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ANALYSIS OF KRYLOV SUBSPACE APPROXIMATION TO
LARGE-SCALE DIFFERENTIAL RICCATI EQUATIONS∗

ANTTI KOSKELA† AND HERMANN MENA‡

Abstract. We consider a Krylov subspace approximation method for the symmetric differential Riccati equation
Ẋ = AX + XAT + Q −XSX , X(0) = X0. The method we consider is based on projecting the large-scale
equation onto a Krylov subspace spanned by the matrix A and the low-rank factors of X0 and Q. We prove that the
method is structure preserving in the sense that it preserves two important properties of the exact flow, namely the
positivity of the exact flow and also the property of monotonicity. We provide a theoretical a priori error analysis that
shows superlinear convergence of the method. Moreover, we derive an a posteriori error estimate that is shown to be
effective in numerical examples.
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1. Introduction. Large-scale differential Riccati equations (DREs) arise in the numerical
treatment of optimal control problems governed by partial differential equations. This is the
case in particular when solving a linear quadratic regulator problem (LQR), a widely studied
problem in control theory. We shortly describe the finite-dimensional LQR problem. For
more details, we refer the reader to [1, 8]. The differential Riccati equation arises in the finite
horizon case, i.e., when a finite time integral cost functional is considered. Denoting the time
interval [0, tf ], the functional has then the quadratic form

(1.1) J(x, u) =

tf∫
0

(
x(t)TCTCx(t) + u(t)Tu(t)

)
dt+ x(tf )TGx(tf ),

where x(t) ∈ Rn, C ∈ Rq×n (q � n), and u(t) ∈ Rr (r � n). Here u(t) contains the
controls, and the matrix C represents the observation matrix. The coefficient matrix G of the
penalizing term x(tf )TGx(tf ) is symmetric, positive semidefinite and has a low rank. The
functional (1.1) is constrained by the system of differential equations

(1.2) ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ∈ [0, tf ],

where the matrix A ∈ Rn×n is sparse and B ∈ Rn×r. The number of columns of B corre-
sponds to the number of controls. Under suitable conditions [1, 8], the control ũ minimizing
the functional (1.1) is given by

(1.3) ũ(t) = K(t)x̃(t), where K(t) = −BTX(t),

X(t) is the unique solution of

(1.4) Ẋ +ATX +XA−XBBTX + CTC = 0, X(tf ) = G,
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and x̃(t) satisfies

˙̃x(t) =
(
A−BBTX(tf − t)

)
x̃(t), x̃(0) = x0.

As a result, the central computational problem becomes that of solving the final value prob-
lem (1.4) which, with a careful change of variables, can be written as an initial value problem.

We consider a Krylov subspace approximation method for large-scale differential Riccati
equations of the form (1.4). A projection method for DREs using extended Krylov subspaces
has been recently proposed in [15]. We use polynomial Krylov subspaces, and our approach
differs from that of [15] in that the initial value matrix G of (1.4) is contained in the Krylov
subspace, which allows multiple time stepping. We note that our approach can be also used
for extended and rational Krylov subspace methods, and it is related to projection techniques
considered for large-scale algebraic Riccati equations [28, 34].

Essentially, the method we consider is based on projecting the matrices A, Q, S, and X0

on an appropriate Krylov subspace, namely on the block Krylov subspace spanned by A and
the low-rank factors of X0 and Q. The projected small-dimensional system is then solved
using existing linearization techniques. We show that when using a Padé approximant to solve
the linearized small-dimensional system, the total approximation will be structure preserving
in a sense that the property of positivity is preserved. Also, the property of monotonicity is
preserved under certain conditions. Our Krylov subspace approach is also strongly related to
Krylov subspace techniques used for the approximation of the product of a matrix function and
a vector, f(A)b, and to exponential integrators [21]. For an introduction to matrix functions,
we refer the reader to the monograph [18]. The effectiveness of these techniques comes from
the fact that generating Krylov subspaces are essentially based on operations of the form
b→ Ab, which are cheap for sparse A.

The linearization approach for DREs is a well-known method and allows efficient inte-
gration for dense problems; see, e.g., [27]. Another approach, the so called Davison–Maki
method [9], uses the fundamental solution of the linearized system. A modified variant,
avoiding some numerical instabilities, is proposed in [23]. However, the application of these
methods for large-scale problems is impossible due to the high dimensionality of the linearized
differential equation.

The problem of solving large-scale DREs has recently received considerable attention.
In [4, 5] the authors proposed efficient BDF and Rosenbrock methods for solving DREs
capable of exploiting several of the above described properties: sparsity of A, low-rank
structure of B, C, and G, and the symmetry of the solution. However, several difficulties
arise when approximating the optimal control (1.3) in the large-scale setting. One difficulty
is to evaluate the state equation x(t) and Riccati equation X(t) at the same mesh. In [26] a
refined ADI integration method is proposed which addresses the high storage requirements of
large-scale DRE integrators. In recent studies, an efficient splitting method [36] and adaptive
high-order splitting schemes [35] for large-scale DREs have been proposed.

The paper is organized as follows. In Section 2 we describe some preliminaries. Then, in
Section 3, the Krylov subspace method is introduced, and its structure preserving properties
are shown. In Section 4, the error analysis, first for the differential Lyapunov equation (a
simplified version of the DRE) and then for the DRE, is presented. In Section 5 a posteriori
error estimation is described. Numerical examples and conclusions in Sections 6 and 7
complete the article.

Notation and definitions. Throughout the article, ‖ · ‖ will denote the Euclidean vector
norm or its induced matrix norm, i.e., the spectral norm. By R(A) we denote the column
space of a matrix A. To indicate that a matrix A is symmetric positive semidefinite, we write
A ≥ 0. For symmetric matrices A and B we write B ≥ A if B −A ≥ 0.
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Also, we will repeatedly use the notion of the logarithmic norm of a matrix A ∈ Cn×n. It
can be defined via the field of values F(A), which is defined as

F(A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1}.

Then, the logarithmic norm µ(A) of A is defined by

µ(A) := {max Re z : z ∈ F(A)}.

We will also repeatedly use the exponential-like function ϕ1 defined by

ϕ1(z) =
ez − 1

z
=

∞∑
`=0

z`

(`+ 1)!
.

2. Preliminaries. From now on we consider the time invariant symmetric differential
Riccati equation (DRE) written in the form

(2.1)
Ẋ(t) = AX(t) +X(t)AT +Q−X(t)SX(t),

X(0) = X0,

where t ≥ 0 and A,Q, S,X0 ∈ Rn×n, QT = Q, ST = S, S ≥ 0. Specifically, we focus on
the low-rank symmetric positive semidefinite case, where

X0 = ZZT , Q = CTC,

for some Z ∈ Rn×p and C ∈ Rq×n, p, q � n. Notice that we changed here from AT to A
(a common choice in the numerical analysis literature [10, 11]). Although S arises from the
low-rank matrix B in (1.4), we do not place any restriction on the rank of S.

2.1. Linearization. We recall a fact that will be needed later on (see, e.g., [1, Theo-
rem 3.1.1.]).

LEMMA 2.1 (Associated linear system). The DRE (2.1) is equivalent to solving the linear
system of differential equations

(2.2)
d

dt

[
U(t)
V (t)

]
=

[
−A S
Q AT

] [
U(t)
V (t)

]
,

[
U(0)
V (0)

]
=

[
I
X0

]
,

where U(t), V (t) ∈ Rn×n. If the solution X(t) of (2.1) exists on the interval [0, T ], then the
solution of (2.2) exists, U(t) is invertible on [0, T ], and

X(t) = V (t)U(t)−1.

Also, notice that the matrixH =

[
−A S
Q AT

]
is Hamiltonian, i.e., it holds that

(2.3) (JH)T = JH, where J =

[
0 I
−I 0

]
.

This linearization approach is a standard method for solving finite-dimensional DREs and
leads to efficient integration methods for dense problems; see, e.g., [9].
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2.2. Integral representation of the exact solution. For the exact solution of (2.1) we
have the following integral representation (see also [25, Theorem 8]).

THEOREM 2.2 (Exact solution of the DRE). The exact solution of the DRE (2.1) is given
by

(2.4)

X(t) = e tAX0e tA
T

+

t∫
0

e (t−s)AQe (t−s)AT ds

−
t∫

0

e (t−s)AX(s)SX(s)e (t−s)AT ds.

Proof. The proof can be carried out by elementary differentiation.

2.3. Positivity and monotonicity of the exact flow. We recall two important properties
of the symmetric DRE, namely the positivity of the exact solution (see, e.g., [10, Prop. 1.1])
and the monotonicity of the solution with respect to the initial data (see, e.g., [11, Theorem 2]).
By these we mean the following.

THEOREM 2.3 (Positivity and monotonicity of the solution). For the solution X(t) of the
symmetric DRE (2.1) it holds:

1. (Positivity) X(t) is symmetric positive semidefinite and exists for all t > 0.
2. (Monotonicity) Consider two symmetric DREs (2.1) corresponding to the linearized

systems of the form (2.2) with the coefficient matrices

H =

[
−A S
Q AT

]
and H̃ =

[
−Ã S̃

Q̃ ÃT

]
,

and let J be the skew-symmetric matrix (2.3). Then, if H̃J ≤ HJ and 0 ≤ X0 ≤ X̃0,
it holds that X(t) ≤ X̃(t) for every t ≥ 0.

We will later show that our proposed numerical method preserves the properties of
Theorem 2.3.

2.4. Bound for the solution. Using the positivity property of X(t) (Theorem 2.3), we
obtain the following bound for the norm of the solution. This will be repeatedly needed in the
analysis of the proposed method.

LEMMA 2.4 (Bound for the exact solution). For the solution X(t) of (2.1) it holds that

‖X(t)‖ ≤ e2tµ(A)‖X0‖+ tϕ1

(
2tµ(A))‖Q‖.

Proof. Since X0, Q, and X(t) are all symmetric positive semidefinite, we see that the
first two terms on the right-hand side of (2.4) are symmetric positive semidefinite and the
third term is symmetric negative semidefinite. Moreover, since X(t) is symmetric positive
semidefinite by Theorem 2.3 and since for every symmetric positive definite matrix M it holds
that ‖M‖ = max

‖x‖=1
x∗Mx, we see that

‖X(t)‖ ≤

∥∥∥∥∥∥e tAX0 e tA
T

+

t∫
0

e (t−s)AQ e (t−s)AT ds

∥∥∥∥∥∥ .
Using the bound ‖e tA‖ ≤ e tµ(A) (see, e.g., [37, p. 138]), the fact that µ(AT ) = µ(A), and
that tϕ1(tz) =

∫ t
0

e (t−s)z ds, the claim follows.
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From Lemma 2.4 we immediately get the following corollary.
COROLLARY 2.5. The solution X(t) satisfies

max
s∈[0,t]

‖X(s)‖ ≤ max
{

1, e2tµ(A)
}
‖X0‖+ tmax

{
1, ϕ1

(
2tµ(A))

}
‖Q‖.

3. A Krylov subspace approximation and its structure preserving properties. In
this section we propose our projection method. The original problem (2.1) is projected to
a small-dimensional space R(Vk) with Vk having orthonormal columns that span a certain
Krylov subspace. The fact that R(Vk) needs to contain this subspace can be seen from the point
of view of Krylov subspace approximation of the matrix exponential (see also the solution
formula (2.4)). This is strongly related to the approach taken by Saad already in [32] for the
algebraic Lyapunov equation. Before introducing our projection method, we recall some basic
facts about the Krylov subspace approximation of the matrix exponential. This will also give
some auxiliary results that are needed later in the convergence analysis.

3.1. Block Krylov subspace approximation of the matrix exponential. The Krylov
subspace approximation of matrix functions has recently been an active topic of research,
and we mention the work on classical Krylov subspaces [12, 14, 24, 30], extended Krylov
subspaces [24], and rational Krylov subspaces [3, 38].

Block Krylov subspace methods are based on the idea of projecting a high-dimensional
problem involving a matrix A ∈ Rn×n and a matrix b ∈ Rn×` onto a lower-dimensional
subspace, a block Krylov subspace Kk(A, b), which is defined by

(3.1) Kk(A, b) = range
[
b, Ab,A2b, . . . , Ak−1b

]
.

Usually, an orthogonal basis matrix Vk for Kk(A, b) is generated using an Arnoldi-type
iteration, and this matrix is then used for the projections. There exist several Arnoldi-type
methods to produce an orthogonal basis matrix for Kk(A, b), and in numerical experiments
we use the block Arnoldi iteration given in [31] which is listed algorithmically as follows:

1. Input: A ∈ Rn×n, b ∈ Rn×`, and the number of iterations k.
2. Start. Compute a QR decomposition: b = U1R1.
3. Iterate. For j = 1, ..., k, compute:

hij = UTi AUj , i = 1, . . . , j,

Wj = AUj −
j∑
i=1

Uihij ,

Wj = Uj+1hj+1,j (QR decomposition of Wj).

As usual, the orthogonalization can be carried out at step 3 as in an element-wise modified
Gram–Schmidt manner, and reorthogonalization can be performed if needed. For a robust
implementation, deflation techniques could be applied as well; see, e.g., [16].

This algorithm gives a basis matrix with orthogonal columns, Vk = [U1 . . . Uk] ∈ Rn×k`,
for the block Krylov subspace Kk(A, b) and the projected block Hessenberg matrix

(3.2) Hk = V Tk AVk.

This means that the (i, j)-block of size ` × ` of Hk is given by hij in the above algorithm.
Moreover, the following Arnoldi relation holds:

AVk = VkHk + Uk+1hk+1,kE
T
k ,
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where Ek = [0 . . . 0 I`]
T ∈ Rk`×`.

If A has its field of values on a line, e.g., is Hermitian or skew-Hermitian, then there
exists θ ∈ R such that e iθA is Hermitian. By (3.2) this implies that Hk is block tridiagonal,
the orthogonalization recursions become three-term recursions, and we get the block Lanczos
iteration.

The polynomial approximation property of Krylov subspaces motivates to approximate
the product of the matrix exponential eA and the matrix b as

(3.3) eAb ≈ VkeHkV Tk b = VkeHkE1R1,

where E1 = [I` 0 . . . 0]
T ∈ Rk`×`. For a vector b, the approximation (3.3) was considered

originally in [12, 14], and for the case of a block matrix b it has been considered in [29]. For
more references for Krylov subspace approximations of matrix functions, see [18, Ch. 13].

Since the columns of Vk are orthonormal, we have F(Hk) = F(V Tk AVk) ⊂ F(A), and
from this it follows that µ(Hk) ≤ µ(A). Clearly, it also holds that ‖Hk‖ ≤ ‖A‖. Moreover,
we have the following bound:

LEMMA 3.1. For the approximation (3.3), it holds that

‖e tAb− Vke tHkV Tk b‖ ≤ 2 max
{

1, e tµ(A)
} ‖tA‖k

k!
‖b‖.

Proof. The proof goes analogously to the proof of [14, Theorem 2.1], where b is a vector.

3.2. Rational Krylov subspaces. We also mention the possibility of approximating
matrix functions in rational Krylov subspaces ; see, e.g., [13, 17, 34, 38].

For poles s̄ = {s1, s2, . . .}, si ∈ C, the rational Krylov subspace can be defined as

(3.4) Kk(A, b, s̄) = span{b, (s1I −A)−1b, . . . ,

k−1∏
`=1

(s`I −A)−1b}.

Then, if a matrix Vk with orthogonal columns gives a basis for the subspace Kk(A, b, s̄), the
matrix exponential can be approximated as (3.3), where Hk = V Tk AVk. Especially for sparse
matrices, the rational Krylov methods are often more efficient, and as the solution usually
converges faster with respect to the subspace dimension, the rational alternative is usually more
memory efficient. These differences will be illustrated in numerical experiments. However,
for simplicity, in our analysis and numerical experiments we will use the polynomial Krylov
subspace method.

3.3. The method. We approximateX(t) in the block Krylov subspaceKk
(
A,
[
Z CT

])
.

The fact that the projection onto this subspace results in an accurate approximation can be
seen from the form of the exact solution (2.4) and from the Krylov approximation properties
shown in the last section. To this end, an orthogonal basis matrix Vk ∈ Rn×k(p+q) for
Kk
(
A,
[
Z CT

] )
is first generated using the block Arnoldi iteration. Then, we project the

problem (2.1) using Vk and solve the projected differential equation to obtain the solution
Yk(t) ∈ Rk×k. Then, we project back to Rn×n using Vk to obtain the numerical solution
Xk(t) := VkYk(t)V Tk . This procedure is listed in Algorithm 1. Notice that there is no
restriction on the rank of S.

In practice, multiple time stepping is often needed, and in that case Algorithm 1 can be
used for approximating a single time step. We also note that then the large-dimensional matrix
Xk(t) should not be explicitly formed, but the matrices Vk and Yk(t) should only be used for
constructing the initial value for the next time step. The a posteriori estimates of Section 5 can
be added to Algorithm 1 to decide whether the Krylov subspace size k is sufficiently large.
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Algorithm 1: Krylov subspace approximation of the DRE (2.1).

Input: Krylov subspace size k, matrices A,S ∈ Rn×n, Z ∈ Rn×p, and C ∈ Rq×n,
where p, q � n.

1 Carry out k steps of the block Arnoldi iteration to obtain
• the orthogonal basis matrix Vk of Kk

(
A,
[
Z CT

] )
,

• the block Hessenberg matrix Hk = V Tk AVk,
• and the matrices Ck = CVk and Zk = V Tk Z.

2 Compute Sk = V Tk SVk.
3 Compute the solution Yk(t) for the small-dimensional system

(3.5)
Ẏk(t) = HkYk(t) + Yk(t)HT

k + CTk Ck − Yk(t)SkYk(t),

Yk(0) = ZkZ
T
k

using the modified Davison–Maki method.

4 Approximate X(t) ≈ Xk(t) = VkYk(t)V Tk .

3.4. Solving the small-dimensional system. In the numerical implementation we use
the modified Davison–Maki method [23] to solve the small-dimensional system (3.5). This
method is chosen because of its structure preserving properties, which are shown in Section 3.5.
The method can be described as follows.

As shown in Lemma 2.1, the solution of the projected system (3.5) is given by

(3.6) Yk(t) = Wk(t)Uk(t)−1, where
[
Uk(t)
Wk(t)

]
= exp

(
t

[
−Hk Sk
CTk Ck HT

k

])[
Ik

ZkZ
T
k

]
.

Instead of directly evaluating Yk(t) by (3.6), which is the idea of the original Davison–Maki
method [9], we perform substepping in order to avoid numerical instabilities arising from the
inversion of the matrix Uk(t) in (3.6). This is exactly the modified Davison–Maki method,
and it is presented by the following pseudocode. We set Y jk ≈ Yk

(
j·t
m

)
.

1. Input: Hamiltonian matrix
[
−Hk Sk
CTk Ck H

T
k

]
, Yk(0) = ZkZ

T
k ,

time t > 0, substep size ∆t = t/m, m ∈ Z+.

2. Set: Y 0
k = Yk(0).

3. Iterate. For j = 0, ...,m− 1:

[
Uj+1

Wj+1

]
= exp

(
∆t

[
−Hk Sk
CTk Ck HT

k

])[
Ik
Y jk

]
, Y j+1

k = Wj+1U
−1
j+1.

For computing the matrix exponential in Step 3, we use the 13th order diagonal Padé
aproximant which is implemented in Matlab as the expm command [19]. We note that this
approach may become computationally infeasible for large values of p and q and/or for a large
Krylov subspace size k as the matrix exponential has size 2k(p+ q)× 2k(p+ q). For solving
the system (3.5) also other methods designed for DREs could be used; see, e.g., [4] and [5].
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3.5. Structure preserving properties of the approximation. We next inspect the two
properties stated in Theorem 2.3. We show that the proposed method preserves the property
of positivity of the exact flow, and it also preserves the property of monotonicity under the
condition that the matrix Vk stays constant when the initial data for the DRE is changed.
Notice that these results are not restricted to polynomial Krylov subspace methods.

THEOREM 3.2. The numerical approximation given by Algorithm 1 together with the
modified Davison–Maki method for the small-dimensional system preserves the property of
positivity stated in Theorem 2.3.

Proof. The projected coefficient matrices Sk, CTk Ck and the initial value ZkZTk of the
small system (3.5) are clearly all symmetric positive semidefinite. Thus, the small system (3.5)
is a symmetric DRE. By Theorem 3.1 of [10], an application of a symplectic Runge–Kutta
scheme with positive weights bi (see [11] for details) gives a symmetric positive semidefinite
solution. As the sth-order diagonal Padé approximant equals the stability function of the
s-stage Gauss–Legendre method (see, e.g., [22, p. 46]), the Padé approximation in the third
substep of the modified Davison–Maki method (Section 3.4) corresponds to a symplectic
Runge–Kutta method. Thus, each substep of the modified Davison–Maki method outputs a
symmetric positive semidefinite matrix, and as a result Yk(t) is symmetric positive semidefinite.
Therefore also Xk(t) = VkYk(t)V Tk is symmetric positive semidefinite.

THEOREM 3.3. The numerical approximation given by Algorithm 1 together with the
modified Davison–Maki method for the small-dimensional system preserves the property of
monotonicity in the following sense. Consider two DREs corresponding to linearizations with
the coefficient matrices

(3.7) H =

[
−A S
Q AT

]
and H̃ =

[
−Ã S̃

Q̃ ÃT

]
such that

(3.8) H̃J ≤ HJ, 0 ≤ X0 ≤ X̃0.

Suppose both systems are projected using the same orthogonal basis matrix Vk ∈ Rn×k,
giving as a result small k-dimensional systems of the form (3.5) for the matrices Yk(t) and
Ỹk(t). Then, for the matrices Xk(t) = VkYk(t)V Tk and X̃k(t) = VkỸk(t)V Tk we have

Xk(t) ≤ X̃k(t).

Proof. Consider the projected systems of the form (3.5) corresponding to Yk(t) and Ỹk(t)

with the projected coefficient matrices Hk, Qk, and Sk, and H̃k, Q̃k, and S̃k, respectively.
Consider also the corresponding linearizations of the form (3.7) with the Hamiltonian matrices

Hk :=

[
Vk 0
0 Vk

]T
H
[
Vk 0
0 Vk

]
and H̃k :=

[
Vk 0
0 Vk

]T
H̃
[
Vk 0
0 Vk

]
.

By the reasoning of the proof of Theorem 3.2, the projected systems corresponding to Yk(t)

and Ỹk(t) are symmetric DREs. We see that

H̃kJk −HkJk =

[
Vk 0
0 Vk

]T
(H̃J −HJ)

[
Vk 0
0 Vk

]
,

where Jk =
[

0 I
−I 0

]
∈ R2k×2k. Thus, from (3.8) it follows that H̃kJk ≤ H̃kJk. Clearly, also

0 ≤ Yk(0) ≤ Ỹk(0). By [11, Theorem 6], an application of a symplectic Runge–Kutta scheme
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with positive weights bi (see [11] for details) preserves the monotonicity. Thus, the Padé
approximants of the substeps of the modified Davison–Maki method (Section 3.4) preserve
the monotonicity. Therefore, Yk(t) ≤ Ỹk(t), and as a consequence Xk(t) ≤ X̃k(t).

REMARK 3.4. As the basis matrix Vk given by Algorithm 1 is independent of the matrix
S = BBT in the DRE (2.1), where B is the control matrix in the original linear system (1.2),
we see that Algorithm 1 preserves monotonicity under modifications of B. However, if we
change the initial value X0 or the matrix Q, then forming a new basis Vk is generally needed.
The fact that Vk is independent of B can also be seen by considering similar projection
methods for the algebraic Riccati equation; see, e.g., [33] and the references therein.

4. A priori error analysis. We first consider the approximation of the DRE without the
quadratic term −XSX , i.e., we consider the differential Lyapunov equation. This clarifies the
presentation as the derived bounds will be needed when we consider the approximation of the
differential Riccati equation. We note, however, that the bounds for the Lyapunov equation are
applicable outside of the scope of the optimal control problems, e.g., when considering time
integration of an inhomogeneous matrix differential equation.

4.1. Error analysis for the Lyapunov equation. Consider the symmetric Lyapunov
differential equation with low-rank initial data and constant low-rank inhomogeneity,

(4.1)
Ẋ(t) = AX(t) +X(t)AT + CTC,

X(0) = ZZT ,

where Z ∈ Rn×p and C ∈ Rq×n, with p, q � n. Then, the approximation is given by
Xk(t) = VkYk(t)V Tk , where Yk(t) is a solution of the projected system (3.5) with S = 0. For
the error of this approximation we obtain the following bound.

THEOREM 4.1. Let A ∈ Rn×n, Z ∈ Rn×p, C ∈ Rq×n, and let X(t) be the solu-
tion of (4.1). Let Vk ∈ Rn×m(q+p) be an orthogonal basis for the block Krylov subspace
Kk
(
A,
[
Z CT

] )
. Let Yk(t) be the solution of the projected system (3.5) with S = 0, and let

Xk(t) = VkYk(t)V Tk . Then,

‖X(t)−Xk(t)‖ ≤ 4 max
{

1, e2tµ(A)
}
‖A‖k

(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
.

Proof. Using the integral representation of Theorem 2.2 for both X(t) and Yk(t), we see
that

X(t)−Xk(t) = Err1,k(t) + Err2,k(t),

where

(4.2) Err1,k(t) = e tAZZT e tA
T

− Vke tHkV Tk ZZ
TVke tH

T
k V Tk ,

and

(4.3)

Err2,k(t) =

t∫
0

e (t−s)ACTCe (t−s)AT ds

−
t∫

0

Vke (t−s)HkV Tk C
TCVke (t−s)HTk V Tk ds.
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Adding and subtracting e tAZZTVke tH
T
k V Tk on the right-hand side of (4.2) gives

Err1(t) = e tAZ
(
e tAZ − Vke tHkV Tk Z

)T
−
(
Vke tHkV Tk Z − e tAZ

)
ZTVke tH

T
k V Tk .

Using Lemma 3.1 to bound the norm of e tAZ−Vke tHkV Tk Z and the facts that µ(Hk) ≤ µ(A)
and that ‖X0‖ = ‖ZZT ‖ = ‖Z‖2 gives

‖Err1(t)‖ ≤ 4 max
{

1, e2tµ(A)
} ‖tA‖k

k!
‖X0‖.

Then, similarly, adding and subtracting the term
∫ t
0

e (t−s)ACTCVke (t−s)HTk V Tk ds to (4.3)
and applying Lemma 3.1 shows that

‖Err2(t)‖ ≤ 4‖Q‖
t∫

0

max
{

1, e2(t−s)µ(A)
} ‖(t− s)A‖k

k!
ds

≤ 4‖Q‖max
{

1, e2tµ(A)
}
‖A‖k tk+1

(k + 1)!
,

which shows the claim.
We note that the error bound of Theorem 4.1, similarly to the bounds given in [14],

exhibits a hump before it starts to decrease in case ‖tA‖ > 1.

4.2. Refined error bounds for the Lyapunov equation. Although Theorem 4.1 shows
the superlinear convergence for the approximation of the Lyapunov equation (4.1), sharper
bounds can be obtained, e.g., by using the bounds given in [20]. As an example we consider
the following. If A is symmetric negative semidefinite with its spectrum inside the interval
[−4ρ, 0] and Vk is an orthogonal basis matrix for the block Krylov subspace Kk(A,B), then
we have (see [20, Theorem 2]) the bound for the error εk := ‖e tAB − Vke tHkV Tk B‖

(4.4)
εk ≤ 10 e−k

2/(5ρ t)‖B‖,
√

4ρ t ≤ k ≤ 2ρ t,

εk ≤ 10 (ρ t)−1e−ρ t
(

eρ t

k

)k
, k ≥ 2ρ t.

Using (4.4) and following the proof of Theorem 4.1, we get the following bound for the
case of a symmetric negative semidefinite A.

THEOREM 4.2. Let A ∈ Rn×n, Z ∈ Rn×p, and let C ∈ Rq×n define the Lyapunov
equation (4.1). Let Vk ∈ Rn×m(q+p) be an orthogonal basis matrix for the subspace
Kk(A,

[
Z CT

]
). Let Yk(t) be the solution of the projected (using Vk) system (3.5) with

S = 0, and let Xk(t) = VkYk(t)V Tk . Then, for the error εk := ‖X(t)−Xk(t)‖ it holds that

εk ≤ 20 e−k
2/(5ρ t)

(
‖X0‖+ t‖Q‖

)
,

√
4ρ t ≤ k ≤ 2ρ t,

εk ≤ 20 (ρ t)−1e−ρ t
(

eρ t

k

)k (
‖X0‖+ t‖Q‖

)
, k ≥ 2ρ t.

4.3. Error for the approximation of the Riccati equation. Here, we state our main
theorem which shows the superlinear convergence property of Algorithm 1 when applied to
the DRE (2.1). Its proof, which is essentially based on Lemma 3.1 and Grönwall’s lemma, is
lengthy and is left to Appendix A.
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First, however, we state a bound for the norm of the numerical solution Xk(t), which will
be needed in the proof of the main theorem.

LEMMA 4.3. Suppose that X0 = ZZT , Q = CTC, and that S is symmetric positive
semidefinite. Then, Xk(t) is symmetric positive semidefinite and satisfies the bound

‖Xk(t)‖ ≤ e2tµ(A)‖X0‖+ tϕ1

(
2tµ(A))‖Q‖.

Proof. As ZZT , CTC, and S are symmetric and positive semidefinite, we see from (3.5)
that so are the orthogonally projected matrices ZkZTk , CTk Ck, and Sk. Thus, the projected
system is a symmetric DRE. Applying Lemma 2.4 to the projected system and using the
bounds µ(Hk) ≤ µ(A), ‖Qk‖ ≤ ‖Q‖, and ‖VkV Tk X0VkV

T
k ‖ ≤ ‖X0‖ shows the claim.

From Lemma 4.3 we immediately get the following bound.
COROLLARY 4.4. The numerical solution Xk(t) satisfies

max
s∈[0,t]

‖Xk(s)‖ ≤ max
{

1, e2tµ(A)
}
‖X0‖+ tmax

{
1, ϕ1

(
2tµ(A))

}
‖Q‖.

We are now ready to state an error bound for the DRE. The proof is left to Appendix A.
THEOREM 4.5. Let A ∈ Rn×n, Z ∈ Rn×p, C ∈ Rq×n, and let S ∈ Rn×n define the

DRE (2.1). Let Xk(t) be the numerical solution given by Algorithm 1. Then, the following
bound holds:

‖X(t)−Xk(t)‖ ≤ c(t)‖A‖k
(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
,

where

c(t) = 4
(

1 + 2‖S‖α(t) max
{

1, e tµ(A)
}
c2(t)

)
e t‖S‖α(t),

c2(t) = 1 + t‖S‖α(t)ϕ1

(
t‖S‖α(t) max

{
1, e tµ(A)

})
,

α(t) = max
{

1, e2tµ(A)
}
‖X0‖+ tmax

{
1, ϕ1

(
2tµ(A))

}
‖Q‖.

5. Heuristic a posteriori error estimate. We consider next an a posteriori error estima-
tion for the method by using ideas presented in [7].

Denote the original DRE (2.1) as

Ẋ(t) = F (X(t)), X(0) = X0.

Using the residual matrix Rk(t) = F (Xk(t))− Ẋk(t), we derive computable error estimates.
These derivations are based on the following lemma.

LEMMA 5.1. The error Ek(t) := X(t)−Xk(t) satisfies the equation

(5.1)

Ek(t) =

t∫
0

e (t−s)ARk(s)e (t−s)AT ds

−
t∫

0

e (t−s)A
(
Ek(s)SX(s) +Xk(s)SEk(s)

)
e (t−s)AT ds,

where

(5.2) Rk(t) = Uk+1Hk+1,kE
T
k Yk(t)V Tk + VkYk(t)EkH

T
k+1,kU

T
k+1.
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Proof. We see that the error Ek(t) satisfies the ODE

(5.3)

Ėk(t) = Ẋ(t)− Ẋk(t) = F (X(t))− F (Xk(t)) +Rk(t)

= A
(
X(t)−Xk(t)

)
+
(
X(t)−Xk(t)

)
AT

−X(t)SX(t) +Xk(t)SXk(t) +Rk(t)

= A
(
X(t)−Xk(t)

)
+
(
X(t)−Xk(t)

)
AT

−
(
X(t)−Xk(t)

)
SX(t)−Xk(t)S

(
X(t)−Xk(t)

)
+Rk(t)

= AEk(t) + Ek(t)AT − Ek(t)SX(t)−Xk(t)SEk(t) +Rk(t),

with the initial value Ek(0) = 0. Applying the variation-of-constants formula to (5.3)
gives (5.1).

Next we show the representation (5.2). Since

F (Xk(t)) = AVkYk(t)V Tk + VkYk(t)V Tk A
T +Q− VkYk(t)V Tk SVkYk(t)V Tk

and

Ẋk(t) = VkHkYk(t)V Tk + VkYk(t)HT
k V

T
k + VkQkV

T
k − VkYk(t)V Tk SVkYk(t)V Tk ,

we see that

(5.4)

Rk(t) = F (Xk(t))− Ẋk(t)

= (AVk − VkHk)Yk(t)V Tk + VkYk(t)(AVk − VkHk)T +Q− VkQkV Tk
= (AVk − VkHk)Yk(t)V Tk + VkYk(t)(AVk − VkHk)T ,

since VkQkV Tk = VkV
T
k C

TCVkV
T
k = CTC = Q as CT ∈ R(Vk). Substituting the Arnoldi

relation AVk − VkHk = Uk+1Hk+1,kE
T
k into (5.4) gives the representation (5.2).

To derive a heuristic a posteriori estimate, we neglect the second term in equation (5.1) and
approximate the first integral by leaving out the exponentials. This leads to the approximation

(5.5)
Ek(t) ≈

∫ t

0

Rk(s) ds = Uk+1Hk+1,kE
T
k

(∫ t

0

Yk(s) ds
)
V Tk

+ Vk

(∫ t

0

Yk(s) ds
)T
EkH

T
k+1,kU

T
k+1.

From a careful inspection we see that UTk+1Vk = 0 implies

(5.6)

∥∥∥∥∫ t

0

Rk(s) ds

∥∥∥∥ =

∥∥∥∥Uk+1Hk+1,kE
T
k

(∫ t

0

Yk(s) ds
)
V Tk

∥∥∥∥
=

∥∥∥∥Hk+1,kE
T
k

(∫ t

0

Yk(s) ds
)∥∥∥∥ .

The integral
∫ t
0
Yk(s) ds can be estimated by a simply quadrature

∫ t

0

Yk(s) ds ≈
m∑
`=1

∆tYk(`∆t),
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where ∆t = t/m. The intermediate values Yk(`∆t) can be obtained directly from the
summing and squaring phase of the modified Davison–Maki method (Section 3.4). From (5.5)
and (5.6), we arrive at a computationally efficient a posteriori estimate

(5.7) estk :=

∥∥∥∥∥Hk+1,kE
T
k

m∑
`=1

∆tYk(`∆t)

∥∥∥∥∥ .
To illustrate the efficiency of this estimate consider the following example. Let A ∈ R400×400

be the tridiagonal matrix 102 · diag(1,−2, 1), t = 0.1, and let Z ∈ R400, C ∈ R400, and
B ∈ R400 (S = BBT ) be random vectors. Figure 5.1 shows the error ‖X(t)−Xk(t)‖ versus
the estimate (5.7). The reference solution is computed using a Matlab ODE solver with a small
error tolerance.

0 10 20 30 40 50
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-15

10
-10

10
-5

10
0

FIGURE 5.1. Convergence of the approximation versus the a posteriori estimate (5.7).

We note that by using the error representation (5.1) and the residual Rk(t) given in (5.2),
it is possible to derive corrected schemes, similarly as is done for the matrix exponential in [7]
and [30].

6. Numerical experiments: optimal cooling problem. As a numerical example we
consider an optimal cooling problem described in [6] (see also Example 2 in [36]). The
underlying linear system is of the form

(6.1)
Mẋ = Ax+Bu,

y = Cx,

where the coefficient matrices arise from a finite element discretization of the cross section of
a rail. A discretization of dimension n gives coefficient matrices A,M ∈ Rn×n, B ∈ Rn×7,
and C ∈ R6×n, where A is symmetric. This leads to a symmetric DRE of the form (2.1) with
the coefficient matrices Ã = M−1A, Q = CTC, and S = M−1B(M−1B)T . We take zero
initial values for the DRE. The mass matrix M is sparse so the products using the matrix
M−1A are cheap. We note that by a symmetric decomposition M = LTL, the system (6.1)
can also be written as a linear system for the scaled variable Lx using the coefficient matrices
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Ã = L−TAL−1, B̃ = L−TB, and C̃ = CL−1. This leads to a symmetric DRE with a
symmetric coefficient matrix Ã.

We emphasize that the numerical experiments are only to illustrate the theoretical results
and therefore the dimensions (n = 1357 and n = 5177) of the benchmark cases are rather
small. Moreover, we note that the considered algorithm is not competitive to methods based
on more efficient basis choices such as rational Krylov subspace methods.

6.1. Case n = 1357. Figure 6.1 displays the convergence of Algorithm 1 and the a
posteriori error estimate given by (5.7) when T = 10. We compute the spectral norm error
‖X(T )−Xk(T )‖ for different Krylov subspace dimensions k. For the scaling and squaring
part (Section 3.4), we set the parameter m = 10.

Figure 6.2 illustrates the convergence of a single step for T = 20 when we apply the block
orthogonalization procedure of Section 3.1 for the Krylov subspace (3.1) and for a rational
Krylov subspace (3.4) spanned by A. For the rational Krylov subspace we set all nodes si
equal to 1; see [17, Example 3.5]. We emphasize that this is a non-optimal choice of nodes
and that by careful selection, better convergence would be achieved [17]. Here, the subspace
dimension denotes the number of columns of the basis matrix Vk. For comparison, we also
consider the best low-rank approximation of the solution X(T ) obtained from its singular
value decomposition (SVD) for different ranks (denoted as basis dimension in the figure). We
observe that the rational approximation needs a considerably smaller subspace for a given
error than the polynomial approximation.
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-15

10
-10

10
-5

10
0

FIGURE 6.1. Convergence of the approximation given by Algorithm 1 and its a posteriori estimate (5.7).

Next, we apply Algorithm 1 for N = 10 subsequent time steps. We set for the Krylov
error a tolerance ε and use the a posteriori estimate (5.7) as a criterion for stopping the iteration.
Also, after each step we cut the rank using the projector Pε defined for a matrixX with singular
triplets (σi, ui, vi) by

Pε(X) :=
∑
σi>ε

σiuiv
T
i .

Figure 6.3 depicts the final errors at T = 10 for 4 different values of ε. As we see, the final
errors are not far from the tolerances ε used for substeps. Figure 6.4 depicts the growth of
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FIGURE 6.2. Convergence of a single step approximation with the Arnoldi and the rational Arnoldi iteration.
The figure displays also the convergence of the best low-rank approximation of X(t).
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FIGURE 6.3. The error of the numerical solution for different tolerances ε.

the rank in the numerical solution for different tolerances ε. We observe that the substepping
approach requires less memory for a given error tolerance than a single run using Algorithm 1.
This is depicted in Table 6.1. Notice that the difference in the numbers of Table 6.1 and those
of Figure 6.4 come from the fact that the Krylov iteration multiplies the memory needed for
the basis vectors. This difference can be reduced by the use of rational Krylov methods.

As a last experiment for the case n = 1357, we carry out time integration up to T = 4500
using N = 900 time steps. We use a Krylov subspace dimension k = 32 for the first time step
and k = 20 for the rest. After each time step, we cut the rank of the numerical solution to 40
using the SVD. By these choices of Krylov subspace sizes, the error arising from the rank cut
dominates at each time step. Assuming that the error arising from the rank cut is much larger
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FIGURE 6.4. The rank of the numerical solution for different tolerances ε.

TABLE 6.1
Maximum number of columns of the basis matrix Vk along the iteration for the substepping approach and for

the one step approximation using Algorithm 1 when an error tolerance ε is required.

ε time stepping single step iteration

10−2 60 112
10−4 76 147
10−6 112 175
10−8 160 203

than the error arising from the Krylov subspace approximation, we approximate the total error
as

(6.2) ‖X(Nh)−XN‖ ≈
N∑
`=1

ε`,

where XN denotes the numerical approximation after N steps. Figure 6.5 displays the error
arising from the best 2-norm approximation after each step, i.e., the singular value σ41, and
the estimate (6.2). We see that the error at the end is not far from 900 · σ(900)

41 , the number of
time steps times the largest rank cut.

6.2. Case n = 5177. Next we consider a finite element discretization with n = 5177.
Figure 6.6 displays the convergence of Algorithm 1 and an a posteriori error estimate given
by (5.7), when T = 5. For the scaling and squaring part we set the parameter m = 10.

We next carry out a time integration up to T = 2000 using N = 1000 time steps. We
estimate the total error without access to a reference solution using the estimate (6.2). We
use a Krylov subspace dimension k = 32 for the first time step and k = 20 for the rest of the
steps and cut the rank to 40 after each step using the SVD. We see from Figure 6.7 that the
a posteriori error estimate of Algorithm 1 is negligible compared to the error arising from
the rank cut. We see that the estimate (6.2) is of the same order (≈ ten times larger) as in the
n = 1357-case.
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FIGURE 6.5. The spectral norm error of the approximation and the estimate (6.2) for time integration up to
T = 4500. The relative spectral norm error ‖X̃(T )−X(T )‖/‖X(T )‖ ≈ 4.7 · 10−4 at T = 4500.
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FIGURE 6.6. Convergence of the approximation given by Algorithm 1 (for T = 5) and its a posteriori estimate
(5.7), when n = 5177.

7. Conclusions and Outlook. We have proposed a Krylov subspace approximation
method for large-scale differential Riccati equations. We have shown that the method is
structure preserving in the sense that it preserves two important properties of the exact flow,
namely the property of positivity and under certain conditions also the property of monotonicity.
We have also provided an a priori error analysis of the Krylov subspace approximation which
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FIGURE 6.7. The estimate (6.2) of the spectral norm error, size of the rank cut at each time step and the a
posteriori estimate (5.7) at each time step when n = 5177 and a time integration up to T = 2000.

shows superlinear convergence. This behavior was also verified in numerical experiments. In
addition, an a posteriori error analysis was carried out, and the proposed estimate was shown to
be accurate in numerical examples. In order to limit the memory consumption, in experiments
we also considered limiting the rank of the numerical solution in multiple time stepping. To
avoid excessively large approximation basis Vk, more studies of rational Krylov subspace
methods are needed. Their benefits were illustrated in numerical experiments.

We would like to point out that the presented block Krylov subspace method can be
extended to the non-symmetric differential Riccati equation. A possible extension could also
be the non-autonomous case, i.e, the case in which the coefficient matrices Q, S, and A are
time dependent. In this case an essential tool would be the so called Magnus expansion (see,
e.g., [2]), which gives the fundamental solution of the linear system corresponding to the
time-dependent coefficient matrix A.

Acknowledgments. The authors thank Valeria Simoncini for pointing out relevant litera-
ture related to the algebraic Riccati equation and Tony Stillfjord for several helpful comments
on a draft of the paper. Moreover, the authors would like to thank the anonymous reviewers
for their comments that greatly contributed to improving the paper.

Appendix A. Auxiliary Lemmas and the proof of Theorem 4.5.

We first state two auxiliary results needed for the proof of Theorem 4.5.

LEMMA A.1. Let A ∈ Rn×n, B ∈ Rn×`, let Vk be a matrix with orthonormal columns
such that Kk(A,B) ⊂ R(Vk), and let Hk = V Tk AVk. Then, for all t, s > 0 it holds that∥∥(e tA − Vke tHkV Tk

)
esAB

∥∥ ≤ 4 max
{

1, e (t+s)µ(A)
} ‖(t+ s)A‖k

k!
‖B‖.
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Proof. Using the polynomial approximation property of the Krylov approximation (see [30,
Lemma 3.1]), we see that

VkV
T
k esAB = VkV

T
k

k−1∑
`=0

(sA)`

`!
B + VkV

T
k

∞∑
`=k

(sA)`

`!
B

= Vk

k−1∑
`=0

(sHk)`

`!
V Tk B + VkV

T
k

∞∑
`=k

(sA)`

`!
B

= VkesHkV Tk B − Vk
∞∑
`=k

(sHk)`

`!
V Tk B + VkV

T
k

∞∑
`=k

(sA)`

`!
B.

Therefore,

(A.1)

(
e tA − Vke tHkV Tk

)
esAB

= e (t+s)AB − Vke tHkV Tk (VkV
T
k esAB)

= e (t+s)AB − Vke (t+s)HkV Tk B + Vke tHk
∞∑
`=k

(sHk)`

`!
V Tk B

− Vke tHkV Tk

∞∑
`=k

(sA)`

`!
B

=

∞∑
`=k

(
(
t+ s

)
A)`

`!
B − Vk

∞∑
`=k

(
(t+ s)Hk

)`
`!

V Tk B

+ Vke tHk
∞∑
`=k

(sHk)`

`!
V Tk B − Vke tHkV Tk

∞∑
`=k

(sA)`

`!
B.

Using the bounds ‖e tA‖ ≤ e tµ(A), µ(Hk) ≤ µ(A) and (see [14, Lemma A.2])∥∥∥∥∥
∞∑
`=k

(tA)`

`!

∥∥∥∥∥ ≤ max
{

1, e tµ(A)
} ‖tA‖k

k!
for all t ≥ 0

for the four terms on the right-hand side of (A.1), the claim follows.
LEMMA A.2. Let X(s) be the solution of the Riccati differential equation (2.1) at time s,

0 ≤ s ≤ t, and Vk be a matrix with orthonormal columns such thatKk(A,
[
Z CT

]
) ⊂ R(Vk).

Denote Hk = V Tk AVk. Then, the following bound holds:

‖
(
e (t−s)A − Vke (t−s)HkV Tk

)
X(s)‖

≤ 4 c(s) max
{

1, e (t+s)µ(A)
}
‖A‖k

(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
,

where

c(s) := 1 + s‖S‖ max
w∈[0,s]

‖X(w)‖ϕ1

(
s‖S‖ max

w∈[0,s]
‖X(w)‖ max

{
1, esµ(A)

})
.

Proof. Using the integral representation (2.4) for X(s) we may write(
e (t−s)A − Vke (t−s)HkV Tk

)
X(s) = c1,k(t, s) + c2,k(t, s),
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where

(A.2)

c1,k(t, s) =
[(

e (t−s)A − Vke (t−s)HkV Tk
)
esAZ

]
ZT esA

T

+

s∫
0

[(
e (t−s)A − Vke (t−s)HkV Tk

)
e (s−u)ACT

]
Ce (s−u)AT du,

and

(A.3) c2,k(t, s) =
(
e (t−s)A − Vke (t−s)HkV Tk

) s∫
0

e (s−u)AX(u)SX(u)e (s−u)AT du.

By using Lemma A.1, we obtain for the expressions inside the square brackets on the right-hand
side of (A.2) the bounds

∥∥∥[(e (t−s)A − Vke (t−s)HkV Tk
)
esAZ

]
ZT esA

T
∥∥∥

≤ 4 max
{

1, e (t+s)µ(A)
}
‖X0‖‖A‖k

tk

k!
,

and

∥∥∥∥∥∥
s∫

0

[(
e (t−s)A − Vke (t−s)HkV Tk

)
e (s−u)ACT

]
Ce (s−u)AT du

∥∥∥∥∥∥
≤ 4‖Q‖

s∫
0

(
(t− u)‖A‖

)k
k!

max
{

1, e (t−u)µ(A)
}

max
{

1, e (s−u)µ(A)
}

du

≤ 4‖Q‖max
{

1, e (t+s)µ(A)
}
‖A‖k tk+1

(k + 1)!
.

Thus,

(A.4) ‖c1,k(t, s)‖ ≤ 4 max
{

1, e (t+s)µ(A)
}
‖A‖k

(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
.

From (A.3) we see that

(A.5)
‖c2,k(t, s)‖ ≤

s∫
0

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk
)
e (s−u)AX(u)

∥∥∥
× ‖S‖ max

w∈[0,s]
‖X(w)‖e (s−u)µ(A) du.
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Next we bound the first factor in the integrand of (A.5). We substitute the integral representa-
tion (2.4) for X(u) to find that

(A.6)

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk )e (s−u)AX(u)
∥∥∥

≤
∥∥∥[(e (t−s)A − Vke (t−s)HkV Tk )esAZ

]
ZT euA

T
∥∥∥

+

u∫
0

∥∥∥[(e (t−s)A − Vke (t−s)HkV Tk )e (s−w)ACT
]
Ce (u−w)AT

∥∥∥ dw

+

u∫
0

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk )e (s−w)AX(w)
∥∥∥

× ‖S‖ max
w∈[0,u]

‖X(w)‖max
{

1, e (u−w)µ(A)
}

dw.

As above when bounding ‖c1,k(t, s)‖, we use Lemma A.1 for the expressions inside the square
brackets on the right-hand side of (A.6), to get the inequality

(A.7)

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk )e (s−u)AX(u)
∥∥∥

≤ 4‖A‖k max
{

1, e (t+u)µ(A)
}( tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
+ ‖S‖ max

w∈[0,u]
‖X(w)‖ max

{
1, euµ(A)

}
×

u∫
0

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk )e (s−w)AX(w)
∥∥∥ dw.

Applying Grönwall’s lemma to (A.7), we find that

(A.8)

∥∥∥(e (t−s)A − Vke (t−s)HkV Tk )e (s−u)AX(u)
∥∥∥

≤ 4‖A‖k max
{

1, e (t+u)µ(A)
}( tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
× eu‖S‖maxw∈[0,u] ‖X(w)‖ max{1,euµ(A)}.

Substituting (A.8) into (A.5), we get

(A.9)

‖c2,k(t, s)‖

≤ 4‖S‖ max
w∈[0,s]

‖X(w)‖‖A‖k max
{

1, e (t+s)µ(A)
}

×
(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
sϕ1

(
s‖S‖ max

w∈[0,s]
‖X(w)‖ max

{
1, esµ(A)

})
.

The bounds (A.4) and (A.9) together show the claim.
Using Lemmas A.1 and A.2 we are now ready to prove Theorem 4.5.
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Proof of Theorem 4.5. From the integral representation (2.4) for X(t) and for the
solution Yk(t) of the small-dimensional system (3.5), we see that

(A.10) X(t)−Xk(t) = F1,k(t) + F2,k(t),

where

F1,k(t) := e tAX0e tA
T

− Vke tHkV Tk X0Vke tH
T
k V Tk

+

t∫
0

(
e (t−s)AQe (t−s)AT − Vke (t−s)HkQke (t−s)HTk V Tk

)
ds,

and

(A.11)

F2,k(t) =

t∫
0

e (t−s)AX(s)SX(s)e (t−s)AT ds

−
t∫

0

Vke (t−s)HkV Tk Xk(s)SXk(s)Vke (t−s)HTk V Tk ds.

Theorem 4.1 shows that F1,k(t) is bounded by

(A.12) ‖F1,k(t)‖ ≤ 4 max
{

1, e2tµ(A)
}
‖A‖k

(
tk

k!
‖X0‖+

tk+1

(k + 1)!
‖Q‖

)
.

We add and subtract the term
t∫

0

e (t−s)AX(s)SXk(s)Vke (t−s)HTk V Tk ds

in (A.11) to obtain

F2,k(t) =

t∫
0

e (t−s)AX(s)S F3,k(t, s)T ds+

t∫
0

F3,k(t, s)S Xk(s)Vke (t−s)HTk V Tk ds,

where

F3,k(t, s) = e (t−s)AX(s)− Vke (t−s)HkV Tk Xk(s)

=
(
e (t−s)A − Vke (t−s)HkV Tk

)
X(s)− Vke (t−s)HkV Tk

(
Xk(s)−X(s)

)
.

We see that

(A.13)
‖F2,k(t)‖ ≤ 2 ‖S‖α(t)

t∫
0

max
{

1, e (t−s)µ(A)
}

×
(
‖
(
e (t−s)A − Vke (t−s)HkV Tk

)
X(s)‖+ ‖X(s)−Xk(s)‖

)
ds,

where

α(t) = max

{
max
s∈[0,t]

‖X(s)‖, max
s∈[0,t]

‖Xk(s)‖
}
.
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The claim follows now from (A.10), (A.12), (A.13), Lemma A.1, Grönwall’s lemma, Corol-
lary 2.5, and Corollary 4.4, which form a sequence of substitutions.
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