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MODELING AND DISCRETIZATION METHODS FOR THE NUMERICAL
SIMULATION OF ELASTIC FRAME STRUCTURES∗
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Abstract. A new model description for the numerical simulation of elastic frame structures is proposed. Instead
of resolving algebraic constraints at frame nodes and incorporating them into the finite element spaces, the constraints
are included explicitly in the model via new variables and enforced via Lagrange multipliers. Based on the new
formulation, an inf-sup inequality for the continuous-time formulation and the finite element discretization is proved.
Despite the increased number of variables in the model and the discretization, the new formulation leads to faster
simulations for the stationary problem and simplifies the analysis and the numerical solution of the evolution problem
describing the movement of the frame structure under external forces. The results are illustrated via numerical
examples for the modeling and simulation of elastic stents.

Key words. elastic frame structure, elastic stent, mathematical modeling, numerical simulation, mixed finite
element formulation, inf-sup condition, stationary system, evolution equation

AMS subject classifications. 74S05, 74K10, 74K30, 74G15, 74H15, 65M15, 65M60

1. Introduction. Motivated by the modeling and simulation of elastic stents, in this
paper we present a new model class for the dynamic and stationary simulation of elastic
frame structures. It uses constrained partial differential equations in mixed variational weak
form, which model an elastic frame structure consisting of one-dimensional curved elastic
rods. The problem has already been considered in [20] and [22], where the inextensibility
and unshearability of the rods were expressed in the mixed weak formulation, while the
continuity of the displacement and the infinitesimal rotations were described via constraints in
the nodes of the network expressed implicitly in the function space. In contrast to this, in our
extended model presented here, these constraints are explicitly added to the system model,
and, similarly as in the mortar finite element approach [42], they are enforced via Lagrange
multipliers in the analysis and simulation. This extension requires the introduction of new
unknowns at the vertices where different rods are connected as well as further unknowns for
the contact conditions and contact forces at the end points of each rod. The advantage of this
extended model is that the constraints do not have to be incorporated in the function spaces as
is typically the case; see, e.g., the approach in [20]. This simplifies the analysis of the system
of constrained partial differential equations, in particular in proving an inf-sup inequality
which directly transfers to a discrete inf-sup inequality in the discretized setting. Based on
these results we retrace the steps of the standard error analysis from [4]. The results that we
prove for the continuous model in Section 4 hold for general geometries, while the results for
the discrete approximation in Section 5 are proved only for geometries with straight rods.

Despite the introduction of many new unknowns, we will also demonstrate with numerical
examples that when the model is sufficiently refined, even the numerical solvers become more
efficient than those for the classical approach.
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Examples of structural problems posed on a network structures include metallic frame
structures such as bridges and buildings in civil engineering [24, 37], carbon nanotubes [43],
tissue scaffolds in biomaterial engineering [28], and cytoskeletons in cell biology [7]. Some-
what different in nature are networks of highways [13, 18] and arterial networks [16] (since
one direction is preferred). Various models of multiple-link flexible structures consisting of
finitely many interconnected flexible elements such as strings, beams, or plates have been
given recently; see, for instance, [5, 9, 14, 29, 32, 34, 38] and the references therein. However,
the problems considered in these models are not appropriate in our situation since the geometry
of the stent cannot be described by straight beams or ones that are embedded in a plane.

The modeling of elastic structures on the basis of Cosserat theory [10] with deformations
in three-dimensional space is well established; see [1, 8, 39]. In this paper we discuss the
case of an elastic frame or network of elastic rods. Our main motivation is the modeling
and simulation of elastic stents as, e.g., the one in Figure 1.1. In recent years, elastic frame

FIG. 1.1. Example of an elastic stent (Cypher stent by Cordis Corporation).

structures such as stents are modeled as a union of 1D curved rods (see [25, 26]) and a set of
junction conditions describing the connection of the rods; see [19] for the derivation of the
model. The resulting model describes the three-dimensional behavior of the frame structure,
but it has the complexity of a one-dimensional model. For the application to elastic stents, this
modeling approach was first introduced in [41] and then reformulated in weak form in [11].
Properties of the mixed formulation for the model were analyzed in [20], numerical methods
were introduced and error estimates derived in [22], but up to now, error estimates for the
contact forces were missing.

The main result of this paper is the construction of an extended description of elastic
frame structures that includes all constraints for the displacements and forces. The paper
is organized as follows. In Section 2 we discuss the previous modeling approach, and in
Section 3 we present the extended model formulation. In Section 4 we analyze the new model
class and give a proof of the inf-sup inequality for the weak formulation of the continuous
infinite-dimensional model, and in Section 5 we analyze the discrete model that is obtained
after finite element discretization, and we show a corresponding inf-sup inequality. Finally,
in Section 6 we study the dynamical system of the movement under excitation forces. We
analyze the properties and present numerical simulation results.

2. Modeling elastic frame structures. To model the topology of a frame model of
connected elastic rods, following [25, 26], we use an undirected graph N = (V, E) consisting
of a set V of nV vertices, which are the points where the middle lines of the rods meet, and a
set E of nE edges that represent a 1D description of the curved rod. To be able to use a 1D
curved rod model, we additionally need to prescribe the local geometry of the rod, i.e., the
middle curve and the geometry of the cross-section as well as the material properties of the
rods. These are given by

• the function Φi : [0, `i]→ R3 as a natural parametrization of the middle line of the
ith rod of length `i represented by the edge ei ∈ E ,

• the shear modulus µi and the Young modulusEi as parameters describing the material
of the ith rod,
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• as well as the width wi and the thickness ti of the rectangular cross-section of the ith
rod.

Using these quantities, in the stationary case (see, e.g., [41]) of the stent models, the equations
for the ith rod ei ∈ E are given by the following system of ordinary differential equations (in
space)

0 = ∂sp
i + f i,(2.1)

0 = ∂sq
i + ti × pi,(2.2)

0 = ∂sω
i −Qi(Hi)−1(Qi)Tqi,(2.3)

0 = ∂su
i + ti × ωi,(2.4)

where for the ith rod
• ui : [0, `i]→ R3 denotes the vector of displacements on the middle curve,
• ωi : [0, `i]→ R3 is the vector of infinitesimal rotations of the cross-section,
• qi is the contact moment and pi is the contact force,
• f i is the line density of the applied forces,
• Qi = [ti,ni, bi] is an orthogonal rotation matrix associated to the middle curve

with ti = (Φi)′ being the unit tangent to the middle curve and ni, bi being vectors
spanning the normal plane to the middle curve so that Qi represents the local basis at
each point of the middle curve,

• Hi = diag(µiKi, EiIin, E
iIib) is a positive definite diagonal matrix with the Young

modulus Ei, the shear modulus µi, Iin, Iib are the moments of inertia of the cross
section, and µiKi is the torsional rigidity of the cross section.

Equations (2.1) and (2.2) represent equilibrium equations (for forces and moments), while (2.3)
and (2.4) are constitutive relations. In particular, (2.4) describes the inextensibility and
unshearability of the struts; see [11] for more details in the case of stent models.

In addition to equations (2.1)–(2.4), at each vertex of the network structure we have the
kinematic coupling condition that u and ω are continuous and a dynamic coupling condition
describing the balance of contact forces p and contact moments q.

We denote by J−j the set of all edges that leave the jth vertex, i.e., the local variable is
equal to 0 at the vertex j, and by J+

j the set of all edges that enter the vertex, i.e., the local
variable is equal to `i for the ith edge at the vertex j. Using these notations we obtain the node
conditions

ωi(0) = ωk(`k), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,

ui(0) = uk(`k), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,∑

i∈J+
j

pi(`i)−
∑
i∈J−j

pi(0) = 0, j = 1, . . . , nV ,

∑
i∈J+

j

qi(`i)−
∑
i∈J−j

qi(0) = 0, j = 1, . . . , nV .

Since this is a pure traction problem, we can integrate over s ∈ [0, `i] and specify a unique
solution by requiring the two additional conditions

(2.5)
∫
N
u :=

nV∑
i=1

∫ `i

0

ui ds = 0,

∫
N
ω :=

nV∑
i=1

∫ `i

0

ωi ds = 0,

which means that the total displacement as well as the total infinitesimal rotation are zero.
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The model is then described by the collection of all displacements ui and infinitesimal
rotations ωi for all edges, which both are continuous on the whole network. Thus, the tuples of
unknowns in the problem uS = ((u1,ω1), . . . , (unE ,ωnE )) belong to the space H1(N ;R6),
where

H1(N ;Rk) =

{
(y1, . . . ,ynE ) ∈

nE∏
i=1

H1(0, `i;Rk) :

yi(0) = yk(`k), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV

}
,

with H1(0, `i;Rk) being the Sobolev space of functions on [0, `i] whose derivatives up to first
order are square Lebesgue integrable. In [20], for the application of stents, a mixed formulation
of such a model is presented with Lagrange multipliers appearing in the formulation due to
the inextensibility and unshearability of the rods in the 1D curved rod model (2.4) and the two
conditions for the total displacement and infinitesimal rotation (2.5).

Let AI ∈ R3nV ,3nE denote the incidence matrix of the oriented graph (V, E) with
three connected components organized in the following way: a 3 × 3 submatrix at rows
3i− 2, 3i− 1, 3i and columns 3j − 2, 3j − 1, 3j is I3 if the edge j enters the vertex i, −I3 if
it leaves the vertex i, or 0 otherwise. Then the matrix A+

I is obtained from AI by setting all
elements −1 to 0, and A−I is defined as AI = A+

I −A−I . Let us also introduce the projectors

Pi
E ∈ R3,3nE , Pj

V ∈ R3,3nV

on the coordinates 3i− 2, 3i− 1, 3i and 3j − 2, 3j − 1, 3j, respectively. We will also need
the spaces

L2(N ;R3) =

nE⊗
i=1

L2(0, `i;R3), L2
Hr (N ;R3) =

nE⊗
i=1

Hr(0, `i;R3), r ≥ 1,

with associated norms

‖(y1, . . . ,ynE )‖L2(N ;R3) =

(
nE∑
i=1

‖yi‖2L2(0,`i;R3)

)1/2

,

‖(y1, . . . ,ynE )‖L2
Hr (N ;R3) =

(
nE∑
i=1

‖yi‖2Hr(0,`i;R3)

)1/2

.

The norm corresponding to the last term for r = 1 is also used as the norm forH1(N ;R6). For
a function y = (y1, . . . ,ynE )∈L2

H1(N ;R3), we denote by y′ the vector (∂sy
1, . . . , ∂sy

nE )∈
L2(N ;R3).

3. Extended model formulation. In this section we extend the standard modeling ap-
proach in a way that enables us to prove a discrete inf-sup inequality, and thus, using classical
results, error estimates follow. For this, we include all unknowns in the problem explicitly
so that not only the inextensibility and unshearability of the rod is expressed in the weak
formulation, but the continuity of the displacement and infinitesimal rotation is also reflected
in the function space of the mixed formulation in H1(N ;R6). This leads to the introduction
of new unknowns; these are the displacements and infinitesimal rotations at the vertices, and
further, the contact moments and contact forces at the ends of each rod.
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Since u and ω are continuous on the whole elastic frame, we introduce as extra variables
the displacements and infinitesimal rotations at the vertices U i,Ωi, i = 1, . . . , nV , and then
form the vectors

U = [U1, . . . ,UnV ]T , Ω = [Ω1, . . . ,ΩnV ]T .

The kinematic coupling at the vertex j leads to the conditions

ui(`i) = U j , i ∈ J+
j , ui(0) = U j , i ∈ J−j ,

ωi(`i) = Ωj , i ∈ J+
j , ωi(0) = Ωj , i ∈ J−j .

(3.1)

To express the dynamic coupling conditions, we introduce the contact moments and forces at
the ends of the struts,

(3.2) Qi
+ = qi(`i), Qi

− = qi(0), P i
+ = pi(`i), P i

− = pi(0), i = 1, . . . , nE ,

and define

P± = (P 1
±, . . . ,P

nE
± ), Q± = (Q1

±, . . . ,Q
nE
± ).

The dynamic coupling conditions at vertex j can then be expressed as

(3.3)
∑
i∈J+

j

P i
+ −

∑
i∈J−j

P i
− = 0,

∑
i∈J+

j

Qi
+ −

∑
i∈J−j

Qi
− = 0, j = 1, . . . , nE .

Equations (2.1)–(2.4), (3.1), (3.2), (3.3), and (2.5) together constitute the elastic frame problem
in our extended formulation, for which we now derive the weak formulation in detail.

We multiply the ith equation of (2.1) by vi ∈ H1(0, `i;R3) and that of (2.2) by
wi ∈ H1(0, `i;R3), add them, integrate over s ∈ [0, `i], and sum the equations over i. This
yields

0 =

nE∑
i=1

∫ `i

0

∂sp
i · vi + f i · vi + ∂sq

i ·wi + ti × pi ·wi ds.

After partial integration we obtain

0 =

nE∑
i=1

∫ `i

0

(
−pi · ∂svi + f i · vi − qi · ∂swi−ti ×wi · pi

)
ds+ pi · vi

∣∣`i
0

+ qi ·wi
∣∣`i
0
,

i.e.,

nE∑
i=1

∫ `i

0

(
−pi · (∂svi + ti ×wi)− qi · ∂swi

)
ds

+ P i
+ · vi(`i)− P

i
− · vi(0)

+Qi
+ ·wi(`i)−Qi

− ·wi(0) = −
nE∑
i=1

∫ `i

0

f i · vi ds.

(3.4)

In a similar way we multiply (2.3) by ξi ∈ L2(0, `i;R3) and (2.4) by θi ∈ L2(0, `i;R3),
integrate over s ∈ [0, `i], and sum all equations to obtain

(3.5) 0 =

nE∑
i=1

∫ `i

0

−∂sωi · ξi + Qi(Hi)−1(Qi)Tqi · ξi − (∂su
i + ti × ωi) · θi ds.
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We also multiply the equations in (3.3) for the jth vertex by V j andW j from R3, respectively,
and sum the equations over j, which gives

nV∑
j=1

∑
i∈J+

j

P i
+ −

∑
i∈J−j

P i
−

 · V j +

nV∑
j=1

∑
i∈J+

j

Qi
+ −

∑
i∈J−j

Qi
−

 ·W j = 0.

Since
∑

i∈J+
j
P i

+ = Pj
VA+
IP+ and

∑
i∈J−j

P i
− = Pj

VA−I P−, this equation can be written
as

nV∑
j=1

Pj
V
(
A+
IP+ −A−I P−

)
· V j +

nV∑
j=1

Pj
V
(
A+
IQ+ −A−IQ−

)
·W j = 0,

and therefore,

(3.6)
(
A+
IP+ −A−I P−

)
· V +

(
A+
IQ+ −A−IQ−

)
·W = 0

for all V = [V 1, . . . ,V nV ]T ,W = [W 1, . . . ,W nV ]T ∈ R3nV .
Multiplying the equations for the displacements in (3.1) by Θi

+ and Θi
−, we obtain

ui(`i) ·Θi
+ = U j ·Θi

+, i ∈ J+
j , ui(0) ·Θi

− = U j ·Θi
−, i ∈ J−j .

Since Pi
E(A

+
I )TU = U j for i ∈ J+

j , for Θ± = [Θ1
±, . . . ,Θ

nE
± ]T , we have

nE∑
i=1

ui(`i)·Θi
+ = (A+

I )TU ·Θ+,

nE∑
i=1

ui(0)·Θi
− = (A−I )TU ·Θ−, Θ+,Θ− ∈ R3nE ,

and similarly, for the rotations, using the notation Ξ± = [Ξ1
±, . . . ,Ξ

nE
± ]T , we get

nE∑
i=1

ωi(`i) ·Ξi
+ = (A+

I )TΩ ·Ξ+,

nE∑
i=1

ωi(0) ·Ξi
− = (A−I )TΩ ·Ξ−, Ξ+,Ξ− ∈ R3nE .

Thus, we have

nE∑
i=1

(ui(`i) ·Θi
+ − ui(0) ·Θi

−)− (A+
I )TU ·Θ+ + (A−I )TU ·Θ− = 0,

Θ+,Θ− ∈ R3nE ,

(3.7)

for the displacements and

nE∑
i=1

(ωi(`i) ·Ξi
+ − ωi(0) ·Ξi

−)− (A+
I )TΩ ·Ξ+ + (A−I )TΩ ·Ξ− = 0,

Ξ+,Ξ− ∈ R3nE ,

(3.8)

for the rotations. We multiply equations (2.5) by α and β, respectively, and sum up to obtain

(3.9) α ·
∫
N
u+ β ·

∫
N
ω = 0, α,β ∈ R3.
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Subtracting (3.6) from (3.4) gives

nE∑
i=1

∫ `i

0

(
−pi · (∂svi + ti ×wi)− qi · ∂swi

)
ds

+

nE∑
i=1

(P i
+ · vi(`i)− P

i
− · vi(0)) +

nE∑
i=1

(Qi
+ ·wi(`i)−Qi

− ·wi(0))

−
(
A+
IP+ −A−I P−

)
· V

−
(
A+
IQ+ −A−IQ−

)
·W = −

nE∑
i=1

∫ `i

0

f i · vi ds,

vi,wi ∈ H1(0, `i;R3), i = 1, . . . , nE , V ,W ∈ R3nV .

(3.10)

We then add (3.7) and (3.8) to (3.5) and obtain

nE∑
i=1

∫ `i

0

Qi(Hi)−1(Qi)Tqi · ξi − (∂su
i + ti × ωi) · θi − ∂sωi · ξi ds

+

nE∑
i=1

(ui(`i) ·Θi
+ − ui(0) ·Θi

−) +

nE∑
i=1

(ωi(`i) ·Ξi
+ − ωi(0) ·Ξi

−)

− ((A+
I )TU ·Θ+ − (A−I )TU ·Θ−)

− ((A+
I )TΩ ·Ξ+ − (A−I )TΩ ·Ξ−) = 0,

ξi,θi ∈ L2(0, `i;R3), i = 1, . . . , nE , Θ±,Ξ± ∈ R3nE .

(3.11)

In [20] and [22], for the stent model, such a mixed formulation was presented using
the space H1(N ;R3) for the displacement vector u and the infinitesimal rotation vector ω.
The space L2(N ;R3) × R3 × R3 was used for the Lagrange multipliers p,α,β. However,
the continuity conditions for the displacements and infinitesimal rotations were resolved and
inherently built into the space H1(N ;R3). We now relax these conditions and consider them
as additional equations for the problem and extend the space of unknowns further by adding
Lagrange multipliers for these extra constraints. The resulting function spaces are given by

V = L2(N ;R3)× L2(N ;R3)× R3nE × R3nE × R3nE × R3nE × R3 × R3,

M = L2
H1(N ;R3)× L2

H1(N ;R3)× R3nV × R3nV .

To simplify the notation for the elements of these spaces, we introduce

Σ := (q,p,P+,P−,Q+,Q−,α,β) ∈ V, φ := (u,ω,U ,Ω) ∈M

for the unknowns in the problem and

Γ := (ξ,θ,Θ+,Θ−,Ξ+,Ξ−,γ, δ) ∈ V, ψ := (v,w,V ,W ) ∈M

for the associated test functions.
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In this notation, the bilinear forms and the linear functionals that appear in the above
calculations are given by

a : V × V → R, b : V ×M → R, f : M → R,

a(Σ,Γ) :=

nE∑
i=1

∫ `i

0

Qi(Hi)−1(Qi)Tqi · ξi ds,

b(Σ,ψ) :=

nE∑
i=1

∫ `i

0

(
−pi · (∂svi + ti ×wi)− qi · ∂swi

)
ds

+

nE∑
i=1

(P i
+ · vi(`i)− P

i
− · vi(0))

+

nE∑
i=1

(Qi
+ ·wi(`i)−Qi

− ·wi(0))

−
(
A+
IP+ −A−I P−

)
· V

−
(
A+
IQ+ −A−IQ−

)
·W +α ·

∫
N
v + β ·

∫
N
w,

f(ψ) := −
nE∑
i=1

∫ `i

0

f i · vi ds.

Then the variational formulation (3.10), (3.11), and (3.9) can be expressed as follows:
Determine Σ ∈ V and φ ∈M such that

(3.12)
a(Σ,Γ) + b(Γ,φ) = 0, Γ ∈ V,
b(Σ,ψ) = f(ψ), ψ ∈M.

In this way we have obtained that the solution of the problem in (2.1)–(2.5) satisfies (3.12)
and conversely that any solution of (3.12) satisfies (2.1)–(2.5).

In this section we have extended the mathematical formulation of an elastic frame structure
by including the continuity conditions at the nodes as extra equations and by adding further
Lagrange multipliers. In the next sections, we will use this formulation to obtain a discrete
inf-sup inequality and to present a simple proof of the continuous inf-sup inequality.

4. Properties of the continuous model. In this section we consider the properties of the
continuous operator equation (3.12). For the operator B : V →M ′ defined by

M ′〈BΣ,ψ〉M = b(Σ,ψ), ψ ∈M,

we have the adjoint operator BT : M → V ′ (we use the matrix notation to illustrate the
similarity to the discrete case discussed later), which satisfies

V 〈Σ, BTψ〉V ′ = b(Σ,ψ), Σ ∈ V.

Then KerBT , the kernel ofBT , is defined as the set of vector functionsψ = (v,w,V ,W ) ∈
M such that

b(Σ,ψ) = 0, Σ ∈ V,
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so that ψ = (v,w,V ,W ) ∈ KerBT if and only if

∂sv
i + ti ×wi = 0, ∂sw

i = 0, i = 1, . . . , nE ,(4.1) ∫
N
v =

∫
N
w = 0,(4.2)

vi(`i) = Pi
E(A

+
I )TV , vi(0) = Pi

E(A
−
I )TV , i = 1, . . . , nE ,(4.3)

wi(`i) = Pi
E(A

+
I )TW , wi(0) = Pi

E(A
−
I )TW , i = 1, . . . , nE .(4.4)

Conditions (4.3) and (4.4) imply that v andw are continuous on the complete elastic frame
structure, i.e., v,w ∈ H1(N ;R3). The conditions in (4.1) imply then that w is constant on
the complete structure, and from (4.2) we obtain w = 0. Analogously, from (4.1) we obtain
that v = 0, and hence V = W = 0. Thus, we have proved the following lemma.

LEMMA 4.1. KerBT = {0}.
As a next step we prove that ImBT is closed. For this we derive a kind of Poincaré

inequality on the graph N using the notation v(`) = [v1(`1), . . . ,vnE (`nE )]T .
LEMMA 4.2. There exists a constant C > 0 such that for all v ∈ L2

H1(N ;R3) and all
V ∈ R3nV the following inequality holds:

(4.5)
‖v‖L2(N ;R3) ≤ C

(
‖v′‖2L2(N ;R3) +

(∫
N
v

)2

+
(
v(0)− (A−I )TV

)2
+
(
v(`)− (A+

I )TV
)2)1/2

.

Proof. Assume the contrary, i.e., for all constants C > 0 there exist vC ∈ L2
H1(N ;R3)

and V C ∈ R3nV such that the opposite inequality holds. Then, for C = 1/k, k ∈ N, there
exist sequences vk ∈ L2

H1(N ;R3) and V k ∈ R3nV such that

‖vk‖L2(N ;R3) = 1,

‖v′k‖2L2(N ;R3) +

(∫
N
vk

)2

+
(
vk(0)− (A−I )TV k

)2
+
(
vk(`)− (A+

I )TV k

)2 → 0,

where, as before, v′k denotes the vector of partial derivatives of vk. Thus, taking an appropriate
subsequence (still indexed by k), we have

vk ⇀ v weakly in L2(N ;R3),

v′k → 0 strongly in L2(N ;R3),∫
N
vk → 0,

vk(0)− (A−I )TV k → 0,(4.6)

vk(`)− (A+
I )TV k → 0.(4.7)

It follows that on each elastic rod we have

vik ⇀ vi weakly in L2(0, `i;R3), ∂sv
i
k → 0 strongly in L2(0, `i;R3), i = 1, . . . , nE ,

so that vi is constant on the ith rod and

vik ⇀ vi weakly in H1(0, `i;R3).
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By the trace theorem (see, e.g., [15, Section 5.5, Theorem 1]), we then have

vik(0)→ vi, vik(`i)→ vi.

Using (4.6) and (4.7), we have

(4.8) Pi
E(A

−
I )TV k → vi, Pi

E(A
+
I )TV k → vi, i = 1, . . . , nE .

Since in every block row of size 3, the matrices (A−I )T and (A+
I )T have exactly one identity

matrix of size 3, we have that V k is convergent as well. We denote the limit by V and
have that its values are given by vi suitably organized. Therefore, since AI = A+

I −A−I ,
subtracting the sequences in (4.8) we obtain that

AT
IV = 0.

Since the rank of AT
I is equal to 3nV−3, the kernel of AT

I is of dimension 3 by the rank-nullity
theorem [2]. We easily inspect that Ker AT

I is spanned by the vectors

(e1, e1, . . . , e1), (e2, e2, . . . , e2), (e3, e3, . . . , e3).

We therefore obtain that all vi are equal. Since 0 =
∫
N v =

∑nE
i=1 `

ivi, we obtain that vi = 0
and hence V = 0, which also implies that v = 0. Thus, since

vik(x) = vik(0) +

∫ x

0

∂sv
i
k(s) ds,

(vik)k tends to 0 strongly in L2(0, `i;R3) for all i = 1, . . . , nE , which is in contradiction to
the unit norm assumption of the sequence, i.e., ‖vk‖L2(N ;R3) = 1.

LEMMA 4.3. ImBT is closed.
Proof. Consider a convergent sequence in ImBT , i.e., a sequence of the form

∂sv
i
k + ti ×wi

k → pi, ∂sw
i
k → qi, strongly in L2(0, `i;R3), i = 1, . . . , nE ,∫

N
vk → α,

∫
N
wk → β,

vik(`i)− Pi
E(A

+
I )TV k → P i

+, vik(0)− Pi
E(A

−
I )TV k → P i

−, i = 1, . . . , nE ,

wi
k(`i)− Pi

E(A
+
I )TW k → Qi

+, wi
k(0)− Pi

E(A
−
I )TW k → Qi

−, i = 1, . . . , nE .

Applying inequality (4.5) to the sequenceswk =(w1
k, . . . ,w

nE
k ) andW k =(W 1

k, . . . ,W
nE
k )

implies that wk is bounded in L2(N ,R3). Therefore, wi
k is bounded in H1(0, `i;R3), and

hence there exists a subsequence and a function wi ∈ H1(0, `i;R3) such that

wi
kl
⇀ wi weakly in H1(0, `i;R3), i = 1, . . . , nE .

We collect the limits in w = (w1, . . . ,wnE ) and, using again the trace theorem, we obtain
that

qi = ∂sw
i, −Pi

E(A
+
I )TW kl

→ Qi
+ −wi(`i), −Pi

E(A
−
I )TW kl

→ Qi
− −wi(0),

for i = 1, . . . , nE , and

β =

∫
N
w.
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Since in each block row of dimension 3 the matrices A±I have exactly one identity matrix, we
obtain thatW kl

converges toW , which satisfies

−Pi
E(A

+
I )TW = Qi

+ −wi(`i), −Pi
E(A

−
I )TW = Qi

− −wi(0), i = 1, . . . , nE .

By inequality (4.5), there is a unique function w that satisfies the associated homogeneous
system

∂sw
i = 0, i = 1, . . . , nE ,

∫
N
w = 0, v(0)− (A−I )TV = v(`)− (A+

I )TV = 0.

Therefore, w is unique, and thus the whole sequences (wk)k and (W k)k are convergent.
An application of Lemma 4.2 to wk −w and W k −W implies that wk → w strongly in
L2
H1(N ;R3). Once we have established this convergence, we apply it to the term ti ×wi

k,
and by the same reasoning we identify all limits related to vk and V k. We obtain vk → v
strongly in L2

H1(N ;R3) and V k → V in R3nV and that

∂sv
i + ti ×wi = pi, vi(`i)− Pi

E(A
+
I )TV = P i

+,

vi(0)− Pi
E(A

−
I )TV = P i

−, α =

∫
N
u.

Thus, Σ = (q,p,P+,P−,Q+,Q−,α,β) belongs to ImBT , and hence ImBT is closed.

As a direct consequence of Lemmas 4.1, 4.3, and [6, Proposition 1.2, page 39], we obtain
the following corollary.

COROLLARY 4.4 (Continuous inf-sup inequality). Consider the variational formulation
of the model (3.12). Then there exists a constant kc > 0 such that

inf
ψ∈M

sup
Σ∈V

b(Σ,ψ)

‖Σ‖V ‖ψ‖M
≥ kc.

As our next result we will prove the KerB-ellipticity of the form a, i.e., that there exist ca > 0
such that

a(Σ,Σ) ≥ ca‖Σ‖2V , Σ ∈ KerB.

To obtain this result, we need to restrict the class of networks that we consider.
LEMMA 4.5. Let the geometry of the frame structure be such that∑

i∈J+
j

ith edge is straight

αit
i −

∑
i∈J−

j
ith edge is straight

αit
i = 0, j = 1, . . . , nV ,

implies that αi = 0 for all straight edges i. Then, the bilinear form a from the variational
formulation (3.12) is KerB-elliptic.

Proof. The space KerB is given by the set of Σ = (q,p,P+,P−,Q+,Q−,α,β) ∈ V
such that

b(Σ,ψ) = 0, ψ ∈M.
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Thus, from the definition of the form b, one has that for all ψ = (v,w,V ,W ) ∈M
nE∑
i=1

∫ `i

0

(
−pi · (∂svi + ti ×wi)− qi · ∂swi

)
ds

+

nE∑
i=1

(P i
+ · vi(`i)− P

i
− · vi(0)) +

nE∑
i=1

(Qi
+ ·wi(`i)−Qi

− ·wi(0))

−
(
A+
IP+ −A−I P−

)
· V

−
(
A+
IQ+ −A−IQ−

)
·W +α ·

∫
N
v + β ·

∫
N
w = 0.

(4.9)

Since V andW in RnV are arbitrary, we obtain

(4.10) A+
IP+ −A−I P− = A+

IQ+ −A−IQ− = 0,

which is equivalent to (3.3). These conditions mean that at each vertex, the sum of the contact
forces as well as the sum of the contact moments are zero. Then, for γ ∈ R3, we insert vi = γ,
wi = 0,W = V = 0 as test functions into (4.9) and obtain

nE∑
i=1

(P i
+ − P

i
−) · γ +α ·

(
nE∑
i=1

`i

)
γ = 0.

Since from (4.10) it follows that
nE∑
i=1

(P i
+ − P

i
−) =

nE∑
i=1

Pi
E(A

+
IP+ −A−I P−) = 0,

we obtain that α = 0. Now, for fixed i we insert vi ∈ C1([0, `i];R3) with compact support in

〈0, `i〉 into (4.9) and obtain
∫ `i

0
pi · ∂svi = 0. This implies that pi is constant on each rod.

Inserting a single vi ∈ C1([0, `i];R3) into (4.9), we obtain that

(4.11) −pi ·
∫ `i

0

∂sv
i ds+ P i

+ · vi(`i)− P
i
− · vi(0) = 0,

and thus pi = P i
+ = P i

−.
Similarly, for γ ∈ R3 we insert wi = γ for all i into (4.9) and obtain

−
nE∑
i=1

∫ `i

0

pi × ti · γ ds+

nE∑
i=1

(Qi
+ −Q

i
−) · γ + β ·

(
nE∑
i=1

`i

)
γ = 0.

As in the case of contact forces, we have
∑nE

i=1(Qi
+ −Q

i
−) = 0. For the first term we argue

as follows:
nE∑
i=1

∫ `i

0

pi × ti ds =

nE∑
i=1

pi × (Φi(`i)−Φi(0)) =

nV∑
j=1

(
∑
i∈J+

j

P i
+ −

∑
i∈J−j

P i
−)× Vj = 0,

again by (4.10), where Vj denotes the jth vertex. Thus, we conclude that β = 0. What is left
in (4.9) are the equations for all i ∈ {1, . . . , nE} and all wi ∈ H1(0, `i) given by

(4.12) −
∫ `i

0

pi × ti ·wi ds−
∫ `i

0

qi · ∂swi ds+Qi
+ ·wi(`i)−Qi

− ·wi(0) = 0.
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Defining q̃i = qi − pi × (Φi(s)−Φi(0)) and inserting this expression into (4.12), we obtain

−
∫ `i

0

pi × ti ·wi ds−
∫ `i

0

q̃i · ∂swi ds−
∫ `i

0

pi × (Φi(s)−Φi(0)) · ∂swi ds

+Qi
+ ·wi(`i)−Qi

− ·wi(0) = 0.

After partial integration in the third term, we obtain

(4.13) −
∫ `i

0

q̃i · ∂swi ds+ (Qi
+ − pi × (Φi(`i)−Φi(0))) ·wi(`i)−Qi

− ·wi(0) = 0.

As in the case of contact forces (see (4.11)), this implies that the q̃i are constants and that

q̃i = Qi
+ − pi × (Φi(`i)−Φi(0)) = Qi

−, i = 1, . . . , nE .

Thus, we have obtained the following characterization of KerB,

pi = P i
+ = P i

−, qi = pi × (Φi(s)−Φi(0)) +Qi
−,

Qi
+ = pi × (Φi(`i)−Φi(0)) +Qi

−, α = β = 0,

with (4.10) being satisfied.
Since KerB is of finite dimension and the form a is obviously positive semidefinite, in

order to verify that a is KerB-elliptic, we only have to prove that Ker a ∩ KerB is trivial.
Assume that Σ ∈ Ker a ∩ KerB. For elements of Ker a, qi = 0, i = 1, . . . , nE , and for
elements in KerB, we further have

pi × (Φi(s)−Φi(0)) = Qi
− = 0 s ∈ [0, `i], Qi

+ = α = β = 0, i = 1, . . . , nE .

From the first equation we have that pi = αit
i, for some αi ∈ R, i = 1, . . . , nE , if the strut is

straight and pi = 0 otherwise. By our assumption on the geometry of the frame structure, this
implies that Ker a ∩KerB = {0}. This concludes the proof.

REMARK 4.6. In the application of our theory to the modeling of elastic stents, the
restriction of the geometry in Lemma 4.5 does not exclude typical examples of stents because
most of the struts in stents are curved. But even if they were straight, we can start from the
vertices where only two struts meet and conclude that the associated scalars αi for these struts
should be zero and then continue until we conclude that all coefficients are zero.

The properties of the continuous model that we have shown imply the existence and the
uniqueness of the solution.

THEOREM 4.7. There is a unique solution of (3.12).
Proof. Since a is KerB-elliptic by Lemma 4.5 and since the inf-sup inequality holds on

V ×M by Lemma 4.1 and Lemma 4.3, the application of [17, Corollary 4.1, page 61] or [6,
Theorem 1.1, page 42] implies the assertion.

Note that, even though we deal with the pure traction problem, because of the introduction
of the additional conditions on the total displacement and the total infinitesimal rotation in (2.5),
we have a unique solution of (3.12) for all forces. Furthermore, the usual necessary conditions
for the pure traction problem (zero total force and zero total couple) are not necessary any
more. The Lagrange multipliers α and β deal with that. See [20] for explicit formulas for
these multipliers.
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5. Properties of the discrete model. In this section we discuss a discrete approximation
of the problem (3.12). The derivation in this section is done for straight rods, i.e., under the
assumption that `iti = Φi(`i)−Φi(0) for all rods. If a rod is curved, then it is approximated
by a piecewise straight approximation. In this case we need estimates for two solutions of the
elastic frame model for two geometries.

Let us denote by Pm(N ) the set of functions on the graph N which are polynomials of
degree m ≥ 0 on each edge of the graph. Note that we do not assume that the functions in
Pm(N ) are continuous at the vertices. We use a similar notation Pm([0, `]) for the space of
polynomials of degree m on the segment [0, `]. For k, n ∈ N0 we define the finite-dimensional
spaces of discrete approximations as

Vk := Pk(N )3 × Pk(N )3 × R3nE × R3nE × R3nE × R3nE × R3 × R3,

Mn := Pn(N )3 × Pn(N )3 × R3nV × R3nV .

We assume that n ≥ 1 and k ≥ 0 and consider the following discrete approximation of (3.12):
Determine Σ ∈ Vk and φ ∈Mn such that

a(Σ,Γ) + b(Γ,φ) = 0, Γ ∈ Vk,
b(Σ,ψ) = f(ψ), ψ ∈Mn.

(5.1)

The form b on Vk ×Mn defines the operator Bh : Vk → M ′n, where M ′n denotes the dual
of Mn. In general, KerBh is not a subset of KerB. However, we will show that if n− 1 ≥ k,
then it is a subset, and thus applying Lemma 4.5 gives the following result:

LEMMA 5.1. Consider the discrete problem (5.1), and let n− 1 ≥ k. Then the bilinear
form a is KerBh-elliptic.

Proof. As in the continuous case, the elements Σ = (q,p,P+,P−,Q+,Q−,α,β) of
KerBh satisfy (4.10), and by the same arguments it follows that α = 0. For fixed i and a test
function vi ∈ Pn([0, `i]), we obtain the equation

−
∫ `i

0

pi · ∂svi ds+ P i
+ · vi(`i)− P

i
− · vi(0) = 0.

For constant vi = γ ∈ R3, we obtain P i
+ = P i

−, and, inserting pi = p̃i + P i
−, implies

−
∫ `i

0

p̃i · ∂svi ds = 0, vi ∈ Pn([0, `i]).

Since n ≥ k + 1, the function p̃i is zero, and hence pi = P i
+ = P i

−.
For vi = 0, i = 1, . . . , nE , and V = W = 0 in (4.9), we obtain

nE∑
i=1

∫ `i

0

−pi · ti ×wi − qi · ∂swi ds+

nE∑
i=1

(Qi
+ ·wi(`i)−Qi

− ·wi(0)) + β ·
∫
N
w = 0.

Inserting wi = γ ∈ R3, i = 1, . . . , nE , we get
nE∑
i=1

−γ ·
∫ `i

0

pi × ti ds+

nE∑
i=1

(Qi
+ −Q

i
−) · γ + β ·

(
nE∑
i=1

`i

)
γ = 0.

As in the proof of Lemma 4.5, we obtain that β = 0, and thus we are left with the equation

− pi × ti ·
∫ `i

0

wi ds−
∫ `i

0

qi · ∂swi ds

+Qi
+ ·wi(`i)−Qi

− ·wi(0) = 0, wi ∈ Pn([0, `i]).

(5.2)
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For k ≥ 1, we insert qi = q̃i + spi × ti into this equation and obtain

−pi×ti·
∫ `i

0

wi ds−
∫ `i

0

q̃i·∂swi ds−pi×ti·
∫ `i

0

s∂sw
i ds+Qi

+·wi(`i)−Qi
−·wi(0) = 0.

Partial integration in the third term leads to

−
∫ `i

0

q̃i · ∂swi ds+ (Qi
+ − `ipi × ti) ·wi(`i)−Qi

− ·wi(0) = 0.

Since constant functions are contained in Vk, for wi = γ, we get Qi
+ = Qi

− + `ipi × ti.
Then setting q̃i = ˜̃q +Qi

− gives

∫ `i

0

˜̃q
i
· ∂swi ds = 0, wi ∈ Pn([0, `i]).

As before, since n− 1 ≥ k, this implies that ˜̃q = 0, and hence qi = Qi
− + spi × ti.

For k = 0, qi is constant, so from (5.2) we obtain

−pi × ti ·
∫ `i

0

wi ds− qi · (wi(`i)−wi(0)) +Qi
+ ·wi(`i)−Qi

− ·wi(0) = 0.

This implies that

pi × ti = 0, qi = Qi
+ = Qi

−,

and we have found the characterization of KerBh as consisting of the elements
(q,p,P+,P−,Q+,Q−,α,β) that satisfy (4.10) and

pi = P i
+ = P i

−, α = β = 0, qi = Qi
− + spi × ti, Qi

+ = Qi
− + `ipi × ti.

Additionally, if k = 0, then pi × ti = 0. Thus, KerBh = KerB ∩ Vk ⊆ KerB, and hence a
is elliptic on KerBh by Lemma 4.5.

LEMMA 5.2. Consider the discrete problem (5.1), and let k ≥ n−1. Then KerBT
h = {0}.

Proof. KerBT
h is defined as the set of ψ = (v,w,V ,W ) ∈Mn such that

b(Σ,ψ) = 0, Σ = (q,p,P+,P−,Q+,Q−,α,β) ∈ Vk.

Thus, ψ = (v,w,V ,W ) ∈ KerBT
h if and only if

nE∑
i=1

∫ `i

0

−pi · (∂svi + ti ×wi)− qi · ∂swi ds

+

nE∑
i=1

(P i
+ · vi(`i)− P

i
− · vi(0)) +

nE∑
i=1

(Qi
+ ·wi(`i)−Qi

− ·wi(0))

−
(
A+
IP+ −A−I P−

)
· V −

(
A+
IQ+ −A−IQ−

)
·W +α ·

∫
N
v + β ·

∫
N
w = 0

for all Σ ∈ Vk. This is equivalent to
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nE∑
i=1

∫ `i

0

(
−pi · (∂svi + ti ×wi)− qi · ∂swi

)
ds = 0, pi, qi ∈ Pk([0, `i]),(5.3)

i = 1, . . . , nE ,∫
N
v =

∫
N
w = 0,(5.4)

vi(`i) = Pi
E(A

+
I )TV , vi(0) = Pi

E(A
−
I )TV , i = 1, . . . , nE ,(5.5)

wi(`i) = Pi
E(A

+
I )TW , wi(0) = Pi

E(A
−
I )TW , i = 1, . . . , nE .(5.6)

Since k ≥ n− 1, from (5.3) for a test function qi, we obtain that wi is constant for each strut.
The continuity of the infinitesimal rotations at the vertices follows from (5.6). This implies
that wi = const, and then (5.4) implies that wi = 0, i.e., wi = 0 for all i = 1, . . . , nE and
W = 0. Analogous arguments using (5.5) imply that vi = 0 and V = 0 as well.

Let n = k + 1 so that both Lemma 5.1 and Lemma 5.2 apply. Since we are in the
finite-dimensional case, clearly ImBh is closed. Proposition 1.2 in [6, p. 39] then implies
that ImBh = (KerBT

h )0, and then by Lemma 5.2 it follows that ImBh = M ′n. Furthermore,
by Lemma 5.1, the bilinear form a is KerBh-elliptic. Thus, by the classical theory for finite-
dimensional approximations of mixed formulations, e.g., Proposition 2.1 in [6], we obtain the
following existence and uniqueness result for the discretized problem.

THEOREM 5.3. Let n = k + 1. Then problem (5.1) has a unique solution.
By applying classical results, we then also obtain the discrete inf-sup inequality.
COROLLARY 5.4 (Discrete inf-sup inequality). If n = k+ 1, then there exists a constant

kd > 0 such that

inf
ψ∈Mn

sup
Σ∈Vk

b(Σ,ψ)

‖Σ‖Vk
‖ψ‖Mn

≥ kd.

Proof. By Corollary 4.4, the continuous inf-sup inequality holds. By Lemma 4.1 and
Lemma 5.2 we have KerBT

h = KerBT = {0}. Thus Proposition 2.2 in [6, p. 53] implies
that the assumptions of Proposition 2.8 in [6, p. 58] are fulfilled, and we obtain the discrete
inf-sup inequality.

REMARK 5.5. Note that the constant kd from Corollary 5.4 depends on the choice of the
subspaces Vk and Mn.

Using Theorem 2.1 in [6, p. 60], the discrete inf-sup inequality in Corollary 5.4, and
Lemma 5.1, i.e., the coercivity of the form a on KerBh, we obtain error estimates also for the
discrete problem. Introducing analogous notation as in the continuous case,

Σh := (qh,ph,P h
+,P

h
−,Q

h
+,Q

h
−,α

h,βh) ∈ Vk, φh := (uh,ωh,Uh,Ωh) ∈Mn

for the unknowns in the problem and

Γh := (ξh,θh,Θh
+,Θ

h
−,Ξ

h
+,Ξ

h
−,γ

h, δh) ∈ Vk, ψh := (vh,wh,V h,W h) ∈Mn

for the test functions, we have the following theorem:
THEOREM 5.6. Let n = k + 1, let (Σ,φ) ∈ V ×M be the solution of (3.12), and let

(Σh,φh) ∈ Vk ×Mn be the solution of (5.1). Then

‖Σ−Σh‖V + ‖φ− φh‖M ≤ c
(

inf
Γh∈Vk

‖Σ− Γh‖V + inf
ψh∈Mn

‖φ−ψh‖M
)
.

Here the constant c depends on the spaces Vk and Mn but does not depend on (Σ,φ).
REMARK 5.7. The construction of the finite elements, as presented, is directly related

to the rods which are described by their prescribed length. To increase the accuracy we can
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increase the polynomial degree assuming that the geometry has been described without error.
On the other hand, we can change the topology of the frame structure by adding new points on
existing rods (and thus not changing the geometry of the structure) in the original definition of
the graph N = (V, E). In this way we obtain a refined model with transmission conditions of
continuity for the displacements, rotations, contact moments, and forces at new points. Since
at each new vertex only two struts meet, these transmission conditions are the same coupling
conditions (kinematical and dynamical) as for all other vertices of the frame structure. Thus,
the resulting weak formulations are the same for both networks, the original one and that with
added vertices.

The error estimate in Theorem 5.6 can be employed in the finite element method using
interpolation estimates in L2 and H1. Note that in contrast to the numerical method in [22],
due to the availability of the discrete inf-sup inequality in the new formulation, we obtain
error estimates for all variables, including the contact forces. It is a classical result (see, e.g.,
[12]) that for a function ϕ ∈ Hr(0, `) and its polynomial Lagrange interpolant Πmϕ of degree
m, one has the estimate

‖ϕ−Πmϕ‖L2(0,`) ≤ C`min {r,m+1}‖ϕ(min {r,m+1})‖L2(0,`), ϕ ∈ Hr(0, `),

‖ϕ−Πmϕ‖H1(0,`) ≤ C`min {r−1,m}‖ϕ(min {r,m+1})‖L2(0,`), ϕ ∈ Hr(0, `).
(5.7)

With h := max{`i, i = 1, . . . , nE} and combining (5.7) with Theorem 5.6, we obtain the
following error estimate for the finite element method.

THEOREM 5.8. Let n = k + 1, r ≥ 0, r ∈ N, and let f ∈ L2
Hr (N ;R3). Let

(Σ,φ) ∈ V ×M be the solution of (3.12) and (Σh,φh) ∈ Vk ×Mn the solution of (5.1).
Then

‖Σ−Σh‖V + ‖φ− φh‖M ≤ chmin {r+1,k+1}‖f‖L2
Hr
.

Here the constant c depends on the spaces Vk and Mn but does not depend on (Σ,φ) or f .
Proof. The error of the finite element approximation is estimated by the error of the

interpolation operator. Thus we get

‖Σ−Σh‖V + ‖φ− φh‖M ≤ c
(
‖Σ−ΠkΣ‖V + ‖φ−Πnφ‖M

)
.

Since in this section the rods are assumed to be straight for f ∈ L2
Hr (N ;R3), from the

differential equations we obtain that

p ∈ L2
Hr+1(N ;R3), q ∈ L2

Hr+2(N ;R3), ω ∈ L2
Hr+3(N ;R3), u ∈ L2

Hr+4(N ;R3).

Thus, we find the estimate

‖Σ−Σh‖V + ‖φ− φh‖M

≤ c
(
hmin {r+1,k+1}‖(q,p)

(min {r+1,k+1})‖L2(N ;R6)

+ hmin {r+2,n}‖(u,ω)
(min {r+3,n+1})‖L2(N ;R6)

)
≤ c
(
hmin {r+1,k+1}‖f‖L2

Hmin {r,k}
+ hmin {r+2,n}‖f‖L2

Hmin {r,n−2}

)
≤ chmin {r+1,k+1}‖f‖L2

Hr
.
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Note that it is not clear whether the constant in Theorem 5.8 depends on h. However, in
numerical experiments we have not observed such a dependence (see Section 5.2). This is in
accordance with the convergence rate obtained for the stent application in [22] in the classical
formulation.

Having obtained error estimates for the continuous and discrete problem, in the next
section we consider the properties of the resulting linear system.

5.1. Block structure of the discretization matrix. In the sequel, we assume that
n = k + 1. Using the same structure as in the continuous problem, the discrete problem is
given by a linear system Kx = F , where

K =

[
A BT

B 0

]
, F =

[
0
F 2

]
,

with a square matrix A of size 3(2k + 6)nE + 6 and a rectangular matrix B of size
(3(2k + 4)nE + 6nV) × (3(k + 6)nE + 6). Having in mind the evolution problem that
we will study in the next section, we partition these matrices further as

(5.8) A =

[
A11 0

0 0

]
, B =

[
0 B32

B41 B42

]
,

where A11 is a square matrix of size 3(k + 1)nE , B32 is a matrix of size
3(k + 2)nE × (3(k + 5)nE + 6), B41 is of size (3(k + 2)nE + 6nV)× 3(k + 1)nE , and B42

is of size (3(k + 2)nE + 6nV)× (3(k + 5)nE + 6) associated with the following variables,

dim \ unknown q (p,P+,P−,Q+,Q−,α,β) u (ω,U ,Ω) F

3(k + 1)nE A11 0 0 BT
41 0

3(k + 5)nE + 6 0 0 BT
32 BT

42 0

3(k + 2)nE 0 B32 0 0 F 3

3(k + 4)nE + 6nV B41 B42 0 0 0

or in more detail,

q p P+ P− Q+ Q− α β u ω U Ω dimension
ξ F 0 F 3(k + 1)nE

θ F F 3(k + 1)nE

T̂+ F −(A+
I )T 3nE

T̂− F (A−I )T 3nE

Ξ+ F −(A+
I )T 3nE

Ξ− F (A−I )T 3nE
γ F 3
δ F 3

v 0 F F F F 0 3(k + 2)nE

ω F F F F F 3(k + 2)nE

V −A+
I A−I 3nV

W −A+
I A−I 3nV

5.2. Numerical results. To illustrate our theoretical analysis, we test the implementation
of the numerical scheme in the new formulation for a Palmaz-type stent as in Figure 5.1. The
radius of the stent is 1.5mm, and the overall length is 1.68cm. There are 144 vertices in the
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FIG. 5.1. Design of the Palmaz-like stent used in the simulations.

associated graph with 276 straight edges. All vertices except the boundary ones are junctions
of four edges. The cross-sections are assumed to be square with a side length of 0.1mm. The
material of the stent is stainless steel with a Young modulus E = 2.1 · 1011 and a Poisson
ratio ν = 0.26506. To this structure we apply a forcing normal to the axis of the of stent, i.e.,
of the form

(5.9) f(x) = f(x1)
x2e2 + x3e3√

x22 + x23
, x = (x1, x2, x3) ∈ R3,

where x1 is the axis of the cylinder. As a consequence, the deformation will also posses some
radial symmetry. The problem is a pure traction problem, and the applied forces satisfy the
necessary condition. The non-uniqueness of the solution in the problem is fixed using the
Lagrange multipliers α and β.

The solution for the forcing function

(5.10) f(x1) =
10

105(x1 − `/2)2 + 1

is presented in Figure 5.2; here ` is the length of the stent. On the left-hand side, the solution
is projected to the (x1, x2)-plane, while on the right, it is shown from a different perspective.
For the forcing function

(5.11) f(x1) = 103(x1 − `/2)2e3

the results are given in Figure 5.3; again ` is the length of the stent.
In the following we present the order of convergence of the finite element method for

the solution of the problem with the quadratic forcing f(x1) = 2.5 · 107x21, the same as in
the numerical scheme presented in [22]. We divide all the edges into 128 smaller rods and
solve the equilibrium problem. We consider the obtained solution the best possible and use
it to compute the errors, denoted by "error(i)", of the approximations for edges split into 2i

smaller struts, i = 1, . . . , 6. We use quadratic finite elements for the displacement and the
infinitesimal rotation and linear finite elements for contact forces and couples, i.e., n = 2
and k = 1 (see, e.g., [12]), for computing the approximations. Further, the L2-norm and the
H1-semi-norm is used for the displacements and the `1/n-norm for the unknowns in Rn, i.e.,
the arithmetic mean of errors, to determine the error estimates and to compute the convergence
rates via

(5.12)
log error(i+1)

error(i)

log h(i+1)
h(i)

, i = 1, . . . , 5.

The obtained convergence rates for u,ω,p, q suggest that the constant in the estimate of
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FIG. 5.2. Solution for the radial load from (5.10). On the left: the solution is projected to the (x1, x2)-plane;
on the right: the solution is shown from a different perspective.
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FIG. 5.3. Solution for the load given in (5.11) projected into the (x1, x2)-plane.
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FIG. 5.4. Rate of convergence (5.12) for the L2-norm of the contact force p and the `1-norm of P+,P−.

Theorem 5.8 for k = 1 and n = 2 is independent of the mesh size. In Figure 5.4 the
convergence rates for p,P+, and P− are displayed, while in Figure 5.5 the convergence rates
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FIG. 5.5. Rate of convergence (5.12) for the H1-semi-norm and the L2-norm of the displacement u and the
`1-norm of U .

for u (in the L2-norm and H1-semi-norm) and U are plotted. Additionally, we present the
errors of the remaining unknowns in Table 5.1.

TABLE 5.1
Errors for different splittings of the edges (L2-errors for q and ω).

splitting q Q+ Q− ω Ω

2 1.8127e-5 3.1945266e-8 3.2871209e-8 8.52118e-4 3.3700235e-5
4 0.4532e-5 0.1995776e-8 0.2024711e-8 1.06516e-4 0.2116646e-5
8 0.1133e-5 0.0124898e-8 0.0125802e-8 0.13314e-4 0.0132275e-5

16 0.0283e-5 0.0007811e-8 0.0007839e-8 0.01664e-4 0.0008260e-5
32 0.0070e-5 0.0000486e-8 0.0000487e-8 0.00208e-4 0.0000514e-5
64 0.0017e-5 0.0000028e-8 0.0000028e-8 0.00025e-4 0.0000030e-5

To compare the numerical scheme for the new formulation with that for the old formulation
in [22], in Table 5.2 we present the obtained matrix sizes and the computing times (computing
times are determined using the difference of "toc" and "tic" functions in MATLAB 2016a)
for the computation on a work station with 264GB RAM, Linux, and an INTEL Xeon CPU
E5-2690 v3 @ 2.60GHz.

TABLE 5.2
Times for solving the assembled linear system using mldivide and the matrix sizes for the old and new numerical

scheme.

new formulation old formulation
splitting # solv. time in s size of matrix solv. time in s size of matrix

8 2 105198 3 38958
16 7 211182 9 78702
32 22 423150 36 158190
64 90 847086 143 317166

128 356 1694958 1143 635118
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TABLE 5.3
Times for solving the assembled linear system using LDL with no scaling and a pivot tolerance of 0.5 and the

matrix sizes for the old and new numerical scheme.

new formulation old formulation
splitting # solv. time in s size of matrix solv. time in s size of matrix

8 3 105198 1 38958
16 8 211182 2 78702
32 24 423150 6 158190
64 81 847086 23 317166

128 306 1694958 87 635118

TABLE 5.4
Times for solving the assembled linear system using LDL with no scaling and a pivot tolerance of 0.01 and the

matrix sizes for the old and new numerical scheme.

new formulation old formulation
splitting # solv. time in s size of matrix solv. time in s size of matrix

8 3 105198 1 38958
16 8 211182 2 78702
32 23 423150 6 158190
64 83 847086 22 317166

128 305 1694958 84 635118

TABLE 5.5
Times for solving the assembled linear system using LDL with scaling and a pivot tolerance of 0.5 and the

matrix sizes for the old and new numerical scheme.

new formulation old formulation
splitting # solv. time in s size of matrix solv. time in s size of matrix

8 12 105198 7 38958
16 41 211182 31 78702
32 147 423150 144 158190
64 859 847086 1130 317166

128 2842 1694958 Error using ldl 635118

TABLE 5.6
Times for solving the assembled linear system using LDL with scaling and a pivot tolerance of 0.01 and the

matrix sizes for the old and new numerical scheme.

new formulation old formulation
splitting # solv. time in s size of matrix solv. time in s size of matrix

8 3 105198 1 38958
16 9 211182 3 78702
32 28 423150 14 158190
64 96 847086 75 317166

128 387 1694958 253 635118

The difference between the solution for the displacement u, the infinitesimal rotation
ω, and the contact force p (the only quantities calculated in the old numerical scheme from
[22]) for the same splitting of the edges is at least four digits smaller than the error of the
approximation, i.e., we obtain the same order of approximation for the same mesh. Further,
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the size of the matrix for the new numerical results is 2.7 times larger. However, the computing
times for the new approach are shorter than when using mldivide of MATLAB. To further
test this issue we applied the LDL factorization implemented in MATLAB using two pivot
tolerances, 0.5 and 0.01. The pivot tolerance 0.01 is the default pivot tolerance, and the pivot
choice is optimized for fill-in minimization at the expense of the stability of 2× 2 pivot blocks.
The pivot tolerance 0.5 yields a larger fill-in but more stable factorizations and represents the
highest possible value of this parameter. In the case of the pivot tolerance 0.5, the solution
times are about the same and much larger than the ones obtained by mldivide, but in the
case of the default pivot tolerance 0.01, the old approach is significantly faster than the new
one. We conclude that the difference comes from the choice of pivoting and that the default
values—likely used by mldivide—do not necessarily produce the best results. Also note that
the new numerical approach is much more robust with respect to the choice of pivot tolerances.
This is probably a consequence of the fact that the connectivity pattern of the stent graph is
much more explicit in the new formulation of the system matrix.

6. Dynamic modeling of elastic frame structures. In the previous sections we have
considered the static problem for elastic frame structures, but for further analysis, in particular
to study the movement of the structure under a permanent excitation such as, e.g., the heartbeat
in a stent, in this section we formulate and analyze an evolution model.

6.1. Formulation of a space-continuous dynamic model. In order to formulate a dy-
namic model we start from the evolution equation of curved rods from [40] and add in the
model (2.1)–(2.4) the inertial term to the equilibrium equation (2.1), which results in

ρAui
tt = ∂sp

i + f i,

where A is the area of the cross section and ρ is the volume density of mass. In the weak
formulation this implies that the term

−
nE∑
i=1

∫ `i

0

ρAui
tt · vi ds

should be added to the left-hand side of (3.4) and (3.10). Using the notation of Section 3 and
introducing the bilinear form

c : M ×M → R, c(φ,ψ) =

nE∑
i=1

∫ `i

0

ρAui · vi ds,

we can formulate the evolution problem of elastic frame structures as follows:
Determine Σ and Γ such that

a(Σ,Γ) + b(Γ,φ) = 0, Γ ∈ V,

− d2

dt2
c(φ,ψ) + b(Σ,ψ) = f(ψ), ψ ∈M.

(6.1)

6.2. Analysis of the space-discrete model. The discrete dynamical system (6.2) asso-
ciated to (6.1) is a finite-dimensional linear differential-algebraic equation (DAE) of second
order with a nonsingular (but indefinite) stiffness matrix K and a positive semidefinite but
singular E.

The associated discrete dynamical problem is given by

(6.2) −Ez̈(t) + Kz(t) = F (t),
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where the matrix K and the right-hand side F are as in the static case and E has the following
structure partitioned in the same way as K:

dim \ unknown q (p,P+,P−,Q+,Q−,α,β) u (ω,U ,Ω)

3(k + 1)nE 0 0 0 0
3(k + 5)nE + 6 0 0 0 0

3(k + 2)nE 0 0 M 0
3(k + 4)nE + 6nV 0 0 0 0

and z(t) is the vector of coefficient functions in the finite element basis.
The particular block structure of the DAE allows us to analyze the properties of the system,

which are characterized by the spectral properties of the matrix polynomial −λ2E + K.
LEMMA 6.1. Consider the DAE (6.2) and the associated pair of matrices (E,K). Then

there exists a nonsingular matrix V with the property that

Ê = VTEV =


0

0
0

M
0

 , V−1z =


ẑ1
ẑ2
ẑ3
ẑ4
ẑ5

 ,

K̂ = VTKV =


0 0 0 0 B̂T

51

0 Â22 0 B̂T
42 0

0 0 Â33 0 0

0 B̂42 0 0 0

B̂51 0 0 0 0

 , VTF =


0
0
0

F̂ 4

0

 ,

where Â33 = ÂT
33, B̂42, and B̂51 are invertible and F̂ 4 = F 3.

Proof. The proof follows by a sequence of congruence transformations starting from the
original block structure

E =


0

0
M

0

 , K =


A11 0 0 BT

41

0 0 BT
32 BT

42

0 B32 0 0
B41 B42 0 0

 ,
by first compressing [

0 B32

B41 B42

]
via an orthogonal transformation V1 from the right to a form[

B̃41 B̃42 0

B̃51 0 0

]
,

row-partitioned according to the original row-partitioning with B̃42, and B̃51 having full
column rank. Setting Ṽ = diag(V1, I) and applying the transformation with VT

1 from the
right to the first two block columns, with V1 from the left to the first two block rows, and
partitioning

VT
1

[
A11 0

0 0

]
V1 =:

Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33


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accordingly, we obtain a transformed system with

Ẽ = ṼTEṼ =


0

0
0

M
0

 , Ṽ−1z =


z̃1
z̃2
z̃3
z̃4
z̃5

 ,

K̃ = ṼTKṼ =


Ã11 Ã12 Ã13 B̃T

41 B̃T
51

Ã21 Ã22 Ã23 B̃T
42 0

Ã31 Ã32 Ã33 0 0

B̃41 B̃42 0 0 0

B̃51 0 0 0 0

 , F̃ := ṼTF =


0
0
0

F̂ 4

0

 .

The property that A is Ker B-elliptic then implies that Ã33 is nonsingular. The fact that K is
invertible and that B̃51 has full column rank implies that B̃51 is square and nonsingular. Thus,
there exists a nonsingular matrix V2 that eliminates the leading 4 blocks in the first block row
and column with B̃51 and the leading 2 blocks in the third block column and column with
Ã33. Thus, a congruence transformation with V = V2Ṽ yields the asserted structure. The
property that B̃42 has full column rank and that K̂ is invertible then implies that B̂42 = B̃42

is square and nonsingular as well.
REMARK 6.2. The elimination procedure presented in the proof of Lemma 6.1 is a

structured version of the canonical form construction for differential-algebraic equations (see,
e.g., [30]) which identifies all explicit or implicit constraints in the system. These lead to
restrictions of the initial values and usually also to further differentiability conditions for
the inhomogeneity. Due to the structure of the equations and the inhomogeneity, the only
components of the inhomogeneity that have to be differentiated in time are 0, so there are no
further requirements on the forcing function F .

Note furthermore that the same procedure can also be applied in the space-continuous case
by constructing appropriate projections into subspaces; see, e.g., [33]. Since this procedure is
rather technical we do not present this construction here.

COROLLARY 6.3. Consider the DAE (6.2) transformed as in Lemma 6.1. Then for the
general solution of the transformed system we have ẑ1 = 0, ẑ3 = 0, ẑ5 = 0 , and ẑ2 is the
solution of the second order DAE

(6.3) Â22
¨̂z2 = B̂T

42M
−1B̂42ẑ2 + B̂T

42M
−1F̂ 4,

which exists without any further smoothness requirements for F̂ 4 and is unique for every
consistent initial condition. Finally, ẑ4 = −B̂−T42 Â22ẑ2.

No initial conditions can be assigned for ẑ1, ẑ3, ẑ5, ẑ4, while for ẑ2 a consistency
condition for ˙̂z2 in the kernel of Â22 arises that depends on the right-hand side F̂ 4.

Proof. This follows directly from the transformed equations. The equations (6.3) form a so
called index-one DAE (see [30]) since B̂T

42M
−1B̂42 is positive definite and thus, in particular

invertible in the kernel of Â22. Projecting onto this kernel gives an algebraic equation which
has to hold for the initial condition associated with ˙̂z2, while for the remaining components of
ẑ2 an initial value can can be chosen arbitrarily.

REMARK 6.4. The operator pencil associated with the system (6.1) can be studied
using the general theory from [36]. Note that the form e((Σ,φ), (Γ,ψ)) = c(φ,ψ),
(Σ,φ), (Γ,ψ) ∈ V ⊗M is bounded and symmetric, and the form

k((Σ,φ), (Γ,ψ)) = a(Σ,Γ) + b(Γ,φ) + b(Σ,ψ), (Σ,φ), (Γ,ψ) ∈ V ⊗M,
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is closed, symmetric, and semi-bounded from below; see [21]. The form e defines, in the
sense of Kato [27], the bounded, semidefinite, and self-adjoint operator E, whereas the form
k defines the self-adjoint semibounded from below operator K. The operator K can be
represented as the formal product K = L∗JL, where L is a closed operator with a bounded
inverse such that the domains of L and k are equal, and J is the so called fundamental
symmetry (a bounded self adjoint operator such that J2 = J). Subsequently it can be
shown—using the special structure of E—that the operator function T (z) = −z2Ẽ + K̃,
where Ẽ = L−∗EL−1 and K̃ = J , is Fredholm operator-valued. Furthermore, the operators
Ẽ and K̃ are bounded Hermitian operators, and the resolvent set of T contains zero by
Theorem 4.7. By the results of [36, Section 1], the pencil T has finite semi-simple eigenvalues
of finite multiplicity. The construction of an oblique projection onto the reducing subspace
associated to the eigenvalue infinity can be done in a similar way as in Lemma 6.1. The
construction is decidedly more technical, and we leave it to a subsequent paper where we will
discuss more general second-order systems (e.g., those involving a damping term).

6.3. Numerical results. In this section we present some numerical results obtained for
the evolution problem associated with the same stent model as discussed in Section 5.2. The
time discretization is done using the implicit mid-point rule [23] (of convergence order 2)
applied to the first-order formulation of the system. At each time step a linear system for the
matrix−E+0.25∆t2K is solved using the backslash operator in MATLAB. The computations
are performed on a personal computer with 16GB RAM, 64bit Windows, and with an INTEL
Core i3-7100 CPU@3.90FHz. The presented computing times are determined using the
difference of "toc" and "tic" functions in MATLAB 2010b. All simulations are carried out for
the following set of parameters:

• elasticity coefficients: µ = E = 1 Pa,
• thickness of the stent struts: 0.0001 m,
• load: radial, as given in (5.9), where

(6.4) f(x, t) = F
( π

0.003
(x− cvawe(t− t0))

)
with

F (y) =

{
5 · 10−8 cos(y), if |y| < 0.0015
0, else , cvawe = 0.0075, t0 = 0.5.

In other words, f is given as a traveling wave determined by the function F , where
the factor cvawe denotes the speed of the wave and the term t0 asserts the condition
f(x, ·) = 0.

• mass density ρ = 2000 kg/m3,
• total time T = 12s.

In Figure 6.1 the solutions of the problem for the force f in (6.4) at the time-points t ∈
{1, 2, 3, 4, 5, 6}s are displayed.

In the sequel we compare the computing times of two different approaches. In the first
approach we use the MATLAB backslash function to solve the system obtained at every time
step. In the second, we first perform the LDLT decomposition of the matrix−E + 0.25∆t2K
since it is the same in all iterations, and then in the time integration, we use the obtained
LDLT decomposition to solve the system.

In Table 6.1 the computing times for two different calculations with different space
discretizations are presented. In the first column the number of splits in the longest edge (strut)
in the stent is displayed. The second column displays the associated number of degrees of
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FIG. 6.1. Solution of the problem projected to the (x1, x2)-plane for the loads given in (6.4) and at times
t = 1s, 2s, 3s, 4s, 5s, and 6s.

TABLE 6.1
Computing times for several space discretizations without and with LDLT precomputation.

no LDL using LDLT

# splits size of matrix time (s) time for precomputation (s) time for iterations (s)
20 12462 476 1.34 110
21 25710 554 1.70 203
22 52206 793 4.62 392
23 105198 1338 23.71 855

freedom. The remaining columns present the computing times. The results indicate that the
use of the factorization LDLT obviously pays off. Here the time step is equal to 2−4.

In Table 6.2 we compare the computing times for different time step sizes with the same
final time T . The total time approximately doubles when lowering ∆t, which is natural since
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the number of time steps doubles. However, it is interesting to note that the time for the
solution with LDLT reduces when reducing ∆t. Here, every strut is split into 4 smaller struts.

TABLE 6.2
Computing times for several values of ∆t without and with LDLT precomputation.

no LDL using LDLT

∆t time (s) time for precomputation (s) time for iterations (s)
2−3 277 3.66 202
2−4 554 1.77 392
2−5 1120 1.52 808
2−6 2332 1.39 1717

TABLE 6.3
Relative L2(0, T ;L2(N ))-errors for different space meshes.

h−1 error
20 0.041110796760794
21 0.015348501778952
22 0.003524722458048
23 0.000224774470258

TABLE 6.4
Relative L2(0, T ;L2(N ))-errors for different time steps.

∆t error
2−3 0.038370278764979
2−4 0.023014149022735
2−5 0.012051225164378
2−6 0.003154110021893

We have also computed the errors in the solutions. For the same time step we computed
the errors for different numbers of strut splits. The errors are presented in Table 6.3. They
are calculated by comparing the solution with the solution for 24 strut splits. All errors are
presented in the L2(0, T ;L2(N ))-norm.

In Table 6.4 the errors are given for different ∆t and for a fixed space mesh. The errors
are computed with respect to ∆t = 2−7 and the same L2(0, T ;L2(N ))-norm. Movies of
the dynamic behavior of the stent can be found in the additional resources to this paper
http://etna.math.kent.edu/vol.54.2021/pp1-30.dir/stent_video.avi.

7. Conclusion. We have presented an extended model description for the numerical
simulation of elastic frame structures, which explicitly includes all constraints. Based on the
new formulation, an inf-sup inequality for the finite element discretization is shown, and,
furthermore, a simple proof of the inf-sup inequality for the space continuous problem is
presented. Despite an increased number of degrees of freedom, the new formulation leads
to faster simulation times. The presented techniques are also used to simplify the analysis
and the numerical solution of the evolution problem describing the movement of the structure
under external forces. Numerical examples from elastic stent models illustrate the theoretical
results and show the effectiveness of the new modeling approach.
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[11] S. ČANIĆ AND J. TAMBAČA, Cardiovascular stents as PDE nets: 1D vs. 3D, IMA J. Appl. Math., 77 (2012),

pp. 748–770.
[12] P. G. CIARLET, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
[13] C. D’APICE, R. MANZO, AND B. PICCOLI, Packet flow on telecommunication networks, SIAM J. Math.

Anal., 38 (2006), pp. 717–740.
[14] B. DEKONINCK, AND S. NICAISE, The eigenvalue problem for networks of beams, Linear Algebra Appl.,

314 (2000), pp. 165–189.
[15] L.C. EVANS, Partial Differential Equations, American Mathematical Society, Providence, 1998.
[16] L. FORMAGGIA, A. QUARTERONI, AND A. VENEZIANI, eds., Cardiovascular Mathematics. Modeling and

simulation of the circulatory system, Springer, Milan, 2009.
[17] V. GIRAULT AND P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory and

Algorithms, Springer, Berlin, 1986.
[18] M. GARAVELLO AND B. PICCOLI, Trafic Flow on Networks, AIMS, Springfield, 2006.
[19] G. GRISO, Asymptotic behavior of structures made of curved rods, Anal. Appl. (Singap.), 6 (2008), pp. 11–22.
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30 L. GRUBIŠIĆ, M. LJULJ, V. MEHRMANN, AND J. TAMBAČA
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