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ON RECURRENCES CONVERGING TO THE WRONG LIMIT IN FINITE
PRECISION AND SOME NEW EXAMPLES∗

SIEGFRIED M. RUMP†

Abstract. In 1989, Jean-Michel Muller gave a famous example of a recurrence where, for particular initial values,
the iteration over real numbers converges to a repellent fixed point, whereas finite precision arithmetic produces
a different result, the attracting fixed point. We analyze recurrences in that spirit and remove a gap in previous
arguments in the literature, that is, the recursion must be well defined. The latter is known as the Skolem problem. We
identify initial values producing a limit equal to the repellent fixed point, show that in every ε-neighborhood of such
initial values the recurrence is not well defined, and characterize initial values for which the recurrence is well defined.
We give some new examples in that spirit. For example, the correct real result, i.e., the repellent fixed point, may be
correctly computed in bfloat, half, single, double, formerly extended precision (80 bit format), binary128 as well as
many formats of much higher precision. Rounding errors may be beneficial by introducing some regularizing effect.
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1. Introduction. At the ICIAM 2019 conference in Valencia, the following famous
recurrence was presented:

(1.1) x0 := 4, x1 := 4.25, and xn+1 := 108− (815− 1500/xn−1)/xn.

The true limit of this recurrence is L = 5, whereas in double precision (binary64), the
computed limit is 100. This came as a surprise to the audience, so we decided to write this
note giving the background and analysis of such recurrences.

The first example in that spirit is due to Muller [11]:

(1.2) x0 := 11/2, x1 := 61/11, and xn+1 := 111− (1130− 3000/xn−1)/xn.

The limit of the recurrence over the field of real numbers is L = 6, whereas in double precision
the limit is 100. However, the initial value x1 := 61/11 is not representable in binary floating
point format in any precision, so that for the input data stored in the computer, the limit 100 is
correct.

The above example (1.1) was given by Kahan [9] together with an explanation of the
behavior of the recurrence. In this example all input data including the initial values are
representable in binary floating point format with at least 10 bits precision. In his book [12],
Muller defines different initial values x0 := 2, x1 := −4 for his recurrence (1.2), also
representable in binary floating point format with at least 10 bits precision, with the same
behavior of the recurrence as before.

The examples have in common the attracting fixed point L = 100 together with a repellent
fixed point β = 5 or β = 6, respectively. In Kahan’s example, x2 = 76

17 , in Muller’s first
example, x1 = 61

11 , and in his second example, x3 = 347
37 . These values have in common that

they are not representable in binary floating point format regardless of the precision. Replacing
the initial value (xk−1, xk) by the computed value (xk−1, x̃k), for k = 2, 1, 3, respectively, it
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follows that the recurrence over R, if it is well defined, necessarily converges to the attracting
fixed point L = 100.

An implicit assumption for this assertion is that xi 6= 0, for all i ∈ N0, otherwise the
recurrence is not well defined. The problem of identifying the indices with an iterate being
equal to zero for a linear recurrence is known as the Skolem problem [6, 14]. Instances of
such problems are known to be NP-hard [2]. We will characterize the initial pairs (x0, x1) for
which such recurrences are well defined together with their limits.

We show that for every initial pair (x0, x1) with the recurrence being well defined and
converging to a repellent fixed point and any ε-neighborhood of x1, there exists x′1 in this
neighborhood such that the recurrence over R starting with (x0, x

′
1) produces xn = 0 for

some n ∈ N.
Moreover, it is suggested in the literature that, due to the fact that some iterates are not

representable as floating point numbers, the iteration must converge to the attracting rather
than the repellent fixed point. That may not be true for the floating point iteration due to
“fortunate” rounding errors.

We give new explicit examples, starting with one where the correct value, i.e., the repellent
fixed point, is computed in bfloat1, half precision, and single precision, but erroneous result are
obtained in double precision (binary64) and extended precision (binary128). Other examples
produce the correct limit—the repellent fixed point—in much higher precision formats.

2. Analysis of recurrences. In the following we take a closer look at recurrences of
type (1.1) or (1.2). We start the analysis in a more general setting and define

(2.1) xn+1 := a+ (b+ c/xn−1)/xn, with a, b, c ∈ R,

for given initial values (x0, x1) ∈ R2. The auxiliary recurrence yn+1 := xnyn, for 0 ≤ n ∈ N
and y0 := 1, leads to

yn+2

yn+1
= a+ (b+

cyn−1
yn

)
yn
yn+1

provided that xn 6= 0, for 0 ≤ n ∈ N, so that

(2.2) yn+2 = ayn+1 + byn + cyn−1, for 1 ≤ n ∈ N.

Note that the linear recurrence (2.2) is always well defined. The characteristic polynomial is

(2.3) χ(y) = y3 − ay2 − by − c =: (y − α)(y − β)(y − γ).

For simplicity we assume

(2.4) |α| > |β| > |γ| > 0 and α, β, γ ∈ R.

For all examples above and the new examples to be presented later, this assumption is fulfilled.
For given y0, y1, y2, the recurrence (2.2) is characterized by a triple (p, q, r) ∈ R3 such that

(2.5) yn = αnp+ βnq + γnr, for 0 ≤ n ∈ N.

The recurrence (2.1) is well defined, i.e., xi 6= 0 for all i ∈ N0, if and only if yi 6= 0 for all
i ∈ N. The initial value y0 is only a scaling factor leading to the same recurrence (2.1). Using
y0 = p+ q + r = 1, we can rewrite (2.5) into

(2.6) yn = (αn − γn)p+ (βn − γn)q + γn, for 0 ≤ n ∈ N.

1bfloat [15] uses 16 bits like half precision but trades a larger exponent range against only 8 bit precision. It has
been successfully used in deep learning and large scale networks [1, 3]; see also [13].
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Thus, the initial values (x0, x1) are coupled with (p, q) by the linear system

(2.7)
[
α− γ β − γ
α2 − γ2 β2 − γ2

] [
p
q

]
=

[
x0 − γ

x0x1 − γ2
]
.

By assumption (2.4), the determinant (α − β)(β − γ)(γ − α) is nonzero so that the linear
system is solvable for all (x0, x1).

The intention of the mentioned examples is that for the specified initial values (x0, x1),
the real recurrence (xi) as in (2.1) converges to the repellent fixed point β, whereas any
perturbation of (x0, x1) makes the recurrence (2.1) converge to the attracting fixed point α, the
root of largest absolute value. However, this includes the statement that the recurrence (2.1)
is well defined for the given initial values (x0, x1). Therefore, we next characterize the pairs
(x0, x1) for which this is true, i.e., the recurrence (2.1) is well defined and converges to β.

LEMMA 2.1. Let x0, x1 ∈ R be given, and let the recurrence (2.1) with the characteristic
polynomial (2.3) satisfy (2.4). Then (2.1) is well defined, and xi → β if and only if

x0 6= γ and(2.8)
x1 = β + γ − βγ/x0 and(2.9)

x0 6= γ − γn(β − γ)
βn − γn

for all n ≥ 1.(2.10)

REMARK 2.2. Note that the third condition implies that x0 6= 0 for n = 1, and for
n = 2 together with the second condition, also that x1 6= 0. Also note that for the choice
x1 := β + γ − βγ/x0, the iteration, being well defined or not, only depends on x0.

Proof. By (2.6),

(2.11) lim
n→∞

xn :=


α if and only if p 6= 0,

β if and only if p = 0, q 6= 0,

γ if and only if p = q = 0,

where the last case is equivalent to x0 = x1 = γ. Since (2.7) determines p and q uniquely,
(xi) converges to β if and only if p = 0 and q = x0−γ

β−γ 6= 0, which in turn is equivalent to

x1 =
(
(β2 − γ2)q + γ2

)
/x0 = β + γ − βγ/x0 and x0 6= γ.

This means that if (2.1) is well defined, then xi converges to β if and only if (2.8) and (2.9)
hold true. The recurrence (2.1) is well defined if and only if yn 6= 0 for all n ≥ 1. If p = 0
and q 6= 0, then this is by (2.6) equivalent to

−γn 6= (βn − γn)q = (βn − γn)(x0 − γ)
β − γ

for all n ≥ 1.

Therefore, the recurrence (2.1) is well defined if and only if (2.10) is true. This finishes the
proof.

This shows that for (x0, x1) on the hyperbola H defined by x1 = β + γ − βγ/x0, the
recurrence (xi) is well defined and converges to β except for infinitely many discrete points.
The accumulation point of those gaps, determined by condition (2.10), is x0 = γ, the repellent
fixed point with smallest absolute value.
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Next we show that the set of initial values (x0, x1) with xn = 0 for some n ∈ N, i.e.,
with a not well-defined recurrence, form hyperbolas Hn, and the limit H of these hyperbolas
is the hyperbola of initial values for which the recurrence converges to β except for infinitely
many discrete points.

LEMMA 2.3. Assume that the recurrence (2.1) with the characteristic polynomial (2.3)
satisfies (2.4). For given k ∈ N, denote by Zk the set of initial values (x0, x1) ∈ R2 with
x0x1 6= 0, xi 6= 0, for 0 ≤ i < k, and xk = 0.

Then there exists some k0 ∈ N such that for every k ≥ k0 the set Zk forms a hyperbola
Hk, and for k →∞, the hyperbolasHk tend to the hyperbolaH of initial pairs with limit point
β of the recurrence, i.e., x1 = β + γ − βγ/x0. If (2.4) is sharpened into α > β > γ > 0,
then k0 = 2.

Proof. Set n := k + 1. Let (x0, x1) be given with x0x1 6= 0, xi 6= 0, for 0 ≤ i < k, and
xn−1 = xk = 0. Then yn = 0 and yi 6= 0, for 0 ≤ i < n, and (2.6) implies

(2.12) M :=

 α− γ β − γ 0
αn − γn βn − γn 0
α2 − γ2 β2 − γ2 −x0

 pq
x1

 =

x0 − γ−γn
−γ2

 .
The determinant of the matrix is zero if and only if (α− γ)(βn − γn) = (β − γ)(αn − γn),
i.e.,

f(β) = f(α) for f(x) :=
xn − γn

x− γ
.

Hence, if α > β > γ > 0 and x > γ, then

f(x) = xn−1 + xn−2γ + . . .+ γn−2x+ γn−1

is strictly increasing, which shows that the determinant of the matrix in (2.12) is nonzero. The
unique solution of the linear system is

x1 =
P −Q/x0

R
with


P = αn(γ2 − β2) + βn(α2 − γ2) + γn(β2 − α2),

Q = αnβγ(γ − β) + βnαγ(α− γ) + γnαβ(β − α),
R = αn(γ − β) + βn(α− γ) + γn(β − α),

forming the desired hyperbola Hk. Note that R = −det(M)/x0, so that x1 is well defined
for x0 6= 0. With (2.4) but without the assumption α > β > γ > 0, the determinant

x0(α
n(β − γ) + βn(γ − α) + γn(α− β))

of the matrix in (2.12) may vanish as, for example, for α = −7, β = 5, γ = 2, and n = 3. In
this case, x3 6= 0 for almost all values of x0, and the hyperbola shrinks to a point. However,
for large n the determinant tends to x0αn(β − γ) by (2.4), and the linear system (2.12) is
solvable for large enough n, thus the assertion remains valid.

For large enough n, the recurrence is not well defined on the hyperbola

R(n)x1 = P (n) −Q(n)/x0.

For n→∞,

P (n) → αn(γ2 − β2), Q(n) → αnβγ(γ − β), and R(n) → αn(γ − β),
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FIG. 2.1. Hyperbolas with limit β and initial values producing a not well-defined recurrence.

which asymptotically corresponds to the hyperbola

(2.13) x1 =
γ2 − β2 − βγ(γ − β)/x0

γ − β
= β + γ − βγ/x0.

This is the hyperbola H of initial values (x0, x1) yielding the limit point β.
In Figure 2.1 the hyperbola with initial values (x0, x1) converging to the limit β is

displayed together with hyperbolasHk of initial values producing a not well-defined recurrence.
In order to produce a better graph, we use a recurrence with roots of the characteristic
polynomial close together, namely α = 1.5, β = 1.25, and γ = 1. Note that this does not
change the qualitative behavior. The plot at the right-hand side in Figure 2.1 is a close-up near
the unique initial values (x0, x1) = (γ, γ), which yields convergence to the smallest root γ.
In fact, the recurrence is entirely stationary in this case.

The previous Lemma 2.3 and in particular (2.13) imply that in every ε-neighborhood of
initial values (x0, x1) with a well-defined recurrence converging to β, there exists a pair of
initial values with a not well-defined recurrence.

COROLLARY 2.4. Let the recurrence (2.1) with characteristic polynomial (2.3) satis-
fy (2.4). Suppose that for given initial values (x0, x1) ∈ R2 the recurrence (xi) is well defined
and converges to β. Then for every 0 < ε ∈ R, there exists x′1 ∈ R with |x′1 − x1| < ε such
that the recurrence with initial values (x0, x′1) is not well defined.

Now we can verify the claims about the recurrences mentioned at the beginning. For
Kahan’s example (1.1), the roots are (α, β, γ) = (100, 5, 3). The recurrence with initial value
x0 is not well defined if and only if

x0 = 4 = γ − γn(β − γ)
βn − γn

= 3− 2 · 3n

5n − 3n
= 3− 2

(5/3)n − 1
for some n ≥ 1.

This is obviously not possible, so taking x1 := β + γ − βγ/x0 = 5 + 3 − 15/4 = 4.25
implies xi → 5 = β.

For Muller’s example (1.2), the roots are (α, β, γ) = (100, 6, 5). The recurrence with
initial value x0 is not well defined if and only if

x0 = γ − γn(β − γ)
βn − γn

= 5− 5n

6n − 5n
= 5− 1

(6/5)n − 1
for some n ≥ 1.
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TABLE 2.1
Results for the recurrence (2.14).

n half single double over R
0 2.5019531 2.4999428 2.4999428 109225/43691 ≈ 2.4999428
1 2.5000000 2.5001144 2.5001144 10923/4369 ≈ 2.5001144
2 2.5937500 2.4997749 2.4997711 27305/10923 ≈ 2.4997711
3 4.4375000 2.5005341 2.5004578 13655/5461 ≈ 2.5004578
4 28.5000000 2.5009155 2.4990846 6825/2731 ≈ 2.4990846
5 56.2812500 2.5449677 2.5018315 683/273 ≈ 2.5018315
6 58.8750000 3.4965782 2.4963397 1705/683 ≈ 2.4963397
7 59 19.3815498 2.5073315 855/341 ≈ 2.5073314
8 59 53.8727341 2.4853823 425/171 ≈ 2.4853801
9 59 58.7636375 2.5294639 43/17 ≈ 2.5294118

10 59 58.9898109 2.4430787 105/43 ≈ 2.4418605
11 59 58.9995804 2.6483768 55/21 ≈ 2.6190476
12 59 58.9999809 2.9301292 25/11 ≈ 2.2727273
13 59 59 16.0674950 3
14 59 59 50.7931126 5/3 ≈ 1.6666667
15 59 59 58.7463651 5
16 59 59 58.9764139 0
17 59 59 59.0000847
· · · · · · · · ·

27 59 59 59.0000000
28 59 59 59
29 59 59 59

This is obviously not possible for the original value x0 = 11/2 given in [11]. For x0 = 2
given in [12], the recurrence is well defined if

1

(6/5)n − 1
6= 3 for all n ≥ 1,

which is equivalent to n 6= log(4/3)
log(6/5) ≈ 1.58. Hence (xi) is well defined and converges to the

repellent fixed point 6 = β.

2.1. Camouflaged convergence. It may not be visible from a floating point iteration
that an iteration is, in fact, not well defined. Consider

(2.14) x0 :=
109225

43691
, x1 :=

10923

4369
and xn+1 := 56.5 + (160− 737.5/xn−1)/xn.

The roots of the characteristic polynomial are (α, β, γ) = (59,−5, 2.5) and satisfy (2.4), and
the initial values (x0, x1) satisfy x1 = β + γ − βγ/x0. According to Lemma 2.1, the limit
is β if the recurrence is well defined.

The result for this recurrence computed in half, single, double, and infinite precision is
given in Table 2.1, illustrating the convergence to the attracting fixed point α = 59. The
recurrence is constructed such that x0 = γ − γn(β−γ)

βn−γn for n = 17, so that by Lemma 2.1, the
recurrence over real numbers is not well defined. This fact is camouflaged by the floating point
iteration in half, single, and in double precision.

As for Muller’s original example in [11], the initial values (x0, x1) in example (2.14) are
not representable in binary floating point format, so in that respect, the limit 59 computed in
half, single, and double precision is correct.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

364 S. M. RUMP

TABLE 3.1
Precision format used.

name precision in bits exponent bits

bfloat (truncated binary16) 8 8
half precision (binary16) 11 5
single precision (binary32) 24 8
double precision (binary64) 53 11

One may ask whether pathological examples of a recurrence exist with x0, x1 being
exactly representable in binary floating point in some precision and x1 on the hyperbola
x1 = β+ γ−βγ/x0, but x0 = γ− γn(β−γ)

βn−γn for some n ≥ 1. In this case, the pair (x0, x1) is
one of the described gaps, i.e., the conditions (2.8) and (2.9) for convergence to β are satisfied,
but by (2.10), the sequence is not well defined. We neither found such an example nor could
we prove that it does not exist.

3. Yet other pathological examples. We finally give some new examples where very
small precision formats yield the correct result, whereas higher precision formats do not. We
use the four precision formats as in Table 3.1, three of them according to the IEEE-754 [8]
floating point standard.

The format “bfloat” decreases the precision of binary16 in order to increase the exponent
range. It is often called truncated binary16, however, we use this format in rounding to nearest.
The middle column gives the precision k in bits including the implicit 1, so that 2−k is the
relative rounding error unit. First, consider the recurrence

(3.1) x0 := −6, x1 := 64, and xn+1 := 82− (1824− 6048/xn−1)/xn.

All input data are exactly representable in 8 bits binary precision, hence in bfloat and there-
fore in all other precision formats. The roots of the characteristic equation are (α, β, γ) =
(42, 36, 4). Thus, β + γ − βγ/x0 = 36 + 4 + 144/6 = 64 = x1. By Lemma 2.1, the
recurrence is not well defined if and only if

(3.2) x0 = −6 = γ − γn(β − γ)
βn − γn

= 4− 32

9n − 1
for some n ≥ 1.

This is obviously not possible.
The results for the different precision formats are displayed in Table 3.2. Clearly, from

the last column, we observe that the iteration over R converges to the correct limit β = 36, the
repellent fixed point. The second iterate x2 = 151

4 is computed without rounding error in all
mentioned precision formats, but the third iterate x3 = 5464

151 is not representable in any binary
precision format and therefore rounded into some x̃3.

The question whether the iteration is well defined or not depends only on the first initial
value. Hence the iteration over the real numbers starting with (x2, x̃3) is also well defined.
Therefore, mathematically, the iteration with initial values (x2, x̃3) converges to the attracting
fixed point α = 42. However, due to “beneficial” rounding errors, the recurrence in bfloat,
half, and single precision converges to the correct value, the repellent fixed point β = 36.

When displayed as an integer (without trailing zeros) in Table 3.2, the value of the
recurrence is equal to that integer. This happens in bfloat for x̃4, in half precision for x̃5, and
in single precision for x̃9. The double precision recursion becomes stationary after some 444
iterations at x̃444 ≈ 42− 2.8 · 10−14, close to the attracting fixed point α = 42.

It is sometimes suggested in the literature that, due to a rounding error in some iterate,
the floating point iteration must converge to the attracting fixed point α = 42. In the example

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ON RECURRENCES CONVERGING TO THE WRONG LIMIT 365

TABLE 3.2
Results for x0 := −6, x1 := 64 and xn+1 := 82− (1824− 6048/xn−1)/xn.

n bfloat half single double over R
0 -6 -6 -6 -6 -6.000000
1 64 64 64 64 64.000000
2 37.750000 37.750000 37.750000 37.750000 37.750000
3 36.250000 36.187500 36.185429 36.185430 36.185430
4 36 36.031250 36.020496 36.020498 36.020498
5 36 36 36.002277 36.002276 36.002276
6 36 36 36.000256 36.000253 36.000253
7 36 36 36.000031 36.000028 36.000028
8 36 36 36.000004 36.000003 36.000003
9 36 36 36 36.000000 36.000000

10 36 36 36 36.000000 36.000000
... ... ... ... ...

167 36 36 36 36.000456 36.000000
168 36 36 36 36.000532 36.000000
169 36 36 36 36.000620 36.000000

... ... ... ... ...
217 36 36 36 36.867247 36.000000
218 36 36 36 36.987987 36.000000
219 36 36 36 37.121863 36.000000

... ... ... ... ...
296 36 36 36 41.999817 36.000000
297 36 36 36 41.999843 36.000000
298 36 36 36 41.999866 36.000000

... ... ... ... ...
442 36 36 36 42.000000 36.000000
443 36 36 36 42.000000 36.000000
444 36 36 36 42.000000 36.000000

above this was true for double precision (binary64) but not true for smaller precision formats
because of beneficial rounding errors.

One might think that increasing the precision further should yield the same erroneous
result, namely suggesting a convergence to the attracting fixed point α = 42. However, this is
not true. Table 3.3 displays results of the recurrence (3.1) for different initial values (x0, x1)
and different precision formats. Beyond those in Table 3.1 we add2 the 80-bit format, formerly
called extended precision, with 64 bits precision computed using [7] and IEEE-754 quadruple
(binary128) with 113 bits precision. Using (3.2) one verifies that the recurrences are well
defined.

Numbers shown with a decimal point represent a floating point number very close to α or
β, close to working precision; otherwise the displayed integer is the stationary point of the
floating point iteration. Results in bold face indicate that the recurrence produces the correct
limit, i.e., the repellent fixed point β.

The first line corresponds to the initial values used in Table 3.2. As can be seen, increasing
the precision to 64 bits yields the correct results, but a further increase produces the wrong but

2Many thanks to Kai Torben Ohlhus for performing the calculations in higher precision using MPFR [7].
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TABLE 3.3
Recurrence xn+1 := 82− (1824− 6048/xn−1)/xn for which (α, β, γ) = (42, 36, 4).

x0 x1 8 11 24 53 64 113

-6 64 36 36 36 42.0 36 42.0
-288 40.5 36 36 36 36.0 42 42.0
-0.5 328 36 36 36 36.0 42.0 36.0

-0.1875 808 36 36 36 36.0 42.0 42.0
0.5625 -216 36 36 36 42.0 42.0 42.0

64 37.75 36 36 36 42.0 36.0 42.0

expected result, i.e., the attracting fixed point α. But this need not to be so. In the third line,
all but 64 bit precision produces the correct result due to beneficial rounding errors.

In all examples up to now, the repellent fixed point β is in F. It was asked [10] by Masahide
Kashiwagi from Waseda University, Tokyo, whether this is mandatory. The following final
example shows that this is not the case. Consider

(3.3) x0 := 8, x1 := −31, and xn+1 := 1.5 + (972 + 128/xn−1)/xn.

All input data are representable in 8 bit binary floating point form, i.e., in bfloat and higher
precision formats, and the characteristic equation y3 − 1.5y2 − 972y − 128 has the roots

α = 32, β =
−61−

√
3657

4
≈ −30.3683, γ =

−61 +
√
3657

4
≈ −0.1317.

Using Lemma 2.1 one verifies that the recurrence is well defined.
The repellent fixed point β is obviously not in F, and the best we can expect is a stationary

point β̃ near β. We say that the recurrence converges numerically to β in precision k bits if
the relative error between β̃ and β is of the order of the relative rounding error unit 2−k.

Running the recurrence (3.3) in different precisions of k bits, it converges numerically to
the repellent fixed point β

(3.4) for all k ∈ {8, 9, . . . , 227} except for k = 183.

For all the precision formats with

k ∈ {8, 9, . . . , 227} \ {162, 169, 177, 183, 194, 197, 198, 200, 214, 222},

the stationary point was the rounded-to-nearest value of β in the given precision. Note that
this includes bfloat, half, single, double, and extended precision.

Moreover, we ran the recurrence in all precision formats from 8 up to 5000 bits. The
accumulated percentage of precision formats [8, 9, . . . , 5000] with numerical convergence to
β is displayed in the upper curve of the left graph of Figure 3.1. For example, in about 90% of
all precision formats from 8 to 1000, or in about 60% of all precision formats from 8 to 3000,
a numerical convergence to β was observed. The lower curve is the accumulated percentage
with a stationary point equal to the rounded-to-nearest value of β; this is true, for example,
for about 50% of all precision formats from 8 to 3000. The right graph shows the same result
with a close-up into the precision formats with k ∈ [8, 9, . . . , 250].

Even for very high precision, recurrences of type (2.1) may converge numerically to β.
For example, executing (3.3) in 17 721 bits precision produces a stationary point close to β up
to the working precision after some 2 262 iterations.
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FIG. 3.1. Accumulated percentage of precision formats with numerical convergence to β.

TABLE 3.4
Spectral radius of the Jacobian of (3.5) at the fixed points α, β, and γ.

recurrence α β γ

(1.1) 0.05 20 33.3
(1.2) 0.06 16.7 20

(2.14) 0.085 11.8 23.6
(3.1) 0.86 1.17 10.5
(3.3) 0.949 1.054 242.9

It has been pointed out by Masahide Kashiwagi [10] that such a behavior becomes clearer
when looking at the stability of the recurrence at the fixed points. Writing the recurrence (2.1)
as

(3.5) F (x, y) :=

[
y

a+ (b+ c/x)/y

]
and evaluating the spectral radius of the Jacobian at the fixed points yields the results as in
Table 3.4. The smaller the spectral radius for the attracting fixed point α, the more we may
expect a stable recurrence. Similarly, for a spectral radius for the repellent fixed point β close
to 1, instabilities are more likely. This is particularly the case for the iterations (3.1) and even
more for (3.3).
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We may add some interpretation of the results of the recurrence (3.3) in different precision
formats: whether they are correct or not depends on the point of view. Executed over R, the
recurrence converges to the repellent fixed point β; in that respect the result is correct for all
precision formats listed in (3.4) but incorrect for k = 183. However, x2 = −1883

62 is not a
binary floating point number in any precision but necessarily rounded into some x̃2. The limit
of the real recurrence (3.3) with initial values x1 and x̃2 is the attracting fixed point α, and in
that respect the result for precision k = 183 is correct, but for all other precision format listed
in (3.4) it is incorrect.

4. Conclusion. An analysis of recurrences based on Muller’s initial example (1.2) is
presented. Necessary and sufficient conditions are given for the recurrence being well defined
and for convergence to a repellent fixed point. It is shown that in every ε-neighborhood of
initial values (x0, x1) that lead to convergence to a repellent fixed point, there exist initial
values (x0, x̃1) producing a not well-defined recurrence.

New recurrences are presented converging (correctly) to a repellent fixed point for smaller
precision formats such bfloat, half, single, and double, but (incorrectly) not for higher precision
formats. Another example shows convergence to a repellent fixed point even for very high
precision like 5000 bits and more. As a result, this is another confirmation of the fact that
rounding errors may be beneficial, and floating point may have a regularizing effect [4].
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