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Abstract. The convergence rate of domain decomposition methods is generally determined by the eigenvalues
of the preconditioned system. For second-order elliptic partial differential equations, coefficient discontinuities with a
large contrast can lead to a deterioration of the convergence rate. Only by implementing an appropriate coarse space,
or second level, a robust domain decomposition method can be obtained. In this article, a new frugal coarse space for
FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal) and BDDC (Balancing Domain Decomposition
by Constraints) methods is presented, which has a lower set-up cost than competing adaptive coarse spaces. In
particular, in contrast to adaptive coarse spaces, it does not require the solution of any local generalized eigenvalue
problems. The approach considered here aims at a low-dimensional approximation of the adaptive coarse space
by using appropriate weighted averages, and it is robust for a broad range of coefficient distributions for diffusion
and elasticity problems. However, in general, for completely arbitrary coefficient distributions with high contrast,
some additional, adaptively chosen constraints are necessary in order to guarantee robustness. In this article, the
robustness is heuristically justified as well as numerically shown for several coefficient distributions. The new coarse
space is compared to adaptive coarse spaces, and parallel scalability up to 262 144 parallel cores for a parallel BDDC
implementation with the new coarse space is shown. The superiority of the new coarse space over classic coarse
spaces with respect to parallel weak scalability and time-to-solution is confirmed by numerical experiments. Since the
new frugal coarse space is computationally inexpensive, it could serve as a new default coarse space, which, for very
challenging coefficient distributions, could then still be enhanced by adaptively chosen constraints.
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1. Introduction. Domain decomposition methods are robust and parallel scalable itera-
tive solvers for large systems of equations arising from the discretization of partial differential
equations, e.g., by finite elements. In general, the computational domain is decomposed into
a number of overlapping or nonoverlapping subdomains. Here, we focus on two classes of
nonoverlapping domain decomposition methods, namely FETI-DP (Finite Element Tearing
and Interconnecting-Dual Primal) [15, 16, 46, 48] and BDDC (Balancing Domain Decompo-
sition by Constraints) [10, 11, 50, 52, 53] methods. Both algorithms have been successfully
applied to a wide range of model problems and have been shown to be parallel scalable for up
to hundreds of thousands of compute cores [2, 3, 34, 35, 36, 37, 43, 66]. In general, domain
decomposition methods obtain their robustness and parallel scalability from an appropriate
coarse space, i.e., a second level. For nonoverlapping domain decomposition methods, such
a coarse space can be constructed by simply sub-assembling the system in selected primal
variables using geometric information. For these classic coarse spaces, condition number
bounds have been proven for a wide range of model problems [42, 45, 46, 48, 56]. However,
the respective condition number bounds are only valid under certain restrictive assumptions on
the coefficient functions of the differential equation considered, e.g., the diffusion coefficient
in case of a diffusion problem or the Young modulus in case of a linear elasticity problem.

*Received November 30, 2019. Accepted November 23, 2020. Published online on December 21, 2020. Recom-
mended by Marco Donatelli. This work was supported in part, as project EXASTEEL, by Deutsche Forschungsge-
meinschaft (DFG) through the Priority Programme 1648 "Software for Exascale Computing" (SPPEXA) under grant
number 230723766.

"Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90, 50931 Kéln
({alexander.heinlein, axel.klawonn, martin.lanser, janine.weber}@uni-koeln.de)
http://www.numerik.uni-koeln.de.

*Center for Data and Simulation Science, University of Cologne
http://www.cds.uni-koeln.de.

562


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol53s562
http://www.numerik.uni-koeln.de
http://www.cds.uni-koeln.de

ETNA

Kent State University and
Johann Radon Institute (RICAM)

A FRUGAL FETI-DP AND BDDC COARSE SPACE 563

For more general and complex coefficient functions with arbitrary jumps along or across
the interface, the classic condition number bounds do not hold anymore, and the convergence
rate of the classic domain decomposition methods typically deteriorates. Thus, different adap-
tive coarse space techniques for several domain decomposition methods have been developed
within the recent years to cope with heterogeneous coefficient functions with large jumps; see,
e.g.,[5,7,9,13,14,17, 18, 19, 23, 24, 25, 30, 31, 32, 33, 39, 40, 54, 55, 57, 58, 61, 62]. Most
of these methods rely on the solution of certain local generalized eigenvalue problems and
use selected eigenvectors to enhance the coarse space. By including these adaptive coarse
spaces, the algorithm is again robust with respect to discontinuous coefficient functions for
both diffusion and elasticity problems. In particular, contrast independent condition number
estimates can be proven for most of these adaptive coarse spaces. As a drawback in a parallel
implementation, the set-up and the solution of the eigenvalue problems take up a significant
amount of time. In [27], we have introduced the concept of training a neural network to make
an automatic decision on which parts of the interface, for two-dimensional model problems,
i.e., on which edges, the solution of the eigenvalue problem is indeed necessary to obtain a
robust algorithm. This can reduce the time-to-solution significantly.

A further important experimental observation is that for many realistic coefficient distri-
butions often only a small number of jumps with respect to a specific edge or face occurs for
a large number of edges and faces. Thus, for many edges and faces, the computation of all
eigenvectors is indeed unnecessary since already a single or a small number of constraints
is sufficient for robustness on these edges and faces. In the present paper, we introduce an
alternative and more frugal approach. In principle, we aim to compute a low-dimensional
approximation of the adaptive coarse space by constructing weighted averages along edges or
faces. Earlier works [22, 24, 49] showed that heuristic coarse spaces, which approximate adap-
tive coarse spaces and do not require the solution of local generalized eigenvalue problems, can
be constructed for overlapping Schwarz domain decomposition methods. Further approaches
to build nonoverlapping domain decomposition methods that are robust for a broader range
of coefficient distributions are presented in [1], where the domain is decomposed based on
the coefficient distribution, and in [4], where deluxe scaling is introduced to obtain a more
robust BDDC or FETI-DP method. In [20, 21] a robust coarse space for almost incompressible
elasticity problems for the FETI-DP method is suggested. Here, using our experience with
adaptive coarse spaces, we construct constraints in a similar approach. We will observe that for
many realistic coefficient distributions, the resulting constraints are already sufficient for fast
convergence. The approach presented here can further be interpreted as a generalization of the
classic weighted averages over edges as introduced in [42]. In fact, for the case of discontinu-
ities which are aligned with the interface, our new constraints enforce comparable constraints
as those classic weighted averages. However, our new weighted constraints additionally lead
to robust algorithms in more general and complex cases of discontinuities not aligned with the
interface. In general, for completely arbitrary coefficient jumps, additional constraints, which
are obtained by adaptive coarse spaces, may be necessary to further improve the convergence
of the algorithm and guarantee robustness with respect to the coefficient contrast.

To provide a brief impression of the capability of our proposed coarse space, we consider
a simple exemplary coefficient distribution with coefficient jumps as in Figure 3.3 (left). In
Table 1.1, we compare numerical results for the so-called standard approaches, i.e., the classic
weighted edge averages [42], an adaptive coarse space variant [54, 55], and our proposed
frugal coarse space. While our approach is competitive with the adaptive approach, the one
with classic weighted edge averages clearly fails to provide a robust algorithms, although the
dimension of the classic coarse space is three times larger. Notably, in contrast to the adaptive
constraints, the construction of our new constraints is easily parallelizable and fairly cheap,
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TABLE 1.1
Dimensions of the coarse space (# c.), condition numbers (cond), and iteration numbers (it) for the FETI-DP
algorithm for a stationary diffusion problem on the unit square with 4 X 4 subdomains for the coefficient distribution
as in Figure 3.3 (left). Homogeneous Dirichlet boundary conditions are set on the left-hand side of the unit square.
The larger coefficient is 1e6, and the smaller coefficient is 1.

adaptive classic weighted avg. new approach
H/h | #c. cond it | #c. cond it #c. cond it
stationary diffusion
8 | 4 360 12| 12 615593 20 || 4 3.60 12

16 | 4 395 13| 12 99656.1 24 || 4 396 13
32 |4 502 15|12  1.1775¢05 26 || 4 504 15

i.e., the resulting coarse space can be computed with less effort than a few CG (conjugate
gradient) iterations since it does not require the solution of any eigenvalue problems. Thus,
our new approach could be implemented as a default rule to enhance the coarse space when no
implementation of adaptive coarse space techniques is available or the time-to-solution should
be reduced. Our numerical experiments show that our new frugal approach leads to a robust
algorithm for problems with a realistic coefficient distribution and can especially outperform
classic edge and face averages in cases of complex coefficient functions.

The remainder of the paper is organized as follows. In Section 2, we first introduce the
model problems and the necessary notation to outline our domain decomposition methods.
We then describe both the FETI-DP and the BDDC algorithm in more detail. In Section 3,
we give a detailed description of our new constraints. For the convenience of the reader, we
first explain the construction for diffusion problems, which is the simpler case. For the case
of linear elasticity, we then give the corresponding formulae based on weighted rigid body
modes. At first, in Section 4, we provide serial results by applying the proposed approach to
different coefficient distributions, proving that our algorithm is robust. Finally, in Section 5,
we present results comparing our new approach to classic averages using our parallel BDDC
implementation applied to difficult model problems. For all our numerical tests, we consider
stationary linear diffusion and linear elasticity problems.

2. Algorithms and model problems. As a model problem, we consider both stationary
linear diffusion problems as well as linear elasticity problems in two and three dimensions.
We will focus on highly heterogeneous problems with large discontinuities in the material
stiffness or the diffusion coefficient, respectively. For the remainder of this section, we denote
by d = 2, 3 the dimension of our domain Q C R?.

2.1. Stationary diffusion. As a first model problem, we consider a stationary diffusion
problem in its variational form with various coefficient functions p : 2 — R, which may have
large jumps. We assume that one part of the boundary of the domain, 9€2p, has homogeneous
Dirichlet boundary conditions, while 9Qy := 9Q \ 9Qp has a natural boundary condition
% = g. Throughout this paper, we only consider a homogeneous flow g = 0. Thus, the
model problem can be written as: Find u € Hj (2,0Qp) :={u € H* () : u=00n9Qp},
such that

/qu~Vvd:1c:/fvdx, Yo € Hy(Q,00p).
Q Q

Concrete examples of different coefficient functions p as well as concrete choices of boundary
conditions are given in detail in Section 4.
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2.2. Linear elasticity. We consider an elastic body Q C R% d = 2,3. We denote by
u : Q — R? the displacement of the body, by f a given volume force, and by ¢ a given surface
force to the body, respectively. Here, we only consider a homogeneous surface force g = 0.

We introduce the vector-valued Sobolev space Hy(Q,90p) := (HA(,09Qp))%. The
problem of linear elasticity consists in finding the displacement u € H(l)(Q7 00 p) such that

/ Ge(u):e(v)dx+ / Gp diva divv dx = (F,v),
Q Q

forallve H(l)(Q, 08 p) for given material functions G : 2 — R and 5 : 2 — R and for the
right-hand side

(F,v) :/fTV dx.
Q

The material parameters G and 5 depend on the Young modulus £ > 0 and the Poisson
ratiov € (0,1/2) by G = E/(1 4+ v) and 8 = v/(1 — 2v). Here, we restrict ourselves to
compressible linear elasticity; hence the Poisson ratio v is bounded away from 1/2. Further-
more, the linearized strain tensor € = (g,;);; is defined by ¢;;(u) := %(gzl + ng ), and we

introduce the notation

d

e(u) 1 e(v) := Z gij(w)ei;(v), (e(m),e(v)) L,y = / e(u) : e(v) dx.

ij=1 Q

The corresponding bilinear form associated with linear elasticity can now be written as
a(u,v) = (G e(u),&(v)) 1,0 + (GB divu,div v) ., ).

Since we will only consider compressible elastic materials, it is sufficient to discretize our
elliptic problem by low-order conforming finite elements, e.g., linear or trilinear elements.

2.3. The FETI-DP and the BDDC algorithm.

2.3.1. Domain decomposition. Let us briefly describe the preliminaries for our domain
decomposition methods to introduce the FETI-DP and BDDC algorithms. For a given domain
Q c R, d = 2,3, we assume a decomposition into N € N nonoverlapping subdomains €2;,
1 =1,..., N, such that Q= Ufil Q;. We presume that each of the subdomains 2; is the
union of finite elements such that we have matching finite element nodes on the interface

I':= (Uf\[:l 8Qi> \ 99. In our case, each subdomain is the union of shape-regular elements

of diameter O(h). The diameter of a subdomain §; is denoted by H; or, generically, by
H = max;(H;). We denote by W; the local finite element space associated with ;. In
case of a two-dimensional domain 2 C RZ?, the finite element nodes on the interface are
either vertex nodes, belonging to the boundary of more than two subdomains, or edge nodes,
belonging to the boundary of exactly two subdomains. For the case of a three-dimensional
domain Q C R3, edge nodes also belong to the boundary of more than two subdomains,
and the interface further consists of face nodes, belonging to the boundary of exactly two
subdomains; see, e.g., [41, Def. 2.1 and Def. 2.2] and [46, Def. 3.1]. All finite element nodes
inside a subdomain €2; are denoted as interior nodes. For a given domain decomposition,
we obtain the local finite element problems K «() = () with K@ : W, — W; and
@ e w; by restricting the considered differential equation (see Sections 2.1 and 2.2) to €;
and discretizing its variational formulation in the finite element space W;. Let us remark that
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the matrices K are, in general, not invertible for those subdomains that have no contact to
the Dirichlet boundary.

We define the product space W := Hivzl W; and denote by W C W the space of
functions in W that are continuous on I'. For FETI-DP and BDDC, we partition the finite

element variables u(¥) € W into interior variables ugi) and, on the interface, into dual variables

ug) and primal variables u( ). We denote the respective degrees of freedom by the indizes
I, A, and II. In the present artlcle we always choose all variables belonging to vertices as
primal variables. Thus, the dual variables always belong to edges and/or faces. Note that other
choices are possible. Finally, we introduce the space W con51st1ng of functions w € W that
are continuous in the primal variables. We thus have WcWcWw.

2.3.2. Standard FETI-DP. As a first step for both the FETI-DP [15, 16] and the
BDDC [11, 52] algorithms, we compute the local stiffness matrices K (*) and the local right-
hand sides £ for every subdomain €;, i = 1,..., N. The local problems are completely
decoupled, and, as already mentioned, the matrices K (@) are, in general, not invertible for
subdomains without contact to the Dirichlet boundary. Both the FETI-DP and the BDDC
algorithms deal with this difficulty by sub-assembling the decoupled system in selected primal
variables II.

Let us first introduce the simple restriction operators R; : V* — W;, i = 1,..., N,
the block vectors u” := (uM7T, ... u™MT) and T := (fOT, ... fOT) and the block
matrices RT := (R ceey R%) and K = diag (K(l), e ,K(N)). We then obtain the fully

assembled system
K,=R"KR
and the fully assembled right-hand side
f g = RTf .

The block matrix K is not invertible as long as a single subdomain has no contact to the
Dirichlet boundary. Thus, the system Ku = f has no unique solution, i.e., an unknown
vector u might be discontinuous on the interface. Let us now describe how the continuity
ofu € W :=W; x ... x Wy on the interface is enforced using FETI-DP. Here, we use a
presentation of the FETI-DP method which is very similar to the compact notation in [40].

We assume the following partitioning of the local stiffness matrices K (%), the local load

vectors f(*), and the local solutions u(%) using a subdivision of the degrees of freedom as
introduced in Section 2.3.1:

i i)T DT i

[k ORGT K o Ju? [

KO — K(AZ} K(A)A Kg)AT ’ u® = ( ) , and f(Z) — f(AZ)
i) ( )

KoL K o

It is often convenient to further introduce the union of interior and dual degrees of freedom as

an additional set of degrees of freedom denoted by the index B. This leads to a more compact
notation, and we can define the following matrices and vectors:

i KD KOF i i i i or @r]t
= [0 S| ) ] w0 = [ 7]
LN AA
We then introduce the block diagonal matrices
Kpp = diag | K\, Ky = diagl | K\,
Kan = diagfvle(Ai)A, and Koo = dlagz 1K(Z)
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Analogously, we obtain the block vector up = [ug)T, e 7u(BN)T]T and the block right-
T
hand side fp = [ j(gl)T, N EN)T] . For the FETI-DP algorithm, continuity in the primal

variables II is enforced by a finite element assembly process, while continuity in the dual
variables A is enforced iteratively by Lagrangian multipliers A\. To describe the primal

T
assembly process, we introduce the assembly operators Rg) , which is a matrix consisting of
values in {0, 1}. This yields the primally assembled matrices

N
Ron = 3" BTRGAD,  Rnw = [ROT K ROTRY

i=1

T
~ o oNT
and the right-hand side f = [fg, (Zi\/zl Rﬁ)T r([z))

In order to enforce continuity in the dual degrees of freedom, we introduce a jump operator
Bp = [Bg) e BEBN)] with B](BZ) having zero entries for the interior degrees of freedom and
entries out of {—1, 1} for the dual degrees of freedom. The entries for the dual degrees of
freedom are chosen such that Bgup = 0 if and only if wp is continuous on the interface. This
continuity condition is enforced by the Lagrange multipliers A, which act between two degrees
of freedom each.

The FETI-DP master system is then given by

Kgpp }:(17{3 BEL1 [us /B
2.1 Knp Koo O ag | = fH
Bp 0] (@) A 0

To solve (2.1), the variables up and uy; are eliminated, resulting in a linear system for the
Lagrange multipliers A. By block Gaussian elimination, we thus obtain the standard FETI-DP
system

22) FA=d,
with
F = BpKgLBE + BpK5 5K p St KnpK 5L B and

N
d=BpKypfp+ BpK 5 KiipShy ((Z Rﬁ”f?) - KHBKEEJ"B) :
=1

Here, the Schur complement §HH for the primal variables is defined as

St = Kun — KnpKpp Kl p.
The considered system of equations (2.2) is then solved by a Krylov subspace method, such as
the (preconditioned) conjugate gradient algorithm (PCG) or GMRES (Generalized minimal

residual method). In the present work, we use the PCG method and the Dirichlet preconditioner
given by

Mp'=Bppl0 Ial" (Kaa — KarK;KX;) [0 1Al BE p = BpSBP;

see [15, 16]. Here, I is the identity matrix acting on the dual degrees of freedom. The matrices
Bp.p and Bp are scaled variants of Bg and B, respectively. We consider the p-scaling
approach; see, e.g., [42, 63]. In this case, the scaling matrices D) : range(B) — range(B),
1 =1,..., N, are diagonal matrices. Note, that also non-diagonal scaling matrices exist, e.g.,
resulting from deluxe scaling; see [0, 40] and the references therein.
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2.3.3. Standard BDDC. For the description of the BDDC algorithm, we use the same
sub-partitioning of the degrees of freedom into the index sets I,I",TI, and A as already
introduced in Section 2.3.2. Here, we present the original BDDC formulation for the Schur
complement system; see [11, 52]. Equivalently, it is also possible to formulate the BDDC
preconditioner as a preconditioner for the fully assembled system K,u = fg; see, e.g., [51].
Please note that the BDDC method is dual to the FETI-DP method, and therefore the condition
number bounds for both methods are closely related; see [50, 53] and Section 2.3.4.

In contrast to the FETI-DP method, we now use a slightly different ordering of the
variables to describe the BDDC method. In particular, for this section, we introduce the block
diagonal matrices

Ky = diag (Kﬁ}ﬁ, S ,Kgy) . Ky = diag (Kgg, S ,Kf{?) . and
Kua = diag (K{A,.. K{fY) )
as well as the corresponding right-hand sides
T = ( wr }N”) . fr= (f<A1>T, o (AN”) . and
g = (0T

The matrices K7, Kian, Kar, R, and Ry are defined analogously to Section 2.3.2. Thus,
the global block matrix Kgppc for the BDDC algorithm can be written as

K Kian Km
Kgppe = | Kar Kaa Kan
Knr Kna Koo

Here, we use the sub-index "BDDC’ to distinguish the matrices in this section from the global
matrices used in FETI-DP (see Section 2.3.2). Please note, that Kpppc is assembled only
inside the subdomains and not across the interface. In fact, Kgppc can be obtained from K
defined in Section 2.3.2 by row and column permutations. The global elimination of the inner
variables w yields the unassembled Schur complement

3 - {SAA SAH] - {KAA KAH} B {KAI
BDDC — —

1
Sna St Kna  Kun KHI] Kif' [Kis Km]

as well as the corresponding right-hand side

PR [QA] _ {fA KAIKj_IlfI}
g fuo— KurK 7 fr]

(HT ., R(AN)T

In the BDDC algorithm, we use a dual assembly operator R% = (R A s ) instead

of the Boolean jump operator from FETI-DP to enforce continuity in the dual variables. The
unpreconditioned BDDC system then corresponds to the global primal Schur complement
system S uy = g, with the assembled global Schur complement given as

S — RZ 0 SAA SAH RA 0
g 0 Rﬂ SHA SHH 0 RH
and

RL 0
9g = 0 RE 9BDDC-
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As for the FETI-DP algorithm, we use a preconditioner to accelerate the convergence of
the iterative solver. In the present work, we again use the preconditioned conjugate gradient
algorithm and the Dirichlet preconditioner given by

_ RY 0ls-1 [Rap O
MD,lBDDC_{ %’D IH} SBDlDC|: 0 Inl

Here, §BDDC denotes the primally assembled Schur complement matrix and Ra p a scaled
variant of the dual assembly operator Ra .

2.3.4. Condition number bounds. Let us briefly recall the classic condition number
bounds for both the FETI-DP and the BDDC methods. In two dimensions, the FETI-DP
method with a standard vertex coarse space satisfies the polylogarithmic condition number
bound

2
23) w(Mp'F) < (14105 (1))

with C independent of H and h; see [45, 46, 48]. However, this condition number bound does
only hold under certain assumptions, e.g., for constant or slowly varying coefficients within
each subdomain; see, e.g., [63]. In three dimensions, the preconditioned FETI-DP method
with a standard vertex coarse space performs less well and cannot retain the condition number
bound (2.3). Therefore, enforcing additional coarse constraints based on averages over edges
or faces was proposed by several authors; see, e.g., [16, 46, 48]. Then, the condition number
bound (2.3) also holds in three dimensions for heterogeneous coefficients that are constant
within each subdomain or for slowly varying coefficients; see, e.g., [48]. In [42, Section 7],
weighted edge averages for coefficient jumps not aligned with the interface were studied
numerically for the FETI-DP algorithm. In this article, we propose a different approach to
enhance the coarse space using generalized weighted edge or face averages, which is strongly
motivated by the adaptive coarse space in Section 2.3.6. Please note that in [53] it was shown
that the BDDC and the FETI-DP methods have, except for some eigenvalues equal to 0 and
1, the same spectra (see also [50] for an alternative proof). Thus, all the above mentioned
condition number estimates for FETI-DP are also valid for the BDDC algorithm.

2.3.5. Enforcement of additional coarse constraints. As mentioned in the introduction
as well as in Section 2.3.4, using exclusively vertex constraints to enhance the coarse space
is often not sufficient to obtain a robust algorithm if highly complex coefficient functions
are used. In general, different approaches to implement coarse space enrichments for FETI-
DP and BDDC exist. Common approaches are deflation or balancing approaches [40, 44]
and a transformation-of-basis approach [43, 46]. In the present paper, the deflation and
balancing approaches are only applied to the FETI-DP method since using deflation for the
BDDC method is not equivalent to the BDDC using a transformation of basis; see [44].
Thus, we use a generalized transformation-of-basis approach to enhance additional coarse
constraints for the BDDC method; see [33]. Explicitly transformed local stiffness matrices can
become dense when using face constraints in three dimensions. To obtain an efficient parallel
implementation, we use instead the equivalent approach of local saddle point problems as
suggested in [47, Section 4.2.2].

2.3.6. An adaptive FETI-DP and BDDC method. Since the classic condition number
bound (2.3) is only valid under certain restrictive assumptions concerning the coefficient
function or the material distribution, several adaptive coarse space techniques have been
developed to overcome this limitation [31, 32, 33, 39, 40, 54, 55, 57, 58]. The basic idea of
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most of these methods is to use additional coarse modes or primal constraints obtained by
solving localized eigenvalue problems on edges, local interfaces, or subdomains to enhance
the coarse space. Our new frugal constraints, proposed here, are strongly motivated by an
adaptive approach which has successfully been applied to FETI-DP and BDDC for various
heterogeneous model problems [31, 54, 55]. For completeness, let us first give a short
description of this adaptive approach.

Let X;; C 09Q; N 0%, e.g., X;; could be a face F;; or an edge E;;. Then, for X;;
between two neighboring subdomains €2; and €2;, a single eigenvalue problem has to be
solved. We first introduce the restriction of the jump matrix 5 to an equivalence class &Xj;. Let

By, = (Bgé) ng)J) be the submatrix of (B, BU)) with the rows consisting of exactly

ij’
one 1 and one —1 and being zero elsewhere. By Bp x,, = (Bg? PO Bg?xij) we denote

the corresponding scaled jump matrix defined by taking the same rows of (Bg), Bg)). Let

S;; = diag(S®, SU)) with @) and SU) being the Schur complements of K ) and K7,
respectively, with respect to the interface variables. We further define Pp,; = Ba X By,
as a local version of the jump operator Pp = BL B. Then, according to [31, 54], one has to
solve the generalized eigenvalue problem:

(24) <PDUU¢]‘, SijPDUwij) = /J,ij<Uij, Sijwij> V’Uij S (ker Sij)L.

For an explicit expression of the positive definite right-hand side operator on the subspace
(ker Sij)J‘, two orthogonal projection matrices II;; and ﬁij are used; see, e.g., [40]. One
would then select all eigenvectors wfj, l =1,...,L, belonging to the eigenvalues uéj,
Il =1,...,L, that are larger than a user-defined tolerance T'O L, and enforce the constraints
Bp x,; 5 Pp,, wfj, l=1,...,L,in each iteration, e.g., with a projector preconditioning or a
transformation-of-basis approach. By enhancing the FETI-DP and BDDC coarse spaces with
these constraints, we obtain the condition number bound

(2.5) K(M~'F)< C-TOL,

with C independent of H and h; see [31, 40, 54]. In particular, the constant C only depends on
geometric constants of the domain decomposition, i.e., on the maximum number of edges of a
subdomain in two dimensions or on the maximum number of faces of a subdomain and the
maximum multiplicity of an edge in three dimensions, but is independent of the contrast of the
coefficient. As already mentioned, the set-up and the solution of the eigenvalue problems take
up a significant amount of time in a parallel implementation. Here, we aim to approximate the
respective constraints resulting from the first eigenmodes by constructing generalized weighted
averages along certain equivalence classes X;;. As for the construction of the aforementioned
adaptive coarse space, we also apply the operators Bp x,;Sij Pp,; to our computed weighted
averages on each edge or face.

3. A frugal coarse space. Our new frugal (FR) coarse space is strongly motivated by the
adaptive approach described in Section 2.3.6. However, in contrast to adaptive coarse spaces,
our new constraints do not require the solution of any eigenvalue problems or the explicit
computation of Schur complements and are thus computationally very cheap. Instead, we aim
to compute a low-dimensional approximation of the adaptive coarse space. Furthermore, the
new frugal coarse space can be interpreted as a generalization of the weighted edge averages
suggested in [42, Section 7, p. 1412]; cf. Section 3.4. It can be combined with arbitrary
FETI-DP and BDDC scalings, e.g., p-scaling [42] or deluxe-scaling [6], and is robust for a
broader range of heterogeneities, as shown by the numerical experiments in Section 4 and
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FIG. 3.1. Left: Visualization of the construction of an edge constraint in 2D for a given heterogeneous coefficient
distribution. Middle: Maximum coefficient per finite element node of E;; with respect to ;. Right: Maximum
coefficient per finite element node of E;; with respect to (5.

Section 5. Please note that first results for diffusion problems in two dimensions using the new
edge constraints instead of constraints resulting from the solution of a specific edge eigenvalue
problem were already published in [27, 28].

3.1. Motivation and construction in two dimensions. Our new approach is strongly
motivated by the generalized eigenvalue problem (2.4) from the adaptive coarse space [31, 54],
which can equivalently be written as

(H(Pp,;vij), KijH(Pp,;wij)) = pij(H(viz), KijH(wiz)) = pij(H(vE,,), KijH(wE,;)),

where K;; = diag(K (), K()) and #(-) is the discrete harmonic extension from the interface
of £2; and €; to the interior of the subdomains €2; and €2;; cf., e.g., [63, Section 4]. Therefore,
as described in Section 2.3.6, all eigenmodes with

|H(PD -’Uij)|K,-x
3.1 = e
( ) His |H<’U”)|KU

are selected and then used to construct the adaptive constraints. In particular, this corresponds
to the case where |H (Pp,;vi;)| K, is large, i.e., of the order of the contrast of the coefficient
function, while [H (vi;)|k,; is small.

Now, in our new frugal approach, we propose a specific construction of an edge func-
tion vg,, which often has the desired properties of the energies |H(Pp,,vE,;)|k,; and
|H(vE,,)|K,;- Therefore, the space spanned by all edge functions vg,; can be regarded
as a lower-dimensional approximation of the original adaptive coarse space.

Let us first consider the case of diffusion in two dimensions. In this case, we only construct
constraints corresponding to the edges of the domain decomposition. We denote by E;; the
edge between two neighboring subdomains €2; and §2;, and by w(z) the support of the finite
element basis functions associated with a finite element node « € (€2; U ;). For each « on
081, or 0€);, respectively, we compute

>TOL

p(z) = max p(y) and pY(z)= max p(y).
yEw(z)NQ; yew(x)NQ;

Now, we define vgzj on 08, forl =i, j, by

) () ::{ pO(x) xco\1I®,

(32) UEij 0 rc H(l)’
and U£ij = (vgl)]T7 —vgl)JT) Here, I1() denotes the index set of all local primal variables.

See also Figure 3.1 for a visualization of this function. As can be observed for example in
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FIG. 3.2. Visualization of the new constraints for a concrete coefficient distribution. Left: Coefficient distribution
with one channel associated with a large coefficient crossing each subdomain. Dark blue corresponds to the large
coefficient (1e6) and light blue to the small coefficient (1). Visualization for 4 X 4 subdomains and H/h = 9. Middle:
Visualization of the discrete harmonic extension H (v Eij ) for one floating subdomain. The visualized constraint leads
to an energy of 17.49. Right: Visualization of the discrete harmonic extension ’H(PD”- VE;; ) for the same floating
subdomain. The visualized constraint leads to an energy of 6.67e+5.

Figure 3.2 (middle) and Figure 3.3 (middle), the energy |H(vg,,;)|k,; is low. On the other
hand, the energy |H(Pp,,vE,,)|K,, is large for those two examples; see Figure 3.2 (right),
where the energy is large due to the homogeneous Dirichlet boundary enforced by Pp,,, and
Figure 3.3 (right), where the energy is large due to the gradient of the scaled jump Pp, v,
on the edge.

We obtain the edge constraint by cg,, := Bp,; SijPDij vg,, as in the adaptive coarse
space; cf. Section 2.3.6. We denote by Bp,, the submatrix of (Bg), Bg)) with the rows
restricted to the edge E;;. We further define S;; = diag(S*), S)), where S and 59 are
the Schur complement matrices of K9 and K, respectively, with respect to the interface
variables, as well as the operator Pp,, = B}, Bj;

The construction (3.2) can be further s1mphﬁed by exploiting the fact that the scaled jump
operator Pp,; is zero everywhere except on F;;. Therefore, our new constraint is constructed
instead as

O (z) = p(z) =e Eij,
E‘J 0 S 89[ \ Eij,

for [ = 1, j; cf. the definition in [27]. In particular, due to the subsequent application of Pp,

both definitions of ’U(D‘ result in the same constraints ¢ Eij-

For our parallel implementation, we use the latter definition of v( )

. There, we exploit the
extension by zero to the remaining interface 0€); \ E;; and reduce the application of several

PDij to a few global applications of Pp; see also Section 5 for more details.

3.2. Diffusion in three dimensions. The respective case of diffusion problems in three
dimensions is relatively analogous to the case of diffusion problems in two dimensions in
Section 3.1, with the main difference that we now compute our new constraint for faces F;; or,
alternatively, closed faces F';; between neighboring subdomains €2; and §2; instead of edges
E;;. Let us first define

0 () = ﬁ(l)(x) r € Iy,
0 l‘ean\Fij,

and

0, T
W P@) weFiy,
(3.3) V% (z) = { 0 x € 0\ Fyj.
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FIG. 3.3. Visualization of the new constraints for a concrete coefficient distribution. Left: Coefficient distribution
with boxes associated with a large coefficient. Dark blue corresponds to the large coefficient (1e+6) and light blue to
the small coefficient (1). Visualization for 4 X 4 subdomains and H/h = 8. Middle: Visualization of the discrete
harmonic extension H (v Eij ) for one floating subdomain, which is nearly constant in the area with a large coefficient
marked in red. The visualized constraint leads to an energy of 17.39. Right: Visualization of the discrete harmonic
extension H(PDU VE;; ) for the same floating subdomain, which has large gradients (see green ellipse) in the area
with a large coefficient marked in red. The visualized constraint leads to an energy of 1.96e+6.

Analogously to the two-dimensional case, we obtain our constraints cz 7., by applying the
operator Bp,, Sij Pp,; to either vg,; or vz i , respectively. Let us remark that, due to the
structure of the Schur complement matrix Sw as well as Pp,, in both cases CF,, may
have nonzero entries on the closed face, i.e., on the open face F;; and on all edges E.,,
m=1,2,..., M, belonging to the closed face F;;. We can therefore split a constraint CF,

into a constrarnt cr,; on the open face and constraints cg,,,, m = 1,..., M, on the nerghbormg

edges. The same approach of splitting the constraints into face- and edge-related parts is
proposed in [31].

Depending on whether we also include the edge-related parts into the coarse space or not,
four different possible variants exist of how we concretely enhance the coarse space related to
faces:

FR1: Construct v%‘ for each closed face F;;, and enforce both the edge-related parts ¢, ,,
=1,..., M, as well as the part related to the open face of ¢ Fje
FR2: Construct fuf for each closed face F; 45> but just extract the terms of ¢ F related to

the open face, "while discarding the respective edge-related parts.
FR3: Construct v%? for each open face Fj;, and enforce both the edge-related parts cg,
=1,. M as well as the part related to the open face of cp,;
FR4: Construct vg for each open face Fj;, but just extract the terms of cr,; related to the
open face, while discarding the respective edge-related parts.

We will compare the robustness of the four different variants in terms of condition number
estimates and iteration counts in the numerical experiments in Section 4. Let us remark that
FR1 implements the complete constraints which are built analogously to the two-dimensional
case. With respect to a parallel implementation, FR4 is the most promising since the different
open faces have no intersections with each other and therefore many local operations, such as,

e.g., applications of Pp,;, can be grouped to global operations and can be carried out for all
faces simultaneously; see Section 5.

3.3. Linear elasticity in three dimensions. For the case of three-dimensional linear
elasticity problems, we know that, when applying the FETI-DP or BDDC algorithms, we need
six constraints, i.e., six rigid body modes, to control the null spaces for subdomains which
have boundaries that do not intersect 0S2. For a generic domain Q with diameter H, the basis
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for the null space ker() is given by the three translations
1 0 0
ry = |0}, ro = |11, rg:= |0},
0 0 1

and the three linear rotations

To — ZC\Q 1 —x3 + .’/ﬂ\g 1 0
4= —x1+Z1|, 5= g7 0 , e =g | 33|
0 T — fl —T2 + i‘\g

where 7 € Q) is the center of the linear rotations; see, e.g., [42, Section 2]. We now construct
six weighted constraints per face to obtain a robust coarse space. Basically, these constraints
are based on the maximum coefficients per element, i.e., the maximum Young modulus £ > 0,
as well as on the three translations and the three rotations for the respective face between two
neighboring subdomains. Let us describe the concrete construction of the coarse constraints
in some more detail. Let F}; be the open face between two neighboring subdomains €2; and
€, respectively, and F';; the closed face. For each finite element node = on 9€2; or 99,

we compute E0) (z) = n(la)xQ E(y), for I = 4, . Furthermore, we compute six scaled

yew(x)NLY;
rigid body modes denoted by ?ﬁ& m=1,...,6,1=1,j, by pointwise scaling the rigid body
modes 7,,, m = 1,. .., 6, with the respective vectors of the maximum coefficients £ (x),
I =1, j. Note that all three degrees of freedom belonging to a given node = € 0€Q; U 0f2; are
scaled with the same value of E()(z), for I = i,j. Form = 1,...,6 and [ = i, j, we then
define

v(m’l)(l‘) _ 7:{7711)(:17) z € Fyj,
Fij 0 z € 0 \FU

Combining the vectors for both subdomains to U},:Z)T = (v(:r;’i)T, —v%’?j 'T), we obtain the
weights for the six face constraints as ' '

(m) _ y (m) _
3.4 Cp = BDijSZ]PDij/UFi]» , m=1,...,6.

The variants for closed faced are defined analogously; see also (3.3). Thus, the four different
variants FR1 to FR4 of coarse spaces can be implemented as in the diffusion case. Please note
that the resulting constraints can, in certain cases, be linearly dependent and thus result in less
than six constraints per face. Therefore, we always apply a modified Gram-Schmidt algorithm
after constructing the six aforementioned constraints in our implementation. For the case of
linear elasticity in two dimensions, the computation of cgz_), m = 1,...,3, is completely
analogous to the three-dimensional case. For two dimensions, we just scale all two degrees of
freedom per node for a given node = with the same value of (") (), for [ = i, j. Since the
three-dimensional case is more general, we here chose to describe the three-dimensional case
in more detail.

Due to the possible existence of hinge modes for two neighboring subdomains in case
of linear elasticity problems, using only face constraints and edge constraints arising as
a byproduct in the construction of the face constraints, as, e.g., in the variants FR1 and
FR3, might not always lead to a robust algorithm for complex coefficient distributions. In
particular, in some cases the use of additional edge constraints is necessary to obtain moderate
condition number bounds as well as scalabilty. We will consider such a coefficient distribution
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in Table 4.7, where the exclusive use of face constraints is not sufficient. For this special
case, we enforce additional weighted edge constraints besides the weighted face and edge
constraints already introduced. The construction of our weighted edge constraints is in
principle completely analogous to the aforementioned face constraints. More precisely, the
construction is basically the same except that we now operate on the index set of open
edges between two neighboring subdomains that do not share a face (alternatively, we can
additionally construct weighted edge constraints for all edges, for simplicity, and finally apply
a modified Gram-Schmidt algorithm to eliminate linearly dependent constraints). We thus
obtain an additional variant, which we denote by FRS. Let us remark that we first use FR1 for
all faces and ensure that we have no redundancies in the face-related and additional weighted
edge constraints by applying a Gram-Schmidt orthogonalization.

3.4. Classic weighted average constraints in three dimensions. For comparison, we
also consider the classic coarse spaces introduced in [42], which we briefly describe in this
section. We introduce weighted averages

> Fi(zi)u(z;)
x, €EX

T, EX

(3.5) i=1,...,1,

on parts of the interface X, e.g., the edges £ or faces F. Here, we have [ = 1 for the scalar
diffusion case, and [ = 3 or [ = 6 in the case of linear elasticity. Let us remark that in the latter
case only five of the six constraints might be linear independent on straight edges; see [42].
For the scalar case, we consider the weights

p(xz) = max p(y),
yEw(x)

and for the case of linear elasticity we choose

E(z) = max E(y).

yEw(z)

We further define pointwise

in the scalar case and
#i(z) = B(x)rj(z), j=1,...,6,

in case of linear elasticity, where r1, 75, and r3 are the three translations and, respectively,
r4, T35, and rg the three rotations; see also Section 3.3. Let us remark that in [42] only weighted
translations, i.e., 7;, k = 1,..., 3, have been used, and thus the coarse space described in this
section is in fact an extension of the robust coarse space used in [42].

4. Numerical results. In this section, we present numerical results obtained using
our serial MATLAB implementations of the FETI-DP and BDDC algorithms. We con-
sider three-dimensional stationary diffusion and linear elasticity problems on the unit cube,
Q =10, 1]3, with Dirichlet boundary conditions on the left-hand side of the boundary 0¢2,
i.e, 9Qp = 0 x [0,1]2. In all our numerical experiments, we use the p-scaling approach and,
as an iterative solver, the preconditioned conjugate gradient (PCG) algorithm. As stopping
criterion for PCG, we use a relative reduction of the preconditioned residual by a factor of le-8.
As already mentioned in Section 2.3.4, we obtain the same quantitative condition number
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bounds for FETI-DP and BDDC since the two methods are dual to each other; see also [50, 53].
Therefore, we do not provide results for both methods for all tested coefficient distributions.
We consider beams with large coefficients inside subdomains and with varying offsets between
the subdomains as well as inclusions of large coefficients within the subdomains.

Let us remark that in addition to the considered face- or edge-based constraints, we always
choose all vertices to be primal. In all tables and figures we use the following notation to
distinguish between the different classic coarse spaces based on weighted averages:

e: Using vertex constraints and edge constraints (e), i.e., enforcing (3.5) for all edges
E. In case of linear elasticity, only weighted translations are enforced, i.e., [ = 3
in (3.5).
f: Using vertex constraints and face constraints (f), i.e., enforcing (3.5) for all faces
F. In case of linear elasticity, only weighted translations are enforced, i.e., | = 3
in (3.5).
f+r: Using vertex constraints and face constraints (f), i.e., enforcing (3.5) for all faces
F. In case of linear elasticity, translations and rotations (r) are enforced, i.e., [ = 6
in (3.5).

Let us remark that instead of fixing the global coefficient distribution, we always keep the
coefficient distribution fixed for each subdomain in our weak scaling studies. Consequently,
the global coefficient distribution actually changes while increasing the number of subdomains.

4.1. Variations of one beam per subdomain. We provide numerical results for straight
and shifted beams with large coefficients as shown in Figure 4.1 and Figure 4.2. We consider
both diffusion problems as well as linear elasticity problems and compare the results for our
new frugal coarse space to the classic approach from [42]. For the straight channels that only
cut through faces, in Table 4.1, all four variants FR1 to FR4 show a more or less equivalent
performance. Here, the classic approach also provides comparable and robust condition
number bounds and iteration counts. For the shifted channels, see Table 4.2, the edge-related
variants FR1 and FR3 show a slightly better performance compared to FR2 and FR4. This
effect is mostly noticeable for the linear elasticity problems presented in Table 4.2. However,
also the exclusively face-based variants FR2 and FR4 show robust condition numbers in all
computations. In particular, in this case, the classic weighted averages are not sufficient
to provide robust algorithms. This shows that our new approach is indeed more general
than classic averages and provides robustness for more complex coefficient distributions. As
two additional sets of experiments, we further provide results for varying contrasts of the
coefficients. In Table 4.4 we show the condition number estimates and iteration numbers for a
stationary diffusion problem and the shifted beams as in Figure 4.2 with an increasing contrast
between the two coefficients. As we can observe from Table 4.4, the classic coarse space
performs clearly poorer than the frugal coarse space for all tested coefficient contrasts. In
particular, for the larger coefficient p being equal to 1e4, 1e5, 1e6, the classic coarse space
clearly fails to provide a robust algorithm since the condition number estimates increase in
proportion to the contrast of the coefficients. However, the frugal coarse spaces are seen to be
robust with respect to the coefficient contrast. We further provide experiments for stationary
diffusion problems and two straight beams of a large coefficient crossing each subdomain in
Table 4.5.

As a proof that our weighted constraints work equally well for the FETI-DP and the
BDDC algorithm, we further provide numerical results for the shifted channels and the BDDC
algorithm in Table 4.3.

4.2. Inclusions within subdomains. Let us consider the case of inclusions of large
coefficients within subdomains; see Figure 4.3. We note that we only consider the case
of inclusions which have a nonempty intersection with the respective subdomain boundary.
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z x v

FIG. 4.1. Left and Middle: Coefficient function with one central beam per subdomain. Large coefficients
are shown in red, and subdomains are shown in purple and by half-transparent slices. Right: Visualization of the
corresponding solution for the stationary diffusion problem. Visualization for 3 x 3 x 3 = 27 subdomains and
H/h =12.

. - j E ig [l
z x v £ s

FIG. 4.2. Left and Middle: Coefficient function with one beam per subdomain with offsets. Large coefficients
are shown in red, and subdomains are shown in purple and by half-transparent slices. Right: Visualization of the

corresponding solution for the stationary diffusion problem. Visualization for 3 x 3 x 3 = 27 subdomains and
H/h =12.

For inclusions within subdomains which have a positive distance to the boundary of the
respective subdomain, already standard FETI-DP and BDDC coarse spaces yield robust
domain decomposition methods, and no additional constraints have to be added to the coarse
spaces; see, e.g., [20] for FETI-DP or [59] for FETI. For the first set of experiments, we
partition each subdomain into eight cubes of equal size and set a large coefficient in two of
these cubes, which intersect only at a single vertex; see Figure 4.3. As the results in Table 4.6
show, our new face constraints lead to robust algorithms for the diffusion problem for all
variants FR1 to FR4. For elasticity problems, however, the resulting algorithms including
only face constraints exhibits poor convergence behaviour or even divergence; see Table 4.7
(column 1). As a comparison, we further include results for an adaptive FETI-DP method in
Table 4.7. Here, we use the adaptive coarse space as proposed by Mandel and Sousedik [54]
and a variant thereof as implemented by Klawonn, Kiihn, and Rheinbach [31]. Basically, in
these methods the solutions of certain local generalized eigenvalue problems on faces or edges
are used to enrich the coarse space. We refer to [31, 54] for more details on this adaptive
method. In Table 4.7, we denote by:

o adaptive, face EVP: the adaptive FETI-DP method from [54] using exclusively
eigenvalue problems on faces;

e adaptive, edge EVP: the adaptive FETI-DP method from [31] using additional
eigenvalue problems on edges to enrich the coarse space.

As the results in Table 4.7 show, the adaptive FETI-DP algorithm also displays poor con-
vergence behavior for this specific linear elasticity problem when using exclusively face
constraints. However, the use of additional edge constraints again leads to a robust algo-
rithm, as the last column in Table 4.7 shows. This indicates that for this specific coefficient
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TABLE 4.1
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for stationary diffusion and
linear elasticity problems in 3D with H/h = 6 for one straight beam per subdomain as in Figure 4.1. The larger
coefficient is p = 1e6 for stationary diffusion and E = 1e6 for linear elasticity (with v = 0.3 everywhere).

new approach classic
N FR1 | FR2 | FR3 FR4 f
stationary diffusion

cond it | cond it | cond it | cond it cond it
22 1125 5 144 6 125 5 144 6 144 7
31125 6 1.51 8 125 6 1.51 8 1.51 10
431125 6 1.53 8 125 6 1.53 8 1.53 10

linear elasticity

cond it | cond it | cond it | cond it cond it
22 159 10270 13159 110|271 14271 14
321163 11]278 16| 162 110|278 16| 278 15
431163 11|28 16|162 101|285 161 285 16

TABLE 4.2

Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for stationary diffusion and
linear elasticity problems in 3D with H/h = 6 for one beam per subdomain with offsets as in Figure 4.2. The larger
coefficient is p = 1e6 for stationary diffusion and E = 1e6 for linear elasticity (with v = 0.3 everywhere).

new approach classic
N FR1 \ FR2 \ FR3 \ FR4 f
stationary diffusion

cond it | cond it | cond it | cond it cond it
231136 8 1.72 10| 1.36 8 1.68 10 || 436134 16
331141 9 1.88 11 | 141 9 1.83 11 || 46336.5 47
431141 9 191 12| 141 9 1.86 12 || 46622.0 78

linear elasticity

cond it | cond it | cond it | cond it cond it
231192 12392 18190 13| 3.68 17 | 379309 54
331190 12448 19| 1.89 121|437 19| 682385 124
431192 121491 211|190 112|476 21| 76027.6 264

distribution with two cubes of large coefficients per subdomain only intersecting at a single
vertex, a hinge mode exists in the case of linear elasticity, which is not controlled by our
new face constraints. Thus, we also consider the variant of enforcing our new weighted edge
constraints in addition to the already constructed face average constraints, denoted by FRS;
see Section 3.3. In the second column of Table 4.7, we present numerical results concerning
this variant, given the inclusions per subdomain intersecting only in a single vertex as before.
Please note that the additional use of explicit edge constraints in principle corresponds to
the solution of explicit edge eigenvalue problems for subdomains that do not share a face in
the context of the adaptive coarse space proposed in [31]. To obtain a robust algorithm, we
again use a modified Gram-Schmidt algorithm to eliminate all linearly dependent constraints
resulting from edge-related parts of weighted face constraints and the explicitly constructed
edge constraints.

4.3. Reducing the coarse space dimension. As already stated above, our proposed
coarse space is of a similar size as the classic coarse space introduced in [42]. In particular, we
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TABLE 4.3
Condition numbers (cond) and iteration numbers (it) for the BDDC algorithm for stationary diffusion and
linear elasticity problems in 3D with H/h = 6 for one beam per subdomain with offsets as in Figure 4.2. The larger
coefficient is p = 1e6 for stationary diffusion and E = 1e6 for linear elasticity (with v = 0.3 everywhere).
N ‘ FR1 ‘ FR2 ‘ FR3 ‘ FR4
stationary diffusion
cond it |[cond it | cond it | cond it

221129 8 .72 11 | 1.28 8 1.68 11
31135 9 1.88 12 | 1.33 9 1.83 11
431135 9 190 13| 134 9 1.86 12

linear elasticity
cond it | cond it | cond it | cond it

22118 12391 18| 1.88 12390 17
33187 11445 19| 186 111|437 19
431188 11492 20| 188 12| 476 20

TABLE 4.4
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for stationary diffusion
problems in 3D with H/h = 9 for one beam per subdomain with offsets as in Figure 4.2. The larger coefficient is
varied as coeff-2 = 10¢, e € {0, 3,4, 5,6}, and the smaller coefficient is 1.

N  coeff-2 | frugal, FR1 | classic, f
stationary diffusion
H/h cond it | Hh cond it

43 1e0 9 1.60 10 |9 2.13 13
43 1e3 9 1.63 10| 9 53.41 38
43 led 9 1.64 10| 9 52591 59
43 le5 9 1.65 10| 9 525098 78
43 le6 9 193 12 |9 52501.63 87

construct FR constraints over all faces and/or edges. However, for many real world problems,
i.e., problems with realistic coefficient distributions, constraints on certain faces or edges are
not necessary and can be omitted. Therefore, we further propose a modified variant to reduce
the size of the coarse space, which only requires moderate additional effort.

Since our constraints are inspired from the eigenvalue problems introduced in [54, 55], we
can use the quotient (3.1) corresponding to the eigenvalue problems to estimate the constraints
that are actually required for a robust algorithm. Numerical results have shown that for faces or
edges, for which the left-hand side of the specific eigenvalue problem yields a high energy and
the respective right-hand side yields a low energy, additional coarse constraints are essential
for robustness. For the convenience of the reader, we explicitly write down the right-hand side
(RS) and the left-hand side (L.S) of the eigenvalue problem (2.4):

LS .= PgijsijPDij and RS := Sij.

See [54, 55, 60] for more technical details on the eigenvalue problem. To estimate the
energy of our new constraints, we evaluate the product terms RSe := UP:CMRSU F,; and
LSe := v, LSv, in three dimensions, or RSe := vf, RSvg,; and LSe := vf; LSug,,
in two dimensions, respectively. We further evaluate the ratio LSe/RSe for all faces (and,
depending on the chosen variant, for all edges). For the reduced dimensional variant, we now
only integrate those face constraints into the coarse space for which the ratio LSe/RSe is
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TABLE 4.5
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for stationary diffusion
problems in 3D with H/h = 10 for two straight beams per subdomain. The larger coefficient is varied as
coeff-2 = 10%,e € {0, 3,4, 5,6}, and the smaller coefficient is 1.

N coeff-2 | frugal, FR1 classic, f
stationary diffusion

H/h cond it | H/h cond it
43 1e0 10 1.64 10| 10 223 13
43 1e3 10 5.88 20| 10 6.18 21
43 le4 10 51.08 40 | 10 52.51 41
43 1e5 10 503.30 64 | 10 517.20 67
43 le6 10 502551 86|10 5164.14 92

FIG. 4.3. Coefficient distribution with inclusions of large coefficients within subdomains. Large coefficients are
shown in red, and subdomains are shown by grey slices. Visualization for 3 X 3 x 3 subdomains and H/h = 12.

above a user-defined tolerance T'OL; see, e.g., [26] for a discussion on the choice of TOL.
We denote this reduced coarse space variant by FR2 red.. We show first numerical results
concerning this reduced variant for straight channels in Table 4.8. For all shown cases, we are
able to reduce the dimension of the coarse space to exactly one third of the original size while
preserving both robust condition numbers and iteration counts. In Table 4.9, we further show
numerical results for five spherical inclusions of different radii as depicted in Figure 5.5; see
also Section 5 for detailed parallel results concerning this specific coefficient distribution. For
the diffusion case, we are able to reduce the size of the coarse space up to a factor of 2.4. For
the case of linear elasticity, the coarse space dimension is reduced by a factor of up to 1.6.

5. Parallel numerical results. We have added the new coarse space FR4 to our parallel
BDDC implementation described in [36] and compare it with classic coarse spaces based on
weighted edge or face translations and rotations as introduced in [42]; see also Section 3.4.
We again consider stationary diffusion and linear elasticity problems. Unless stated otherwise,
Dirichlet boundary conditions on the complete boundary are used. As in Section 4, we use the
preconditioned conjugate gradient (PCG) algorithm as the iterative solver for our computations.
As the stopping criterion for PCG we again use a relative reduction of the preconditioned
residual by a factor of le-8.

5.1. Parallel implementation and computational effort. Let us remark that our PETSc-
based parallel implementation presented in [36] is based on a BDDC preconditioner for the
complete system K ;. Therefore, no Schur complement systems are built explicitly. Conse-
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TABLE 4.6
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for diffusion problems in 3D
with H/h = 8 with two inclusions per subdomain as in Figure 4.3. The larger coefficient is p1 = 1e6, and the
smaller coefficient is p2 = 1.

N \ FR1 \ FR2 \ FR3 \ FR4
stationary diffusion
cond it | cond it | cond it | cond it
231355 14355 14355 141|355 14
331405 201|405 20405 201|405 20
43 | 441 22| 441 221|441 21| 441 22
TABLE 4.7

Condition numbers (cond), iteration numbers (it), and the size of the coarse space (# c.) for the FETI-DP
algorithm for linear elasticity problems in 3D with H/h = 6 with two inclusions per subdomain as in Figure 4.3.
The larger coefficient is E1 = 1e6, and the smaller coefficient is E.2 = 1, with v = 0.3 everywhere.

new approach adaptive approach
N FR1 FRS face EVP edge EVP
linear elasticity
#c. cond it #c. cond it #c. cond it #c. cond it
2% | 288 25158 54 324 1.72 10 || 39 58679 58 173 370 15
3% | 1452 18530 180 | 1668 1.73 10 || 164 87156 246 | 838 342 20
43 | 4032 19626 232 | 4680 1.74 10 || 429 114882 471 | 2319 344 20

quently, we also avoid the computation of the matrix S;;, which is used for the construction of
our edge or face constraints; see (3.4). Instead of computing S (i)w(rl), we always equivalently
compute

N—1
. (5@ ()T ,
5.1 RY . K®. (KI ) Krp w?,
1
where R(Fi ) is the restriction from the complete subdomain €2; to its interface and the operator

N1 , .
— (K %)) K I(fI)Tw(Fz) is the discrete harmonic extension of wg ) from the interface to the
interior of §2;. For the parallel implementation, we chose FR4 out of the different variants,
since the coarse space can be computed cheaply with less effort than a few CG iterations;
see the discussion below. Additionally, FR4 showed promising results for most problems
considered in the previous section.

Parallel computation of FR4. For simplicity, we describe the implementation for the
scalar diffusion case. Considering linear elasticity problems, the building blocks are identical
and just called six times for each of the six rigid body modes.

In our BDDC implementation, we do not enforce the constraints cr,; = Bp,;Si; Pp,;vF;;
directly in the space of interface jumps, e.g., by a projector preconditioning approach, but

equivalently, the constraint Cg;T = —CgiTis enforced by a generalized transformation-of-
(CI(;?]T, ngT) with CFi]. = Pg” SijPDij VF;; -
With Pp = I — Ep, we compute Cp,, = (I — Ep,,)"'S;;(I — Ep,,)vr,, instead, which is
more convenient in the context of BDDC.

In FR4, only open faces are considered, and thus the computation of v, := (I — Ep,, )vr,,
can be carried out for all faces at once. Here we exploit the fact that the functions v,; can be

basis approach. Here, we consider Cr,; =
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TABLE 4.8
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for linear elasticity problems
in 3D with H/h = 6 for one straight beam per subdomain as in Figure 4.1. Variant with reduced coarse space
dimension and TOL = 10. The larger coefficient is E1 = 1e6, and the smaller coefficient is E2 = 1, withv = 0.3
everywhere.

N FR2 FR2 red.

linear elasticity
#c. cond it | #c. cond it

23172 270 13 |24 354 15
3% (324 278 16| 108 4.17 19
4% | 864 2.86 16 | 288 444 20

TABLE 4.9
Condition numbers (cond) and iteration numbers (it) for the FETI-DP algorithm for diffusion and linear
elasticity problems in 3D with H /h = 10 for five spherical inclusions as in Figure 5.5. Variant with reduced coarse
space dimension and TOL = 100. The larger coefficient is p = 1e6 for stationary diffusion and E = 1e6 for linear
elasticity (with v = 0.3 everywhere).

N | FR2 | FR2 red.
stationary diffusion
#c. cond it | #c. cond it

23 112 6.90 19 | 5 17.02 22

33| 54 3.64 17 | 29 18.92 27

43 | 144 559 22 | 74 1855 39
linear elasticity

#c. cond it | #c. cond it

23 |72 31.89 44|55 61.83 54
3% 324 7035 46| 199 7036 64
43 | 864 23236 67 | 633 430.11 95

chosen to be zero on the remaining interface; see Section 3.1 and following arguments. There-
fore, all values v, ; for all faces are collected into a single vector v. The remaining interface
components in v can be set arbitrarily. Then, z := (I — Ep)v can be computed in parallel
using the parallel implementation of E'p based on PETSc VecScatter operations; see [36] for
details on the implementation. All zg,; for all open faces can be easily obtained from z by
extracting local values on the faces and extending them by zero to the remaining local interface.
Let us remark that with zp,, = ( ;3)1 ) xgﬁ)J) the computation of S;;xF,; actually decomposes
into two local computations S(l)x%),_, I = 4,7, which are carried out following (5.1). This
process is completely local, but equatJion (5.1) has to be computed separately for each face of
a subdomain. The results for all local faces can again be collected into a single vector y, and
again I — E'p can be applied globally. Finally, all coarse constraints are locally extracted face
by face from (I — Ep)y.

Computational effort. The FR4 coarse space is of similar size compared to classic face-
or edge-based coarse spaces, but the computation of the constraints is more costly. Therefore,
the effort will only pay off compared to classic approaches such as, e.g., those from [42],
if a sufficient number of CG iterations is saved. Let us remark that the computation of the
constraints from FR4 is cheap compared to the computation of any adaptive constraints which
requires the solution of local generalized eigenvalue problems. To obtain a useful estimate for
the computational effort, we compare the cost to compute the coarse constraints to the cost of
some CG iterations, i.e., some applications of the system matrix and the BDDC preconditioner.
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In a single application of the BDDC preconditioner, (I — Ep) is applied twice as here
in the construction of the coarse space FR4. The discrete harmonic extension which appears
in (5.1) is also applied twice in each application of the BDDC preconditioner. Finally, in
each CG iteration, the matrix K (*) is applied once to a vector in the application of the system
matrix. Considering six faces per subdomain for a regular decomposition, the construction
of the coarse space thus costs less than six CG iterations. Assuming that the computation
of the discrete harmonic extensions is the most expensive operation in this process, we can
approximately compare the cost with the cost of three CG iterations. Therefore, if we can
save at least three CG iterations, FR4 will pay off. Of course, since the computation of the
constraints of FR4 does not include any coarse solve, it will be even less expensive, especially
for problems with many subdomains and compute cores. Therefore, the estimate with 3 CG
iterations is in fact way too pessimistic.

For the case of linear elasticity with six rigid body modes for each of the six faces, we end
up with an approximate cost of 18 CG iterations—following the argumentation above. Again,
we expect much less effort especially for larger problems. In practice, e.g., considering the
example from Figure 5.4, we measure a time of approximately 8.1 CG iterations to construct
the coarse space for the 48 subdomain case and only 2.4 CG iterations for the 3 072 subdomain
case. Let us finally remark that the construction might be more expensive for irregular domain
decompositions with more than six faces per subdomain.

5.2. Sanity check with a checkerboard problem. As a sanity check of our software,
we provide results for the classic checkerboard problem shown in Figure 5.1; see Figure 5.2
for the results. As expected, using p-scaling, the coarse space with vertices and edges performs
slightly better compared to face-based approaches since an acceptable edge path can be found;
see [42]. Additionally, FR4 and the classic face constraints defined in Section 3.4 deliver
similar results.

FIG. 5.1. Coefficient distribution in a checkerboard pattern with constant coefficients per subdomain. Large
coefficients are shown in red. Visualization for 4 X 4 x 3 subdomains and H/h = 12.

5.3. Straight and shifted channels. We provide parallel weak scaling results for straight
and shifted channels as depicted in Figure 4.1 and Figure 4.2. We consider both a diffusion
problem (see Figure 5.3) as well as a linear elasticity problem (see Figure 5.4). For all
examples, face constraints are necessary, and while for the straight channels FR4 is more or
less equally robust as the classic face constraints, it is superior for the model problem with
shifted channels and up to a factor 9.2 faster in time-to-solution for the diffusion problem. For
the case of linear elasticity, the time-to-solution is reduced by a factor of up to 2.5.
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FI1G. 5.2.  Parallel weak scaling test; stationary diffusion problem with a constant coefficient on each
subdomains, varying in a checkerboard pattern. The larger coefficient is 1e6, and the smaller coefficient is 1.
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FIG. 5.3.  Parallel weak scaling test; stationary diffusion problem with a single channel crossing each
subdomain; larger coefficient p = 1e6 inside channels and p = 1 in the remaining domain. Left: Straight channels.
Right: Shifted channels. Missing data corresponds to runs which did not converge within 1 000 CG iterations.

5.4. Five spherical inclusions and an RVE. To investigate more general and more
realistic coefficient distributions that are chosen independently of the domain decomposition,
we consider two additional examples.

Five Spherical Inclusions. First, we consider five spherical inclusions of different radii;
see Figure 5.5. Let us remark that considering our structured mesh, each voxel is discretized
by six tetrahedral finite elements, and these six elements always share the same coefficient.
Each voxel within the five spheres will have an identical large coefficient, i.e., a large p in the
diffusion case or a large F in the linear elasticity case. The remaining matrix material will
have a smaller coefficient. For a decomposition into 384 regular subdomains, we depict a face
between two subdomains (see Figure 5.6 (left)) and mark the parts of the spheres which lie
inside these two subdomains in blue and red. Zooming in (Figure 5.6 (right)), we observe a
similar situation as in the case of the shifted channels. Additionally, the spherical inclusions
cut or touch also edges and vertices. Considering this model problem, FR4 outperforms all
tested classic approaches significantly; see Table 5.1. Especially for the largest considered
coefficient jump of 1e6, only FR4 is robust for both diffusion and linear elasticity problems.

RVE. Second, we consider an RVE (representative volume element) of a dual-phase steel
consisting of the two material phases martensite and ferrite, representing the microscopic
structure of a DP600 steel and obtained by an EBDS (electronic backscatter diffraction)
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FIG. 5.4. Parallel weak scaling test; linear elasticity problem with one channel crossing each subdomain;
larger coefficient E = 210000 inside channels and E = 210 in matrix material. Left: Straight channels. Right:
Shifted channels.

FIG. 5.5. Five spheres with different radii in the unit cube. Resolution of 128 x 128 x 96 voxel corresponding
to computations with H/h = 16 and 8 x 8 x 6 = 384 subdomains in Table 5.1.

FIG. 5.6. Left: Example visualization of the coefficient function in Figure 5.5 for two neighboring subdomains,
marked in red and blue, and the face between those subdomains, marked in green. Right: Zoom-in of the coefficient
Jjump along the green face between two neighboring subdomains.
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TABLE 5.1

Coefficient distribution with five spherical inclusions of different size; see Figure 5.5. Resolution of 128 x
128 x 96 voxel (H/h = 16) or 192 x 192 X 144 voxel (H/h = 24). Each voxel is discretized with six finite
elements; stationary diffusion: coefficients of 1e3 or 1e6 inside the spheres and 1 in the matrix material; linear
elasticity: coefficients of E = 210 000 or 210 000 000 in the spheres and EE = 210 in the matrix material; v = 0.3
everywhere. Decomposition into 384 subdomains; computed on 192 cores. Using p-scaling. v stands for vertex
constraints, e for weighted edge translations, f for weighted face translations, and r for weighted edge or face
rotations; TtS abbreviates Time-to-Solution and # c. the size of the coarse space.

| stationary diffusion | linear elasticity
coefficient jump le+3; H/h = 16
coarse space #c. cond it TtS #c. cond it TtS
FR4 | 1237 7.42e+0 19 1.7s | 6687 3.05e+1 44 19.9s

f| 1237 1.04e+2 45 2.7s | 3711 1.60e+3 259 55.1s
f+r - - - - | 6687 9.76e+2 144 38.3s
e| 1141 5.00e+3 135  7.3s | 3423 7.00e+2 212 48.7s

coefficient jump le+3; H/h = 24
coarse space #c. cond it TtS #c. cond it TtS
FR4 | 1237 8.73e+0 22 83s | 6687 4.77e+1 54 100.5s
f| 1237 3.83e+1 41 9.7s | 3711 1.68e+3 269  264.2s
f+r - - - - | 6687 2.07e+2 114 143.9s
e | 1141 1.08e+4 194 36.1s | 3423 9.17e+2 238  24509s

coefficient jump le+6; H/h = 16
coarse space #c. cond it TtS #c. cond it TtS
FR4 | 1237 7.51e+0 19 1.7s | 6687 3.22e+l 47 20.7s
f| 1237 1.02e+5 189 11.3s | 3711 1.46e+6 >1000 >204.8s
f+r - - - - | 6687 5.40e+5 >1000 >222.0s
e | 1141 497e+6 283 14.6s | 3423 6.87e+5 >1000 >210.6s

coefficient jump le+6; H/h = 24
coarse space #c. cond it TtS #c. cond it TtS
FR4 | 1237 884e+0 21  6.7s | 6687 5S.14e+1 57 103.1s
f| 1237 3.54e+4 195 36.4s | 3711 1.36e+6 >1000 >889.9s
f+r - - - -1 6687 1.0le+5 >1000 >915.5s
e | 1141 1.07e+7 434 78.5s | 3423 8.78e+5 >1000 >900.4s

measurement. This RVE is part of a larger structure presented in [8]. The martensitic
inclusions are depicted in red in Figure 5.7 (left), and the ferritic matrix material is marked in
blue. The RVE is decomposed into 512 subdomains (see Figure 5.7 (left)), and a linear elastic
solution is shown in Figure 5.7 (right). We use large coefficients in the martensitic phase
and small coefficients in the ferritic phase and use the coefficient distribution for diffusion
and linear elasticity computations; see Table 5.2. The most realistic computation is the
linear elasticity problem with a coefficient jump of le+3, since these parameters are most
representative for a real dual-phase steel. Let us remark that for large deformations, steel
shows a plastic behavior, and therefore a linear elastic material model is not sufficient anymore.
Considering Table 5.2, FR4 again shows the best performance, and the iteration counts are
acceptable in all cases, even though for the linear elasticity problem the condition number is
also large. Here, additional constraints are necessary e.g., adaptive constraints obtained by
solving certain localized eigenvalue problems.
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FIG. 5.7. Coefficient distribution on a representative volume element (RVE). Left: Visualization of the domain
decomposition into 8 X 8 x 8 = 512 subdomains and H/h = 16. Large coefficients are shown in red, and
subdomains are shown in purple and by half-transparent slices. Right: Visualization of the corresponding solution of
the RVE. Based on data from [8].

TABLE 5.2

Coefficient distribution obtained by an EBSD measurement of a dual-phase steel; see Figure 5.7. Resolution
0f 192 x 192 x 192 voxel (H/h = 24). Each voxel is discretized with six finite elements; stationary diffusion:
coefficients of 1e3 or 1e6 inside the inclusions and 1 in the matrix material; linear elasticity: coefficients of
E = 210000 or E = 210000000 in the inclusios and E = 210 in the matrix material; v = 0.3 everywhere.
Decomposition into 512 subdomains; computed on 256 cores. Using p-scaling. v stands for vertex constraints, f for
weighted face translations, and r for weighted face rotations; TtS abbreviates Time-to-Solution and # c. the size of
the coarse space.

| stationary diffusion | linear elasticity

coefficient jump le+3; H/h = 24

coarse space #c. cond it TtS #c. cond it TtS

FR4 | 1687 5.17e+1 29 6.6s | 9093 1.67e+2 76 123.8s

f| 1687 252e+2 94 14.2s | 5061 1.19e+3 274 275.6s

f+r - - - - 19093 5.09e+2 179  211.7s
coefficient jump le+6; H/h = 24

coarse space #c. cond it TtS #c. cond it TtS

FR4 | 1687 7.88e+1 28 6.5s | 9093 2.44e+4 179  210.9s

f| 1687 250e+5 910 1239s | 5061 9.73e+5 >1000 >893.7s

f+r - - - - 19093 4.70e+5 >1000 >924.9s

5.5. Using an approximate coarse solver. Regardless which coarse space is chosen,
solving the coarse problem with a sparse direct solver becomes a scaling bottleneck in all
domain decomposition methods since the coarse space grows at least linearly with the number
of subdomains. This bottleneck can be overcome in BDDC by approximating the coarse solve
by, e.g., a recursive application of BDDC [64, 65] or an application of an algebraic multigrid
(AMG) method [12, 36, 38]. Both approaches can be used in our BDDC implementation.

Here, we concentrate on the use of AMG (see [36] for a detailed discussion) and provide
the results of a weak scaling experiment in Figure 5.8 for a diffusion problem. We always
use BoomerAMG [29] from the hypre package with an aggressive HMIS (Hybrid Maximal
Independent Set) coarsening and ext+i long range interpolation. As a coefficient distribution
we again choose the shifted channels (see Figure 4.2) and a coefficient jump of 1e6. For
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© 50,653 d.o.f. per subdomain (H/h=36) M 50,653 d.o.f. per subdomain (H/h=36)
4 35,937 d.o.f. per subdomain (H/h=32) M 35,937 d.o.f. per subdomain (H/h=32)
o 15,625 d.o.f. per subdomain (H/h=24) M 15,625 d.o.f. per subdomain (H/h=24)

250

Time to Solution in s
o
o

Parallel Efficiency in %

64 32768 262144
#MPI ranks = #KNL Cores (Theta)

FI1G. 5.8. Weak scalability of BDDC in three dimension using BoomerAMG to solve the FR4 coarse problem
approximatively. Diffusion problem with a large coefficient of p = 1e6 inside shifted channels and 1 in the remaining
domain; see Figure 4.2 for the coefficient distribution. Computed on Theta at Argonne National Laboratory, USA.

all tests, the number of CG iterations only varies between 18 and 22—also using 262 144
subdomains on 262 144 cores with a total problem size of more than 12 billion degrees of
freedom (H/h = 36). Therefore, the coarse space FR4 is combinable with an approximate
AMG solve without loosing robustness—at least for the considered coefficient distribution.
For larger subdomain sizes, the scalability is satisfying with more than 55% parallel efficiency
scaling from one KNL node to 4 096 nodes.

6. Conclusions and future work. We have presented a frugal coarse space for FETI-DP
and BDDC that does not require the solution of any local eigenvalue problems. FETI-DP
and BDDC equipped with this new coarse space are robust for linear diffusion and linear
elasticity tested for a broad variety of coefficient distributions. We showed this numerically
considering many different coefficient distributions, including a realistic steel microstructure,
and presented parallel weak scaling results for up to 262 144 thousand subdomains and parallel
tasks. We also heuristically motivate the robustness of the method using the local eigenvalue
problems of adaptive FETI-DP or, equivalently, the bound on the Pp-operator well-known
from the condition number estimate of FETI-DP and BDDC. A more refined theory will be
subject of future research as well as an extension to a multilevel BDDC variant using our
coarse space.
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