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A SIMPLIFIED L-CURVE METHOD AS ERROR ESTIMATOR∗

STEFAN KINDERMANN† AND KEMAL RAIK†

Abstract. The L-curve method is a well known heuristic method for choosing the regularization parameter for
ill-posed problems by selecting it according to the maximal curvature of the L-curve. In this article, we propose
a simplified version that replaces the curvature essentially by the derivative of the parameterization on the y-axis.
This method shows a similar behaviour to the original L-curve method, but unlike the latter, it may serve as an error
estimator under typical conditions. Thus, we can accordingly prove convergence for the simplified L-curve method.
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1. Introduction. The L-curve criterion is one of the best-known heuristic methods for
choosing the regularization parameter in various regularization methods for ill-posed problems.
One of the first instances of an L-curve graph appeared in the book by Lawson and Hanson [27],
although it was not related to a parameter choice procedure. That it can be the basis for a
parameter choice method was originally suggested by Hansen [15], further analyzed by Hansen
and O’Leary [19], and popularized by Hansen, e.g., in [17].

The methodology is well known: Suppose that we are faced with the problem of solving
an ill-posed problem of the form

(1.1) Ax = y,

where y are data and A : X → Y is a continuous linear operator between Hilbert spaces
which lacks a continuous inverse. Moreover, we assume that only noisy data

yδ = y + e, ‖e‖ ≤ δ, y = Ax†,

are available, where x† denotes the “true” unknown solution (or, more precisely, the minimal-
norm solution). Here, e denotes an unknown error, and its norm is called the noise-level δ. In
the case of heuristic parameter choice rules, which the L-curve method is an example of, this
noise-level is considered unavailable.

As the inverse of A is not bounded, the problem (1.1) cannot be solved by classical
inversion algorithms, rather, a regularization scheme has to be applied [8]. That is, one
constructs a one-parametric family of continuous operators (Rα)α, with α > 0, that in some
sense approximates the inverse of A for α→ 0.

An approximation to the true solution of (1.1), denoted as xδα, is computed by means of
the regularization operators:

xδα = Rαyδ.

A delicate issue in regularization schemes is the choice of the regularization parameter α, and
the standard methods make use of the noise-level δ. However, in situations when this is not
available, so-called heuristic parameter choice methods [20] are proposed. The L-curve method
selects an α corresponding to the corner point of the graph (log(‖Axδα − yδ‖), log(‖xδα‖))
parameterized by α.
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Recently, [20, 21, 23] a convergence theory for certain heuristic parameter choice rules has
been developed. Essential in this analysis is a restriction on the noise that rules out noise that
is “too regular”. Such restrictions in the form of Muckenhoupt-type conditions were used in
[20, 23] and are currently the standard tool in the analysis of heuristic rules. If these conditions
hold, then several well-known heuristic parameter choice rules serve as error estimators for
the total error in typical regularization schemes, and convergence and convergence rate results
follow.

The L-curve method, however, does not seem to be accessible to such an analysis, although
some of its properties were investigated, for instance, by Hansen [15, 18] and Reginska [35].
Nevertheless, it does not appear that it can be related to any error estimators directly.

There are various suggestions for efficient practical implementations of the L-curve
method, like Krylov-space methods [6, 36] or model functions [28]. Note that the method
is also implemented in Hansen’s Regularization Tools [16]. A generalization of the L-curve
method in the form of the Q-curve method was recently suggested by Raus and Hämarik [32].
Other simplifications or variations are the V-curve [9] or the U-curve [26]. Some overview
and comparisons of other heuristic and non-heuristic methods are given in [2, 12, 13] and the
PhD. thesis of Palm [30].

The aim of this article is to propose a simplified version of the L-curve method by
dropping several terms in the expression for the curvature of the L-graph. We argue that this
simplified version does not alter the original method significantly, and, moreover, we prove
that the simplified L-curve has error estimating capabilities similar to several other well-known
heuristic methods. This allows us to state conditions under which we can verify convergence
of the simplified L-curve method.

1.1. The L-Curve method and its simplification for Tikhonov regularization. We
use a standard setting of an ill-posed problem of the form (1.1). Although not necessary for
our analysis and only used for clarity, we assume that A is a compact operator and also (again
just for simplicity) that A is injective (the nullspace of A is 0). Then the operator A has a
singular value decomposition (SVD) (σi, vi, ui)i∈N, with the positive singular values σi and
the singular functions vi ∈ X , ui ∈ Y such that

Ax =
∑
i

σi 〈vi, x〉ui, λi := σ2
i > 0,

where 〈·, ·〉 denotes the scalar product in X (or also in Y ). As regularization operator, we em-
ploy Tikhonov regularization, which defines a regularized solution to (1.1) (an approximation
to the true solution x†) via

(1.2) xδα := (A∗A+ αI)−1A∗yδ.

Here, α ∈ (0, αmax) is the regularization parameter. For notational purposes we also define
the (negative) residual pδα and the regularized solution with exact data xα:

pδα := yδ −Axδα = α(AA∗ + αI)−1yδ,

xα := (A∗A+ αI)−1A∗y.

The overall goal of a good parameter choice is always to minimize the total error ‖xδα − x†‖,
which can be bounded by the sum of the stability error ‖xδα − xα‖ and the approximation
error ‖xα − x†‖:

(1.3) ‖xδα − x†‖ ≤ ‖xδα − xα‖+ ‖xα − x†‖.
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It is well known that the approximation error can in general decay arbitrarily slowly. In order
to establish bounds for it and thus derive convergence rates, one has to postulate a certain
smoothness condition on x† in the form of a source condition: Here, we focus on Hölder
source conditions, i.e., such a source condition holds if x† can be expressed as

(1.4) x† = (A∗A)µω, ‖ω‖ ≤ C, µ > 0.

In terms of the SVD, x† satisfies (1.4) if (and only if)

∑
i

|
〈
x†, vi

〉
|2

λ2µi
<∞.

If this is the case, then for Tikhonov regularization we have that

(1.5) ‖xα − x†‖ ≤ Cαµ, for 0 ≤ µ ≤ 1,

and consequently the convergence rate

‖xδα − x†‖ ≤ Cδ
2µ

2µ+1 , for 0 ≤ µ ≤ 1,

which is known to be the optimal order of convergence under (1.4) (for µ ≤ 1). Observe the
saturation effect of Tikhonov regularization, which means that the rates do not improve for
higher source conditions beyond µ > 1; see, e.g., [8].

1.2. The L-curve. The L-curve is a plot of the (logarithm of the) residual against the
(logarithm of the) norm of the regularized solution. Define the following curve parameterized
by the regularization parameter α:

κ(α) = log(‖pδα‖2) = log(‖Axδα − yδ‖2), χ(α) = log(‖xδα‖2).

Then a plot of the curve

(1.6) α→
[
κ(α)
χ(α)

]
,

yields a graph, which often resembles the shape of an “L”, hence its name L-curve. The idea
of the L-curve method is to choose α as the curve parameter that corresponds to the corner
point of the “L”. Since a corner has large curvature, the operational definition of the parameter
selection by the L-curve is that of the maximizer (over the selected range of α) of the curvature
of the L-graph, i.e., α =: α∗ is selected as

α∗ = argmax
α

γ(α),

with the signed curvature defined as (see, e.g., [18]),

γ(α) =
χ′′(α)κ′(α)− χ′(α)κ′′(α)

(χ′(α)2 + κ′(α)2)
3/2

.

Here, a prime ′ denotes differentiation with respect to α. For Tikhonov regularization and
many other methods, it is not difficult to realize that κ(α) is strictly monotonically decreasing
in α, hence, the L-curve can be considered as a graph of a function f = χ(κ−1).
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As already observed by several authors [14, 18, 37], for Tikhonov regularization, the
curvature can be expressed without second-order derivatives and can be reduced to

(1.7) γ(α) =
ηρ

|η′|
ρη + αη′ρ+ α2η′η

(ρ2 + α2η2)
3
2

,

where

η = η(α) := ‖xδα‖2, ρ = ρ(α) := ‖pδα‖2.

The following lemma investigates this expression:
LEMMA 1.1. We have

γ(α) =
η

α|η′|
ζ2

(ζ2 + 1)
3
2

− ζ(1 + ζ)

(ζ2 + 1)
3
2

, with ζ = ζ(α) :=
ρ

αη
(1.8)

=:
η

α|η′|
c1(ζ)− c2(ζ),(1.9)

where

0 ≤ c1(ζ) ≤ 2

3
√

3
, 0 ≤ c2(ζ) ≤ 1√

2
.

Proof. The expression (1.7) can easily be rewritten as (1.8) with

c1(ζ) =
ζ2

(ζ2 + 1)
3
2

, c2(ζ) =
ζ(1 + ζ)

(ζ2 + 1)
3
2

.

By elementary calculus, we may find the maxima for c1 at ζ =
√

2 and for c2 at ζ = 1 yielding
the upper bounds.

According to the rationale for the L-curve method, we are searching for a corner of the
L-graph, i.e., by definition a point where γ(α) has a large positive value. (An ideal corner has
infinite curvature.) Thus, according to (1.9), the only term in the previous lemma that could
contribute to large values is η

α|η′| . Hence, backed by Lemma 1.1, we propose to remove the
ζ-dependent term and, instead of (1.6), maximize the functional

α∗ = argmax
α

η

α|η′|
,

which leads to the simplified L-curve methods of this article. Instead of maximization, we may
equivalently consider minimizing the reciprocal, and as η′ ≤ 0, we may replace |η′| by −η′.
Moreover, we propose two versions of the simplified method (the factor 1

2 below is introduced
for notational purposes and is irrelevant for the analysis and the method):

DEFINITION 1.2. The simple-L method selects the regularization parameter α as the
minimizer (over a range of α-values) of the simple-L functional:

α∗ = argmin
α

ψSL(α),

ψSL(α) :=

(
−1

2
αη′(α)

) 1
2

=

(
−
〈
xδα, α

∂

∂α
xδα

〉) 1
2

.
(1.10)

The simple-L ratio method selects α as the minimizer (over a range of α-values) of

α∗ = argmin
α

ψSLR(α),

ψSLR(α) :=

(
−1

2

αη′(α)

η(α)

) 1
2

=

(
−
〈
xδα, α

∂
∂αx

δ
α

〉
‖xδα‖2

) 1
2

=
ψSL(α)

‖xδα‖
.
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The main advantage that these simplified L-curve methods hold is that under certain conditions,
they serve as error estimators and convergence of the associated parameter choice methods
can be proven in contrast to the original L-curve method.

Another reason for using the simplified functionals is that ψSL resembles and can be
compared with several other heuristic parameter choice functionals, which are known to have
error-estimating properties. For instance the quasi-optimality (QO) principle defines α as the
minimizer of

ψQO(α) :=

∥∥∥∥α ∂

∂α
xδα

∥∥∥∥ ,
while the heuristic discrepancy (HD) principle defines it as the minimizer of

ψHD(α) :=

∥∥pδα∥∥√
α
.

An improvement of the HD-rule is the Hanke-Raus (HR) rule, which is defined by

ψHR(α) :=

(
1

α

〈
pδα, p

δ
α

II
〉) 1

2

,

where pδα
II is the second Tikhonov iterate; for details, see, e.g., [20].

For Tikhonov regularization, the ψSL functional can be written in terms of the singular
value decomposition as

ψSL(α)2 =
∑
i

αλi
(α+ λi)3

| 〈yδ, ui〉 |2.

We observe that, for Tikhonov regularization, the ψ-functionals of all the four rules, HD, HR,
QO, and the simple-L rule, can be written in a common form as
(1.11)

ψ(α)2 =
∑
i

αn−1λki
(α+ λi)n+k

| 〈yδ, ui〉 |2, with n, k ∈ N :
n = 2 n = 3

k = 0 HD HR
k = 1 SL QO

.

This indicates a strong structural similarity of the four rules. Note that an analogous similarity
of the δ-based variants of the QO- and HR-rules has led Raus to define the so-called R1-family
of rules [31].

We may also stress the resemblance of the four rules above by expressing them in terms
of the iteration operators (cf., e.g., [33, 34]) for Tikhonov regularization

Bα := α
1
2 (αI +AA∗)

− 1
2 and Dα := A∗ (αI +AA∗)

− 1
2 .

Then we have the representations

ψHD(α) =
‖pδα‖√
α
, ψHR(α) =

‖Bαpδα‖√
α

,

ψSL(α) =
‖Dαp

δ
α‖√
α

, ψQO(α) =
‖DαBαp

δ
α‖√

α
.

Besides the relation to the L-curve method, the above structural congruence with other known
rules is a strong motivation for the definition and analysis of ψSL(α), which now fills a gap in
the list of classical parameter choice rules.
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As for the other rules (see, e.g., [20, 29]), one may also extend the definition of ψSL (and
ψSLR) to more general regularization schemes: If Rα is defined by a filter function gα(λ) of
the form

Rαyδ := gα(A∗A)A∗yδ, with rα(λ) := 1− λgα(λ),

then we may extend the definition of ψSL as

ψSL(α) = ‖ρα(A∗A)
1
2 yδ‖,(1.12)

ρα(λ) = λgα(λ)2|rα(λ)|.(1.13)

This definition agrees with the one for Tikhonov regularization, where gα(λ) = 1
α+λ and

(1.14) ρα(λ) =
αλ

(α+ λ)3
.

REMARK 1.3. From the preceding comparison with other rules, we may conclude (by
looking column-wise at the table in (1.11)) that the simple-L rule is related to the QO-rule
in a similar way to how the HD-rule is related to the HR-rule. We will observe that both the
HD-rule and the simple-L rule suffer from an early saturation effect. Thus, the QO-rule is
the “cure” of the simple-L rule from early saturation just as the HR-rule is for the HD-rule.
Note, however, that for heuristic rules an early saturation is sometimes beneficial as the rules
may perform optimal when the smoothness class is at the saturation index without requiring
additional conditions on the exact solution (cf. [20] and Theorem 2.10 below with µ = 1

2 ). On
the other hand, the row-wise similarity in the table in (1.11) can be illustrated by the results
below, where both the HD- and HR-rules require the same Muckenhoupt-type condition MC1,
while for the simple-L and the QO-rule, we need the condition MC2.

Hence, the mentioned similarity of rules indicated in the table in (1.11) is also strikingly
reflected in the theoretical results of the convergence theory in this paper:

early saturation late saturation
noise condition MC1 HD HR
noise condition MC2 SL QO

REMARK 1.4. There is a strong relation between heuristic rules and classical δ-based
parameter choice rules. If for the above ψ-functional one considers the δ-based rule of the
form: find α such that

√
αψ(α) ∼ δ,

then (up to technical details), this gives the discrepancy principle for ψ = ψHD, the modified
discrepancy principle for ψ = ψHR, and the R1-Rule (or balancing principle) for ψ = ψQO.
It is hence natural to define for the simple-L rule an accompanying δ-based rule, where α is
chosen such that

√
α

(
−〈xδα, α

∂

∂α
xδα〉
) 1

2

= τδ,

with τ > 1 fixed. To the knowledge of the authors, such a rule has not yet been investigated.
From the previous remark, however, it can be concluded that it will suffer from an early
saturation like the discrepancy principle.
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REMARK 1.5. Let us also mention that the simple-L and simple-L ratio methods have
some similarities with the V-curve method [9], which is defined as minimizer of the speed of
the parameterization of the L-curve on a logarithmic grid. Thus, the minimization functional
for the V-curve is for Tikhonov regularization (using the identity ρ′ = −αη′; cf. [18])

ψV (α) =

∥∥∥∥[ακ′(α)
αχ′(α)

]∥∥∥∥ =

∥∥∥∥∥
[
αρ
′

ρ

α η
′

η

]∥∥∥∥∥
= α|η′|

√
α2

ρ2
+

1

η2
= ψSL(α)2

√
α2

ρ2
+

1

η2

= ψSLR(α)2

√
α2|η|2
ρ2

+ 1 = ψSLR(α)2
√

1

ζ2
+ 1.

Thus, the V-curve is essentially a weighted form (with weight
√

1
ζ2 + 1 ≥ 1) of our simple

L-ratio functional ψSLR. It is obvious that the simple-L functional equals the derivative of the
parameterization of the y-axis of the non-logarithmic L-curve (ρ(α), η(α)) weighted with α,
which also equals the derivative of the x-axis parameterization as ρ′(α) = −αη′.

Another related method is the so-called composite residual and smoothing operator
method (CRESO-method) [7]. It defines the regularization parameter by an argmax of the
function

C(α) := ‖xδα‖2 + 2α
∂

∂α
‖xδα‖2 = η + 2αη′.

Since maximizing C(α) is the same as minimizing −C(α), we observe that the method
minimizes the functional

−C(α) = η(α)(2ψSLR(α, yδ)
2 − 1).

Since η(α) is bounded from below (and approaches ‖x†‖2 for the optimal choice of α), we
may regard the CRESO method essentially as a variant of the simple-L ratio method.

It is worth mentioning that the expression denoted by ζ in the curvature in Lemma 1.1
also has a relation to existing parameter choice functionals. In fact, in the simplest case, the
Brezinski-Rodriguez-Seatzu rule [4, 5] is defined as the minimizer of ‖Ax

δ
α−yδ‖

2

α‖xδα‖
, which in

our notation equals ‖xδα‖ζ.

2. Convergence theory for Tikhonov regularization. The convergence theory for
error-estimating heuristic methods is based on the idea that a “surrogate” functional ψ(α)
behaves in a similar way to the total error ‖xδα − x†‖. Hence, minimizing ψ(α) could be
expected to give a small total error and thus a successful parameter choice. For verifying this,
we have to estimate the functionals against the approximation and stability errors, which can
be expressed in terms of the SVD as follows:

‖xδα − xα‖2 =
∑
i

λi
(λi + α)2

| 〈yδ − y, ui〉 |2,

‖xα − x†‖2 =
∑
i

α2

(λi + α)2
|
〈
x†, vi

〉
|2.

As usual, the total error ‖xδα−x†‖ can be bounded by the stability error and the approximation
error as in (1.3).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

224 S. KINDERMANN AND K. RAIK

Accordingly, we may split the functional ψSL in a similar way, into a noise-dependent
term and an x†-dependent one:

ψSL(α, e)2 := ‖ρα(AA∗)
1
2 (yδ − y)‖2 =

∑
i

αλi
(λi + α)3

| 〈yδ − y, ui〉 |2,

ψSL(α, x†)2 := ‖ρα(AA∗)
1
2 y‖2 = ‖ρα(AA∗)

1
2Ax†‖2 =

∑
i

αλ2i
(λi + α)3

|
〈
x†, vi

〉
|2.

Obviously, we have the bound

(2.1) ψSL(α) ≤ ψSL(α, e) + ψSL(α, x†).

Convergence is based on the following theorem which is proven in [20]:
THEOREM 2.1. Let a ψ-functional be given as in (1.12) by some nonegative continuous

function ρα(λ) defined on the spectrum of A∗A. Let α∗ be selected as

α∗ = argmin
α

ψ(α) = argmin
α
‖ρα(A∗A)

1
2 yδ‖.

Assume that

‖ρα(A∗A)
1
2Ax†‖ ≤ B(α), ‖ρα(A∗A)

1
2 (yδ − y)‖ ≤ V (α),

where B(α) is monotonically increasing and V (α) is monotonically decreasing. Furthermore,
assume that the following lower bounds involving the stability and approximation errors hold:

‖xδα − xα‖ ≤ C0‖ρα(A∗A)
1
2 (yδ − y)‖,(2.2)

‖xα − x†‖ ≤ Φ
(
‖ρα(A∗A)

1
2Ax†‖

)
,(2.3)

with some increasing function Φ. Then the total error can be bounded by

‖xδα∗ − x†‖ ≤ Φ
(

2 inf
α
{B(α) + V (α)}

)
+ 2C0 inf

α
{B(α) + V (α)} .

If a heuristic parameter choice functional ψ is (under certain circumstances) a good
estimator for both the approximation error and the stability error, i.e., both the lower bounds
hold and the upper bounds B, V are close to the approximation and stability error, then the
corresponding parameter choice is usually a successful one in the sense that it yields the
optimal order of convergence.

2.1. Upper bounds for ψSL. At first we provide an upper bound for ψSL(α, yδ − y).
Since ρα(λ) ≤ λ

(λ+α)2 , the next result follows immediately:
LEMMA 2.2. We have that

(2.4) ψSL(α, e) ≤ V (α) := ‖xδα − xα‖ ≤
δ√
α
.

The term ψSL(α, x†) can be bounded in the following way:
LEMMA 2.3. We have

(2.5) ψSL(α, x†) ≤ B(α) :=

(∑
i

α

(λi + α)
|
〈
vi, x

†〉 |2) 1
2

=
〈
x† − xα, x†

〉 1
2 ,
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and B(α) is monotonically increasing in α. Moreover, if a source condition (1.4) is satisfied,
then

B(α) ≤ Cαµ for µ ≤ 1

2
.

Proof. Noting the definition of ρα(λ) in (1.14) and that λ
(λ+α) ≤ 1, we have that

ρα(λ)2λ ≤ α
(λ+α) , which verifies the result. The fact that the last expression is monotone and

allows for the stated convergence rates is standard.
REMARK 2.4. From the previous lemmas we obtain that under a source condition and

by (2.1)

inf
α
ψSL(α) ≤ inf

α
(B(α) + V (α)) ≤ inf

α

(
Cαµ +

δ√
α

)
∼ δ

2µ
2µ+1 , for µ ≤ 1

2
.

This is the optimal-order rate of the error, but it is only achieved under the restriction that
µ ≤ 1

2 . Thus, ψSL shows early saturation, that is, it is only of the same order as the optimal
rate for a lower smoothness index, but it shows suboptimal rates for µ ≥ 1

2 . This is akin to the
early saturation of the discrepancy principle [8] and the HD-method [20].

2.2. Lower bounds for ψSL. The main issue in the convergence theory is to find
conditions which are sufficient to verify the lower bounds in Theorem 2.1. However, it is
well known that due to the so-called Bakushinskii veto [1, 20], a heuristic parameter choice
functional cannot be a valid estimator for the stability error—in the sense that (2.2) holds—
unless the permissible noise yδ − y is restricted in some way. Conditions imposing such noise
restrictions are at the heart of the convergence theory.

We recall the following classical noise restrictions that were used in [20, 23] denoted as
Muckenhoupt-type conditions (MC):

DEFINITION 2.5. The condition MC1 is satisfied if there exists a constant C1 such that
for all occurrent errors e = yδ − y and for all 0 < α ≤ αmax, it holds that∑

λi≥α

α

λi
| 〈e, ui〉 |2 ≤ C1

∑
λi≤α

| 〈e, ui〉 |2.

The condition MC2 is satisfied if there exists a constant C2 such that for all occurrent errors
e = yδ − y and for all 0 < α ≤ αmax, it holds that

(2.6)
∑
λi≥α

α

λi
| 〈e, ui〉 |2 ≤ C2

∑
λi≤α

λi
α
| 〈e, ui〉 |2.

It is obvious that MC2 is slightly stronger than MC1: MC2 =⇒ MC1. Simply put, these
conditions are irregularity conditions for the noise in the sense that e should not be smooth
(i.e., in the range of A). Meanwhile, they are quite well understood and are satisfied in many
cases. Moreover, it has been shown that for mildly ill-posed problems they hold for white and
colored noise with probability one [24]. Although MC2 is slightly stronger, they are often
both satisfied.

Here, we show that the error-dependent part of ψSL is an upper bound for the error
propagation term. As mentioned before, for this we require a Muckenhoupt condition:

PROPOSITION 2.6. Let yδ − y satisfy a Muckenhoupt-type condition MC2 with constant
C2. Then with ρα(λ) corresponding to the ψSL-functional, we have for all 0 < α < αmax

‖xδα − xα‖ ≤
√
C2 + 1‖ρα(AA∗)

1
2 (yδ − y)‖.
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Proof. As in [20, 23], the idea of the proof is to split the spectral decomposition into terms
involving λ ≤ α and λ > α: This works because of the estimates

(2.7)
1

2

{
1
α λ ≤ α
1
λ λ ≥ α

≤ 1

α+ λ
≤

{
1
α λ ≤ α,
1
λ λ ≥ α.

Thus, using (2.7) and (2.6)

‖xδα − xα‖2 =
∑
i

λi
(λi + α)2

| 〈e, ui〉 |2

≤
∑
λi≤α

λi
α2
| 〈e, ui〉 |2 +

∑
λi≥α

1

λi
| 〈e, ui〉 |2 ≤ (1 + C2)

∑
λi≤α

λi
α2
| 〈e, ui〉 |2.

Conversely, the ψ-expression can be estimated as

‖ρα(AA∗)
1
2 (yδ − y)‖2 =

∑
i

λiα

(λi + α)3
|(e, ui)|2

=
∑
λi≤α

λiα

(λi + α)3
| 〈e, ui〉 |2 +

∑
λi≥α

λiα

α3
| 〈e, ui〉 |2 ≥

∑
λi≥α

λi
α2
| 〈e, ui〉 |2,

which yields the statement.
REMARK 2.7. Note that the stability part of the simple-L curve method behaves similar

to the QO-method, for which also the condition MC2 has been postulated to obtain the
analogous estimate. This is different to the HD- and HR-methods, where the condition MC1

is sufficient [20].
The next step involves the approximation error:
PROPOSITION 2.8. Suppose that x† 6= 0 satisfies a source condition (1.4) with µ ≤ 1.

Then for α ∈ (0, αmax) and ρα(λ) corresponding to the ψSL-functional, there is a constant C
such that

‖xα − x†‖ ≤
C

‖A∗Ax†‖2µ
‖ρα(AA∗)

1
2 y‖2µ.

Proof. As (α+ λi) ≤ αmax + ‖A‖2 =: C3, we have that

‖ρα(AA∗)
1
2 y‖2 =

∑
i

αλi
(λi + α)3

λi|
〈
x†, vi

〉
|2

≥ α

C3
3

∑
i

λ2i |
〈
x†, vi

〉
|2 =

α‖A∗Ax†‖2

C3
3

.

Conversely, from the classical convergence rate estimate (1.5), we obtain with a generic
constant C that

‖xα − x†‖ ≤ Cαµ ≤ C
(

C3
3

‖A∗Ax†‖2
‖ρα(AA∗)

1
2 y‖2

)µ
≤ C

‖A∗Ax†‖2µ
‖ρα(AA∗)

1
2 y‖2µ.

Moreover, we note that x† is a minimum-norm solution and thus in N(A)⊥. Hence, if x† 6= 0,
then A∗Ax† 6= 0.
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If we impose a certain regularity assumption on x†, then it can be shown that the ap-
proximation part of ψSL, ‖ρα(AA∗)

1
2 y‖, is an upper bound for the approximation error. The

regularity assumption [20, 23] is similar to the Muckenhoupt-type condition but with the
spectral parts interchanged:

(2.8)
∑
λi≤α

|
〈
x†, vi

〉
|2 ≤ D

∑
λi≥α

α

λi
|
〈
x†, vi

〉
|2.

For a comparison with other situations, we also state a different regularity condition that is
also used in [20]:

∑
λi≤α

|
〈
x†, vi

〉
|2 ≤ D

∑
λi≥α

(
α

λi

)2

|
〈
x†, vi

〉
|2.

Obviously, the first of these conditions, (2.8), is weaker, and the second one implies the first.
For the simple L-curve method, the weaker one suffices:

PROPOSITION 2.9. Let x† satisfy the regularity condition (2.8). Then for α ∈ (0, αmax)
and ρα(λ) corresponding to the ψSL-functional, there is a constant C such that

‖xα − x†‖ ≤ C‖ρα(AA∗)
1
2 y‖.

Proof. Using the splitting of the sums and (2.7), we have

‖xα − x†‖2 =
∑
i

α2

(λi + α)2
|
〈
x†, vi

〉
|2

=
∑
λi≤α

α2

(λi + α)2
|
〈
x†, vi

〉
|2 +

∑
λi≥α

α2

(λi + α)2
|
〈
x†, vi

〉
|2

≤
∑
λi≤α

|
〈
x†, vi

〉
|2 +

∑
λi≥α

α2

λ2i
|
〈
x†, vi

〉
|2

≤
∑
λi≤α

|
〈
x†, vi

〉
|2 +

∑
λi≥α

α

λi
|
〈
x†, vi

〉
|2.

While for the approximation part of ψSL, using (2.7) again, we obtain

‖ρα(AA∗)
1
2 y‖2 =

∑
i

αλi
(λi + α)3

λi|
〈
x†, vi

〉
|2

≥
∑
λi≤α

αλ2i
(λi + α)3

|
〈
x†, vi

〉
|2 +

∑
λi≥α

αλ2i
(λi + α)3

|
〈
x†, vi

〉
|2

≥ 1

2

∑
λi≤α

λ2i
α2
|
〈
x†, vi

〉
|2 +

1

2

∑
λi≥α

α

λi
|
〈
x†, vi

〉
|2

≥ 1

2

∑
λi≥α

α

λi
|
〈
x†, vi

〉
|2.

Thus, the regularity condition (2.8) ensures the bound.
Together with Theorem 2.1 and the previous estimates, we arrive at the main theorem:

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

228 S. KINDERMANN AND K. RAIK

THEOREM 2.10. Let the error satisfy a Muckenhoupt-type condition MC2, let x† satisfy
a source condition (1.4) with µ ≤ 1, and let ‖x†‖ 6= 0.

Then choosing the regularization parameter α∗ as the minimizer of ψSL as in (1.10)
yields the following error bounds

‖xδα∗ − x†‖ ≤ Cδ
2µ̃

2µ̃+1 2µ̃, µ̃ = min{µ, 1

2
}.

If, moreover, x† additionally satisfies a regularity condition (2.8), then the optimal-order (for
µ ≤ 1

2 ) estimate

‖xδα∗ − x†‖ ≤ Cδ
2µ̃

2µ̃+1 , µ̃ = min{µ, 1

2
},

holds.
REMARK 2.11. The convergence theorem for the simple-L method should be compared

to the corresponding results for the HD, HR, and QO-rules in [20]: Essentially, the functional
ψSL requires the same conditions as the QO-rule, but it only achieves the optimal order (in the
best case when a regularity condition holds) up to µ ≤ 1

2 , while the QO-rule does this (under
the same regularity condition) for all µ up to the saturation index µ = 1. In this sense, the
QO-rule is an improvement of the simple-L method. This is similar to the relations between
HD and HR: the heuristic discrepancy method, ψHD, can also be only optimal up to µ ≤ 1

2 ,
while the Hanke-Raus method improves this up to µ = 1. Thus, ψSL is related to ψQO in a
similar way to how ψHD is related to ψHR.

2.3. Convergence for ψSLR. The previous analysis can be extended to the simple-L
ratio method. We now consider a functional of the form

(2.9) ψ(α, yδ) = φ(α)ψSL(α, yδ),

where φ is a nonnegative function. The simple-L ratio corresponds to φ(α) = 1
‖xδα‖

. We have
the following proposition (here, Id denotes the identity function x→ x):

PROPOSITION 2.12. Let the error satisfy a Muckenhoupt-type condition MC2, and
let (2.3) hold for ρα corresponding to ψSL. Suppose that α∗ is selected by (2.9). Then the
following error estimates hold: For ᾱ ∈ (0, αmax) arbitrary

‖xδα∗ − x†‖ ≤
φ(ᾱ)

φ(α∗)
(B(ᾱ) + V (ᾱ)) + 2 max{Φ(B(ᾱ)), C0Id(B(ᾱ))} if α∗ ≤ ᾱ,

‖xδα∗ − x†‖ ≤ C0V (ᾱ) + Φ

[
V (ᾱ) +

φ(ᾱ)

φ(α∗)
(V (ᾱ) +B(ᾱ))

]
if α∗ ≥ ᾱ.

Here, V and B are defined as in (2.4) and (2.5).
Proof. Let α∗ ≤ ᾱ. Then from the previous estimates for ψSL, the minimization property

of φ(α)ψSL(α, yδ), and by the monotonicity of B, we have

‖xα∗ − x†‖ ≤ Φ
(
ψSL(α∗, x†)

)
≤ Φ(B(α∗)) ≤ Φ(B(ᾱ)),

φ(α∗)‖xδα∗ − xα∗‖ ≤ C0φ(α∗)ψSL(α∗, e)

≤ C0φ(α∗)ψSL(α∗, yδ) + C0φ(α∗)ψSL(α∗, x†)

≤ C0φ(ᾱ)ψ(ᾱ, yδ) + C0φ(α∗)B(ᾱ)

≤ C0φ(ᾱ)B(ᾱ) + C0φ(ᾱ)V (ᾱ) + C0φ(α∗)B(ᾱ).
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For α∗ ≥ ᾱ, with the same arguments and by the monotonicity of V , we obtain

‖xδα∗ − xα∗‖ ≤ C0ψSL(α∗, e) ≤ C0V (α∗) ≤ C1V (ᾱ),

Φ−1(‖xα − x†‖) ≤ φ(α∗)
ψSL(α∗, yδ)

φ(α∗)
+ ψSL(α∗, e) ≤ φ(ᾱ)

ψSL(ᾱ, yδ)

φ(α∗)
+ V (α∗)

≤ φ(ᾱ)

φ(α∗)
B(ᾱ) + (

φ(ᾱ)

φ(α∗)
+ 1)V (ᾱ).

THEOREM 2.13. Under the same conditions as Theorem 2.10 and if α∗ is chosen by the
simple-L ratio-method, then the error bounds of Theorem 2.10 hold if δ is sufficiently small.

Proof. Since we assume a source condition (1.4), we have from Proposition 2.8 that
Φ(x) = xξ, where ξ ≤ 1. The error estimates can be rewritten as

φ(α∗)‖xδα∗ − x†‖ ≤ φ(ᾱ) (B(ᾱ) + V (ᾱ)) + φ(α∗)2 max{Φ, C1Id}(B(ᾱ)) if α∗ ≤ ᾱ,
φ(α∗)‖xδα∗ − x†‖ ≤ C1φ(α∗)V (ᾱ)

+ Φ
[
φ(α∗)

1
ξ V (ᾱ) + φ(α∗)

1
ξ−1φ(ᾱ) (V (ᾱ) +B(ᾱ))

]
if α∗ ≥ ᾱ.

For the simple-L ratio method, we have φ(α) = 1
‖xδα‖

. We take ᾱ as the optimal order

choice ᾱ ∼ δ
2

2µ̃+1 , which implies xδα → x†, and hence for δ sufficiently small, we obtain
that φ(ᾱ) ∼ 1

‖x†‖ . From the standard theory it follows that α → ‖xδα‖ is monotonically
decreasing, hence φ(α) is monotonically increasing. Thus, with some constant C

φ(α∗) ≤ φ(αmax) ≤ C.

In any case, the expressions φ(α∗)
1
ξ , φ(ᾱ), and, since ξ ≤ 1, also φ(α∗)

1
ξ−1 remain bounded.

It follows that

φ(α∗)‖xδα∗ − x†‖ ≤ C ′max{Φ, Id}
(
Cδ

2µ̃
2µ̃+1

)
,

with different constants C,C ′. Moreover, since

φ(α∗) =
1

‖xδα∗‖
≥ 1

‖xδα∗ − x†‖+ ‖x†‖
,

we have that

‖xδα∗ − x†‖
‖xδα∗ − x†‖+ ‖x†‖

≤ C ′max{Φ, Id}
(
Cδ

2µ̃
2µ̃+1

)
.

Since x
x+‖x†‖ ∼ x for x small, this yields estimates of the same order as before.

The reason for requiring a small δ is that the expression ‖xδα∗−x
†‖

‖xδ
α∗−x†‖+‖x†‖

is bounded by 1.
Hence if the right-hand side (which is of the order of the optimal convergence) is large, then
the estimate holds trivially true but the content is negligible.

2.4. Extension to other regularization methods. We note that the simplification of
the curvature of the L-curve relies heavily on Tikhonov regularization, which is the only
regularization method for which formula (1.7) holds true. For general regularization schemes,
the expression for the curvature becomes rather complicated.
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With the same definition of the L-curve, the curvature can be calculated as

γ =
ρη(

ρ′2η2 + ρ2η′2
) 3

2

(
η′′ηρ′ρ− ρ′′ρη′η − η′2ρ′ρ+ ρ′2η′η

)
.

For Tikhonov regularization, this can be simplified by the formula ρ′ = −αη′, but for other
regularization methods, this is no longer possible. Similar as above, however, we introduce
the variable ζ = ρη′

ρ′η , which for Tikhonov regularization agrees with the definition given in
Lemma 1.1. Then we obtain that

γ =
1

|ρ′η|3 (1 + ζ2)
3
2

(
η′′η2ρ′ρ2 − ρ′′ρ2η′η2 − ζ2(ρ′η)3 + ζ(ρ′η)3

)
=

[
ηη′′

η′2
− ρ′′η

η′ρ′

]
ζ2

(1 + ζ2)
3
2

+
−ζ2 + ζ

(1 + ζ2)
3
2

.(2.10)

(For Tikhonov regularization, the identity ρ′ = −αη′ yields that ρ′′ = −η′ + ρ′

η′ η
′′ and

consequently formula (1.8).)
Thus, a fully analogous functional corresponding to ψSLR would be to minimize the

reciprocal of the expression in brackets in (2.10). However, due to the appearance of several
second-order derivative terms, such a method would probably not be qualified then to be
named “simple”.

We try to simplify the expression for asymptotic regularization (cf. [8]), which is a
continuous version of classical Landweber iteration. The method is defined via an initial value
problem in Hilbert spaces,

x(t)′ = A∗p(t), x(0) = 0, t ≥ 0,

where p(t) = yδ −Ax(t). The regularized solution is given by

xδα = x( 1
α ).

When the derivative x′(t) is replaced by a forward difference, this yields exactly Landweber
iteration.

For this method, we have the identities

p′ = −Ax′, x′ = A∗p ⇒ pδα
′

= −AA∗p.

Thus,

η′ = 2 〈x, x′〉 = 2 〈Ax, p〉 ,
ρ′ = 2 〈p, p′〉 = −2 〈p,Ax′〉 = −2 〈x′, x′〉 = −2‖A∗p‖2,
η′′ = 2 〈Ax′, p〉+ 2 〈Ax, p′〉 = −ρ′ − 2 〈Ax,Ax′〉 ,
ρ′′ = −4 〈A∗p,A∗p′〉 = −4 〈A∗p,A∗p′〉 = 4 〈A∗p,A∗AA∗p〉 .

As the curvature is independent of the parameterization, we may use the variable t in place of
α to calculate it. Hence, the expression in brackets in (2.10) can then be written as

η

η′

(
η′′

η′
− ρ′′

ρ′

)
=

‖x‖2

2 〈Ax, p〉

(
‖A∗p‖2

〈Ax, p〉
− 〈Ax, p

′〉
〈Ax, p〉

− 2 〈A∗p,A∗AA∗p〉
‖A∗p‖2

)
.

The last expression 2〈A∗p,A∗AA∗p〉
‖A∗p‖2 is bounded by ‖A∗A‖. Thus, the only way that the L-curve

can have a large curvature is when 〈Ax, p〉 = η′ is small. This essentially leads again to the
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simple L-curve method with the minor difference that the derivative is taken with respect to
the t-variable, i.e., the parameter α∗ would be selected via α∗ := 1

t∗
with t∗ being the argmin

over t of

ψ(t) := 〈Ax(t), p(t)〉 = 〈Ax(t), yδ −Ax(t)〉 .

This expression is quite similar (but not completely identical) to the generalization of the
simple L-curve suggested in (1.13) for general regularization methods.

By analogy, we may transfer these results to Landweber iteration, where derivatives
are replaced by finite differences. The simple L-curve method would then be defined by
minimizing

(2.11) ψ(k) = 〈Axk, yδ −Axk〉 ∼ 〈xk, xk+1 − xk〉 ,

over the iteration indices k. Clearly, this can be considered a discrete variant of ψSL, where
the derivative α ∂

∂α is replaced by a finite difference. Another possibility for defining a simple
L-curve method is to use (1.12)–(1.13) for general regularization methods via their filter
functions. In case of Landweber iteration this leads to a similar functional as in (2.11), namely

ψ(k) = 〈xk, x2k − xk〉 .

Of further special interest is to use these methods for nonlinear (e.g., convex) Tikhonov
regularization, where xδα is defined as the minimizer of

(2.12) x→ ‖Ax− yδ‖2 + αR(x),

with a general convex regularization functional R. For an analysis of several heuristic rules
in this context, see [25]. Note that the L-curve method is then defined by analogy as a plot
of (log(R(xδα)), log(‖Axδα − yδ‖). It has been applied with success in such a context, e.g.,
in [38]. One should be cautioned, however, that here it is not necessarily true that xδα is
differentiable with respect to α, and moreover, R(xδα) can be 0, hence the L-graph in its
logarithmic form may not be defined in that case. If R is smooth, then the formula (1.7) still
holds with η(α) = R(α), and we may define a simple-L method as the minimization of

ψSL(α) = −α ∂

∂α
R(xδα).

However, for convex Tikhonov regularization it is preferable—due to a possible lack of
differentiability—to replace the derivative α ∂

∂α by an alternative expressions. One way is to
use a finite difference approximation on a logarithmic grid yielding

(2.13) ψSL(α) = R(xαn+1,δ)−R(xαn,δ), α = α0q
n q < 1.

Another way is to replace the derivative by expressions obtained via Bregman iteration. In this
case, the functional would be

ψSL(α) = R(xδα
II

)−R(xδα),

where xδα
II is the second Bregman iterate; cf. [25]. Both methods can also be understood as a

kind of quasi-optimality method, where the “strict metric” d(x, y) = |R(x)−R(y)| (cf. [10])
is used for measuring convergence (a similar method has been tested in [22]). Note that we
may similarly adapt the simple-L ratio functional as

(2.14) ψSLR =
R(xδα

II
)−R(xδα)

R(xδα)
,

with the notation as before.
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3. Numerical tests. We perform some numerical tests of the proposed methods with
the noise-levels 0.01%, 0.1%, 1%, 5%, 10%, 20%, 50%. Here, the first pair is classified as
“small”, the second pair as “medium”, and the last triple is classified as “large”. For each
noise-level, we performed 10 experiments. We tested the method ψSL (simple-L), ψSLR
(simple-L ratio), the QO-method, and the original L-curve method defined by maximizing the
curvature.

A general observation was that whenever the L-curve showed a clear corner, then the
selected parameter by both ψSL and ψSLR was very close to that corner, which confirms
the idea of those methods being simplifications of the L-curve method. Note, however, that
closeness on the L-curve does not necessarily mean that the selected parameter is close as well
since the parameterization around the corner becomes “slow”.

We compare the four methods, namely, the two new simple-L rules, the QO-rule, and the
original L-curve according to their total error for the respective selected α and calculate the
ratio of the obtain error to the best possible error:

(3.1) J(α∗) :=
d(xδα∗ , x

†)

infα d(xδα, x
†)
,

where one would typically compute J with d(x, y) := ‖x− y‖ for the case of linear regular-
ization.

3.1. Linear Tikhonov regularization. We begin with classical Tikhonov regularization,
in which case we compute the regularized solution as (1.2).

3.1.1. Diagonal operator. At first we consider a diagonal operator A with singular
values having polynomial decay: σi = i−s, i = 1, . . . n, for some value s and consider an
exact solution also with polynomial decay 〈x†, vi〉 = (−1)ii−τ , where τ was adapted to
have a certain source condition (1.4) with index µ satisfied. The size of the diagonal matrix
A ∈ Rn×n was chosen as n = 500. Furthermore, we added random noise (colored Gaussian
noise) 〈e, ui〉 = δi−0.6ẽi, where ẽi are standard normally distributed values.

Table 3.1 displays the median of the values of J over 10 experiments with different
random noise realizations and for varying smoothness indices µ. The table provides some
information about the performance of the rules. Based on additional numbers not presented
here, we can state some conclusions:

• The simple-L and simple-L ratio outperform the other rules for small smoothness
index µ = 0.25 and small data noise. Except for very large δ, the simple-L ratio is
slightly better than the simple-L curve. For very large δ, the simple-L method works
but is inferior to QO while the simple-L ratio method fails then.

• For high smoothness index, the QO-rule outperforms the other rules and it is the
method of choice then.

• The original L-curve method often fails for small δ. For larger δ it works often
only acceptably. Only in situations when δ is quite large (> 20%) we found several
instances when it outperforms all other rules.

A similar experiment was performed for a higher smoothing operator by setting s = 4 with
similar conclusions. We note that theory has indicated that for µ = 0.5, the simple-L curve is
order optimal without any additional condition on x† while for the QO-rule this happens at
µ = 1. One would thus expect that the simple-L rule perform better for µ = 0.5. However,
this was not the case (only for µ ≤ 0.25) and the reason is unclear. (We did not do experiments
with an x† that does not satisfy the regularity condition (2.8), though). Still, the result that the
simple-L methods perform better for small µ is backed by the numerical results.
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TABLE 3.1
Tikhonov regularization, diagonal operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
s = 2, µ = 0.25
δ small 1.02 1.02 1.03 9.49
δ medium 1.01 1.02 1.08 1.78
δ large 1.79 1.06 1.18 1.15
δ = 50% 1.97 3.64 1.42 1.46
s = 2, µ = 0.5
δ small 1.48 1.48 1.01 50.68
δ medium 1.66 1.72 1.07 3.78
δ large 1.78 1.59 1.01 2.52
δ = 50% 3.09 5.07 1.48 1.90
s = 2, µ = 1
δ small 3.88 3.88 1.07 77.12
δ medium 2.01 2.01 1.07 7.98
δ large 1.57 1.66 1.08 2.33
δ = 50% 2.97 4.07 1.27 1.32

TABLE 3.2
Tikhonov regularization, rotational blur operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
δ small 1.29 1.29 74.04 9.43
δ medium 1.05 1.09 1.19 2.59
δ large 1.02 1.01 1.10 1.02
δ = 50% 1.00 65.21 1.05 1.00

3.1.2. Examples from IR tools. For the next scenario, we consider a rotational blurring
operator from IR Tools [11], namely PRblur which outputs a sparse operator (which we
chose as 1024 × 1024) and seek to reconstruct the satellite image solution provided in the
package. The data is corrupted with white Gaussian noise which is chosen such that ‖e‖/‖x†‖
yields the relative noise level. Note that the operator and solution are normalized such that
‖A‖ = ‖x†‖ = 1 and our parameter search is restricted to the interval α ∈ [10−10, ‖A‖2].
Similarly as for the previous experiment, in Table 3.2, we record the median of the values of J
over 10 different experiments with varying random noise realizations.

Note that the simple-L rules outperform the other ones in the majority of cases. However,
the margin of improvement compared to the QO rule is not large. We observed that for
small noise, the QO rule often overestimates the optimal parameter. All rules performed
quite well, and the L-curve method in particular showed noticeable improvement as the noise
level increased. The simple-L ratio method failed for 50% noise which may indicate that the
smallness condition on δ in Theorem 2.13 is non-negligible.

REMARK 3.1. Whilst using the IRtools package, we encountered a occurring problem,
especially for the tomography operator (to be discussed), whereby the error and functional
plots did not display the typical shape one would expect. In particular, the stability error did
not “blow up” as α → 0. Similar problems have been encountered for the L-curve method,
which fails to show a clear corner point.

Remarkably, the illustrated convergence theory for heuristic rules via Muckenhoupt-type
conditions can elucidate these problems quite well: The theoretical explanation for this appears
to be that the tomography operator in IRtools is not sufficiently ill-conditioned (or “too well-
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TABLE 3.3
Tikhonov regularization, tomography operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
δ medium 1.36 1.36 4.32 1.68
δ large 1.38 1.39 1.20 2.71
δ = 50% 2.37 1.99 1.63 4.00

posed”), i.e., the singular values do not decay sufficiently fast. In can be shown that here the
MC-conditions may not be satisfied for typical noise, which is a cause for possible failure of
the heuristic rules. (Note that the MC-conditions require the noise to be more “irregular” than
the range of A, and if A is less smoothing, then it is more likely that it belongs to the range
of A). This reasoning also matches with the observation that if the ill-posedness is increased
by employing a stronger regularization (see, e.g., the results with TV-regularization below),
then the difficulties disappear. Interesting to note is that such problems do not occur for the
operators in Hansen’s Regularization Tools problems [16], which appear to be sufficiently
smoothing.

We consider now the tomography operator from the IR Tools package, i.e., PRtomo
with the true solution being a Shepp Logan phantom. The operator in question is of size
8100× 1024. In Table 3.3, one can find a record of the median values of J for 10 different
realizations of each noise level, where we omit the “small” noise case in this scenario as the
problem is not sufficiently ill-conditioned so that for small noise levels, α∗ = αmin yields the
best choice. We also subsequently switch the 1% noise level consideration for 2%. (We revert
back to 1% noise level in the subsequent scenarios).

In this scenario, the L-curve method actually performed worse for larger noise and most
often chose α∗ = αmin. All rules, however, were guilty of quite often underestimating the
optimal parameter, which is a result of a lack of a sufficiently high ill-conditioning (or, in other
words, of the MC-conditions not being satisfied) mentioned in the paragraph above.

3.2. Convex Tikhonov regularization. We now investigate the heuristic rules for con-
vex Tikhonov regularization, i.e., we consider xδα as the minimizer of the functional (2.12)
with a nonquadratic penalty R. Note that the convergence theory of the present paper does not
cover this case. For the HD, HR, and QO-rules, some convergence results of the theory in [20]
have been extended to the convex case in [25].

Henceforth, the simple-L methods consist of minimizing the functionals (2.12) and (2.14).
Note that we did consider (2.13) as an alternative “convexification” of the simple L-curve
method, but the former method appeared to yield more fruitful results, and we therefore opted
to stick with it.

3.2.1. `1 regularization. To begin with, we consider R = ‖ · ‖1 and the rotational blur
operator as before (of the same size as our earlier configuration, too), but this time we would
like to reconstruct a sparse solution x†, and therefore we opt for the sppattern solution
from the IRtools package which is a sparse image of geometric shapes. We choose Gaussian
white noise as before, corresponding to the respective noise levels. Note that we compute a
minimizer via FISTA [3]. In this case, we measure the error by the `1 norm, i.e., we compute
J with d(x, y) := ‖x− y‖1.

In our experiments, we observed that the values of the aforementioned simple-L function-
als were particularly small, therefore on occasion yielding negative values due to numerical
errors. This problem was easily rectified however by taking the absolute value of (2.12)
and (2.14), respectively, which is theoretically equivalent to the original functionals in any
case. For the quasi-optimality functional, we opted to use the so-called right quasi-optimality
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TABLE 3.4
`1 regularization, rotational blur operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
δ small 2.07 2.07 1.18 2.19
δ medium 4.82 4.82 1.04 4.68
δ large 1.00 1.00 1.00 6.73
δ = 50% 1.08 1.08 1.08 10.37

TABLE 3.5
`
3
2 regularization, diagonal operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
s = 2, µ = 0.25
δ small 6.59 6.59 1.02 471.03
δ medium 1.95 1.95 1.18 31.22
δ large 1.10 1.10 1.07 1.11
δ = 50% 1.13 1.21 1.11 1.22
s = 2, µ = 0.5
δ small 14.41 14.41 1.00 8.91
δ medium 2.05 2.05 1.01 115.00
δ large 1.09 1.09 1.03 1.15
δ = 50% 4.72 5.61 1.01 1.80
s = 2, µ = 1
δ small 20.51 20.51 1.46 4.29
δ medium 1.36 1.36 1.33 107.77
δ large 1.14 1.14 1.40 1.34
δ = 50% 7.06 9.28 1.08 1.53

rule [25]. For selecting the parameter according to the L-curve method of Hansen, maximizing
the curvature via (1.7) is no longer an implementable strategy as R is now non-smooth. How-
ever, it was still possible to compute the corner point due to the discretization of the problem.
In Table 3.4, one may find a recording of the results.

As mentioned already, the simple-L functionals produced very small values and were
somewhat oscillatory, i.e., they were prone to exhibiting multiple local minima. Our algorithm
selected the smallest interior minimum, but in some plots, we observed that there were larger
local minima which would have corresponded to a more accurate estimation of the optimal
parameter. It should be noted that for medium noise, the L-curve was quite “hit & miss” and
for larger noise, quite unsatisfactory.

3.3. ` 3
2 regularization. Continuing with the theme of convex Tikhonov regularization

and more specifically with `p regularization for p 6= 2, we now consider (2.12) withR = ‖·‖ 3
2

(i.e., p = 3
2 ). The forward operator A : `

3
2 (N) → `2(N) is a diagonal operator with

polynomially decaying singular values as before, i.e., σi = i−s, and we also consider a solution
with polynomial decay

〈
x†, vi

〉
= (−1)ii−τ and add random noise 〈e, ui〉 = δi−0.6ẽi. The

size of the operator in question is 625× 625. Note that in this scenario, we are easily able to
compute the Tikhonov solution and second Bregman iterate as we have a closed form solution
of the associated proximal mapping operator; see [25].

Results are compiled in Table 3.5 and the following observations are noted:
• Barring the quasi-optimality rule, all methods were generally subpar in case of small

noise for all tested smoothness indices. In general, the quasi-optimality rule would

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

236 S. KINDERMANN AND K. RAIK

TABLE 3.6
TV regularization, tomography operator: median of ratio (3.1) of errors rules over 10 runs.

simple-L simple-L rat. QO L-curve
δ small 6.86 6.86 504.24 5.65
δ medium 59.55 6.67 61.85 8.43
δ large 8.17 6.98 8.20 9.73
δ = 50% 2.35 2.47 2.35 9.99

appear to be the best performing overall at least, although trumped on a few occasions.
• The “sweet spot” for both simple-L methods appears to be medium to large noise.

Overall, at least, they appear to perform marginally better for smaller smoothness
indices µ. The original L-curve method performs quite well for larger noise, as has
been observed in other experiments, but the margin for error is quite large for smaller
noise levels.

3.4. TV regularization. We now suppose that xδα is the minimizer of (2.12) with
R = |.|TV the total variation seminorm. Note that for numerical implementation, the above
functional is often discretized as R(x) =

∑
‖∇x‖1, with ∇ denoting a (e.g., forward) differ-

ence operator. The functional is minimized using FISTA with the proximal mapping operator
for the total variation seminorm being computed by a fast Newton-type method as in [25]. In
this case, we compute the error with respect to α via the so-called strict metric

dstrict(x
δ
α, x
†) := |R(xδα)−R(x†)|+ ‖xδα − x†‖1,

which was suggested in, e.g., [22], and we subsequently record the values of J with d = dstrict,
the results of which are provided in Table 3.6. The operator in question is the tomography one
arising from PRtomo with the same configuration as before. We add white Gaussian noise,
corresponding to the respective noise levels.

We note the following observations: All the functionals were oscillatory, exhibiting local
minima which were much more pronounced compared to the linear case. This oscillatory
behavior is often a cause for a selection of a false parameter; cf. the subpar results in Table 3.6.
Contrary to the linear regularization case, the QO-rule is not necessarily always robust for
convex Tikhonov regularization, which is consistent with the numerical findings of [25]. An
inspection of this table reveals that the simple-L ratio method appears to be the best performing
overall which we also observed in other experiments involving TV regularization not recorded
here.

3.5. Summary. To summarize the numerical results presented above, the simple-L
methods are near optimal for linear Tikhonov regularization in case of low smoothness of the
exact solution. Moreover, the simple-L rule in particular edges the simple-L ratio rule, but the
margin of difference is small and only apparent for larger noise levels.

We also considered convex Tikhonov regularization for which the simple-L functionals
had to be adapted from their original forms. In any case, they were successfully implemented
and demonstrated satisfactory results. Interesting to note however, was that in this setting,
the simple-L ratio method appeared to present itself as the slightly superior one of the two
variants.

4. Conclusion. In conclusion, we reduced the standard L-curve method for parameter
selection to a minimization problem of an error estimating surrogate functional from which
two new parameter choice rules were born: the simple-L and simple-L ratio methods. The
rules allow for an analysis yielding convergence rates for Tikhonov regularization under a
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Muckenhoupt-type condition MC2, akin to that required for the quasi-optimality rule, but they
saturate early like the heuristic discrepancy rule.

The subsequent numerical experiments furthermore verified that the simple-L methods
are not only capable of substituting as parameter choice rules for the L-curve method, but also
outperform it the majority of the time, performing often similarly and sometimes (especially
for low smoothness) even superior to the quasi-optimality rule, whilst being much easier to
implement than the original L-curve method.

Acknowledgement. We would like to thank the anonymous referees for their useful
comments.
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