ]′ −→ V ms,h
H,k is an optimal

preconditioner of Ams,h
H,k . More precisely, we have

(4.9) κ
[
(QkA

−1
H Qtk)A

ms,h
H,k

]
≤ C♥(β/α),

where the constant C♥ only depends on the shape regularity of TH .
Proof. Again we use the Rayleigh quotient formulas

λmax

[
(QkA

−1
H Qtk)A

ms,h
H,k

]
= max
v∈VH

〈Ams,h
H,k Qkv,Qkv〉
〈AHv, v〉

,(4.10)

λmin

[
(QkA

−1
H Qtk)A

ms,h
H,k

]
= min
v∈VH

〈Ams,h
H,k Qkv,Qkv〉
〈AHv, v〉

.(4.11)

According to (3.15), (3.20), (4.2), and (4.8), we have

〈Ams,h
H,k Qkv,Qkv〉= a

(
(I − Ch,k)v, (I − Ch,k)v

)
(4.12)

≤ 2a(v, v) + 2a(Ch,kv,Ch,kv) . 〈AHv, v〉 ∀ v ∈ VH .

In the other direction, we have, by (2.3), (2.5), (2.18), (4.2), and (4.8),

〈AHv, v〉 = a(v, v) = a
(
Π(I − Ch,k)v, (I − Ch,k)v

)
≤ C2

† (β/α) a
(
(I − Ch,k)v, (I − Ch,k)v

)
(4.13)

= C2
† (β/α) 〈Ams,h

H,k Qkv,Qkv〉 ∀ v ∈ VH .

The estimate (4.9) follows from (4.10)–(4.13).
Note that Remark 4.2 also applies to the estimate (4.9).
COROLLARY 4.5. We have

κ
[
(QkBQ

t
k)A

ms,h
H,k

]
= κ

[
(BAH)A−1

H (QtkA
ms,h
H,k Qk)

]
≤ κ [BAH ]κ

[
(QkA

−1
H Qtk)A

ms,h
H,k

]
≤ C♥(β/α)κ [BAH ],

where B is any linear SPD operator that maps V ′H into VH .
Therefore a good preconditioner forAH has a similar effect onAms,h

H,k as the preconditioner
A−1
H .

5. Numerical results for high contrast coefficients. The domain for the numerical
experiments is the unit square (0, 1)× (0, 1), and f is the constant function 1. The diffusion
matrix A takes the form of

A =

[
A11 0

0 A22

]
,
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where A11 and A22 are randomly generated piecewise constant functions with respect to a
uniform partition of Ω into 40× 40 small squares (cf. Figure 5.1). The values of A11 and A22

range between 1 and 1350.

FIG. 5.1. A11 (left) andA22 (right).

5.1. Convergence of the multiscale finite element methods. We take Vh to be the Q1

finite element space associated with the uniform partition of Ω into 160× 160 small squares
(i.e., h = 1/160). The solution uh obtained by the standard finite element method (1.4) is
treated as the reference solution.

The solutions uh, ums,h
H , and uH (with h = 1/160 and H = 1/20) are depicted in

Figure 5.2. It is observed that ums,h
H provides a good approximation of uh while uH suffers

from the pre-asymptotic effect and fails to capture uh.

FIG. 5.2. uh (top left), ums,h
H (top right) and uH (bottom), with h = 1/160 and H = 1/20.

The convergence history for the ideal multiscale finite element method and the localized
multiscale finite element method are presented in Figure 5.3 for the energy norm and in
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Figure 5.4 for the L2-norm. In both cases the localized solution ums,h
H,k with k = d3 log(1/H)e

FIG. 5.3. Relative errors in the energy norm.

FIG. 5.4. Relative errors in the L2-norm.

and the ideal solution ums,h
H are almost identical, and their order of convergence agrees

with (2.12) and (3.21) in the case of the energy norm and with (2.13) and (3.22) in the case of
the L2-norm. On the other hand, the choice of k = d2 log(1/H)e results in a reduced order of
convergence.
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In order to test the dependence of the performance of the localized multiscale finite
element method on the contrast, we have solved (2.19) for three additional randomly generated
diffusion matrices, so that the contrast β/α in the four examples increases from the order of
10 to the order of 104. The relative errors in the energy norm are displayed in Figure 5.5. The
magnitudes are similar for the four examples, and the order of convergence is O(H). The
choice of k is d3 log(1/H)e for the contrasts 10, 1.2× 102, and 1.3× 10, and d4 log(1/H)e
for the contrast 1.4× 104, which indicates that the effective value of q in (3.11) is likely to be
independent of the contrasts (cf. Remark 3.5).

FIG. 5.5. Relative energy norm errors for the localized multiscale finite element method with respect to four
different contrasts.

5.2. Preconditioning the ideal multiscale finite element method. At first we take
h = 1/160 and solve (2.10) by the Conjugate Gradient (CG) method (without a precon-
ditioner). The number of iterations required to reduce the residual by a factor of 10−6 for
various H are reported in Table 5.1.

TABLE 5.1
Iteration counts for CG (h = 1/160).

1/H 10 20 40 80

Iterations 19 46 122 332

Next we solve the same problem by the Preconditioned Conjugate Gradient (PCG) method
with A−1

H as the preconditioner. The number of iterations required to reduce the residual by a
factor of 10−6 for various H are reported in Table 5.2. The improvement over the CG method
and the optimality established in Theorem 4.1 are clearly visible.

We then test the performance of additive Schwarz domain decomposition preconditioners.
We divide Ω into J overlapping subdomains with various overlaps measured by the ratio R
between the diameter of the subdomains and the amount of overlap. In the case of the two-level
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TABLE 5.2
Iteration counts for PCG with A−1

H as the preconditioner (h = 1/160).

1/H 10 20 40 80

Iterations 9 13 13 14

TABLE 5.3
Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.10) with

h = 1/320 and H = 1/80.

J
R 1 2 4 1 2 4

one-level two-level

52 33 49 53 31 45 47

102 39 48 67 38 36 44

202 48 88 119 33 37 42

402 103 155 − 33 32 −

preconditioner, the mesh size of the coarse grid is proportional to 1/
√
J . We solve (2.10)

with h = 1/320 and H = 1/80 by the PCG method with standard one-level and two-level
additive Schwarz preconditioners for AH as preconditioners for Ams,h

H , and record the number
of iterations needed to reduce the residual by a factor of 10−6 in Table 5.3.

According to Corollary 4.3, the performance of the PCG for Ams,h
H is determined by the

condition number of BAH , where B is either the one-level or the two-level additive Schwarz
preconditioner for AH . Therefore, the number of iterations is dictated by the condition number
estimates for overlapping additive Schwarz domain preconditioners (cf. [31, Section 3.6],
[26, Section 2.5.3], or [7, Section 7.4]). In particular, for a given R, the number of iterations
for the one-level method will increase as J increases while the number of iterations for the
two-level method will stay bounded. This is observed in Table 5.3.

We also test the weak scalability of the one-level and two-level additive Schwarz methods
by fixing a fine mesh with h = 1/320 and increasing the number of degrees of freedom for
V

ms,h
H and the number of subdomains by a factor of 4 simultaneously, with the initial mesh

size H = 1/40 and the initial number of subdomains J = 25. R is taken to be 8. The results
are displayed in Figure 5.6, which again agree with the behavior predicted by Corollary 4.3
and the theory of additive Schwarz preconditioners, i.e, the two-level algorithm is scalable
while the one-level algorithm is not.

5.3. Preconditioning the localized multiscale finite element method. We consider the
problem (2.19) for the multiscale finite element method with h = 1/320, H = 1/80, and
k = d3 log(1/H)e and perform the same test for the performance of additive Schwarz domain
decomposition preconditioners. The results are identical to the results for the ideal multiscale
finite element method reported in Table 5.3.

In order to test the dependence of the performance of the preconditioners on the contrast,
we have solved (2.19) by PCG with the two-level preconditioner for the additional randomly
generated coefficient matrices in Section 5.1. The mesh size for the localized multiscale finite
element method is H = 1/40, and the choice of k is d3 log(1/H)e for the first three contrasts
and d4 log(1/H)e for the largest contrast. The numbers of iterations required to reduce the
residual by a factor of 10−6 are displayed in Figure 5.7, where the number of subdomains is
J = 52, 102, and 202, and the ratio between the diameter of the subdomains and the overlap is
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FIG. 5.6. Iteration counts for the weak scaling test with initial mesh size H = 1/40 and initial number of
subdomains J = 25 (h = 1/320, R = 8).

R = 2. It can be observed that the number of iterations increases by a factor of at most 2 as
the contrast increases by a factor of 10, which indicates that the condition number estimates
in Theorem 4.1, Corollary 4.3, Theorem 4.4, and Corollary 4.5 are indeed too pessimistic
(cf. Remark 4.2).

6. Numerical results for highly oscillatory coefficients. We consider a problem first
treated in [19]. The domain for the numerical experiments is also the unit square (0, 1)×(0, 1),
and f is the constant function −1. The diffusion matrix A takes the form of c(x)I , where

c(x) =

2 + 1.8 sin

(
2πx1

ε

)
2 + 1.8 cos

(
2πx2

ε

) +

2 + sin

(
2πx2

ε

)
2 + 1.8 sin

(
2πx1

ε

) .
The contrast β/α for this problem is ≈ 16 for all choices of ε.

6.1. Convergence of the localized multiscale finite element method. We take Vh to
be the Q1 finite element space associated with the uniform partition of Ω into 256 × 256
small squares (i.e., h = 1/256). The solution uh obtained by the standard finite element
method (1.4) is treated as the reference solution.

The boundary value problem (1.1) is solved by the localized multiscale finite element
method (2.19) with k = d3 log(1/H)e and H = 1/16, 1/32, and 1/64. The convergence
history for the energy (resp., L2-) norm for ε = 0.16, 0.08, and 0.04 are displayed in Figure 6.1
(resp., Figure 6.2). It is observed that the convergence in the energy norm is O(H), which
agrees with the estimate (3.21), and the convergence in the L2-norm is O(H2), which also
agrees with the estimate (3.22). Moreover the performance of the method is independent of ε.

6.2. Preconditioning the localized multiscale finite element method. The domain Ω
is divided into J subdomains, where the ratio between the diameter of the subdomain and the
amount of overlap is denoted by R. In the case of the two-level preconditioner, the mesh size
of the coarse grid is proportional to 1/

√
J .
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FIG. 5.7. Iteration counts for the two-level additive Schwarz preconditioner for four different contrasts, where
H = 1/40, R = 2, and J = 52, 102 and 202.

FIG. 6.1. Relative errors in the energy norm for different ε.

We solve (2.19) by the PCG method with standard one-level and two-level additive
Schwarz domain decomposition preconditioners for AH as preconditioners for Ams,h

H,k . For
h = 1/256 and H = 1/64, the number of iterations required to reduce the residual by a
factor of 10−6 are reported in Table 6.1 for R = 2 and Table 6.2 for R = 4. The results of
solving (2.19) by CG without a preconditioner are also presented in Table 6.3 for comparison.

We observe that the performance of the PCG is more or less independent of ε, which
is consistent with Corollary 4.5, where the condition number estimate only depends on the
contrast. The PCG iteration counts in Table 6.1 and Table 6.2 (especially the ones for the
two-level preconditioner) show substantial improvement over the iteration counts in Table 6.3
for the CG algorithm.

We also test the weak scalability of the two-level preconditioner by increasing the number
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FIG. 6.2. Relative errors in the L2-norm for different ε.

TABLE 6.1
Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.19) withR = 2,

h = 1/256, H = 1/64 and ε = 0.16, 0.08, and 0.04.

J
ε 0.16 0.08 0.04 0.16 0.08 0.04

one-level two-level

22 13 14 15 13 13 15

42 15 16 16 15 15 16

82 26 24 27 15 15 16

162 51 45 45 15 16 15

TABLE 6.2
Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.19) withR = 4,

h = 1/256, H = 1/64 and ε = 0.16, 0.08, and 0.04.

J
ε 0.16 0.08 0.04 0.16 0.08 0.04

one-level two-level

22 14 15 15 13 14 15

42 23 21 24 15 15 16

82 42 36 42 16 15 15

162 81 70 70 15 16 15

TABLE 6.3
Iteration counts for CG (h = 1/256, H = 1/64).

ε 0.16 0.08 0.04

Iterations 207 149 114

of degrees of freedom in V ms,h
H,k and the number of subdomains by a factor of 4 simultaneously,

with the initial mesh size H = 1/16 and the initial number of subdomains J = 4. The results
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are reported in Figure 6.3. It is clear that the two-level additive Schwarz algorithm is scalable
and its performance is independent of ε.

FIG. 6.3. Iteration counts for the weak scaling test for the two-level preconditioner with initial mesh size
H = 1/16 and initial number of subdomains J = 4 (h = 1/256, R = 2).

7. Concluding remarks. As a reduced-order method, the variant of the LOD method
considered in this paper is effective for applications that involve repeated solves of problems
with rough coefficients.

Additive Schwarz domain decomposition preconditioners play a role in both the off-line
stage and the on-line stage. They are used in the construction of the localized multiscale
finite element space V ms,h

H,k , where the subdomains are patches around the nodes of the coarse
finite element space VH . They are also used as preconditioners for the localized multiscale
finite element method, where the subdomains are constructed as in overlapping domain
decomposition preconditioners for standard second-order problems.

We use a basic interpolation operator Π in this paper. There are more sophisticated
coefficient-dependent interpolation operators (cf. [15, 27]) that can lessen the adverse effects
of the contrast β/α under additional assumptions on the diffusion matrix A. The approach in
this paper can also be applied to LOD methods based on these interpolation operators.

Acknowledgement. This work was supported in part by the National Science Foundation
under Grant Nos. DMS-16-20273 and DMS-19-13035. The authors would like to thank two
anonymous referees for many helpful comments.

Appendix A. Analysis of the ideal multiscale finite element method. First we provide
some details for the estimate (2.4). Let T ∈ TH and ωT be the interior of the union of all the
elements in TH that share at least one vertex with T . We will show that

(A.1) H−1
T ‖v −Πv‖L2(T ) + |Πv|H1(T ) . |v|H1(ωT ) ∀ v ∈ H1

0 (Ω),

where HT is the diameter of T , and then (2.4) follows immediately.
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Let v ∈ H1(Ω) and T ∈ TH be arbitrary and p be a vertex of T that is interior to Ω. In
view of (2.1) and (2.2), we have, by standard inverse estimates (cf. [7, 8]),

|(Πv)(p)| .
∑
T∈Tp

‖ṽT‖L∞(T ) . H
−d/2
T

∑
T∈Tp

‖ṽT‖L2(T ) ≤ H
−d/2
T

∑
T∈Tp

‖v‖L2(T ),

and hence

(A.2) ‖Πv‖L2(T ) . ‖v‖L2(ωT ).

According to the Bramble-Hilbert lemma (cf. [6, 7, 10]), there exists a constant c such that

(A.3) H−1
T ‖v − c‖L2(ωT ) . |v|H1(ωT ).

It follows from (A.2) and (A.3) that

H−1
T ‖v −Πv‖L2(T ) = H−1

T ‖(v − c)−Π(v − c)‖L2(T )(A.4)

. H−1
T ‖v − c‖L2(ωT ) . |v|H1(ωT ).

Let Π̃ : H1
0 (Ω) −→ VH be a quasi-local operator [7, 29] that satisfies

(A.5) H−1
T ‖v − Π̃v‖L2(T ) + |Π̃v|H1(T ) . |v|H1(ωT ) ∀ v ∈ H1

0 (Ω).

We can complete the proof of (A.1) by combining (A.4) and (A.5) with a standard inverse
estimate:

|Πv|H1(T ) ≤ |Πv − Π̃v|H1(T ) + |Π̃v|H1(T )

. H−1
T ‖Πv − Π̃v‖L2(T ) + |v|H1(ωT )

. H−1
T ‖Πv − v‖L2(T ) +H−1

T ‖v − Π̃v‖L2(T ) + |v|H1(ωT ) . |v|H1(ωT ).

Next we derive the error estimates (2.12) and (2.13). From (1.2), (1.4), (2.4), (2.6), and (2.7),
we find

‖Chuh‖2a = a(uh,Chuh) = a(uh,Chuh −ΠChuh)

= (f, (I −Π)Chuh)

≤ H‖f‖L2(Ω)C†|Chuh|H1(Ω) ≤ H‖f‖L2(Ω)(C†/
√
α)‖Chuh‖a,

and hence

(A.6) ‖Chuh‖a ≤ (C†/
√
α)H‖f‖L2(Ω).

The estimate (2.12) follows from (2.11) and (A.6).
Finally, we derive the estimate (2.13) by a duality argument. Let wh ∈ Vh be defined by

(A.7) a(wh, v) = (Chuh, v) ∀ v ∈ Vh.

Then we have the following analog of (A.6):

(A.8) ‖Chwh‖a ≤ (C†/
√
α)H‖Chuh‖L2(Ω).

It follows from (2.6) , (A.7), and (A.8) that

‖Chuh‖2L2(Ω) = a(wh,Chuh) = a(Chwh,Chuh)

≤ ‖Chwh‖a‖Chuh‖a ≤ (C†/
√
α)H‖Chuh‖L2(Ω)‖Chuh‖a.
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Therefore we have, by (A.6),

‖Chuh‖L2(Ω) ≤ (C†/
√
α)H‖Chuh‖a ≤ (C2

† /α)H2‖f‖L2(Ω),

which is the estimate (2.13) because of (2.11).
REMARK A.1. Since the estimate (A.1) is quasi-local, the results for the multiscale finite

element methods can be easily extended to triangulations that are not necessary quasi-uniform
(cf. [24, 25]).
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