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MULTIGRID REDUCTION IN TIME WITH RICHARDSON EXTRAPOLATION∗

R. D. FALGOUT†, T. A. MANTEUFFEL‡, B. O’NEILL§, AND J. B. SCHRODER§

Abstract. The advent of exascale computing will leave many users with access to more computational resources
than they can simultaneously use, e.g., billion-way parallelism. In particular, this is true for time-dependent simulations
that limit parallelism to the spatial domain. One method to add parallelism in time to existing simulation codes
and thus take advantage of ever larger compute resources is Multigrid Reduction in Time (MGRIT). The goal is to
achieve a smaller time-to-solution through parallelism in time. In this paper, MGRIT is enhanced with Richardson
extrapolation in a cost-efficient way to produce a parallel-in-time method with improved accuracy. Overall, this leads
to a large improvement in the accuracy per computational cost of MGRIT.
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1. Introduction. Based on current trends, it is reasonable to assume that future increases
in compute power will be available through increases in concurrency rather than increases in
clock speed. This is a troubling trend for those using sequential time integration schemes that
limit parallelism to the spatial domain because it creates a sequential bottleneck. One remedy
to this bottleneck is to consider parallel-in-time methods, which include a wide variety of
direct and indirect methods. Work on parallel-in-time methods actually began at least 50 years
ago [23], but interest in parallel-in-time was rekindled with the parareal method [21] in 2001,
followed by the multilevel spectral deferred correction approach (also called PFASST) [6, 22].
For a detailed review of parallel-in-time methods, see the review papers [12, 25].

This work focuses on the Multigrid Reduction in Time (MGRIT) method [7, 10], an
iterative multilevel algorithm that uses multigrid reduction techniques and temporal domain
decomposition to add large-scale temporal parallelism to existing time integration codes. In
terms of time step evaluations, MGRIT is an optimal algorithm, i.e., O(Nt), where Nt is
the total number of time steps [7]; however, the constant for MGRIT is higher than that of
sequential time integration. This creates a crossover point where the additional computational
resources eventually overcome the extra computational work. Beyond this crossover point,
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MGRIT provides a speedup over sequential methods. This work uses XBraid [33], an open
source implementation of MGRIT developed at the Lawrence Livermore National Laboratory
(LLNL). Some recent applications of XBraid include linear and nonlinear parabolic prob-
lems [7, 9], compressible fluid dynamics [8], power grids [20, 29], eddy-current problems [11],
linear advection [16, 30], and machine learning [14].

This work seeks to improve the accuracy and efficiency of MGRIT through Richardson
extrapolation (RE)-based time integration, which is a non-intrusive algorithm that uses coarse-
grid approximations in conjunction with RE to improve the convergence order of the underlying
time-integration scheme. MGRIT is also a non-intrusive iterative algorithm [7], and it uses a
coarse-grid error correction to accelerate convergence to the solution at a desired fine scale.
In this paper, we present a new, improved MGRIT algorithm that combines RE-based time
integration and MGRIT in a way that capitalizes on those similarities. The result is a method
that delivers higher accuracy per computational cost (APCC) when compared to the original
MGRIT algorithm, while continuing to offer the temporal concurrency of MGRIT.

The use of RE with time-parallelism has some history. The work [31] extracts small-
scale parallelism from RE by processing corresponding fine and coarse RE steps in parallel,
while the work [32] incorporates RE with parareal in a manner analogous to the proposed
approach. Since MGRIT with so-called F-relaxation and parareal are equivalent in a two-level
setting [13], the proposed work adds further insight into the two-level method from [32],
while extending the use of RE to multilevel MGRIT. One key difference between [32] and
the proposed method is that while parareal solves the coarse-level problem needed for RE
sequentially (exactly), MGRIT solves it inexactly in parallel with a multigrid hierarchy. We
also provide a sharp two-level convergence analysis for linear problems that applies to both
the parareal and MGRIT settings and includes the effects of FCF-relaxation, which is not a
part of parareal. Lastly, the proposed work considers the impact of nonuniform time-grids,
which [32] did not.

The spatial multigrid community refers to a similar approach as τ -extrapolation [2, 4, 15]
because it modifies the τ -term in full approximation storage (FAS) multigrid [3]. The further
works [17, 18, 28] connect multilevel finite element discretizations directly with multigrid
τ -extrapolation solvers. Although the proposed approach uses Richardson extrapolation,
which differs slightly from τ -extrapolation, we name the new MGRIT algorithm τ -MGRIT
because our eventual algorithm also results in a simple modification of the τ -term. The results
presented here are based on [24].

In summary, the τ -MGRIT algorithm developed here is a non-intrusive, parallel-in-time
algorithm that uses RE to improve the accuracy of the underlying time integration scheme,
while also allowing for parallel speedups. This is accomplished without a significant increase
in the computational cost when compared to the original MGRIT algorithm. The method
is generally applicable whenever RE is an effective technique for the underlying problem
and discretization. Examining the applicability of RE-based time integration for a particular
problem is beyond the scope of this paper, but we note that Richardson-type methods have
a long history of improving solutions and providing error estimates for a wide variety of
problems [1, 19, 27].

The outline of this paper is as follows. First, a brief overview of RE-based time integration
is given. Next, the two- and multilevel τ -MGRIT algorithms are derived. For brevity, this
derivation also acts as an introduction to the standard MGRIT algorithm. The following
section presents a cost analysis of τ -MGRIT for uniform time grids. This includes a derivation
of a convergence bound (Section 4.2), two numerical examples (Sections 5.1 and 5.2), and
a strong scaling study (Section 5.4). Finally, in Section 6, the application of τ -MGRIT on
a non-uniform temporal grid is considered. Overall, the results in this paper show how the
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τ -MGRIT algorithm can be used to significantly improve the APCC of the MGRIT algorithm,
whenever RE-based time integration is appropriate.

2. Richardson extrapolation. Richardson extrapolation (RE), first introduced in
1911 [26], is a non-intrusive extrapolation-based technique designed to estimate and eliminate
the lowest-order error term from the underlying numerical approximations. Let U(δt) be an
approximation of U with a step size δt and, by Taylor’s theorem, an error of the form

(2.1) U − U(δt) = C0(δt)k0 + C1(δt)k1 + . . . ,

where each k0 < k1 < . . . is a known constant and each Ci is an unknown constant. We
assume that the expansions here are convergent, i.e., δt is small enough. For a larger step size
mδt, the same error formula becomes

(2.2) U − U(mδt) = C0(mδt)k0 + C1(mδt)k1 + . . .

Eliminating the exact solution U and ignoring higher-order terms, we find

(δt)k0C0 =
U(δt)− U(mδt)

mk0 − 1
+O((δt)k1).

Substituting for (δt)k0C0 in equation (2.1) gives

U =
mk0U(δt)− U(mδt)

mk0 − 1
+O((δt)k1),(2.3)

thus improving the order of accuracy from k0 to k1. This process can be repeated to further
improve the accuracy. The general recurrence relationship for RE is

U0 = U(δt),

Ui+1(δt) =
mkiUi(δt)− Ui(mδt)

mki − 1
,(2.4)

where Ui is the ith RE-based approximation of U and U = Ui+1(δt) +O((δt)ki+1).
It is important to note that RE does not guarantee an improvement. For example, equa-

tions (2.2) and (2.1) imply that one level (i.e, i = 1) of RE will not improve the solution if the
next error term C1 is relatively large,∣∣∣∣C1

mk0 −mk1

mk0 − 1

∣∣∣∣ (δt)k1 ≥ |C0|(δt)k0 .

Moving forward, the two-step RE-based time integration method is formulated as a
two-level sequential time integration scheme defined on the following nested two-level grid:
Define a uniform temporal grid with time step δt and nodes tj , j = 0, . . . , Nt (non-uniform
time grids are discussed in Section 6). Further, define a coarse temporal grid with time step
∆T = mδt and nodes Tj = j∆T, j = 0, 1, . . . , Nt/m, for some coarsening factor m. As
shown in Figure 2.1, coarse-grid points (red) reside on both the fine and coarse grids. Fine-grid
time points (shown in black) exist only on the fine grid. This perspective will allow us to
highlight the striking similarities between the RE- and MGRIT-based time integration methods,
while also acting as a stepping stone toward developing the cost-efficient τ -MGRIT algorithm.
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FIG. 2.1. Fine- and coarse-grid temporal meshes. Fine-grid points (black) are present on only the fine-grid,
whereas coarse-grid points (red) are present on both the fine- and coarse-grid.

2.1. RE-based time integration. Both MGRIT and RE solve the time-discretized equa-
tions of a general first-order ordinary differential equation (ODE):

du

dt
= f(u, t), u(0) = u0, t ∈ [0, T ],

uj+1 = Φ(uj , δt) + gj+1, j = 0, . . . , Nt − 1,(2.5)

where uj represents the discrete solution at t = tj , Φ is an operator representing the chosen
time-stepping method, δt is the time step size, and gj represents the collection of all time-
dependent but solution-independent terms needed to make (2.5) consistent at time t = tj .

In general, the error formula for a time integration scheme of order kg can be obtained
using Taylor’s theorem. The only difficulty is that, in most cases, the expansion coefficients
vary in both space and time. Thus, RE-based time integration must be completed under the
assumption that the solution is sufficiently smooth and that δt is small, so that each Ci(x, t)
can be assumed to be nearly constant in time.

To minimize the domain size on which these assumptions must hold, RE-based time
integration is usually completed by chopping the global time domain into a discrete set of
sequentially ordered temporal subdomains. In the notation above, each temporal subdomain
corresponds to an interval of length mδt lying in between two consecutive coarse points (see
Figure 2.1). RE is used to update the solution at each coarse-grid time point. That updated
solution is then used to propagate the solution forward in time to the next coarse-grid point,
where the process is repeated. Solving the system in equation (2.5) with a single stage (i.e.,
i = 0 in equation (2.4)) of RE-based time integration equates to solving the following system
of equations

uf,mj+1 = Φ(u∗,mj , δt) + gmj ,(2.6)
uf,mj+2 = Φ(uf,mj+1, δt) + gmj+1,(2.7)

... =
...(2.8)

uf,m(j+1) = Φ(uf,m(j+1)−1, δt) + gm(j+1),(2.9)

followed by a step with a coarse time-spacing and a subsequent error correction,

uc,m(j+1) = Φ(u∗,mj ,mδt) + gm(j+1),(2.10)

u∗,m(j+1) =
mkguf,m(j+1) − uc,m(j+1)

mkg − 1
,(2.11)

= auf,m(j+1) − buc,m(j+1),(2.12)

for j = 0, 1, 2, . . . , Nt/m, u∗,0 = uf,0. We let a = mkg/(mkg − 1) and b = 1/(mkg − 1),
such that a − b = 1. The notation uf/c/∗,i indicates a fine-grid (f), coarse-grid (c), or RE-
enhanced (∗) solution at time t = ti. Figure 2.2 provides a graphical representation of this
algorithm with m = 2.
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FIG. 2.2. Time integration with RE and m = 2. The notation uf/c/∗,a denotes a fine-grid (f), coarse-grid (c),
or RE-enhanced (∗) solution at time t = ta. Coarse-grid solutions are used to enhance the fine-grid solution at the
C-points in order to generate the RE-enhanced solutions u∗,a.

MGRIT- and RE-based time integration are both non-intrusive algorithms; MGRIT adds
temporal parallelism to existing time integration schemes, whereas RE-based time integration
improves the accuracy. The goal of this paper is to develop a method that allows RE-based
time integration to be used efficiently inside the MGRIT framework. In particular, we develop
a non-intrusive, parallel-in-time solver that improves the accuracy of the underlying time
integration scheme without a significant increase in the total cost when compared to the
standard MGRIT algorithm. This new MGRIT variant, known as τ -MGRIT, is derived in the
following sections.

3. MGRIT with Richardson extrapolation. In the spatial multigrid community, the
algorithm resulting from integrating multigrid and RE is known as τ -extrapolation. Multigrid
τ -extrapolation uses the extrapolation principle to exploit the multilevel structure of spatial
multigrid algorithms, resulting in a fast solver with improved approximation properties.

Multigrid τ -extrapolation is an extension of the FAS multigrid method, which was
originally designed to solve general nonlinear problems. MGRIT is also built using FAS. A
basic two-level FAS cycle is described in Algorithm 1, where Ahuh = gh and AHvH = gH
represent the discretization of a (perhaps nonlinear) differential equation on fine and coarse
grids, respectively. We use vH (and not uH ) for the coarse-grid variable, as is common in the
FAS literature. For simplicity, we further assume that Ah and AH were discretized on uniform
time-grids with step sizes δt and mδt, respectively. Both R and R̂ are restriction operators
interpolating from fine to coarse (h→ H), and P is the prolongation operator interpolating
from coarse to fine (H → h). FAS allows for these two restriction operators to be distinct,
although they are often equal, as for the case here where we use injection. Algorithm 1 relies
on the complementary relationship between relaxation and coarse-grid correction, where any
error that is not effectively reduced by relaxation is mapped to the coarse grid and accurately
computed there. Of particular importance here is τ , which allows for RE to be integrated into
the coarse-grid correction straightforwardly.

Algorithm 1 FAS(A, u, g).

1: Relax on Ahuh = gh using a (non)linear relaxation method.
2: Solve the coarse-grid problem
AHvH = gH + τHh ,

where τHh = AHRuh − R̂Ahuh.
3: Compute the coarse-grid error approximation

eH = vH −Ruh.
4: Correct the fine-grid approximation

uh ← uh + PeH .
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The τ -term (τHh ) can be interpreted as a correction of the coarse-grid solution vH to
make it coincide with the fine-grid solution uh [2]. Based on the principles of RE, in the
τ -extrapolation algorithm, τHh is multiplied by a factor a = mp/(mp−1), where p is the order
of the approximation, so that the coarse-grid solution better approximates the true solution u.
Using the standard MGRIT interpolation operator, this error correction can be carried up to
the finest grid, giving a fine-grid solution with improved approximation properties [2]. We
now derive the τ -extrapolation principle from the perspective of time integration with RE and
MGRIT.

3.1. Derivation of τ -MGRIT. The two-level τ -MGRIT algorithm for problems with
a linear, time-independent time integrator defined on a uniform temporal grid will now be
presented. The nonlinear and time-dependent variations follow easily. The extension of
τ -MGRIT to non-uniform temporal grids is discussed in Section 6. Note that this derivation
assumes that the spatial grid at each time point is fixed across all levels. Spatial coarsening
with τ -MGRIT is an area of research.

In block-triangular form, the original time integration problem, equation (2.5), is

(3.1) Au =


I
−Φ I

. . . . . .
−Φ I

. . . . . .




u0

u1

...
um

...

 = ḡ,

where Φ is a matrix. The RE-based time-integration problem, equations (2.6)–(2.12), can be
written in block triangular form as

(3.2) Aτu =



I
−Φ I

. . . . . .
bΦ∆ −aΦ I

0 −Φ I
. . . . . . . . .

bΦ∆ −aΦ I
. . . . . . . . .





u0

u1

...
um

um+1

...
u2m

...


= ḡ,

where Φ∆ is a matrix and Φ∆u = Φ(u,mδt) represents the coarse-grid time step. Note that
u = [u0, . . . ,uNt ] is a vector of vectors, where each ui has a length equal to the number of
spatial unknowns at time point i. In what follows, setting a = 1 and b = 0 yields the original
MGRIT algorithm.

RE-based time integration is equivalent to a block forward solve of this system. This
approach allows for spatial parallelism but must propagate forward sequentially in time1. The
τ -MGRIT algorithm solves this system iteratively, in parallel, using a coarse-grid correction
scheme based on multigrid reduction. To solve equation (3.2) with FAS multigrid, one must
first define the coarse-grid operator, a method of relaxation, and a method of restriction and
interpolation.

1Technically, the two (or more) solutions can proceed in parallel. However, this is a low-level form of temporal
parallelism that does not scale.
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3.1.1. The τ -MGRIT coarse-grid operator. The τ -MGRIT algorithm uses multigrid
reduction strategies to determine the coarse-grid operator by successively eliminating un-
knowns from the fine-grid system. The elimination targets F-points, where the time points
have been partitioned into F- and C-points based on the temporal coarsening factor m. For
example with m = 4, the circles in Figure 3.1 depict F-points, while the squares are C-points.
Each time point refers to a block row in equation (3.2). The elimination is based on the
following recursion relation:

uf,mj = Φuf,mj−1 + gmj = Φ(Φumj−2 + gmj−1) + gmj = . . . ,

= Φmuf,m(j−1) + ĝmj , j = 1, 2, . . . , Nt/m,

where ĝmj = gmj + Φgmj−1 + · · ·+ Φm−1gm(j−1)+1. In block triangular form, the ideal
coarse-grid operator and equation is
(3.3)

Aτ∆u∆ :=


I

(bΦ∆ − aΦm) I
(bΦ∆ − aΦm) I

. . . . . .




u∆,0

u∆,1

u∆,2

...

 =


u0

aĝm − bgm
aĝ2m − bg2m

...

 .
The coarse-grid operator Aτ∆ is referred to as ideal because the exact solution of equa-

tion (3.3) yields the exact solution to equation (3.2) at the coarse points. If this is followed by
interpolation (i.e., injection from the coarse-level to the fine-level at the C-points, followed
by the F-relaxation depicted in Figure 3.1), then the exact solution is also available at the
fine points (F-points). Here, the “exact solution” refers to the solution found at that time
point using the RE-based sequential time integration scheme. That is to say, u∆,j = umj in
equation (3.2), for j = 0, 1, 2, . . . , Nt/m.

The limitation of this exact reduction method is that the coarse-grid problem (3.3) is,
in general, as expensive to solve as the original fine-grid problem (3.2) (because of the
Φm-evaluations). Approximating Φm with Φ∆ and noting that a − b = 1 gives a cheap
approximation of this exact coarse-grid operator

B∆ =


I
−Φ∆ I

. . . . . .
−Φ∆ I

 ,
where Φ∆ is an approximate coarse-grid time step operator. This choice of approximating Φm

with Φ∆ has been used in various MGRIT algorithms to good effect [7, 9, 20]. Additionally,
the coarse-grid operator B∆ is independent of the constants a and b, indicating that the coarse-
grid operator is identical for both the τ -MGRIT and MGRIT algorithms. In fact, the only
difference between the two-level τ -MGRIT and MGRIT algorithms is the calculation of the
coarse-grid right-hand side (RHS) and a process known as fine-grid C-relaxation (introduced
below).

One obvious choice for defining Φ∆ is to re-discretize the problem on the coarse grid so
that a coarse-grid time step is roughly as expensive as a fine-grid time step. For instance, with
a backward Euler method, one simply uses a larger time step size. Convergence of MGRIT is
ultimately determined by the approximation Aτ∆ ≈ B∆, and this choice of re-discretizing Φ
with ∆T = mδt has proved effective when applied to the MGRIT algorithm [7, 8, 9].

Note that while the definition of this algorithm relies upon Φ and Φ∆, the internals of
these functions need not be known. This is the non-intrusive aspect of MGRIT. The user
defines the time step operator and can use a library τ -MGRIT code.
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FIG. 3.1. F- and C-relaxation with m = 4. F-relaxation propagates the solution forward across each fine-grid
interval. C-relaxation needs two solution propagations for RE, from the last F-point and preceding C-point for each
coarse-grid interval. The Φ∆ steps are not required when using the standard MGRIT algorithm. Also note that each
separate series of time steps (red and blue) can be completed simultaneously on separate processors.

As per the original MGRIT algorithm [7], restriction is completed using injection. Simi-
larly, interpolation is equivalent to injection from the coarse to the fine grid at the C-points,
followed by F-relaxation (see Figure 3.1). For the purposes of this paper, the restriction
and interpolation operators are denoted RI (injection) and P , respectively. Comparing to
Algorithm 1, AH corresponds to B∆ discussed here, and Ah corresponds to one of the
operators (3.1) or (3.2), depending on whether MGRIT or τ -MGRIT is being used.

3.1.2. F- and C-relaxation. MGRIT uses two basic types of relaxation, namely F- and
C-relaxation. Figure 3.1 shows the actions of F- and C-relaxation on a temporal grid with
m = 4.

F-relaxation propagates the solution forward in time from each coarse point to the neigh-
boring F -points. On each coarse-grid interval, F-relaxation includes m− 1 sequential time
integration steps. For a linear problem with a backward Euler time integration scheme, this
constitutesm−1 sequentially linked spatial inverses. For a nonlinear time integration operator,
updating each interval of F-points requires m− 1 sequentially linked nonlinear solves, each of
which will likely require several nonlinear iterations, e.g., Newton iterations. Most importantly,
F-relaxation is highly parallel; each interval of F -points can be updated independently during
F-relaxation. Note that the sequential nature of F-relaxation places a bound on the number
of temporal processors for which we expect to see a speedup. To be precise, F-relaxation
obtains a maximal parallel concurrency when Nt/m temporal processors are used. At this
point, additional temporal processors only act to increase communication costs associated
with F-relaxation. However, there may be an advantage in memory consumption [9].

C-relaxation is the process of updating the coarse time points. As with F-relaxation, each
C-point can be updated independently, in parallel. The standard C-relaxation used by the
original MGRIT algorithm requires exactly one time step evaluation per C-point (remove the
Φ∆ application in Figure 3.1). For τ -MGRIT, C-relaxation on the finest grid requires two
time steps per C-point, one on the fine grid and one on the coarse grid, i.e., Φ and Φ∆ in
equation (3.2), respectively.

In [7], it was shown that F-relaxation was not enough to ensure a scalable multilevel
algorithm. To fix this, a composite relaxation known as FCF-relaxation was introduced.
FCF-relaxation consists of an F-relaxation, followed by a C-relaxation, followed by another
F-relaxation.
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3.1.3. The two-level τ -MGRIT algorithm with FAS. To accommodate both linear and
nonlinear problems, the τ -MGRIT algorithm uses FAS multigrid as outlined in Algorithm 1.
In the τ -MGRIT notation, the FAS coarse-grid problem, defined in Algorithm 1, is: find v∆

such that

B∆v∆ = B∆RIu +RI(g −Aτu).(3.4)

Expanding this equation, the jth row of the coarse-grid problem is

[B∆v∆]j = [B∆RIu]j + [RI(g −Aτu)]j ,

= [B∆RIu]j + gmj − [Aτu]mj ,

= umj − Φ∆um(j−1) + gmj − [Aτu]mj ,

= umj − Φ∆um(j−1) + gmj + aΦumj−1 − umj − bΦ∆um(j−1),

= gmj + aΦumj−1 − (1 + b)Φ∆um(j−1),

= gmj + a(Φumj−1 − Φ∆um(j−1)),

= gmj + a(umj − Φ∆um(j−1) − umj + Φumj−1),

= gmj + a([B∆RIu]j − [RIAu]j),

where j = 1, 2, . . . , Nt/m, the operator A is as defined in equation (3.1), and the notation
[X]j denotes the jth block row of the matrixX . Given this, the τ -MGRIT coarse-grid problem
is: find v∆ such that

B∆v∆ = RIg + a(B∆RIu−RIAu).(3.5)

Thus, the two-level τ -MGRIT algorithm is identical to the standard MGRIT algorithm
with the exception that the second term in the coarse-grid RHS is scaled by the factor
a = mkg/(mkg − 1) (compare equations (3.4) and (3.5)). This result shares a similar form
to that outlined in the original τ -extrapolation paper for spatial multigrid. Namely, that the
accuracy of the standard MGRIT algorithm can be improved by simply scaling the RHS of the
coarse-grid equation by the appropriate factor.

Algorithm 2 outlines the two-level τ -MGRIT algorithm. The multilevel extension of the
two-level τ -MGRIT algorithm is discussed in Remark 3.1.

Algorithm 2 τ -MGRIT(A, u, g).

1: Apply F- or FCF-relaxation to A(u) = g.
2: Calculate uf,mi = Φ(umi−1) + gmi.
3: Calculate uc,mi = Φ∆(um(i−1)) + gmi.
4: Inject uf,mi and uc,mi to the coarse grid.

û∆,i ← uf,mi, ū∆,i ← uc,mi.
5: Solve B∆(v∆) = g∆ + a(û∆ − ū∆).
6: Compute the error approximation:

e∆,i = v∆,i − û∆,i.
7: Correct u at C-points: umi = uf,mi + e∆,i.
8: If converged, then update F -points: apply F-relaxation to A(u) = g.
9: Else go to step 1.

It is important to note that the original RE equations were derived under the assumption
that the solution is smooth and that the time step size is small. Of course, this is not always
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true, and as such, RE-based time integration cannot be used in all situations. However, as
will be shown in Section 4.2, the τ -MGRIT scheme is guaranteed to converge to the solution
obtained through sequential time integration with Richardson extrapolation in a finite number
of iterations. This means that the stability and error analysis of RE-based time integration
methods is in no way altered by the τ -MGRIT algorithm. That is, τ -MGRIT will return a
stable solution with improved convergence order if sequential time integration with RE also
returns a stable solution with improved convergence order. This ability to exploit existing
analysis is a major advantage of the non-intrusive MGRIT approach. As such, determining the
applicability of RE-based time integration to a particular problem is beyond the scope of this
paper. Rather, our goal is to show that, when applicable, RE time integration can be used with
MGRIT to dramatically improve the APCC of the MGRIT algorithm.

REMARK 3.1 (Multilevel extension). The two-level τ -MGRIT algorithm can be extended
to multiple levels in several ways. Of course, with more levels comes more opportunities to
further enhance the solution with RE. However, in a parallel setting, the extra coarse-grid
time steps required for multilevel RE are not free. For this reason, the multilevel τ -MGRIT
algorithm does not combine multiple stages of RE-based time integration. Instead, the
multilevel τ -MGRIT algorithm uses the two-level τ -MGRIT algorithm on the fine grid but
solves the coarse-grid problem using a recursive call to the original MGRIT algorithm. This is
possible because the coarse-grid equations are identical for τ -MGRIT and MGRIT.

4. Computational cost of the τ -MGRIT algorithm. The accuracy improvements of
τ -MGRIT would be of no use if the cost of the method increased commensurately. To study
this issue, we consider the cost of (τ -)MGRIT, which is a function of the cost of a V-cycle and
the number of iterations required for convergence.

4.1. Cost of a single V-cycle. The main computational kernel of all MGRIT-based
algorithms is the evaluation of Φ. In terms of Φ-evaluations, the only difference between the
two-level τ -MGRIT and MGRIT algorithms is the collection of extra time integration steps
completed during fine-grid C-relaxation. To be precise, Nt/m extra time steps are completed
per V-cycle for the τ -MGRIT algorithm when compared to the MGRIT algorithm if FCF-
relaxation is used. If p processors are used, then this equates to a maximum of dNt/(mp)e
extra time steps per processor. The cost associated with scaling the RHS is negligible. If
F-relaxation is used, then there is no difference in the number of Φ-evaluations completed per
iteration for the two methods.

As mentioned in Remark 3.1, the multilevel extension of the two-level τ -MGRIT algo-
rithm uses the original MGRIT algorithm to solve the coarse-grid problem. This means that
the extra time steps completed on the fine grid are the only extra time steps taken, per iteration,
by the τ -MGRIT algorithm when compared to the original MGRIT algorithm. In the following
section, a bound for the convergence rate is derived for the two-level τ -MGRIT algorithm,
and it is compared to a similar bound derived in [5] for the original MGRIT algorithm. With
this bound, we can approximate the number of iterations required for the convergence of both
methods.

REMARK 4.1. As a practical point, the XBraid implementations of the MGRIT and
τ -MGRIT algorithms use the norm of the residual, i.e., ||ḡ −Au||, to measure the error and
determine when to stop the iteration. Unlike the original MGRIT algorithm, τ -MGRIT does
not require a direct calculation of the residual. However, it can easily be obtained at a cost of
one vector addition per C-point.

4.2. Convergence analysis. In the previous section, it was demonstrated that the com-
putational cost for τ -MGRIT and MGRIT is very similar. In this section, we compare the
algebraic convergence rates of the two methods. The analysis in this section develops a
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convergence bound for the τ -MGRIT algorithm applied on an evenly spaced time grid, with
no spatial coarsening, and a time integration operator that is both linear and constant in time.
For comparison, we first give two analytic bounds for the convergence rate of the standard
MGRIT algorithm from [5].

Consider solving equation (2.5) on the temporal grid shown in Figure 2.1, and assume
gj = 0 for all j. The case with nonzero gj is similar. Next, assume ||Φ|| ≤ 1, i.e., Φ is a
convergent time integration scheme, and that Φ and Φ∆ are diagonalized by the same unitary
transform,

Φ̂ = X∗ΦX = diag(λ1, . . . , λNx) and Φ̂∆ = X∗Φ∆X = diag(µ1, . . . , µNx),(4.1)

where Nx represents the number of spatial unknowns associated with each time step,
X = (x1, . . . ,xNx

), and X∗X = I .
Finally, let EF∆ and EFCF∆ denote the C-point error propagation matrices for MGRIT

with F- and FCF-relaxation, and define ej to be the error at t = tj between the current
approximation of the solution ûj and the exact discrete solution uj . Then, the global space-
time error vector at the C-points, ē = [eT0 , e

T
m, . . . , e

T
Nt/m

]T , satisfies

(4.2) ||EF∆ē||2 ≤ max
ω=1,2,...,Nx

{
|λmω − µω|

1− |µω|Nt/m

(1− |µω|)

}
||ē||2,

for MGRIT with F-relaxation and

(4.3) ||EFCF∆ ē||2 ≤ max
ω=1,2,...,Nx

{
|λmω − µω|

1− |µω|Nt/m

(1− |µω|)
|λω|m

}
||ē||2,

for MGRIT with FCF-relaxation [5]. The fraction in this bound, (1−|µω|Nt/m)/(1−|µω|), is
the result of a geometric sum. As µω → 1, this terms grows like Nt. Fortunately for many
common time integration schemes, this is compensated because |λmω − µω| → 0 as Nt →∞
(see Section 4.2.1).

Next, similar estimates for the τ -MGRIT algorithm are derived. Following F-relaxation,
the residual at t = mj for the τ -MGRIT method is

rmj = −[A(û)]mj = −ûmj + (aΦm − bΦ∆)ûm(j−1),

where we have assumed, without loss of generality, that ḡ = 0. The exact solution of
equation (3.2) satisfies umj = (aΦm − bΦ∆)um(j−1). Hence, the residual can be rewritten in
terms of the error emj = umj − ûmj as

r0 = e0,(4.4)
rmj = emj − (aΦm − bΦ∆)em(j−1),(4.5)

for j = 1, 2, . . . , Nt/m. For two-level τ -MGRIT, the coarse-grid problem is solved using
forward substitution. This is an O(Nt) sequential operation. Multilevel τ -MGRIT, which
instead solves the coarse-grid problem recursively and scalably, is discussed in Remark 3.1.
The exact coarse-grid correction, cmj , is given by

c0 = r0,

cmj = Φ∆(cm(j−1)) + rmj ,

= Φj∆(r0) + Φj−1
∆ (rm) + · · ·+ rmj ,
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for j = 1, 2, . . . , Nt/m. Substituting for each r with a subscript using equations (4.4) and
(4.5) gives

c0 = e0,

cmj = Φj∆(e0) + Φj−1
∆ (em + (bΦ∆ − aΦm)e0)

+ Φj−2
∆ (e2m + (bΦ∆ − aΦm)em) + . . .

+ emj + (bΦ∆ − aΦm)em(j−1).

Collecting like terms and noting that b+ 1 = a gives

c0 = e0,

cmj = aΦj−1
∆ (Φ∆ − Φm)e0 + aΦj−2

∆ (Φ∆ − Φm)em + . . .

+ a(Φ∆ − Φm)em(j−1) + emj .

After the correction, the updated error at the C-points fmj = emj − cmj satisfies:

f0 = 0,(4.6)

fmj = a

j−1∑
q=0

Φj−1−q
∆ (Φm − Φ∆)emq,(4.7)

for j = 1, 2, . . . , Nt/m. The unitary transformation given in equation (4.1) can be used to
decompose emj as emj =

∑Nx

ω=1 êj,ω xω and fmj as fmj =
∑Nx

ω=1 f̂mj,ω xω. Substituting
these decompositions into equation (4.6) and (4.7) gives

f̂0,ω = 0,

f̂mj,ω = a

j−1∑
q=0

µj−1−q(λmω − µω)êmq,ω,

for j = 1, 2, . . . , Nt/m and ω = 1, 2, . . . , Nx. Defining êω = (ê0,ω, êm,ω . . . êNT ,ω)T and
f̂ω = (f̂0,ω, f̂m,ω . . . f̂NT ,ω)T gives f̂ω = EFω êω , where

EFω = a(λmω − µω)


0
1 0
µω 1 0
...

. . . . . . . . .
µ
NT /m−1
ω . . . µω 1 0

 .

The reader will note that the matrix EF
ω is nilpotent. As such, τ -MGRIT with F-relaxation

is guaranteed to converge to the exact solution in at most Nt/m iterations. That is, after
at most Nt/m iterations, the error in each eigenmode is guaranteed to be zero. A similar
convergence guarantee holds for τ -MGRIT with FCF-relaxation and for the original MGRIT
algorithm with both F- and FCF-relaxation. However, speedups are obtained when MGRIT
converges in O(1) iterations to within the desired halting tolerance.

The reader should also notice how the eigenmodes are decoupled. This allows us to
calculate a convergence bound for each eigenmode independently, where the overall conver-
gence bound will be given by the maximum bound over all the eigenmodes. Following [5], a
convergence bound for each eigenmode is then given by

||Eω||1 = ||Eω||∞ = a|λmω − µω|
1− |µω|Nt/m−1

1− |µω|
.
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1 1
1

(a) SDIRK-1

1− α 1− α
α 2α− 1 1− α

1/2 1/2
(b) SDIRK-2, α = 1/

√
2

a a
c c− a a
1 b 1− a− b a

b 1− a− b a

(c) SDIRK-3, a = 0.435866 . . . ,
b = 1.20846 . . . , c− 0.717933 . . .

FIG. 4.1. Butcher tableaux for SDIRK-1, SDIRK-2 and SDIRK-3.

Next, it is straightforward to apply Theorem 3.3 from [5] to obtain a bound for the global error
vector ē = [eT0 , e

T
m, . . . , e

T
NTm

]T for τ -MGRIT with F-relaxation:

(4.8) ||ĒF∆ē||2 ≤ max
ω=1,2,...,Nx

mkg

mkg − 1

{
|λmω − µω|

1− |µω|NT /m

(1− |µω|)

}
||ē||2,

where ||EF∆e||2 is defined as in equation (4.2). A similar calculation gives the global error
bound for τ -MGRIT with FCF-relaxation:
(4.9)

||ĒFCF∆ ē||2 ≤ max
ω=1,2,...,Nx

mkg

mkg − 1

{
|λmω − µω|

1− |µω|NT /m

(1− |µω|)

∣∣∣∣mkgλmω − µω
mkg − 1

∣∣∣∣} ||ē||2.
The F-relaxation bound (4.8) is a scaling by mkg/(mkg − 1) of the MGRIT bound (4.2), but
there does not exist such a simple scaling between the error bounds for τ -MGRIT (4.9) and
MGRIT (4.3) when FCF-relaxation is used.

4.2.1. Singly diagonally implicit Runge-Kutta (SDIRK) methods. In order to under-
stand these bounds, we examine the convergence rate of the τ -MGRIT algorithm for various
coarse- and fine-grid time integrators. Consider solving

u′ +Gu = b,

where G is a symmetric positive definite matrix with real eigenvalues γω, using the first-,
second-, and third-order singly diagonally implicit Runge-Kutta (SDIRK) time-integration
schemes. Note that an operator with real eigenvalues was chosen because the scope of this
paper is parabolic problems. However, there is no reason that this analysis could not be applied
to complex eigenvalues in future work. Figure 4.1 shows the Butcher tableaux for each of the
SDIRK methods.

REMARK 4.2. The first order SDIRK-1 method is equivalent to the backward Eu-
ler method. In this case, the fine- and coarse-grid operators are Φ = (I + δtG)−1 and
Φ∆ = (I +mδtG)−1, respectively. Likewise, the fine- and coarse-grid eigenvalues are

λω =
1

(1 + δtγω)
, µω =

1

(1 +mδtγω)
,

respectively. Hence, for ω = 1, 2, . . . , Nx, it follows that γω ∈ (0,∞), λω ∈ (0, 1), and
µω ∈ (0, 1). Notice that the eigenvalues can get very close to 1. In that limit, the fraction in
the error bound (equations (4.8) and 4.9)) grows like Nt = T/δt. Fortunately, the first term,
|λmω − µω| tends to zero with an order of at least O(δt2).

Figures 4.2 and 4.3 display the convergence bound ||Eω||2 versus κ = δt|γω|, for γω > 0
and for F- and FCF-relaxation, respectively. Two coarsening factors are considered in each
plot, m = 4 on the left and m = 16 on the right. Solid lines represent the bounds derived
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FIG. 4.2. ||Eω ||2 vs κ = δtγω for the SDIRK algorithms with τ -MGRIT and F-relaxation. Dashed lines
represent the convergence bounds for MGRIT; solid lines are the convergence bounds for τ -MGRIT.
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FIG. 4.3. ||Eω ||2 vs κ = δtγω for the SDIRK algorithms with τ -MGRIT and FCF-relaxation. Dashed lines
represent the convergence bounds for MGRIT; solid lines are the convergence bounds for τ -MGRIT.

for the τ -MGRIT algorithm, and dashed lines represent the bounds for the standard MGRIT
algorithm. The overall convergence bound for a dataset is the maximum value attained on the
y-axis. For both F- and FCF-relaxation, there is only a slight convergence degradation for
τ -MGRIT when m = 4, which is due to the term a = mkg/(mkg − 1) in the convergence
bounds. Notably, this degradation decreases for higher-order methods (larger kg). While there
is almost no degradation when m = 16, we will see that a largerm lead to worse discretization
errors in the numerical tests.

Importantly, these bounds show that the τ -MGRIT algorithm is capable of increasing the
convergence order of the underlying time-integration scheme without significantly increasing
the convergence factor, including higher-order methods. Combined with the limited increase in
time step evaluations, this gives the τ -MGRIT algorithm a sizable advantage when considering
the APCC of the method. In the following sections, several numerical examples are used to
compare the APCC of the τ -MGRIT and MGRIT algorithms.

5. τ -MGRIT results.

5.1. Numerical example: first-order ODE. Consider the following IVP:

y′ + 4y = 1− t, t ∈ [0, 1], with y(0) = 1,(5.1)
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(a) SDIRK-1 (b) SDIRK-2

FIG. 5.1. Error against time for the solution of equation (5.1) using τ -MGRIT and 128 time steps. The
Richardson-based error corrections occur only at the C-points, giving rise to the sawtooth appearance of the plots.

and the exact solution y(t) = (1/16)(−4t+ 11e−4t+ 5). Figure 5.1 displays the error against
time for the solution found when solving this equation using τ -MGRIT with the SDIRK-1 and
SDIRK-2 methods and 128 time steps. The error profile appears to be discontinuous because
the τ -MGRIT algorithm corrects the solution at each C-point, allowing the error to increase
at F-points. Notice that in all but a few local regions (i.e., near t = 0.45 for τ -MGRIT with
SDIRK-2), the accuracy of the τ -MGRIT solution becomes worse as the coarsening factor m
increases. This is not surprising because letting kg = k0 = 1 in equation (2.3) implies that the
lowest-order error term is mC1δt

2, i.e., the error increases linearly with m. Any exceptions
are likely due to a fortuitous cancellation of errors. This result is unfortunate for the low-order
SDIRK-1 method since the analysis in the previous section predicts that decreasing m leads to
a degradation in the convergence rate. However for the higher-order SDIRK-3 method, the
analysis predicts that the convergence rates are almost identical for τ -MGRIT and MGRIT
and small m, hence, making this less of a problem.

In Figure 5.2, the error with respect to the time step size at t = 0.5 is presented, high-
lighting the algorithmic scalability of the τ -MGRIT algorithm. For SDIRK-1, a globally
first-order method, τ -MGRIT scales with an accuracy equivalent to a second-order method.
Likewise, τ -MGRIT improves the accuracy of the second-order SDIRK-2 algorithm to that of
a third-order method. It is important to remember that the improved error scaling presented
in Figure 5.2 can be entirely attributed to the use of RE-based time integration. That is,
identical results would be obtained using a sequential two-stage RE-based time integrator. The
most significant benefit of the τ -MGRIT algorithm, namely that it provides a cost-efficient
mechanism for improving the APCC of the MGRIT algorithm, is covered in the following
section.

5.2. One-dimensional heat equation. In order to analyze a representative PDE, τ -
MGRIT is applied to the one-dimensional (1D) heat equation,

ut − uxx = f(x, t), ∀x ∈ [0, π], t ∈ [0, 2π],

u(0, t) = g1(t), u(π, t) = g2(t), ∀t ∈ [0, 2π],

u(x, 0) = h(x), ∀x ∈ [0, π],

with Dirichlet boundary conditions. The source term f(x, t) as well as the boundary terms g1(t)
and g2(t) and the initial condition h(x) are chosen to yield the exact solution
uexact(x, t) = sin(x) cos(t). The temporal discretization uses SDIRK-1, while the spatial
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(a) SDIRK-1 (b) SDIRK-2

FIG. 5.2. Algorithmic scaling study for τ -MGRIT applied to equation (5.1). The τ -MGRIT algorithm signifi-
cantly increases the accuracy of the final solution.

discretization uses standard second-order central differences. A direct spatial solver was used,
limiting parallelism to the temporal domain.2

Figure 5.3a displays the error against time for τ -MGRIT with SDIRK-1, 128 time steps,
and 16385 spatial grid points. The error represents the Euclidean norm of the difference
between the exact and the approximate space-time solutions after the final MGRIT iteration. A
relatively large number of spatial grid points is used so that the second-order errors associated
with the spatial discretization did not dominate the overall error.

The reader will notice that generally the error for τ -MGRIT is significantly smaller than
that for MGRIT, except for points near t = 2 and t = 5. As discussed above, the τ -MGRIT
algorithm converges to the exact solution using a sequential implementation of RE. Assessing
the suitability of RE for solving particular ODEs and PDEs is beyond the scope of this paper.

Figure 5.3b displays the error at final time t = 2π. As shown in Section 5.1, the τ -MGRIT
algorithm returned a solution with second-order accuracy, the magnitude of which depends
on the coarsening factor. Figure 5.3b also depicts the error at final time for a time integration
with SDIRK-2. The accuracy of the solution obtained with τ -MGRIT is lower than that of the
SDIRK-2 method. This suggests that, if accuracy is the most important aspect of the solution,
then the user would be better off switching to a higher-order time integration scheme.

It is important to note however, that a single step of SDIRK-2 is twice as expensive as
a single time step with SDIRK-1. As such, a direct comparison between the two methods
should also take into account the cost of the method. A study comparing the APCC of the two
approaches is given in Section 5.4, with the conclusion being that the higher-order SDIRK-2
method outperforms τ -MGRIT with SDIRK-1 in terms of both accuracy and APCC. However,
the study also shows that τ -MGRIT with SDIRK-2 outperforms MGRIT with SDIRK-2,
highlighting the fact that τ -MGRIT is a simple, cost-effective way to improve the accuracy of
the MGRIT algorithm, no matter what the order of the time integration scheme is. That is to
say, if RE-based time integration is appropriate for a problem, then τ -MGRIT can be used to
improve the APCC over the final solution found with the standard MGRIT algorithm.

REMARK 5.1. While we only consider the classic MGRIT test problem, the 1D heat
equation, we note that there are no expected changes in the behavior, either theoretically or
practically, when moving to 2D or 3D. Previous MGRIT work, e.g., [5, 7], indicates that
the dimensionality of the heat equation does not affect the behavior of MGRIT. Moreover,

2The focus of this paper is a description and validation of τ -MGRIT, hence we do not consider spatial parallelism.
Generally, the speedup due to time parallelism is not affected by spatial parallelism and is in addition to any speedup
from spatial parallelism.
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(a) Error against time for Nt = 128 (b) Error at t = 2π against Nt

FIG. 5.3. Error analysis for the solution of the 1D heat equation found using τ -MGRIT with 16384 spatial
grid points and SDIRK-1. Figure (a) shows the error at the final iteration when using the MGRIT and τ -MGRIT
algorithms; Figure (b) shows that τ -MGRIT with SDIRK-1 scales as a second-order method.

the rigorous theoretical results from Section 4.2 indicate consistent performance across all
problems with real-valued spatial eigenvalues (not just the heat equation) and the considered
time-stepping schemes.

5.2.1. Convergence rate of two-level τ -MGRIT. Tables 5.1 and 5.2 illustrate the con-
vergence rates of an SDIRK-1 implementation of τ -MGRIT and MGRIT with both F- and
FCF-relaxation. The final column, labeled “Est”, shows the estimated convergence factor
as derived in equations (4.8) and (4.9). These numerically determined convergence factors
represent the average convergence factor over the last 5 iterations for runs using two-level
MGRIT and τ -MGRIT, solved to a residual tolerance of 10−10 with a random initial guess.

TABLE 5.1
Two-level numerical convergence factors for τ -MGRIT (yes in first column) and MGRIT (no in first column)

with F-relaxation. The final column shows the error estimate derived in Section 4.2 and agrees well with the observed
convergence.

F-Relaxation Time Steps

τ m 256 512 1024 2048 4096 8192 Est.

No 2 0.1206 0.1216 0.122 0.1222 0.1224 0.1216 0.1249
Yes 2 0.2416 0.2442 0.2446 0.2446 0.2450 0.2438 0.2499

No 4 0.1956 0.1958 0.199 0.1994 0.1994 0.1996 0.2038
Yes 4 0.2606 0.2614 0.2652 0.2658 0.2658 0.2662 0.2719

No 16 0.1409 0.2548 0.258 0.2602 0.2662 0.2668 0.2729
Yes 16 0.1511 0.2718 0.2756 0.2776 0.2842 0.2848 0.2929

These tables highlight two important facts. First in all cases, the analysis in the previous
section provides a good bound for the convergence rate. Second, the convergence rate of both
the τ -MGRIT and MGRIT algorithms does not vary noticeably with respect to the problem
size. In other words, the two-level τ -MGRIT algorithm exhibits good weak scalability with
respect to iteration counts.

5.3. Multilevel results. As discussed in Remark 3.1, the multilevel τ -MGRIT algorithm
solves the coarse-grid problem using standard multilevel MGRIT, compared to the two-level
approach where direct sequential time integration is used. Thus, the number of total MGRIT
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TABLE 5.2
Two-level numerical convergence factors for τ -MGRIT (yes in first column) and MGRIT (no in first column)

with FCF-relaxation. The final column indicates the error estimate derived in Section 4.2.

FCF-Relaxation Time Steps

τ m 256 512 1024 2048 4096 8192 Est.

No 2 0.0480 0.0524 0.0520 0.0519 0.0520 0.0520 0.0527
Yes 2 0.0938 0.0982 0.0975 0.0968 0.0972 0.0982 0.1547

No 4 0.0740 0.0749 0.0802 0.0794 0.0787 0.0792 0.0812
Yes 4 0.0924 0.0981 0.1040 0.1030 0.1020 0.1026 0.1147

No 16 0.0114 0.0367 0.0922 0.0961 0.1030 0.1020 0.1038
Yes 16 0.01231 0.0373 0.0966 0.1020 0.1096 0.1092 0.1157

levels increases with the problem size in the multilevel case, so that a fixed coarsest-grid size of
2 is always maintained. Table 5.3 presents the number of iterations required for the multilevel
MGRIT and τ -MGRIT algorithms to converge to within a relative residual tolerance of 10−10

when solving the 1D heat equation from the previous section with a random initial guess. In
each test, the spatial problem size was fixed at 16384 spatial unknowns as described earlier.

TABLE 5.3
Iterations required to reduce the residual by 10−10 for the multilevel τ -MGRIT and MGRIT algorithms when

used with SDIRK-1. The first column indicates whether τ -MGRIT (Yes) or MGRIT (No) was used. Iteration counts
for both τ -MGRIT and MGRIT are bounded independently of the problem size.

Method Time Steps

τ Relax m 256 512 1024 2048 4096 8192
No F 4 18 20 21 23 23 24
Yes F 4 21 22 24 24 25 25
No F 16 15 18 18 18 18 18
Yes F 16 15 18 18 19 19 19

No FCF 4 10 11 11 11 12 12
Yes FCF 4 11 12 12 12 12 12
No FCF 16 8 9 11 11 11 11
Yes FCF 16 8 9 11 11 12 12

In general, the MGRIT algorithm appears to converge faster than the τ -MGRIT algorithm.
On the other hand, the τ -MGRIT algorithm returns a solution with improved accuracy. When
one takes this into account (see Section 5.4), τ -MGRIT becomes more efficient than MGRIT.
Either way, the iteration counts associated with the FCF-based variant of τ -MGRIT appear to
be scalable and bounded independently of the problem size.

5.4. Strong scaling analysis. As already mentioned, MGRIT and most parallel-in-time
schemes require more computational work than sequential time-stepping, but they allow for
greater concurrency. This combination of increased overall cost and increased potential for
concurrency become manifest in a crossover point at which the additional temporal concurrency
eventually overcomes the additional work. These crossover points will be visible during our
parallel scaling studies and are important markers indicating where there is a benefit in using
MGRIT.
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(a) m = 4 (b) m = 16

FIG. 5.4. Strong scaling study for τ -MGRIT applied to the 1D heat equation with F-relaxation. Black lines
represent SDIRK-1 methods. Magenta lines represent results found using SDIRK-2.

(a) m = 4 (b) m = 16

FIG. 5.5. Strong scaling study for τ -MGRIT applied to the 1D heat equation with FCF-relaxation. Reducing
the coarsening factor delays the crossover point, but provides more opportunities for temporal concurrency and hence,
maximum parallel speedup.

Figures 5.4 and 5.5 present a strong scaling study for τ -MGRIT applied to the 1D
heat equation with F- and FCF-relaxation, respectively. In all cases, the problem size in-
cluded 16384 time steps and 16384 spatial unknowns. For these tests, the forcing function,
f(x, t) and the associated boundary conditions were chosen to ensure an exact solution of
u(x, t) = sin(x) cos(10t). The machine used for all numerical tests was Vulcan, an IBM
BG/Q machine at LLNL.

The time-to-solution and the scaling behavior for τ -MGRIT and MGRIT is very similar.
As expected, both τ -MGRIT and MGRIT performed better when FCF-relaxation is used.
Comparing the two figures shows that a larger coarsening factor (m = 16) leads to an earlier
crossover point. Reducing the coarsening factor delays the crossover point but allows for
greater temporal concurrency and hence higher speedups. Overall, the largest speedup was
obtained for m = 4 with 16384 temporal processors. The speedup factor was 19 when
comparing τ -MGRIT with FCF-relaxation to sequential time integration without RE and 20
when comparing to sequential time integration with RE.

The strength of the τ -MGRIT algorithm is that it returns a solution with improved accuracy.
To illustrate this, the APCC of each algorithm was calculated. For this comparison, cost is
measured in seconds, and the accuracy is defined to be | log(1/err)| where err is the error
at time t = 2π. In this way, APCC measures the digits of accuracy per second of runtime.
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(a) m = 4 (b) m = 16

FIG. 5.6. Digits of accuracy per second for the τ -MGRIT and MGRIT algorithms applied to the 1D heat
equation with FCF-relaxation. Black lines represent SDIRK-1 methods. Magenta lines represent results found using
SDIRK-2.

Figure 5.6 displays the digits of accuracy per second for the τ -MGRIT and MGRIT algorithms
with FCF-relaxation. In all cases, as anticipated by the analysis in the previous section, the
switch from MGRIT to τ -MGRIT (dashed lines to solid lines) dramatically increased the
APCC of the associated method. The APCC for the results using F-relaxation are similar.

Another, arguably more interesting comparison is found by considering the results for
second-order MGRIT with SDIRK-2 (dotted magenta lines) and second-order τ -MGRIT
with SDIRK-1 (solid black lines). The analysis presented in Section 4.2 suggests that the
convergence factor of MGRIT with SDIRK-2 will be about half that of the τ -MGRIT algorithm
with SDIRK-1. On the other hand, each SDIRK-2 time integration step requires two spatial
inverses, compared to one spatial inverse for SDIRK-1. However, MGRIT with SDIRK-2 still
outperforms τ -MGRIT with SDIRK-1. As such, it appears that switching to a higher-order
time integration scheme is still a better approach to increase the APCC of the method. However
in that case, as shown by the results for τ -MGRIT with SDIRK-2, τ -MGRIT can then be used
to further increase the APCC of that method. Overall, τ -MGRIT is an excellent approach
for improving the APCC of MGRIT by allowing for either greater accuracy with the same
runtime or a similar accuracy in a reduced runtime by using fewer time steps.

6. Extension to non-uniform time grids. The analysis and derivation presented above
was developed under the assumption that the temporal grids are uniform. In what follows, we
modify the derivation of the τ -MGRIT algorithm to accommodate non-uniform temporal grids.
To do this, the key assumption that must be made is that the local truncation errors accumulate
linearly across each temporal coarse-grid interval. This is not an uncommon assumption in
the sequential time integration community. In fact, this is the assumption underlying the
common statement that the global order of a time integration scheme is one less than the local
order. Despite this, it is important to note that the use of RE on non-uniform temporal grids is
somewhat unconventional. In some cases, this may limit the accuracy improvements that can
be achieved with the τ -MGRIT algorithm. This is an unfortunate compromise that must be
made to accommodate unrestricted non-uniform temporal grids.

The alternative, albeit more restrictive, approach is to allow for a non-uniform coarse grid
but to only allow uniform refinement by the coarsening factor across each coarse-grid interval.
This ensures uniform time steps across each coarse-grid interval while still allowing for some
level of non-uniformity in the temporal grid (see Figure 6.1). This approach, referred to as
the “semi-uniform” approach, does not require any modification of the τ -MGRIT algorithm.
Results comparing both approaches are presented in Section 6.1.1.
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t12

T3

t16
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t1 t2 t3 t5 t6 t7 t9 t10t11 t13 t14 t15

FIG. 6.1. Example of a semi-uniform temporal mesh. Coarse-grid points (red) are distributed non-uniformly
across the temporal domain, but the time step size is fixed inside each coarse-grid interval (for comparison, see the
full non-uniform grid in Figure 6.2).

t0 t1 t2 tm

T0 T1

tj tj+m tNt

∆T(j+m)/m

δtj+2

FIG. 6.2. Fully non-uniform fine- and coarse-grid temporal meshes.

6.1. τ -MGRIT for non-uniform temporal grids. Define a non-uniform temporal grid
with time steps δtj and nodes t0 = 0, tj = tj−1 + δtj , j = 1, 2, . . . , Nt. Further, de-
fine a coarse temporal grid with time steps ∆Tj =

∑mj
i=m(j−1)+1 δti and nodes T0 = 0,

Tj = Tj−1 + ∆Tj , j = 1, 2, . . . , Nt/m, for some fixed coarsening factor m. This is depicted
in Figure 6.2.

Let Φj = Φj(uj−1, tj , δtj) represent the time integration operator at t = tj . Next,
assume the error introduced by a single time step with Φ from t = tj−1 to t = tj is of
the form Cjδt

kl
j where Cj is a constant. Here kl represents the local order of the time

integration scheme. Finally, assume that each δtj is small enough and that the solution u(x, t)
is sufficiently smooth enough such that Cj is constant across the given coarse-grid interval.
Then, the global error introduced by time integration across the jth coarse-grid interval on the
non-uniform temporal mesh is

uf,mj − u(tmj) = Cmj

m−1∑
i=0

δtklmj−i.

Likewise, the error introduced by a single time step on the coarse grid is

uc,mj − u(tmj) = Cmj∆T
kl
j .

As in Section 2, these equations can be combined to eliminate Cmj and give an enhanced
solution

u∗,mj = āuf,mj − b̄uc,mj ,

where

ā =
∆T klj

∆T klj −
∑m−1
i=0 δtklmj−i

, b̄ =

∑m−1
i=0 δtklmj−i

∆T klj −
∑m−1
i=0 δtklmj−i

.

An important difference between τ -MGRIT for non-uniform and uniform grids is that the
non-uniform approach uses the local order of the time integration scheme kl instead of the
global order kg. In general, the global order of the time integration scheme is assumed to be
one less than the local order. For example, the local truncation error of a backward Euler time
step is O(δt2) (kl = 2) and the global order of the method is kg = 1. Statements such as these
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(a) full non-uniform (b) semi-uniform

FIG. 6.3. Error in the final solution when applying MGRIT and τ -MGRIT to the 1D heat equation using the
semi-uniform (left) and full non-uniform (right) grids.

are based on the assumption that the lowest-order error term dominates the error equation and
that the local truncation errors accumulate linearly across the temporal domain. Comparing to
the uniform time step case, we have

ā =
(mδt)kl

(mδt)kl −mδtkl =
mkl−1

mkl−1 − 1
=

mkg

mkg − 1
= a.

A similar equivalence holds for b̄. Hence, the τ -MGRIT algorithm for non-uniform temporal
grids can be used on both uniform and non-uniform grids. The remainder of the derivation for
τ -MGRIT on non-uniform grids is identical to that of τ -MGRIT for uniform grids.

6.1.1. Numerical tests. In this section, results of τ -MGRIT applied on a semi-uniform
and a full non-uniform temporal grid are presented. The semi-uniform temporal grid was
created as follows. First, Nt/m − 2 points were randomly distributed across the temporal
domain, where Nt is the total number of time points and m is the coarsening factor. These
points, along with the end points t = 0 and t = 2π, are set as coarse-grid points. Fine-grid
points are then determined by a uniformly splitting of each coarse-grid interval into m uniform
time steps. The result is a “semi-uniform” temporal grid consisting of Nt time steps. The
full non-uniform temporal grid consists of t0 = 0, tNt = 2π, and tj = rand(0, 2π), for
j = 1, 2, . . . , Nt − 1. The results shown below use Nt = 16384, SDIRK-1, and standard
second-order differencing in space.

Figure 6.3 displays the error across the temporal domain for MGRIT and τ -MGRIT
applied on the two non-uniform temporal grids described above. In both cases, the τ -MGRIT
algorithm is an effective approach for reducing the error.

Figure 6.4 displays a strong scaling study and the digits of accuracy per second for the
error at time t = 2π. In this case, FCF-relaxation is used with a coarsening factor of m = 4.
Clearly, τ -MGRIT still leads to an improvement in the APCC of the method, even on a
non-uniform grid. While there may be cases where the full non-uniform grid will outperform
the semi-uniform case, this was not observed here. For example when the grid is chosen to
reflect the solution (rather than randomly as done here), one would expect the full non-uniform
grid to produce a solution with better accuracy than the semi-uniform grid.

7. Conclusion. The non-intrusive and multilevel nature of both the RE and MGRIT
algorithms allows the two algorithms to be combined in a simple and efficient way. The
resulting τ -MGRIT algorithm is capable of improving the accuracy of the underlying time-
integration scheme with little increase in the overall cost when compared to the standard

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

232 R. D. FALGOUT, T. A. MANTEUFFEL, B. O’NEILL, AND J. B. SCHRODER

FIG. 6.4. Wall time and digits of accuracy per second for the τ -MGRIT and MGRIT algorithms applied to
the 1D heat equation with a uniform, semi-uniform, and full non-uniform temporal grid. The lines for non-uniform
MGRIT (red stars) are hidden beneath the lines for uniform MGRIT (blue stars) in both plots.

MGRIT algorithm. It is important to note that not all problems are suitable for use with
τ -MGRIT; however, τ -MGRIT is guaranteed to converge towards the discrete solution that is
obtained when using sequential time integration with RE. As such, the analysis required to
determine the suitability of τ -MGRIT for a particular problem is no more difficult than that
required to determine if RE can be used in the sequential case. For problems where sequential
time integration with RE improves the convergence order of the time integration scheme, the
τ -MGRIT algorithm is guaranteed to also improve the convergence order when compared to
standard MGRIT, while also allowing for a parallel speedup over sequential time integration.

Moreover, with some simple modifications, the τ -MGRIT algorithm can be extended to
include problems with non-uniform temporal grids. Current research is focused on developing
an adaptive, MGRIT-based parallel-in-time solver that uses RE as a means of temporal error
estimation [24].
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