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THE MINIMAL-NORM GAUSS-NEWTON METHOD AND SOME OF ITS
REGULARIZED VARIANTS∗

FEDERICA PES† AND GIUSEPPE RODRIGUEZ†

Abstract. Nonlinear least-squares problems appear in many real-world applications. When a nonlinear model is
used to reproduce the behavior of a physical system, the unknown parameters of the model can be estimated by fitting
experimental observations by a least-squares approach. It is common to solve such problems by Newton’s method or
one of its variants such as the Gauss-Newton algorithm. In this paper, we study the computation of the minimal-norm
solution to a nonlinear least-squares problem, as well as the case where the solution minimizes a suitable semi-norm.
Since many important applications lead to severely ill-conditioned least-squares problems, we also consider some
regularization techniques for their solution. Numerical experiments, both artificial and derived from an application in
applied geophysics, illustrate the performance of the different approaches.
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1. Introduction. Let us assume that F (x) = [F1(x), . . . , Fm(x)]T is a nonlinear twice
continuously Frechét-differentiable function with values in Rm for any x ∈ Rn. For a given
b ∈ Rm, we consider the nonlinear least-squares data fitting problem

(1.1) min
x∈Rn

‖r(x)‖2, r(x) = F (x)− b,

where ‖ · ‖ denotes the Euclidean norm and r(x) = [r1(x), . . . , rm(x)]
T is the residual vector

function between the model expectation F (x) and the vector b of measured data. The solution
to the nonlinear least-squares problem gives the best model fit to the data in the sense of
the minimum sum of squared errors. Classical approaches to the numerical solution of a
nonlinear least-squares problem consist of applying Newton’s method and its variants such as
the Gauss-Newton method [4, 25, 34].

Linear least-squares problems have been widely studied; an exhaustive review can be
found in [4]. There also exists a vast literature concerning regularization methods for discrete
linear inverse problems; see [14, 21]. The same references discuss numerical methods for the
solution of nonlinear least-squares problems, as well as suitable regularization techniques.

The Gauss-Newton method and its variants have been investigated in many papers; see,
e.g., [7, 19, 29, 32, 40]. The application of the Levenberg-Marquardt method to ill-posed
problems was studied in [8, 26], and in [18] it was applied to an inverse problem in groundwater
hydrology. In [36], an iterative algorithm based on the minimization of the Tikhonov functional
by the gradient method was developed. The application of Tikhonov regularization to nonlinear
inverse problems has been further investigated in [31, 37]. The case where the regularizing
term is substituted by a penalty term which promotes the selection of a sparse solution was
analyzed in [38].
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At the kth step of the Gauss-Newton method, the current approximation is computed by
solving, in the least-squares sense, a linearization of the original nonlinear problem. When the
Jacobian of the residual function does not have full column rank, the solution is not unique,
and the usual approach is to select the one having minimal norm. This ensures that each update
of the solution of the nonlinear least-squares problem has minimal norm, but this property does
not apply to the solution itself. The same is true when a regularization technique is introduced.

The idea of constructing an iterative method for the computation of the minimal norm
solution of a nonlinear least-squares problem was first studied by Eriksson et al. In [15, 16, 17],
the case where the Jacobian is rank-deficient or ill-conditioned was analyzed, and solution
techniques based on the Gauss-Newton method and on Tikhonov regularization in standard
form were proposed.

In this paper, we review the results obtained by Eriksson et al. and extend them by
introducing the minimization of the semi-norm ‖Lx‖, where L is a regularization matrix; see
equation (4.1). In case of lack of a unique solution, the employment of such a semi-norm
is often essential to select an effective reconstruction when suitable a priori information is
available. We further analyze the computation of the regularized minimal-L-norm solution
in two standard procedures for approximating the solution of ill-conditioned nonlinear least-
squares problems, namely, the truncated generalized singular value decomposition (TGSVD)
applied to the Gauss-Newton method and Tikhonov regularization in general form, whose
solutions are given by (5.5) and (5.14), respectively. Though the two regularized solutions are
different, they both converge to the minimal-L-norm solution when the regularization level
decreases. The new algorithms are finally applied to a small-scale test problem and to the
inversion of a medium-size nonlinear model typical in applied geophysics. The numerical
results are compared to those produced by the classical approaches.

The paper is organized as follows: Section 2 recalls Newton and Gauss-Newton methods
as well as some basic computational tools. In Sections 3 we review the results from Eriksson et
al. on the computation of the minimal-norm solution to a nonlinear least-squares problem, and
in Section 4 we extend them to the minimal-L-norm solution. Two regularization techniques
for ill-conditioned problems are introduced in Section 5. We discuss in Section 6 some details
of our implementation and report the results of numerical experiments in Section 7. Section 8
contains concluding remarks.

2. Mathematical preliminaries. We will rewrite the minimization problem (1.1) as

min
x∈Rn

f(x), where f(x) =
1

2
‖r(x)‖2 =

1

2

m∑
i=1

ri(x)2.

Let the Jacobian of the residual vector function r(x) be J(x) ∈ Rm×n, defined by

[J(x)]ij =
∂ri(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n,

and the Hessian matrix of ri(x) be Gi(x) = ∇2ri(x) ∈ Rn×n, i = 1, . . . ,m, with entries
given by

[Gi(x)]jk =
∂2ri(x)

∂xj∂xk
, j, k = 1, . . . , n.

Then, the gradient and the Hessian of f(x), written in matrix form, are given by

(2.1) ∇f(x) =
∂f

∂x
= J(x)T r(x),
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and

(2.2) ∇2f(x) = J(x)TJ(x) +Q(x), where Q(x) =

m∑
i=1

ri(x)Gi(x).

If the point x∗ is a local minimum for a twice continuously differentiable function f(x),
then x∗ is a stationary point, i.e., the gradient (2.1) of f at x∗ is zero. Conversely, a sufficient
condition for a stationary point to be a local minimum is that the Hessian∇2f(x∗) is positive
definite.

Newton’s method for optimization [4] is based on the minimization of the second-order
Taylor approximation of the function f(x),

f̃(x + s) = f(x) +∇f(x)T s +
1

2
sT∇2f(x)s.

The minimizer is obtained by equating to zero the derivative with respect to s,

∂f̃(x + s)

∂s
= ∇f(x) +∇2f(x)s = 0.

Starting from an initial guess x(0), assuming that the Hessian of f(x) is invertible in x(k), and
substituting (2.1) and (2.2), the iteration of Newton’s method is obtained:

(2.3) x(k+1) = x(k) −
(
J(x(k))TJ(x(k)) +Q(x(k))

)−1
J(x(k))T r(x(k)).

Newton’s method is rarely used for nonlinear least-squares problem because computing the
mn2 derivatives appearing in Q(x) is often computationally too expensive. Initially, we
assume that the problem is overdetermined, i.e., m ≥ n. An alternative to Newton’s method
is to neglect the term Q(x(k)) in (2.3), obtaining the Gauss-Newton method. If m ≥ n and
Jk = J(x(k)) is full-rank, then the matrix JTk Jk is nonsingular, and we can write

x(k+1) = x(k) −
(
JTk Jk

)−1
JTk r(x(k)), k = 0, 1, 2, . . .

In this case, the matrix J†k =
(
JTk Jk

)−1
JTk is the Moore-Penrose pseudoinverse of Jk. If

m = n, then the iteration simplifies to x(k+1) = x(k) − J−1k r(x(k)).
For underdetermined full-rank problems (m < n), the iteration of the Gauss-Newton

method becomes

x(k+1) = x(k) − JTk
(
JkJ

T
k

)−1
r(x(k)).

The behavior of the Gauss-Newton method can be expected to be similar to that of
Newton’s method when the term Q(x) is negligible, i.e., when the quantities |ri(x)|‖Gi(x)‖,
i = 1, . . . ,m, are small compared to JTJ , where J = J(x). This happens if the functions
ri(x) are mildly nonlinear in a neighborhood of the solution or if the problem is consistent.

We can give a different characterization of the Gauss-Newton method. It replaces the
nonlinear problem by a sequence of linear approximations of r(x), obtained through a first-
order Taylor series expansion. The residual at the new iterate is approximated by

r(x(k+1)) ' r(x(k)) + Jks.

Chosen an initial point x(0), if x(k) denotes the current approximation, the new approximation
is

(2.4) x(k+1) = x(k) + s(k), k = 0, 1, 2, . . . ,
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where the step s(k) is computed as a solution to the linear least-squares problem

(2.5) min
s∈Rn

‖r(x(k)) + Jks‖2.

As already noted, the Gauss-Newton method for solving nonlinear least-squares problems is
attractive, compared to Newton’s method, because the computation of the second-order term
Q(x) is often unfeasible for large scale problems.

In order to ensure convergence, (2.4) is replaced by the damped Gauss-Newton method

(2.6) x(k+1) = x(k) + αks
(k),

where the scalar αk is a step length. To determine it, the Armijo-Goldstein principle selects
αk as the largest number in the sequence 2−i, i = 0, 1, . . . , for which a substantial reduction
in the residual occurs, that is,

(2.7) ‖r(x(k))‖2 − ‖r(x(k) + αks
(k))‖2 ≥ 1

2
αk‖Jks(k)‖2.

The step length αk may also be determined by solving the minimization problem

min
α
‖r(x(k) + αs(k))‖2.

In [40], this approach is denoted as Gauss-Newton algorithm with line search.
The solution to (2.5) may not be unique: this situation happens when the matrix Jk does

not have full column rank. To make the solution unique, the new iterate x(k+1) can be obtained
by solving the following minimal-norm linear least-squares problem

(2.8)

 min
s∈Rn

‖s‖2

s. t. min
s∈Rn

‖Jks + r(x(k))‖2,

which has the solution

s(k) = −J†kr(x(k)).

Such minimal-norm solution is orthogonal to the null space N (Jk) of Jk. This is generally
assumed to be a good choice among the infinite many solutions to the problem unless other
constraints for the solution are available.

In order to select different solutions, the term ‖s‖2 in (2.8) is often substituted by ‖Ls‖2,
where L ∈ Rp×n (p ≤ n) is a matrix which incorporates available a priori information on the
solution. When p < n or whenever the null space of L is nontrivial, ‖Lx‖ is a seminorm, i.e.,
there exist vectors x 6= 0 such that ‖Lx‖ = 0. The constraint p ≤ n is not restrictive. Indeed
(see, e.g., [21]), if p > n, it is possible to perform the compact QR factorization L = QR with
Q ∈ Rp×p1 , R ∈ Rp1×n, and p1 = rank(L) ≤ n. In this case the matrix L can be substituted
by R, as ‖Lx‖ = ‖Rx‖ for any vector x.

The matrix L is typically a diagonal weighting matrix or a p× n discrete approximation
of a derivative operator, in which case L is a banded matrix with full row rank. For example,
the matrices

(2.9) D1 =

1 −1
. . . . . .

1 −1

 and D2 =

1 −2 1
. . . . . . . . .

1 −2 1
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of size (n− 1)× n and (n− 2)× n, respectively, are approximations to the first and second
derivative operators. Regularization operators of this form are often referred to as smoothing
operators. An effective choice of L is such that the solution s is (at least approximately) in
the null space of L. If L = D1, then N (L) contains constant vectors, while N (D2) includes
constant and linearly varying vectors. Other regularization matrices might be used. For
instance, the regularization matrix

L =

[
In ⊗D1

D1 ⊗ In

]
,

where In denotes the identity matrix of order n and ⊗ stands for the Kronecker product, is
commonly used in image restoration [6, 30].

When a regularization matrix is introduced, formulation (2.8) becomes

(2.10)

 min
s∈Rn

‖Ls‖2

s. t. min
s∈Rn

‖Jks + r(x(k))‖2.

It is important to remark that both (2.8) and (2.10) impose some kind of regularity on the
update vector s for the solution x(k) and not on the solution itself. We will explore in this
paper what the consequence is of imposing a regularity constraint directly on the solution x
of problem (1.1). Approaches of this kind were studied by Eriksson and Wedin [15, 16, 17]:
they proposed a minimal-norm Gauss-Newton method and a Tikhonov regularization method
in standard form. We extend, in Theorem 4.2, the minimal-norm Gauss-Newton method
by introducing a regularization matrix L. Moreover, in Section 5 we investigate Tikhonov
regularization in general form and the use of truncated SVD/GSVD in the minimal-norm
Gauss-Newton method.

In Section 5.2 we will see that, in the limit, the minimal-norm Gauss-Newton iteration and
the iteration obtained through Tikhonov regularization in standard form are closely related; the
same happens for the minimal-L-norm Gauss-Newton iteration and Tikhonov regularization
in general form.

We conclude this section by recalling the singular value decomposition (SVD) of a
matrix J and the generalized singular value decomposition (GSVD) of a matrix pair (J, L),
which will be useful in the rest of the paper.

The SVD is a matrix decomposition of the form

(2.11) J = UΣV T ,

where U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n are matrices with
orthonormal columns. The non-zero diagonal elements of the diagonal matrix Σ ∈ Rm×n are
the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 with r = rank(J) ≤ min(m,n).

Let J ∈ Rm×n and L ∈ Rp×n be matrices with rank(J) = r and rank(L) = p. Assume
that m+ p ≥ n and

rank

([
J
L

])
= n,

which corresponds to requiring that N (J) ∩N (L) = {0}. The GSVD is a matrix decomposi-
tion of the form

(2.12) J = UΣJW
−1, L = V ΣLW

−1,
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where U ∈ Rm×m and V ∈ Rp×p are matrices with orthonormal columns ui and vi,
respectively, and W ∈ Rn×n is nonsingular. If m ≥ n ≥ r, then the matrices ΣJ ∈ Rm×n
and ΣL ∈ Rp×n have the form

(2.13) ΣJ =


On−r

C
Id

O(m−n)×n

 , ΣL =

 Ip−r+d
Op×d

S

 ,
where d = n− p,

C = diag(c1, . . . , cr−d), 0 < c1 ≤ c2 ≤ · · · ≤ cr−d < 1,

S = diag(s1, . . . , sr−d), 1 > s1 ≥ s2 ≥ · · · ≥ sr−d > 0,

with c2i +s2i = 1, for i = 1, . . . , r−d. The identity matrix of size k is denoted by Ik, whileOk
and Ok×` are zero matrices of size k and k × `, respectively; a matrix block has to be omitted
when one of its dimensions is zero. The scalars γi = ci

si
are called generalized singular values,

and they appear in nondecreasing order.
If r ≤ m < n, then the matrices ΣJ ∈ Rm×n and ΣL ∈ Rp×n take the form

(2.14) ΣJ =

 Om−r
Om×(n−m) C

Id

 , ΣL =

 Ip−r+d
Op×d

S

 ,
where the blocks are defined as above.

3. Nonlinear minimal-norm solution. Let us discuss the computation of the minimal-
norm solution to the nonlinear problem (1.1),

(3.1)

 min
x∈Rn

‖x‖2

s. t. min
x∈Rn

‖F (x)− b‖2.

We consider the following iterative method of type (2.4), based on a first-order linearization of
the problem:

(3.2)

 min
s∈Rn

‖x(k) + s‖2

s. t. min
s∈Rn

‖Jks + r(x(k))‖2,

where Jk = J(x(k)) is the Jacobian of F in x(k). We will denote this as the minimal-norm
Gauss-Newton (MNGN) method.

A theorem similar to the following one is presented, in a slightly general form, in [15, 16,
17]. We provide here a statement and a proof in terms of the SVD, which is useful from a
computational point of view.

THEOREM 3.1. Let x(k) ∈ Rn, and let x̃(k+1) = x(k) + s(k) be the Gauss-Newton
iteration for (1.1), where the step s(k) is determined by solving (2.8). Then, the iteration
x(k+1) for (3.2), starting from the same point x(k), is given by

x(k+1) = x̃(k+1) − V2V T2 x(k),

where rank(Jk) = r and the columns of the matrix V2 = [vr+1, . . . ,vn] are orthonormal
vectors in Rn spanning the null space of Jk.
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Proof. Let UΣV T be the singular value decomposition of the matrix Jk. The norm of the
solution x(k+1) of (3.2) may be expressed as

‖x(k+1)‖2 = ‖V T (x(k) + s)‖2 = ‖y + z(k)‖2,

with y = V T s and z(k) = V Tx(k). Replacing Jk by its SVD and setting b(k) = UT r(x(k)),
we can rewrite (3.2) as the following diagonally constrained least-squares problem min

y∈Rn
‖y + z(k)‖2

s. t. min
y∈Rn

‖Σy + b(k)‖2.

Solving the second minimization problem uniquely determines the components yi = −σ−1i b
(k)
i ,

i = 1, . . . , r, while the entries yi, i = r + 1, . . . , n, are undetermined. In order to minimize
the norm of the solution

‖y + z(k)‖2 =

r∑
i=1

(
−b

(k)
i

σi
+ z

(k)
i

)2

+

n∑
i=r+1

(
yi + z

(k)
i

)2
,

we set yi = −z(k)i = −vTi x(k), i = r + 1, . . . , n. The solution to (3.2), that is, the next
approximation to the solution of (3.1), is then

(3.3) x(k+1) = x(k) −
r∑
i=1

b
(k)
i

σi
vi −

n∑
i=r+1

(vTi x
(k))vi,

where the last summation can be written in matrix form as V2V T2 x(k).
Similarly, we rewrite (2.8) as the following diagonal least-squares problem min

y∈Rn
‖y‖2

s. t. min
y∈Rn

‖Σy + b(k)‖2,

with y = V T s, obtaining

x̃(k+1) = x(k) + s(k) = x(k) −
r∑
i=1

b
(k)
i

σi
vi.

Then,

x(k+1) = x̃(k+1) − V2V T2 x(k),

where the columns of V2 = [vr+1, . . . ,vn] are a basis for N (Jk). This completes the proof.

REMARK 3.2. Let PN (Jk) represent the orthogonal projector onto N (Jk). Since
PN (Jk) = V2V

T
2 , the above theorem shows that, unlike the Gauss-Newton method, the

(k + 1)th iterate of the MNGN method is orthogonal to the null space of Jk. Then, equa-
tion (3.3) may be expressed in the more general form [15, 16, 17]

x(k+1) = x(k) −
[
J†k PN (Jk)

] [r(x(k))
x(k)

]
.
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REMARK 3.3. It is useful to remember that V2V T2 = In − V1V
T
1 with the matrix

V1 = [v1, . . . ,vr]. So, the updated solution can be obtained without necessarily computing
the singular vectors vi, i = r + 1, . . . , n, i.e., when a compact SVD is available

x(k+1) = x(k) + s(k) − V2V T2 x(k) = s(k) + V1V
T
1 x(k).

REMARK 3.4. In the first numerical example of Section 7, the approach of projecting
the iterates orthogonally to the null space of Jk will also be applied to Newton’s method.
This approach is only heuristic in this case. It will be shown that the solution at convergence
coincides with the one produced by the MNGN method but that the speed of convergence of
Newton’s method degrades.

4. Nonlinear minimal-L-norm solution. Let us introduce a regularization matrix
L ∈ Rp×n, p ≤ n. We seek to compute the minimal-L-norm solution to the nonlinear
problem (1.1), that is, the vector x which solves the constrained problem

(4.1)

 min
x∈Rn

‖Lx‖2

s. t. min
x∈Rn

‖F (x)− b‖2.

Similarly to the previous section, we consider an iterative method of type (2.4), where the step
s(k) is the solution of the linearized problem

(4.2)

 min
s∈Rn

‖L(x(k) + s)‖2

s. t. min
s∈Rn

‖Jks + r(x(k))‖2.

We will denote this as the minimal-L-norm Gauss-Newton (MLNGN) method.
Let Jk = UΣJW

−1, L = V ΣLW
−1 be the GSVD of the matrix pair (Jk,L). We indicate

by wi the column vectors of the matrix W and by ŵj the rows of W−1, that is,

W = [w1, . . . ,wn], W−1 =

ŵ
1

...
ŵn

 .
The columns of W and the rows of W−1 form a pair of biorthogonal bases, i.e., ŵiwj = δij .

LEMMA 4.1. If r = rank(Jk), then

N (Jk) = span(w1, . . . ,wn−r).

Proof. Any vector x in Rn can be represented in the basis {wi}ni=1 by writing

(4.3) x = W (W−1x) =

n∑
j=1

(ŵjx)wj .

From the GSVD of (Jk, L), we obtain

Jkx =

m∑
i=1

δiui,
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where δ = (δ1, . . . , δn)T = ΣJW
−1x. When m ≥ n, (2.13) leads to

δi =


0, i = 1, . . . , n− r,
ci−n+r(ŵ

ix), i = n− r + 1, . . . , p,

ŵix, i = p+ 1, . . . , n,

0, i = n+ 1, . . . ,m,

so that Jkx = 0 if and only if ŵix = 0, for i = n− r + 1, . . . , n. By (4.3), this means that

x ∈ span(w1, . . . ,wn−r).

When m < n, from (2.14) we obtain

δi =


0, i = 1, . . . ,m− r,
ci−m+r(ŵ

i−m+nx), i = m− r + 1, . . . ,m+ p− n,
ŵi−m+nx, i = m+ p− n+ 1, . . . ,m,

so the same conclusion holds true: x ∈ N (Jk) if and only if x ∈ span(w1, . . . ,wn−r).

THEOREM 4.2. Let x(k) ∈ Rn, and let x̃(k+1) = x(k) + s(k) be the Gauss-Newton
iteration for (1.1), where the step s(k) has been determined by solving (2.10). Then, the
iteration x(k+1) for (4.2), starting from the same point x(k), is given by

(4.4) x(k+1) = x̃(k+1) −W1Ŵ1x
(k),

where Ŵ1 ∈ R(n−r)×n contains the first n−r rows ofW−1 andW1 ∈ Rn×(n−r) is composed
by the first n− r columns of W .

Proof. Replacing Jk and L with their GSVD and setting y = W−1s, z(k) = W−1x(k),
and b(k) = UT r(x(k)), (4.2) can be rewritten as the following diagonal least-squares problem

(4.5)

 min
y∈Rn

‖ΣL(y + z(k))‖2

s. t. min
y∈Rn

‖ΣJy + b(k)‖2.

When m ≥ n, the diagonal linear system in the constraint is solved by a vector y with entries

yi =


− b

(k)
i

c
i−n+r

, i = n− r + 1, . . . , p,

−b
(k)

i , i = p+ 1, . . . , n,

while the components yi, for i = 1, . . . , n− r, can be determined by minimizing the norm

(4.6) ‖ΣL(y + z(k))‖2 =

n−r∑
i=1

(
yi + z

(k)
i

)2
+

p∑
i=n−r+1

(
− b

(k)
i

γi−n+r
+ si−n+rz

(k)
i

)2

,

where γi = ci
si

are the generalized singular values of the matrix pair (Jk, L). The minimum
of (4.6) is reached for

yi = −z(k)i = −ŵix(k), i = 1, . . . , n− r,
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and the solution to (4.2), that is, the next approximation for the solution of (4.1), is

(4.7) x(k+1) = x(k) −
n−r∑
i=1

z
(k)
i wi −

p∑
i=n−r+1

b
(k)
i

ci−n+r
wi −

n∑
i=p+1

b
(k)
i wi,

where the first summation at the right-hand side can be rewritten in the form W1Ŵ1x
(k).

Applying the same procedure to (2.10), we obtain

(4.8) x̃(k+1) = x(k) −
p∑

i=n−r+1

b
(k)
i

ci−n+r
wi −

n∑
i=p+1

b
(k)
i wi,

from which (4.4) follows. We note that the last summation in (4.7) and (4.8) is the component
of the update vector s in the null space of L.

When m < n, (2.14) yields the following solution for the diagonal system in (4.5),

yi =


−
b
(k)
i−n+m
c
i−n+r

, i = n− r + 1, . . . , p,

−b
(k)

i−n+m, i = p+ 1, . . . , n,

from which, after minimizing the weighted norm like in (4.6), we obtain

(4.9) x(k+1) = x(k) −
n−r∑
i=1

z
(k)
i wi −

p∑
i=n−r+1

b
(k)
i−n+m
ci−n+r

wi −
n∑

i=p+1

b
(k)
i−n+mwi.

Since solving (2.10) when m < n leads to a formula similar to (4.8) with b(k)i−n+m in place of

b
(k)
i , the validity of (4.4) is confirmed.

5. Regularization. The nonlinear function F (x) is considered ill-conditioned in a do-
main D ⊂ Rn when the condition number κ(J) of the Jacobian J = J(x) is very large for
any x ∈ D. In this situation, it is common to apply a regularization procedure to each step of
the Gauss-Newton method.

The truncated singular value decomposition (TSVD) solves (2.8) after substituting Jk by
its best rank-` approximation, that is,

(5.1) J
(`)
k = argmin

rank(M)=`

‖Jk −M‖2 =
∑̀
i=1

σiuiv
T
i ,

where (σi,ui,vi) is the ith singular triplet for Jk; see (2.11). Here, ` plays the role of a
regularization parameter, which has to be carefully chosen. Its role is to approximate the initial
least-squares problem by a better-conditioned problem. Choosing its value amounts to finding
a compromise between fidelity to the original model and numerical stability.

Another classical approach is Tikhonov regularization, in which the minimization prob-
lem (2.5) is replaced by

(5.2) min
s∈Rn

{
‖Jks + r(x(k))‖2 + λ2‖s‖2

}
,

for a fixed value of the parameter λ > 0. The regularization parameter λ controls the balance
between the two terms of the functional, i.e., the weights attributed to the residual term and to
the regularization term.
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If a regularization matrix L ∈ Rp×n is introduced, then (2.8) becomes (2.10), and the
regularized solution is computed by the truncated generalized singular value decomposition
(TGSVD). If the Tikhonov approach is followed, then the standard form functional (5.2) is
expressed in general form

(5.3) min
s∈Rn

{
‖Jks + r(x(k))‖2 + λ2‖Ls‖2

}
.

We stress that both (5.2) and TSVD applied to (2.8) impose a regularity constraint on the
update vector s for the solution x(k) and not on the solution itself in the same matter as (5.3)
and TGSVD applied to (2.10) do.

5.1. Truncated minimal-norm solution. When the function F is ill-conditioned, we
propose a truncated minimal-norm Gauss-Newton (TMNGN) method to solve (3.2). We
choose a value for the truncation parameter 1 ≤ ` ≤ r, an initial solution x

(0)
` , and compute

(5.4) x
(k+1)
` = x

(k)
` −

∑̀
i=1

b
(`,k)
i

σi
vi − V2,`V T2,`x

(k)
` , k = 0, 1, 2, . . . ,

where V2,` = [v`+1, . . . ,vn], until convergence. In the above formula, b(`,k) = UT r(x
(k)
` )

as in the proof of Theorem 3.1. Notice that the columns of V2,` form a basis for the null space
of the rank-` approximation (5.1) of the Jacobian.

In case a partial SVD is computed, say, up to the truncation index `, the last term may
be expressed as (I − V1,`V T1,`)x

(k)
` , where V1,` = [v1, . . . ,v`]. There are several methods for

computing a partial SVD for large scale problems [1, 2, 3, 27, 41].
To solve (4.2), we employ a truncated minimal-L-norm Gauss-Newton (TMLNGN)

method. This consists of choosing an integer 0 ≤ ` ≤ p− n+ r = r − d (see (4.7) and (4.9))
and computing, for k = 0, 1, 2, . . . until convergence, the iterates

(5.5) x
(k+1)
` = x

(k)
` −

p∑
i=p−`+1

b
(`,k)
i−N

ci−n+r
wi −

n∑
i=p+1

b
(`,k)
i−Nwi −W1,`Ŵ1,`x

(k)
` ,

where N = max(n−m, 0). The matrix W1,` ∈ Rn×(p−`) contains the first p− ` columns of
W , and Ŵ1,` ∈ R(p−`)×n the first p− ` rows of W−1. Again, the columns of W1,` span the
null space of J (`)

k .
In formulas (5.4) and (5.5), the solution at convergence will be denoted by x`. Under the

assumption that the exact data vector b̂ is perturbed by noise

(5.6) b = b̂ + e,

the classical discrepancy principle introduced by Morozov [33] will be used to estimate
the optimal value of the regularization parameter, namely, selecting the smallest truncation
parameter ` such that

(5.7) ‖F (x`)− b‖ ≤ τ‖e‖,

where τ > 1 is a constant independent of the noise level ‖e‖. When the noise level is
unknown, heuristic methods are commonly used, such as the L-curve criterion [20, 23, 24].
For an analysis of other heuristic methods; see [22, 28, 35, 39].
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5.2. Minimal-norm Tikhonov solution. We assume here that a regularizing term is
added to the least-squares problem (1.1), transforming it into the minimization of the nonlinear
Tikhonov functional

(5.8) min
x∈Rn

{
‖F (x)− b‖2 + λ2‖Lx‖2

}
,

where λ > 0 is a continuous regularization parameter and L ∈ Rp×n is a regularization matrix.
We will apply the Gauss-Newton method to the solution of (5.8) and compare the iterates
to those derived from the application of the same method to (1.1) followed by the Tikhonov
regularization of each step as in (5.3).

Linearizing (5.8), we obtain

(5.9) min
s∈Rn

{
‖Jks + r(x(k))‖2 + λ2‖L(x(k) + s)‖2

}
.

We first analyze the case L = In.
THEOREM 5.1. Let rank(Jk) = r. The iteration for (5.9) is given by

(5.10) x(k+1) = x(k) −
r∑
i=1

σib
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi − V2V T2 x(k),

where b(k) = UT r(x(k)), z(k) = V Tx(k), and V2 = [vr+1, . . . ,vn] is defined as in Theo-
rem 3.1.

Proof. Computing the gradient of the function (5.9) with L = In yields the normal
equations associated to the penalized least-squares problem

(5.11) (JTk Jk + λ2In)s = −JTk r(x(k))− λ2x(k).

By employing the singular value decomposition Jk = UΣV T , the normal equations (5.11)
become

(5.12) (ΣTΣ + λ2In)y = −ΣTb(k) − λ2z(k),

with y = V T s, b(k) = UT r(x(k)), and z(k) = V Tx(k). The solution to the diagonal normal
equations (5.12),

yi =

−
σib

(k)
i + λ2z

(k)
i

σ2
i + λ2

, i = 1, . . . , r,

−z(k)i , i = r + 1, . . . , n,

leads to the Tikhonov-Gauss-Newton (TikGN) iterate, which solves (5.9):

x(k+1) = x(k) −
r∑
i=1

σib
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi −
n∑

i=r+1

z
(k)
i vi.

The last summation can be rewritten in matrix form as V2V T2 x(k), where V2 = [vr+1, . . . ,vn].
This completes the proof.

The normal equations associated to (5.2) are

(JTk Jk + λ2In)s = −JTk r(x(k)),
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which become after substituting the SVD of Jk,

(ΣTΣ + λ2In)y = −ΣTb(k).

The solution to this diagonal system

yi =

−
σib

(k)
i

σ2
i + λ2

, i = 1, . . . , r,

0, i = r + 1, . . . , n,

produces the iterate

(5.13) x(k+1) = x(k) −
r∑
i=1

σib
(k)
i

σ2
i + λ2

vi.

Comparing equation (5.13), where the approximate solution is obtained by imposing
the regularity constraint on the update vector s, to the iteration (5.10), where the regularity
constraint is imposed on the approximate solution x(k+1), we see that the TikGN method
implements a different filtering technique with respect to the standard application of Tikhonov
regularization to the Gauss-Newton iteration and produces approximate solutions which are
orthogonal to the null space of the Jacobian matrix Jk.

REMARK 5.2. Since V2V T2 = In − V1V T1 , the updated solution (5.10) can be expressed
without the explicit use of the singular vectors vi, i = r + 1, . . . , n, in the form

x(k+1) = V1V
T
1 x(k) −

r∑
i=1

σib
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi.

This is useful when a compact SVD is available.

Formula (5.10) immediately yields the following result.
COROLLARY 5.3. When the regularization parameter λ approaches zero, the TikGN

iterate computed by (5.10) converges to the MNGN solution (3.3), that is,

x
(k+1)
MNGN = lim

λ→0+
x
(k+1)
TikGN .

We now turn to the case L 6= In. We will denote the resulting method by TikLGN.
THEOREM 5.4. Let rank(Jk) = r. The iteration for the TikLGN approach (5.9) is

(5.14) x(k+1) = x(k) −
p∑

i=n−r+1

ξiwi −
n∑

i=p+1

b
(k)
i−Nwi −W1Ŵ1x

(k),

with

ξi =
ci−n+rb

(k)
i−N + λ2s2i−n+rz

(k)
i

c2i−n+r + λ2s2i−n+r
, i = n− r + 1, . . . , p,

where N = max(n−m, 0) and W1 and Ŵ1 are defined as in Theorem 4.2.
Proof. Let us consider the generalized singular value decomposition (GSVD) (2.12) of

the matrix pair (Jk, L). We initially assume that m ≥ n ≥ r = rank(Jk) and that L has full
rank, i.e., rank(L) = p. We have Jk = UΣJW

−1 and L = V ΣLW
−1, with ΣJ and ΣL

given by (2.13).
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Substituting the GSVD in the normal equations associated to (5.9) ,

(JTk Jk + λ2LTL)s = −JTk r(x(k))− λ2LTLx(k),

leads to

(5.15) (D + λ2H)y = −ΣTJb
(k) − λ2Hz(k),

where

D =

On−r C2

In−p

 , H =

In−r S2

On−p

 ,
y = W−1s, b(k) = UT r(x(k)), and z(k) = W−1x(k). The diagonal system (5.15) yields the
iterate

(5.16) x(k+1) = x(k) −
p∑

i=n−r+1

ξiwi −
n∑

i=p+1

b
(k)
i wi −W1Ŵ1x

(k),

where

ξi =
ci−n+rb

(k)
i + λ2s2i−n+rz

(k)
i

c2i−n+r + λ2s2i−n+r
, i = n− r + 1, . . . , p.

Similarly, when r ≤ m < n, the TikLGN approach leads to the iterate

(5.17) x(k+1) = x(k) −
p∑

i=n−r+1

ξ′iwi −
n∑

i=p+1

b
(k)
i−n+mwi −W1Ŵ1x

(k),

with

ξ′i =
ci−n+rb

(k)
i−n+m + λ2s2i−n+rz

(k)
i

c2i−n+r + λ2s2i−n+r
, i = n− r + 1, . . . , p.

Introducing N = n −m if m < n and zero otherwise, the overdetermined (5.16) and the
underdetermined (5.17) cases may be condensed into the single expression (5.14), and this
completes the proof.

The normal equations associated to (5.3), if m ≥ n ≥ r, are

(JTk Jk + λ2LTL)s = −JTk r(x(k)),

that is,

(D + λ2H)y = −ΣTJb
(k),

where D, H , and b(k) are defined as above. This diagonal system yields

(5.18) x(k+1) = x(k) −
p∑

i=n−r+1

ci−n+rb
(k)
i

c2i−n+r + λ2s2i−n+r
wi −

n∑
i=p+1

b
(k)
i wi.
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When r ≤ m < n, the iteration induced by (5.3) is

(5.19) x(k+1) = x(k) −
p∑

i=n−r+1

ci−n+rb
(k)
i−n+m

c2i−n+r + λ2s2i−n+r
wi −

n∑
i=p+1

b
(k)
i−n+mwi.

We can condense the overdetermined (5.18) and the underdetermined (5.19) cases into a
single expression, introducing N defined as in the Theorem 5.4:

x(k+1) = x(k) −
p∑

i=n−r+1

ci−n+rb
(k)
i−N

c2i−n+r + λ2s2i−n+r
wi −

n∑
i=p+1

b
(k)
i−Nwi.

Comparing (5.14) to this formula shows, as in the case L = In, that the minimal-L-norm
approach and the traditional Tikhonov method produce different reconstructions. Also, when
the regularization parameter λ approaches zero, the TikLGN solution converges to the MLNGN
solution.

COROLLARY 5.5. For the iterations computed by the MLNGN method (4.7) and by the
TikLGN method (5.16), it holds that

x
(k+1)
MLNGN = lim

λ→0+
x
(k+1)
TikLGN.

In formulas (5.10) and (5.14), the solution at convergence will be denoted by xλ, and also
in this case we will consider the right-hand side b to be affected by noise as in (5.6). The
regularization parameter λ will be estimated by the discrepancy principle [33], substituting
F (x`) by F (xλ) in (5.7).

6. Implementation details. In some situations, the gsvd routine provided by Matlab
produces unexpected results. We observed that when the norm of the Jacobian matrix Jk
is very small, the GSVD of (Jk, L) may produce an inaccurate factor W , which prevents
the Gauss-Newton method (4.2) to converge. To overcome such numerical issues, when
‖Jk‖∞ < ρ (in the experiments we set ρ = 10−6), we rescale the least-squares problem (4.2)
to obtain  min

s∈Rn
‖L(x(k) + s)‖2

s. t. min
s∈Rn

‖J̃ks + r̃k‖2,

with J̃k = ρ−1Jk and r̃k = ρ−1r(x(k)), before applying the algorithms described in the
preceding sections. The Armijo-Goldstein principle (2.7) is modified accordingly. Similarly,
the Tikhonov approach (5.9) is rescaled.

We adopt the following stopping rule for all the iterative methods. We iterate until either
the difference between two successive approximations is small enough

‖x(k) − x(k−1)‖ < δ‖x(k)‖

or until a chosen maximum number of iterationsKmax is reached. In our tests, we set δ = 10−8

and Kmax = 60.
In the case of ill-conditioned problems, it is useful to consider an additional stopping

criterion in order to detect the unboundedness of the solution for a particular value of the
regularization parameter. The iteration is interrupted when one of the preceding conditions is
reached or when the ratio between the norms of the kth approximate solution and the initial
point is larger than 108.
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FIG. 7.1. Convergence of problem (7.1) with α = β = 1
9

and x(0) = (5, 3)T . In the 3D graph on the left, the
white dashed line represents the locus of the solutions, the red dots are the iterations of the MNGN method, and the
black ones correspond to the GN method. The graph on the right reports the residuals for each method.

7. Numerical examples. In this section, we present two classes of numerical examples.
In the first one, we apply the minimal-norm Gauss-Newton (MNGN) method of Section 3
to a well-conditioned problem of small dimension in order to visualize its convergence and
compare it to the standard Gauss-Newton iteration. In the second numerical example, we
apply the regularization techniques of Sections 5.1 and 5.2, that is, the truncated minimal-L-
norm Gauss-Newton (TMLNGN) method and the minimal-L-norm Tikhonov-Gauss-Newton
(TikLGN) method, to an ill-conditioned nonlinear problem of larger size. In each experiment,
we solve problem (1.1) for a particular function F (x) with values in Rm for x ∈ Rn.

The numerical experiments were performed on an Intel Xeon computer (12 cores, 24
threads) with 32 GB RAM, running the Debian GNU/Linux operating system. The computa-
tional code, implemented in Matlab R2019a, is available upon request.

7.1. A well-conditioned example. In this example, we let m = 1 and x = (x1, x2)T in
R2. The residual r : R2 → R is the nonlinear function defined by

r(x) = F (x)− b =
[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
+ 1,

depending upon the parameters α, β ∈ R. We minimize the objective function

(7.1) f(x) =
1

2
r(x)2 =

1

2

{[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
+ 1
}2

,

which can be graphically represented by a surface.
In this case, the least-squares problem (1.1) is underdetermined, so it has infinitely

many solutions. We solve it by Newton’s method (2.3), the Gauss-Newton method (2.6), the
minimal-norm Gauss-Newton method (3.3), and the “projected” Newton method discussed in
Remark 3.4.

First we consider α = β = 1
9 . Figure 7.1 illustrates the progress of the iterations: the

graph on the left displays the iterates produced by the MNGN and the GN methods in a 3D
representation of f(x). The one on the right reports the residuals corresponding to the above
methods, to Newton’s method (N), and to the “projected” Newton method (MNN). The last
two methods converge to the same solutions as the GN and MNGN methods, respectively, so
they are not represented in the 3D plot.

All the methods reach convergence as the residuals converge to zero. We see that MNGN
takes longer to converge as it must “travel” across the solutions locus to reach the minimal-
norm solution, which is the one nearby the origin. On the contrary, GN converges to the
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FIG. 7.2. Contour plots for problem (7.1): on the left α = β = 1
9

, on the right α = 1 and β = 1
10

. The red
dots are the iterates of the MNGN method and the black ones the approximations produced by the GN method. The
thick black dot in the graph on the right is the minimal-norm solution.

solution closer to the initial point. This fact is even clearer in the contour plot on the left of
Figure 7.2.

Observing the residuals, we see that Newton’s method has the highest convergence rate.
Anyway, if we trivially project its iterates orthogonally to the null space of the Jacobian (see
Remark 3.4), then it converges to the minimal-norm solution, but its speed of convergence
degrades and equals the MNGN method. So, no computational gain is derived from its higher
complexity.

It is also interesting to observe that the residuals of the MNGN method are not monotoni-
cally decreasing. The method, in some measure, is able to step away from the local attraction
basin in order to chase the minimal-norm solution. Anyway, the dependence upon the initial
point x(0) is obviously maintained. This is shown in the contour plot on the right of Figure 7.2,
which illustrates the convergence of the GN and MNGN methods when α = 1 and β = 1

10 ,
starting from the same initial point. The MNGN method converges, in this case, to a solution
with a smaller norm (i.e., with a smaller distance from the origin) than the one computed by
the GN method but not to the minimal-norm solution identified by a thick black dot in the
graph.

7.2. An ill-conditioned example. Electromagnetic induction (EMI) techniques are used
to investigate soil properties in a non-destructive way. A nonlinear forward model for predicting
the EM response of the subsoil was described in [42]. A regularized inversion algorithm
was studied in [10, 12] and recently extended to process complex-valued data sets [11]. The
algorithm, as well as the forward model, were coded in Matlab and included in a publicly
available software package [9], which has already been employed in real-world applications [5,
11, 13].

In the model, the soil is assumed to have a layered structure with n layers. As it is usual in
many applications, we let the magnetic permeability take the constant value µ0 = 4π10−7H/m
(Henry/meter), that is, the value in the empty space. Let σi denote the electrical conductivity
in the ith layer.

A measuring device generates an electromagnetic (primary) field and senses the induced
(secondary) electromagnetic field. According to the instrument configuration (orientation of
the coils, height above the ground, inter-coil distance, alternating current frequency) multiple
measurements are available; see [10]. We will denote them by bi, i = 1, . . . ,m, and the model
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FIG. 7.3. Electromagnetic data inversion: m = n = 20, noise level ε = 10−2, comparison of the solution
corresponding to the regularization matrices L = I , D1, and D2. The initial point is σ(0) = 50e. The exact
solution is compared to the solutions computed by TikGN/TikLGN on the left and by TMNGN/TMLNGN on the right.
The parameters λ and ` are the best possible.

prediction by F (σ), where σ = (σ1, . . . , σn)T . Then, the problem of data inversion consists
of computing the conductivity vector σ which determines the best fit to the data vector b, that
is, the one which solves the problem

(7.2) min
σ∈Rn

‖r(σ)‖2, with r(σ) = F (σ)− b.

In our numerical simulation, we fix the following test model for the electrical conductivity
as a function of depth,

(7.3) σ(z) = e−(z−1.2)
2

.

We discretize the soil by n = 20 uniformly spaced layers up to the depth of 3.5m (meters),
and we assign to each layer the conductivity σi = σ(zi), i = 1, . . . , n, with z1 = 0m and
zn = 3.5m. We choose the configuration of an existing device (the Geophex GEM-2), using
a single pair of coils at 1.66m distance and 5 different current frequencies. This means that
it can acquire 5 measurements for each sampling. The forward model generates a noise-free
data vector b of m synthetic measurements, corresponding to placing the instrument at two
different heights above the ground (0.75m and 1.5m) with the coils either in vertical orientation
(m = 10) or in vertical and horizontal orientations (m = 20). To simulate experimental errors,
the noise-free data vector b̂ is perturbed by

b = b̂ +
ε‖b̂‖√
m

w,

where w is a normally distributed random vector with zero mean and unitary variance and ε
represents the noise level.

We solve problem (7.2) by the damped Gauss-Newton method with the damping parameter
determined by the Armijo-Goldstein principle. Each step of the iterative method is regularized
by one of the methods described in this paper. In the standard case, when L = I , we display the
solutions computed by the TMNGN (5.4) and TikGN (5.10) methods; when a regularization
matrix is present, that is, when L = D1 or D2 (see (2.9)), we apply the TMLNGN (5.5) and
TikLGN (5.14) methods.

The regularization parameters λ and ` are chosen both by minimizing the 2-norm error
with respect to the exact solution in order to ascertain the best possible performance of the
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FIG. 7.4. Electromagnetic data inversion: m = n = 20, noise level ε = 10−2, regularization matrix L = D1,
initial point σ(0) = 50e. The exact solution is compared to the solutions computed by TikLGN and the standard
Tikhonov method (on the left) and by TMLNGN and by the Gauss-Newton method regularized by TGSVD, labelled as
TGN (on the right). The parameters λ and ` are the best possible.

methods and by the discrepancy principle (see Section 5) to test the algorithms in a realistic
situation.

We start by discussing the importance of the regularization matrix L for the accuracy of
the solution. The data set is composed by m = 20 measurements, the noise level is ε = 10−2,
a value consistent with experimental data sets, and the initial vector is σ(0) = 50e with
e = (1, . . . , 1)T ∈ R20.

The model function (7.3) is smooth, favoring a regularizing term based on the approxima-
tion of the first or second derivatives. The graphs in Figure 7.3 compare the solutions obtained
by the regularization matrices L = I , D1, and D2. The computation is performed by using a
Tikhonov approach (graph on the left) and by truncating the SVD/GSVD in the minimal-norm
Gauss-Newton iteration (on the right). In the first case the solution corresponding to L = I is
evidently less accurate than the others. In the second one, the minimal-norm method TMNGN
converges to a solution which is totally different from the model function, while the other two
reconstructions are close to it. We also observe that in this case, as it happened in other experi-
ments, Tikhonov regularization can reach a higher accuracy than the truncated SVD/TSVD
approach. This is probably due to the fact that the regularization parameter λ can be varied
continuously, while the parameter ` can only take integer values. In this example and in the
following one, both parameters are chosen by minimizing the 2-norm error.

In many cases, especially when the initial vector used to initialize the iteration is close
enough to the solution of the problem, the minimal-norm and the standard approaches produce
similar approximations. Anyway, when the initial vector is rather far away from the solution,
there are cases in which the minimal-norm methods are significantly more accurate and less
sensible to the presence of local minima than the traditional approaches.

Figure 7.4 shows one of these cases. Here the minimal-norm algorithms are compared
to the traditional approaches, namely, Tikhonov regularization (5.3) and the Gauss-Newton
method regularized by TGSVD, labeled as TGN. The regularization matrix is the discretization
of the first derivative operator; the other parameters are the same as in the previous example.
We observe from the graph at the left of Figure 7.4 that the TikLGN method (5.9) reproduces
very closely the exact solution, while the Tikhonov approach (5.3) is far less accurate. The
graph at the right shows that, with the same data set, the reconstruction obtained by TGN is
completely wrong, while the one produced by TMLNGN is acceptable.
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FIG. 7.5. Electromagnetic data inversion: m = 10, n = 20, noise level ε = 10−4, regularization matrix
L = D1 (left column) and L = D2 (right column). The initial point is σ(0) = 1.5e. The exact solution is compared
to the solutions computed by TikLGN and the standard Tikhonov method (top row) and by TMLNGN/TGN (bottom
row). The parameters λ and ` have been chosen by the discrepancy principle.

In Figure 7.5 we illustrate the performance of the discrepancy principle in estimating
the regularization parameters λ and `. In this example, we consider m = 10 data values,
the initial solution σ(0) = 1.5e, and the noise level ε = 10−4. The regularization matrix is
the discretization of the first derivative for the graphs in the left column and of the second
derivative for the right column. The graphs in the top row concern the reconstructions obtained
by the TikLGN and Tikhonov methods with λ determined by the discrepancy principle. All
solutions are acceptable, but the minimal-L-norm ones are slightly more accurate. At the
bottom row we report the results obtained by the TMLNGN method and the Gauss-Newton
method regularized by TGSVD (TGN). In this case, the TGN solutions, with ` estimated
by (5.7), are strongly underregularized compared to the minimal-norm reconstructions.

8. Conclusions. This paper explores the solution of a nonlinear least-squares problem in
the case its solution lacks unicity. The usual approach is to compute the minimal-norm solution
of a linearization of the problem, generating an iterative method which does not guarantee
that the converged solution itself has a minimal norm or minimizes a suitable semi-norm.
Here, we develop various techniques to impose such constraint on the solution. In the case of
ill-conditioned problems, we also propose two regularization algorithms, namely the truncated
minimal-L-norm Gauss-Newton method and the minimal-L-norm Tikhonov-Gauss-Newton
method. In the numerical experiments, we compare the newly proposed methods to the
classical approaches. The results show that the two classes of methods produce, in general,
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different results. The new methods are in some cases less sensitive to the initial guess without
a significant increase in the computational load.
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