
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 51, pp. 469–494, 2019.
Copyright c© 2019, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol51s469

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION AND ITS
APPLICATIONS TO SINGULAR VALUE DECOMPOSITION∗

YUEHUA FENG†, JIANWEI XIAO‡, AND MING GU‡

Abstract. We present the Flip-Flop Spectrum-Revealing QR (Flip-Flop SRQR) factorization, a significantly
faster and more reliable variant of the QLP factorization of Stewart for low-rank matrix approximations. Flip-Flop
SRQR uses SRQR factorization to initialize a partial column-pivoted QR factorization and then computes a partial
LQ factorization. As observed by Stewart in his original QLP work, Flip-Flop SRQR tracks the exact singular
values with “considerable fidelity”. We develop singular value lower bounds and residual error upper bounds for the
Flip-Flop SRQR factorization. In situations where singular values of the input matrix decay relatively quickly, the
low-rank approximation computed by Flip-Flop SRQR is guaranteed to be as accurate as the truncated SVD. We
also perform a complexity analysis to show that Flip-Flop SRQR is faster than the randomized subspace iteration for
approximating the SVD, the standard method used in the Matlab tensor toolbox. We additionally compare Flip-Flop
SRQR with alternatives on two applications, a tensor approximation and a nuclear norm minimization, to demonstrate
its efficiency and effectiveness.

Key words. QR factorization, randomized algorithm, low-rank approximation, approximate SVD, higher-order
SVD, nuclear norm minimization

AMS subject classifications. 15A18, 15A23, 65F99

1. Introduction. The singular value decomposition (SVD) of a matrix A ∈ Rm×n is
the factorization of A into the product of three matrices A = UΣV T where the matrices
U = (u1, · · · , um) ∈ Rm×m and V = (v1, · · · , vn) ∈ Rn×n are orthogonal singular vector
matrices and Σ ∈ Rm×n is a rectangular diagonal matrix with non-increasing non-negative
singular values σi (1 ≤ i ≤ min (m,n)) on the diagonal. The SVD has become a critical
analytic tool in large data analysis and machine learning [1, 19, 53].

Let Diag (x) denote the diagonal matrix with vector x ∈ Rn on its diagonal. For any
1 ≤ k ≤ min (m,n), the rank-k truncated SVD of A is defined by

Ak
def
= (u1, · · · , uk) Diag (σ1, · · · , σk) (v1, · · · , vk)

T
.

The rank-k truncated SVD turns out to be the best rank-k approximation to A with respect to
spectral norm and Frobenius norm, as explained by the Eckart-Young-Mirsky Theorem [18,
26].

However, due to the prohibitive costs in computing the rank-k truncated SVD, in practical
applications one typically computes a rank-k approximate SVD which satisfies some tolerance
requirements [16, 27, 30, 42, 66]. The rank-k approximate SVD has been applied to many
research areas including principal component analysis (PCA) [37, 58], web search models [38],
information retrieval [4, 23], and face recognition [52, 22].

Among assorted SVD approximation algorithms, the pivoted QLP decomposition pro-
posed by Stewart [66] is an effective and efficient one. The pivoted QLP decomposition is
obtained by computing a QR factorization with column pivoting (QRCP) [6, 25] of A to get an
upper triangular factorR and then computing an LQ factorization ofR to get a lower triangular
factor L. Stewart’s key numerical observation is that the diagonal elements of L track the

∗Received October 14, 2018. Accepted November 6, 2019. Published online on December 11, 2019. Recom-
mended by Y. Saad. The research by M. Gu was supported in part by NSF award FRG-1760316.
†School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, China

(fyh1001@hotmail.com).
‡Department of Mathematics, University of California, Berkeley

(jwxiao@berkeley.edu, mgu@math.berkeley.edu).

469

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol51s469

ETNA
Kent State University and

Johann Radon Institute (RICAM)

470 Y. FENG, J. XIAO, AND M. GU

singular values of A with “considerable fidelity” no matter what the matrix A is. The pivoted
QLP decomposition is extensively analyzed in Huckaby and Chan [34, 35]. More recently,
Duersch and Gu developed a much more efficient variant of the pivoted QLP decomposition,
TUXV, and demonstrated its remarkable quality as a low-rank approximation empirically
without a rigorous theoretical justification of TUXV’s success [17].

In this paper, we present Flip-Flop SRQR, a slightly different variant of TUXV of Duersch
and Gu [17]. Like TUXV, Flip-Flop SRQR requires the most effort for computing a partial QR
factorization using a truncated randomized QRCP (TRQRCP) and a partial LQ factorization.
Unlike TUXV, however, Flip-Flop SRQR also performs additional computations to ensure a
spectrum-revealing QR factorization (SRQR) [75] before the partial LQ factorization.

We demonstrate the reliable theoretical quality of this variant as a low-rank approximation
and its highly competitiveness with state-of-the-art low-rank approximation methods in real
world applications in both low-rank tensor compression [13, 40, 60, 71] and nuclear norm
minimization [7, 45, 49, 54, 68].

The rest of this paper is organized as follows: In Section 2 we introduce the TRQRCP
algorithm, the SRQR factorization, the low-rank tensor compression, and the nuclear norm
minimization. In Section 3, we introduce Flip-Flop SRQR and analyze its computational costs
and low-rank approximation properties. In Section 4, we present numerical results comparing
Flip-Flop SRQR with state-of-the-art low-rank approximation methods. In Section 5, we
summarize our main results and draw some conclusions.

2. Preliminaries and background.

2.1. Partial QRCP. The QR factorization of a matrix A ∈ Rm×n is A = QR with an
orthogonal matrix Q ∈ Rm×m and an upper trapezoidal matrix R ∈ Rm×n, which can be
computed by the LAPACK [2] routine xGEQRF, where x stands for the matrix data type. The
standard QR factorization is not suitable for some practical situations where either the matrix
A is rank deficient or only representative columns of A are of interest. Usually the QRCP
is adequate for the aforementioned situations except a few rare examples such as the Kahan
matrix [26]. Given a matrix A ∈ Rm×n, the QRCP of matrix A has the form

AΠ = QR,

where Π ∈ Rn×n is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix, and
R ∈ Rm×n is an upper trapezoidal matrix. QRCP can be computed by the LAPACK [2]
routines xGEQPF and xGEQP3, where xGEQP3 is a more efficient blocked implementation
of xGEQPF. For a given target rank k (1 ≤ k ≤ min (m,n)), the partial QRCP factorization
(Algorithm 4 in the appendix) has a 2× 2 block form

(2.1) AΠ = Q

[
R11 R12

R22

]
=
[
Q1 Q2

] [R11 R12

R22

]
,

where R11 ∈ Rk×k is upper triangular. The partial QRCP computes an approximate col-
umn subspace of A spanned by the leading k columns in AΠ up to the error term in R22.
Equivalently, (2.1) yields a low rank approximation

(2.2) A ≈ Q1

[
R11 R12

]
ΠT ,

with an approximation quality closely related to the error term in R22.
The Randomized QRCP (RQRCP) algorithm [17, 75] is a more efficient variant of

Algorithm 4. RQRCP generates a Gaussian random matrix Ω ∈ N (0, 1)
(b+p)×m with

b + p � m, where the entries of Ω are independently sampled from a normal distribution

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 471

Algorithm 1 Truncated Randomized QRCP (TRQRCP).
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Outputs:
Orthogonal matrix Q ∈ Rm×m.
Upper trapezoidal matrix R ∈ Rk×n.
Permutation matrix Π ∈ Rn×n such that AΠ ≈ Q (:, 1 : k)R.
Algorithm:
Generate i.i.d. Gaussian random matrix Ω ∈ N (0, 1)

(b+p)×m.
Form the initial sample matrix B = ΩA and initialize Π = In.
for j = 1 : b : k do
b = min (k − j + 1, b).
Do partial QRCP on B (:, j : n) to obtain b pivots.
Exchange corresponding columns in A, B, Π and WT .
Do QR on A (j : m, j : j + b− 1) using WY formula without updating the trailing
matrix.
Update B (:, j + b : n) using the formula (2.4).

end for
Q = Q1Q2 · · ·Qdk/be. R = upper trapezoidal part of the submatrix A (1 : k, 1 : n).

to compress A into B = ΩA with much smaller row dimension. In practice, b is the block
size and p is the oversampling size. RQRCP repeatedly runs partial QRCP on B to obtain b
column pivots, applies them to the matrix A, and then computes QR without pivoting (QRNP)
on A and updates the remaining columns of B. RQRCP exits this process when it reaches
the target rank k. QRCP and RQRCP choose pivots on A and B respectively. RQRCP is
significantly faster than QRCP as B has much smaller row dimension than A. It is shown
in [75] that RQRCP is as reliable as QRCP up to failure probabilities that decay exponentially
with respect to the oversampling size p.

Since the trailing matrix of A is usually not required for low-rank matrix approximations
(see (2.2)), the TRQRCP (truncated RQRCP) algorithm of [17] re-organizes the computations
in RQRCP to directly compute the approximation (2.2) without explicitly computing the
trailing matrix R22. For more details, both RQRCP and TRQRCP are based on the WY
representation of the Householder transformations [5, 55, 61]:

Q = Q1Q2 · · ·Qk = I − Y TY T ,

where T ∈ Rk×k is an upper triangular matrix and Y ∈ Rm×k is a trapezoidal matrix

consisting of k consecutive Householder vectors. Let WT def
= TTY TA, then the trailing

matrix update formula becomes QTA = A− YWT . The main difference between RQRCP
and TRQRCP is that RQRCP computes the whole trailing matrix update, while TRQRCP only
computes the part of the update that affects the approximation (2.2). More discussions about
RQRCP and TRQRCP can be found in [17]. The main steps of TRQRCP are briefly described
in Algorithm 1. The deduction of the updating formula for B is as follows: consider partial
QRs on AΠ and BΠ = ΩAΠ,

(2.3) AΠ = Q

[
R11 R12

R22

]
, BΠ = Q

[
R11 R12

R22

]
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

472 Y. FENG, J. XIAO, AND M. GU

Partition Ω
def
= Q

T
ΩQ

def
=
[
Ω1 Ω2

]
, and therefore (2.3) implies

Ω

[
R11 R12

R22

]
=

[
R11 R12

R22

]
,

which leads to the updating formula for B in Algorithm 1,

(2.4)
[
R12

R22

]
← Ω2R22 =

[
R12 −R11R

−1
11 R12

R22

]
.

With TRQRCP, the TUXV algorithm [17, Algorithm 7] (Algorithm 5 in the appendix),
computes a low-rank approximation with the QLP factorization at a greatly accelerated speed,
by computing a partial QR factorization with column pivoting, followed with a partial LQ
factorization.

2.2. Spectrum-revealing QR factorization. Although both RQRCP and TRQRCP are
very effective practical tools for low-rank matrix approximations, they are not known to
provide reliable low-rank matrix approximations due to their underlying greediness in the
column norm-based pivoting strategy. To solve this potential problem of column-based
QR factorization, Gu and Eisenstat [28] proposed an efficient way to perform additional
column interchanges to enhance the quality of the leading k columns in AΠ as a basis for the
approximate column subspace. More recently, a more efficient and effective method, SRQR,
was introduced and analyzed in [50, 75] to compute the low-rank approximation (2.2). The
concept of spectrum-revealing, introduced in [50, 74], emphasizes the utilization of partial
QR factorization (2.2) as a low-rank matrix approximation, as opposed to the more traditional
rank-revealing factorization, which emphasizes the utility of the partial QR factorization (2.1)
as a tool for numerical rank determination. The SRQR algorithm is described in Algorithm 2.
The SRQR algorithm will always run to completion with a high-quality low-rank matrix
approximation (2.2). For real data matrices that usually have fast decaying singular-value
spectrum, this approximation is often as good as the truncated SVD. The SRQR algorithm
of [75] explicitly updates the partial QR factorization (2.1) while swapping columns, but the
SRQR algorithm can actually avoid any explicit computations on the trailing matrix R22 using
TRQRCP instead of RQRCP to obtain exactly the same partial QR initialization. Below we
outline the SRQR algorithm.

In (2.1), let

(2.5) R̃
def
=

[
R11 a

α

]
be the leading (l + 1)× (l + 1) (l ≥ k) submatrix of R. We define

(2.6) g1
def
=
‖R22‖1,2
|α|

and g2
def
= |α|

∥∥∥R̃−T∥∥∥
1,2
,

where ‖X‖1,2 is the largest column 2-norm of X for any given X . In [75], the authors
proved approximation quality bounds involving g1, g2 for the low-rank approximation com-
puted by RQRCP or TRQRCP. RQRCP or TRQRCP will provide a good low-rank ma-

trix approximation if g1 and g2 are O(1). The authors also proved that g1 ≤
√

1+ε
1−ε and

g2 ≤
√

2(1+ε)

1−ε

(
1 +

√
1+ε
1−ε

)l−1

hold with high probability for both RQRCP and TRQRCP,
where 0 < ε < 1 is a user-defined parameter which guides the choice of the oversampling size

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 473

p. For reasonably choices of ε like ε = 1
2 , g1 is a small constant while g2 can potentially be an

extremely large number, which can lead to a poor low-rank approximation quality. To avoid
the potential large number of g2, the SRQR algorithm (Algorithm 2) proposed in [75] uses a
pair-wise swapping strategy to guarantee that g2 is below some user-defined tolerance g > 1
which is usually chosen to be a small number larger than one, like 2.0. In Algorithm 2, we
use an approximate formula instead of using the definition (2.6) directly to estimate g2, i.e.,
g2 ≈ |α|√d

∥∥∥ΩR̃−T
∥∥∥

1,2
, based on the Johnson-Lindenstrauss Lemma [36].

Algorithm 2 Spectrum-revealing QR Factorization (SRQR).
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Integer l ≥ k. Tolerance g > 1 for g2.
Outputs:
Orthogonal matrix Q ∈ Rm×m formed by the first k reflectors.
Upper trapezoidal matrix R ∈ Rk×n.
Permutation matrix Π ∈ Rn×n such that AΠ ≈ Q (:, 1 : k)R.
Algorithm:
Compute Q,R,Π with RQRCP or TRQRCP to l steps.
Compute squared 2-norm of the columns of B(:, l + 1 : n) : r̂i (l + 1 ≤ i ≤ n), where B
is an updated random projection of A computed by RQRCP or TRQRCP.
Approximate squared 2-norm of the columns of A(l + 1 : m, l + 1 : n) : ri = r̂i/(b +
p) (l + 1 ≤ i ≤ n).
ı = argmaxl+1≤i≤n{ri}.
Swap ı-th and (l + 1)-st columns of A,Π, r.
One-step QR factorization of A(l + 1 : m, l + 1 : n).
|α| = Rl+1,l+1.
ri = ri −A(l + 1, i)2 (l + 2 ≤ i ≤ n).
Generate a random matrix Ω ∈ N (0, 1)d×(l+1) (d� l).
Compute g2 = |α|

∥∥∥R̃−T∥∥∥
1,2
≈ |α|√

d

∥∥∥ΩR̃−T
∥∥∥

1,2
.

while g2 > g do
ı = argmax1≤i≤l+1{ith column norm of ΩR̃−T }.
Swap ı-th and (l + 1)-st columns of A and Π in a Round Robin rotation.
Givens-rotate R back into upper-trapezoidal form.
rl+1 = R2

l+1,l+1, ri = ri +A(l + 1, i)2 (l + 2 ≤ i ≤ n).
ı = argmaxl+1≤i≤n{ri}.
Swap ı-th and (l + 1)-st columns of A,Π, r.
One-step QR factorization of A(l + 1 : m, l + 1 : n).
|α| = Rl+1,l+1.
ri = ri −A(l + 1, i)2 (l + 2 ≤ i ≤ n).
Generate a random matrix Ω ∈ N (0, 1)d×(l+1)(d� l) .
Compute g2 = |α|

∥∥∥R̃−T∥∥∥
1,2
≈ |α|√

d

∥∥∥ΩR̃−T
∥∥∥

1,2
.

end while

2.3. Tensor approximation. In this section we review some basic notations and concepts
involving tensors. A more detailed discussion of the properties and applications of tensors can

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

474 Y. FENG, J. XIAO, AND M. GU

be found in the review [40]. A tensor is a d-dimensional array of numbers denoted by script
notation X ∈ RI1×···×Id with entries given by

xj1,...,jd , 1 ≤ j1 ≤ I1, . . . , 1 ≤ jd ≤ Id.

We use the matrix X(n) ∈ RIn×(Πj 6=nIj) to denote the nth mode unfolding of the tensor
X . Since this tensor has d dimensions, there are altogether d-possibilities for unfolding. The
n-mode product of a tensor X ∈ RI1×···×Id with a matrix U ∈ Rk×In results in a tensor
Y ∈ RI1×···×In−1×k×In+1×···×Id , such that

yj1,...,jn−1,j,jn+1,...,jd = (X ×n U)j1,...,jn−1,j,jn+1,...,jd
=

In∑
jn=1

xj1,...,jduj,jn .

Alternatively it can be expressed conveniently in terms of unfolded tensors:

Y = X ×n U ⇔ Y(n) = UX(n).

Decompositions of higher-order tensors have applications in signal processing [12, 15, 63],
numerical linear algebra [13, 39, 76], computer vision [62, 72, 67], etc. Two particular tensor
decompositions can be considered as higher-order extensions of the matrix SVD: CANDE-
COMP/PARAFAC (CP) [10, 31] decomposes a tensor as a sum of rank-one tensors, and
the Tucker decomposition [70] is a higher-order form of the principal component analy-
sis. Knowing the definitions of mode products and unfolding of tensors, we can introduce
the sequentially truncated higher-order SVD (ST-HOSVD) algorithm for producing a rank
(k1, . . . , kd) approximation to the tensor based on the Tucker decomposition format. The ST-
HOSVD algorithm [3, 71] (Algorithm 6 in the appendix) returns a core tensor G ∈ Rk1×···×kd
and a set of unitary matrices Uj ∈ RIj×kj , for j = 1, . . . , d, such that

X ≈ G ×1 U1 · · · ×d Ud,

where the right-hand side is called a Tucker decomposition. However, a straightforward
generalization to higher-order (d ≥ 3) tensors of the matrix Eckart-Young-Mirsky Theorem is
not possible [14].

In ST-HOSVD, one key step is to compute an exact or approximate rank-kr SVD of
the tensor unfolding. Well known efficient ways to compute an exact low-rank SVD include
Krylov subspace methods [44]. There are also efficient randomized algorithms to find an
approximate low-rank SVD [30]. In the Matlab tensorlab toolbox [73], the most efficient
method, MLSVD_RSI, is essentially ST-HOSVD with an randomized subspace iteration to
find the approximate SVD of the tensor unfolding.

2.4. Nuclear norm minimization. Matrix rank minimization problem appears ubiqui-
tously in many fields such as Euclidean embedding [20, 46], control [21, 51, 56], collaborative
filtering [9, 57, 65], system identification [47, 48], etc. The regularized nuclear norm mini-
mization problem is the following:

min
X∈Rm×n

f (X) + τ‖X‖∗ ,

where τ > 0 is a regularization parameter and ‖X‖∗
def
=
∑q
i=1 σi (X). The choice of the

function f (·) is situational: f (X) = ‖M − X‖1 in robust principal component analysis
(robust PCA) [8] and f (X) = ‖πΩ (M)− πΩ (X) ||2F in matrix completion [7].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 475

Many researchers have devoted themselves to solve the above nuclear norm minimization
problem and plenty of algorithms have been proposed including singular value thresholding
(SVT) [7], fixed point continuous (FPC) [49], accelerated proximal gradient (APG) [68],
augmented Lagrange multiplier (ALM) [45]. The most expensive part of these algorithms lies
in the computation of the truncated SVD. Inexact augmented Lagrange multiplier (IALM) [45]
has been proved to be one of the most accurate and efficient among them. We now describe
IALM for the robust PCA and matrix completion problems.

The robust PCA problem can be formalized as a minimization problem of a sum of nuclear
norm and a scaled matrix l1-norm (sum of matrix entries in absolute value):

(2.7) min ‖X‖∗ + λ‖E‖1, subject to M = X + E,

where M is a measured matrix, X has low-rank, E is an error matrix and sufficiently sparse,
and λ is a positive weighting parameter. Algorithm 7 in the appendix describes details of the
IALM method to solve the robust PCA problem [45].

The matrix completion problem [9, 45] can be written in the form:

(2.8) min
X∈Rm×n

‖X‖∗ subject to X + E = M, πΩ (E) = 0,

where πΩ : Rm×n → Rm×n is an orthogonal projection that keeps the entries in Ω unchanged
and sets those outside Ω zeros. In [45], the authors applied the IALM method to the matrix
completion problem (Algorithm 8 in the appendix).

3. Flip-Flop SRQR factorization.

3.1. Flip-Flop SRQR factorization. In this section, we introduce our Flip-Flop SRQR
factorization, a slightly different variant of TUXV (Algorithm 5 in the appendix), to compute
an SVD approximation based on the QLP factorization. Given an integer l ≥ k, we run SRQR
(the version without computing the trailing matrix) with l steps on A,

(3.1) AΠ = QR = Q

[
R11 R12

R22

]
,

where R11 ∈ Rl×l is upper triangular, R12 ∈ Rl×(n−l), and R22 ∈ R(m−l)×(n−l). Then we
run partial QRNP with l steps on RT ,

(3.2) RT =

[
RT11

RT12 RT22

]
= Q̂

[
R̂11 R̂12

R̂22

]
≈ Q̂1

[
R̂11 R̂12

]
,

where Q̂ =
[
Q̂1 Q̂2

]
with Q̂1 ∈ Rn×l. Therefore, combining with the fact that

AΠQ̂1 = Q
[
R̂11 R̂12

]T
,

we can approximate the matrix A by

(3.3) A = QRΠT = Q
(
RT
)T

ΠT ≈ Q

[
R̂T11

R̂T12

]
Q̂T1 ΠT = A

(
ΠQ̂1

)(
ΠQ̂1

)T
.

We denote the rank-k truncated SVD ofAΠQ̂1 by ŨkΣkṼ
T
k . LetUk = Ũk, Vk = ΠQ̂1Ṽk,

then using (3.3), a rank-k approximate SVD of A is obtained:

(3.4) A ≈ UkΣkV
T
k ,

where Uk ∈ Rm×k, Vk ∈ Rn×k are column orthonormal and Σk = Diag (σ1, · · · , σk) with
σi’s being the leading k singular values of AΠQ̂1. The Flip-Flop SRQR factorization is
outlined in Algorithm 3.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

476 Y. FENG, J. XIAO, AND M. GU

Algorithm 3 Flip-Flop Spectrum-Revealing QR Factorization.
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Integer l ≥ k. Tolerance g > 1 for g2.
Outputs:
U ∈ Rm×k contains the approximate top k left singular vectors of A.
Σ ∈ Rk×k contains the approximate top k singular values of A.
V ∈ Rn×k contains the approximate top k right singular vectors of A.
Algorithm:
Run SRQR on A to l steps to obtain (R11, R12).
Run QRNP on (R11, R12)

T to obtain Q̂1, represented by a sequence of Householder vectors.

Â = AΠQ̂1.
[Û , Σ̂, V̂] = svd

(
Â
)

.

U = Û (:, 1 :, k) ,Σ = Σ̂ (1 : k, 1 : k) , V = ΠQ̂1V̂ (:, 1 : k).

3.2. Complexity analysis. In this section, we perform a complexity analysis of Flip-
Flop SRQR. Since the approximate SVD only makes sense when the target rank k is small,
we assume that k ≤ l � min (m,n). The complexity analysis of Flip-Flop SRQR looks as
follows:

1. The main cost of doing SRQR with TRQRCP onA is 2mnl+2(b+p)mn+(m+n)l2.
2. The main cost of the QR factorization for [R11, R12]

T and forming Q̂1 is 2nl2− 2
3 l

3.
3. The main cost of computing Â = AΠQ̂1 is 2mnl.
4. The main cost of computing [U,∼,∼] = svd

(
Â
)

is O(ml2).
5. The main cost of forming Vk is 2nlk.

Since k ≤ l � min (m,n), the complexity of Flip-Flop SRQR is 4mnl + 2(b+ p)mn
by omitting the lower-order terms.

On the other hand, the complexity of the approximate SVD with randomized subspace
iteration (RSISVD) [27, 30] is (4 + 4q)mn (k + p), where p is the oversampling size and q
is the number of subspace iterations (see the detailed analysis in the appendix). In practice, p
is chosen to be a small integer, for instance, 5 in RSISVD. In Flip-Flop SRQR, l is usually
chosen to be a little bit larger than k, e.g., l = k + 5. We also found that l = k is sufficient in
terms of the approximation quality in our numerical experiments. Therefore, we observe that
Flip-Flop SRQR is more efficient than RSISVD for any q > 0.

Since a practical dataset matrix can be too large to fit into the main memory, the cost of
transferring the matrix into a memory hierarchy typically predominates the arithmetic cost.
Therefore, we also compare the number of data passes between RSISVD and Flip-Flop SRQR.
RSISVD needs 2q + 2 passes, while Flip-Flop SRQR needs 4 passes: computing B = ΩA,
swapping the columns of A, realizing a partial QR factorization on A, and computing AΠQ̂1.
Therefore, Flip-Flop SRQR requires less data transfer than RSISVD for any q > 1.

3.3. Quality analysis of Flip-Flop SRQR. This section is devoted to the quality analysis
of Flip-Flop SRQR. We start with Lemma 3.1.

LEMMA 3.1. Given any matrix X = [X1X2] with Xi ∈ Rm×ni , i = 1, 2, and n1 +
n2 = n,

σj (X)
2 ≤ σj (X1)

2
+ ‖X2‖22 , 1 ≤ j ≤ min(m,n).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 477

Proof. Since XXT = X1X
T
1 + X2X

T
2 , we obtain the above result using [33, Theo-

rem 3.3.16].

We are now ready to derive bounds for the singular values and the approximation error
of Flip-Flop SRQR. We need to emphasize that even if the target rank is k, we run Flip-Flop
SRQR with an actual target rank l which is a little bit larger than k. The difference between
k and l can create a gap between the singular values of A so that we can obtain a reliable
low-rank approximation.

THEOREM 3.2. Given a matrix A ∈ Rm×n, a target rank k, an oversampling size p, and
an actual target rank l ≥ k, the matrices Uk, Σk, Vk in (3.4) computed by Flip-Flop SRQR
satisfy

(3.5) σj(Σk) ≥ σj(A)

4

√
1 +

2‖R22‖42
σ4
j (Σk)

, 1 ≤ j ≤ k,

and

(3.6)
∥∥A− UkΣkV

T
k

∥∥
2
≤ σk+1 (A)

4

√
1 + 2

(
‖R22‖2
σk+1 (A)

)4

,

where R22 ∈ R(m−l)×(n−l) is the trailing matrix in (3.1). Using the properties of SRQR, we
furthermore have

(3.7) σj (Σk) ≥ σj (A)

4

√
1 + min

(
2τ̂4, τ4 (2 + 4τ̂4)

(
σl+1(A)
σj(A)

)4
) , 1 ≤ j ≤ k,

and

(3.8)
∥∥A− UkΣkV

T
k

∥∥
2
≤ σk+1 (A)

4

√
1 + 2τ4

(
σl+1 (A)

σk+1 (A)

)4

,

where τ and τ̂ defined in (3.12) have matrix dimension-dependent upper bounds:

τ ≤ g1g2

√
(l + 1) (n− l) and τ̂ ≤ g1g2

√
l (n− l),

where g1 ≤
√

1+ε
1−ε and g2 ≤ g with high probability. The parameters ε > 0 and g > 1 are

user-defined.

Proof. In terms of the singular value bounds, observing that

[
R̂11 R̂12

R̂22

][
R̂11 R̂12

R̂22

]T
=

[
R̂11R̂

T
11 + R̂12R̂

T
12 R̂12R̂

T
22

R̂22R̂
T
12 R̂22R̂

T
22

]
,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

478 Y. FENG, J. XIAO, AND M. GU

we apply Lemma 3.1 twice for any 1 ≤ j ≤ k,

σ2
j

[R̂11 R̂12

R̂22

][
R̂11 R̂12

R̂22

]T
≤ σ2

j

([
R̂11R̂

T
11 + R̂12R̂

T
12 R̂12R̂

T
22

])
+
∥∥∥[R̂22R̂

T
12 R̂22R̂

T
22

]∥∥∥2

2

≤ σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+
∥∥∥R̂12R̂

T
22

∥∥∥2

2
+
∥∥∥[R̂22R̂

T
12 R̂22R̂

T
22

]∥∥∥2

2

≤ σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+ 2

∥∥∥∥∥
[
R̂12

R̂22

]∥∥∥∥∥
4

2

= σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+ 2 ‖R22‖42 .(3.9)

The relation (3.9) can be further rewritten as

σ4
j (A) ≤ σ4

j

([
R̂11 R̂12

])
+ 2 ‖R22‖42 = σ4

j (Σk) + 2 ‖R22‖42 , 1 ≤ j ≤ k,

which is equivalent to

σj(Σk) ≥ σj(A)

4

√
1 +

2‖R22‖42
σ4
j (Σk)

.

For the residual matrix bound, we let[
R̂11 R̂12

]
def
=
[
R11 R12

]
+
[
δR11 δR12

]
,

where
[
R11 R12

]
is the rank-k truncated SVD of

[
R̂11 R̂12

]
. Since

(3.10)
∥∥A− UkΣkV

T
k

∥∥
2

=

∥∥∥∥∥AΠ−Q
[
R11 R12

0

]T
Q̂T

∥∥∥∥∥
2

,

it follows from the orthogonality of singular vectors that[
R11 R12

]T [
δR11 δR12

]
= 0,

and therefore[
R̂11 R̂12

]T [
R̂11 R̂12

]
=
[
R11 R12

]T [
R11 R12

]
+
[
δR11 δR12

]T [
δR11 δR12

]
,

which implies

(3.11) R̂T12R̂12 = R
T

12R12 +
(
δR12

)T (
δR12

)
.

Similarly to the deduction of (3.9), from (3.11) we can derive∥∥∥∥[δR11 δR12

R̂22

]∥∥∥∥4

2

≤
∥∥[δR11 δR12

]∥∥4

2
+ 2

∥∥∥∥[δR12

R̂22

]∥∥∥∥4

2

≤ σ4
k+1 (A) + 2

∥∥∥∥∥
[
R̂12

R̂22

]∥∥∥∥∥
4

2

= σ4
k+1 (A) + 2 ‖R22‖42 .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 479

Combining with (3.10), it now follows that

∥∥A− UkΣkV
T
k

∥∥
2

=

∥∥∥∥∥AΠ−Q
[
R11 R12

0

]T
Q̂T

∥∥∥∥∥
2

=

∥∥∥∥[δR11 δR12

R̂22

]∥∥∥∥
2

≤ σk+1 (A)
4

√
1 + 2

(
‖R22‖2
σk+1 (A)

)4

.

To obtain an upper bound of ‖R22‖2 in (3.5) and (3.6), we follow the analysis of SRQR
in [75].

From the analysis of [75, Section IV], Algorithm 2 ensures that g1 ≤
√

1+ε
1−ε and g2 ≤ g

with high probability (the actual probability-guarantee formula can be found in [75, Section
IV]), where g1 and g2 are defined by (2.6). Here 0 < ε < 1 is a user defined parameter to
adjust the choice of the oversampling size p used in the TRQRCP initialization part in SRQR.
g > 1 is a user-defined parameter in the extra swapping part in SRQR. Let

(3.12) τ
def
= g1g2

‖R22‖2
‖R22‖1,2

∥∥∥R̃−T∥∥∥−1

1,2

σl+1 (A)
and τ̂

def
= g1g2

‖R22‖2
‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σk (Σk)
,

where R̃ is defined in equation (2.5). Since 1√
n
‖X‖1,2 ≤ ‖X‖2 ≤

√
n‖X‖1,2 and

σi (X1) ≤ σi (X) , 1 ≤ i ≤ min (s, t), for any matrix X ∈ Rm×n and submatrix X1 ∈ Rs×t
of X , we obtain that

τ = g1g2
‖R22‖2
‖R22‖1,2

∥∥∥R̃−T∥∥∥−1

1,2

σl+1

(
R̃
) σl+1

(
R̃
)

σl+1 (A)
≤ g1g2

√
(l + 1) (n− l).

Using the fact that σl
([
R11 R12

])
= σl

(
R̂11

)
and σk (Σk) = σk

([
R̂11 R̂12

])
by (3.2)

and (3.4),

τ̂ = g1g2
‖R22‖2
‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σl (R11)

σl (R11)

σl
([
R11 R12

]) σl ([R11 R12

])
σk (Σk)

≤ g1g2

√
l (n− l).

By the definition of τ ,

(3.13) ‖R22‖2 = τ σl+1 (A) .

Plugging this into (3.6) yields (3.8).
By the definition of τ̂ , we observe that

(3.14) ‖R22‖2 ≤ τ̂σk (Σk) .

By (3.5) and (3.14),
(3.15)

σj (Σk) ≥ σj (A)

4

√
1 + 2

(
‖R22‖2
σj(Σk)

)4
≥ σj (A)

4

√
1 + 2

(
‖R22‖2
σk(Σk)

)4
≥ σj (A)

4
√

1 + 2τ̂4
, 1 ≤ j ≤ k.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

480 Y. FENG, J. XIAO, AND M. GU

On the other hand, using (3.5),

σ4
j (A) ≤ σ4

j (Σk)

(
1 + 2

σ4
j (A)

σ4
j (Σk)

‖R22‖42
σ4
j (A)

)

≤ σ4
j (Σk)

1 + 2

(
σ4
j (Σk) + 2 ‖R22‖42

)
σ4
j (Σk)

‖R22‖42
σ4
j (A)

≤ σ4

j (Σk)

(
1 + 2

(
1 + 2

‖R22‖42
σ4
k (Σk)

)
‖R22‖42
σ4
j (A)

)
,

that is,

σj (Σk) ≥ σj (A)

4

√
1 +

(
2 + 4

‖R22‖42
σ4
k(Σk)

)
‖R22‖42
σ4
j (A)

.

Plugging (3.13) and (3.14) into this above equation yields

(3.16) σj (Σk) ≥ σj (A)

4

√
1 + τ4 (2 + 4τ̂4)

(
σl+1(A)
σj(A)

)4
, 1 ≤ j ≤ k.

Combining (3.15) with (3.16), we arrive at (3.7).
We note that (3.5) and (3.6) still hold true if we replace k by l.
Inequality (3.7) shows that with the definitions (3.12) of τ and τ̂ , Flip-Flop SRQR can

reveal at least a dimension-dependent fraction of all the leading singular values of A and
indeed approximate them very accurately in case they decay relatively quickly. Moreover, (3.8)
shows that Flip-Flop SRQR can compute a rank-k approximation that is up to a factor of
4

√
1 + 2τ4

(
σl+1(A)
σk+1(A)

)4

from optimal. In situations where the singular values of A decay

relatively quickly, our rank-k approximation is about as accurate as the truncated SVD with a
choice of l, such that

σl+1 (A)

σk+1 (A)
= o (1) .

REMARK 3.3. The “high probability” mentioned in Theorem 3.2 is dependent on the
oversampling size p but not on the block size b. We decided not to dive deep into the probability
explanation since it will make the proof much longer and more tedious. Theoretically, the
computed oversampling size p for certain given high probability would be rather high. For
example, to achieve a probability 0.95, we need to choose p to be at least 500. However, in
practice, we would never choose such a large p since it will deteriorate the code efficiency.
It turns out that a small p like 5 ∼ 10 would achieve good approximation results empirically.
The detailed explanation about what does high probability mean here can be found in [75].
In terms of the choice of the block size b, it won’t affect the analysis or the error bounds.
The choice of b is purely for the performance of the codes. Only a suitable b can take full
advantage of the cache hierarchy and BLAS routines.

4. Numerical experiments. In this section, we demonstrate the effectiveness and effi-
ciency of the Flip-Flop SRQR (FFSRQR) algorithm in several numerical experiments. Firstly,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 481

TABLE 4.1
Methods for approximate SVD.

Method Description
LANSVD Approximate SVD using Lanczos bidiagonalization with partial

reorthogonalization [42].
Its Fortran and Matlab implementations are from PROPACK [41].

FFSRQR Flip-Flop Spectrum-revealing QR factorization.
Its Matlab implementation is using Mex-wrapped
BLAS and LAPACK routines [2].

RSISVD Approximate SVD with randomized subspace iteration [30, 27].
Its Matlab implementation is from tensorlab toolbox [73].

TUXV Algorithm 5 in the appendix.
LTSVD Linear Time SVD [16].

We use its Matlab implementation by Ma et al. [49].

we compare FFSRQR with other approximate SVD algorithms for a matrix approximation.
Secondly, we compare FFSRQR with other methods on tensor approximation problems using
the tensorlab toolbox [73]. Thirdly, we compare FFSRQR with other methods for the robust
PCA problem and matrix completion problem. All experiments are implemented on a laptop
with 2.9 GHz Intel Core i5 processor and 8 GB of RAM. The codes based on LAPACK [2]
and PROPACK [41] in Section 4.1 are in Fortran. The codes in Sections 4.2, 4.3 are in Matlab,
except that FFSRQR is implemented in Fortran and wrapped by mex.

4.1. Approximate truncated SVD. In this section, we compare FFSRQR with other
approximate SVD algorithms for low-rank matrix approximation. All tested methods are listed
in Table 4.1. Since LTSVD has only a Matlab implementation, this method is only considered
in Sections 4.2 and 4.3. The test matrices are:
Type 1: A ∈ Rm×n [66] is defined by A = U DV T + 0.1 · dss ·E, where U ∈ Rm×s, V ∈

Rn×s are column-orthonormal matrices, and D ∈ Rs×s is a diagonal matrix with s
geometrically decreasing diagonal entries from 1 to 10−3. dss is the last diagonal
entry of D. E ∈ Rm×n is a random matrix where the entries are independently
sampled from a normal distribution N (0, 1). In our numerical experiment, we test
three different random matrices. The square matrix has a size of 10000× 10000, the
short-fat matrix has a size of 1000× 10000, and the tall-skinny matrix has a size of
10000× 1000.

Type 2: A ∈ R4929×4929 is a real data matrix from the University of Florida sparse matrix
collection [11]. Its corresponding file name is HB/GEMAT11.

For a given matrix A ∈ Rm×n, the relative SVD approximation error is measured by∥∥A− UkΣkV
T
k

∥∥
F
/‖A‖F where Σk contains the approximate top k singular values, and

Uk, Vk are the corresponding approximate top k singular vectors. The parameters used in
FFSRQR, RSISVD, TUXV, and LTSVD are listed in Table 4.2. The additional time required
to compute g2 is negligible. In our experiments, g2 always remains modest and never triggers
subsequent SRQR column swaps. However, computing g2 is still recommended since g2

serves as an insurance policy against potential quality degration by TRQRCP. The block size b
is chosen to be 32 according to the xGEQP3 LAPACK routine. When k is less than 32, we
implement an unblock version of the partial QRCP.

Figures 4.1–4.3 display the run time, the relative approximation error, and the top 20
singular values comparison respectively for four different matrices. In terms of speed, FFSRQR
is always faster than LANSVD and RSISVD. Moreover, the efficiency difference is more

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

482 Y. FENG, J. XIAO, AND M. GU

TABLE 4.2
Parameters used in RSISVD, FFSRQR, TUXV and LTSVD.

Method Parameter
FFSRQR oversampling size p = 5, block size b = min{32, k}, l = k, d = 10, g = 2.0
RSISVD oversampling size p = 5, subspace iteration q = 1
TUXV oversampling size p = 5, block size b = min{32, k}, l = k
LTSVD probabilities pi = 1/n

obvious when k is relatively large. FFSRQR is only slightly slower than TUXV. In terms
of the relative approximation error, FFSRQR is comparable to the other three methods. In
terms of the top singular values approximation, Figure 4.3 displays the top 20 singular values
when k = 500 for four different matrices. In Figure 4.3, FFSRQR is superior to TUXV as
we take the absolute values of the main diagonal entries of the upper triangle matrix R as the
approximate singular values for TUXV.

100 200 300 400 500

target rank k

10
0

10
1

10
2

10
3

10
4

ru
n
 t
im

e
 (

s
e
c
)

FFSRQR

RSISVD

LANSVD

TUXV

(a) Type 1: Random square matrix

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

ru
n
 t
im

e
 (

s
e
c
)

FFSRQR

RSISVD

LANSVD

TUXV

(b) Type 1: Random short-fat matrix

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

ru
n
 t
im

e
 (

s
e
c
)

FFSRQR

RSISVD

LANSVD

TUXV

(c) Type 1: Random tall-skinny matrix

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

10
3

ru
n
 t
im

e
 (

s
e
c
)

FFSRQR

RSISVD

LANSVD

TUXV

(d) Type 2: GEMAT11

FIG. 4.1. Run time comparison for approximate SVD algorithms.

4.2. Tensor approximation. This section illustrates the effectiveness and efficiency of
FFSRQR for computing approximate tensors. ST-HOSVD [3, 71] is one of the most efficient

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 483

100 200 300 400 500

target rank k

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36
re

la
ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

FFSRQR

RSISVD

LANSVD

TUXV

(a) Type 1: Random square matrix

100 200 300 400 500

target rank k

10
-2

10
-1

10
0

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

FFSRQR

RSISVD

LANSVD

TUXV

(b) Type 1: Random short-fat matrix

100 200 300 400 500

target rank k

10
-2

10
-1

10
0

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

FFSRQR

RSISVD

LANSVD

TUXV

(c) Type 1: Random tall-skinny matrix

100 200 300 400 500

target rank k

0.24

0.26

0.28

0.3

0.32

0.34

0.36

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
FFSRQR

RSISVD

LANSVD

TUXV

(d) Type 2: GEMAT11

FIG. 4.2. Relative approximation error comparison for approximate SVD algorithms.

algorithms to compute a Tucker decomposition of tensors, and the most costly part of this
algorithm is to compute an SVD or approximate SVD of the tensor unfoldings. The truncated
SVD and RSISVD are used in the routines MLSVD and MLSVD_RSI, respectively, in the
Matlab tensorlab toolbox [73]. Based on this Matlab toolbox, we implement ST-HOSVD
using FFSRQR or LTSVD to do the SVD approximation. We name these two new routines by
MLSVD_FFSRQR and MLSVD_LTSVD respectively, and compare these four routines in the
numerical experiment. We also have Python codes for this tensor approximation experiment.
We don’t list the results of the python programs here as they are similar to those for Matlab.

4.2.1. A sparse tensor example. We test a sparse tensor X ∈ Rn×n×n of the following
format [64, 59],

X =

10∑
j=1

1000

j
xj ◦ yj ◦ zj +

n∑
j=11

1

j
xj ◦ yj ◦ zj ,

where xj , yj , zj ∈ Rn are sparse vectors with nonnegative entries. The symbol “◦” represents
the vector outer product. We compute a rank-(k, k, k) Tucker decomposition [G;U1, U2, U3]
using MLSVD, MLSVD_FFSRQR, MLSVD_RSI, and MLSVD_LTSVD respectively. The
relative approximation error is measured by ‖X − Xk‖F /‖X‖F where Xk = G ×1 U1 ×2

U2 ×3 U3.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

484 Y. FENG, J. XIAO, AND M. GU

5 10 15 20

index

0.6

0.7

0.8

0.9

1
to

p
 2

0
 s

in
g
u
la

r
v
a
lu

e
s

FFSRQR

RSISVD

LANSVD

TUXV

(a) Type 1: Random square matrix

5 10 15 20

index

0.6

0.7

0.8

0.9

1

to
p
 2

0
 s

in
g
u
la

r
v
a
lu

e
s

FFSRQR

RSISVD

LANSVD

TUXV

(b) Type 1: Random short-fat matrix

5 10 15 20

index

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

to
p

 2
0

 s
in

g
u

la
r

v
a

lu
e

s

FFSRQR

RSISVD

LANSVD

TUXV

(c) Type 1: Random tall-skinny matrix

5 10 15 20

index

10
1

10
2

10
3

to
p

 2
0

 s
in

g
u

la
r

v
a

lu
e

s
FFSRQR

RSISVD

LANSVD

TUXV

(d) Type 2: GEMAT11

FIG. 4.3. Top 20 singular values comparison for approximate SVD algorithms.

Figure 4.4 displays a comparison of the efficiency and accuracy of different methods for a
400× 400× 400 sparse tensor approximation problem. MLSVD_LTSVD is the fastest but the
least accurate one. The other three methods have similar accuracy while MLSVD_FFSRQR is
faster when the target rank k is larger.

4.2.2. Handwritten digits classification. MNIST is a handwritten digits image data set
created by Yann LeCun [43]. Every digit is represented by a 28×28 pixel image. Handwritten
digits classification has the objective of training a classification model to classify new unlabeled
images. A HOSVD algorithm is proposed by Savas and Eldén [60] to classify handwritten
digits. To reduce the training time, a more efficient ST-HOSVD algorithm is introduced
in [71].

We do handwritten digits classification using MNIST which consists of 60, 000 training
images and 10, 000 test images. The number of training images in each class is restricted
to 5421 so that the training set is equally distributed over all classes. The training set is
represented by a tensor X of size 786× 5421× 10. The classification relies on Algorithm 2
in [60]. We use various algorithms to obtain an approximation X ≈ G ×1 U1 ×2 U2 ×3 U3

where the core tensor G has size 65× 142× 10.
The results are summarized in Table 4.3. In terms of run time, we observe that our method

MLSVD_FFSRQR is comparable to MLSVD_RSI, while MLSVD is the most expensive

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 485

50 100 150 200

target rank k

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

MLSVD

MLSVD_FFSRQR

MLSVD_RSI

MLSVD_LTSVD

50 100 150 200

target rank k

10
-2

10
-1

10
0

10
1

10
2

ru
n
 t
im

e
 (

s
e
c
)

MLSVD

MLSVD_FFSRQR

MLSVD_RSI

MLSVD_LTSVD

FIG. 4.4. Run time and relative approximation error comparison on a sparse tensor.

TABLE 4.3
Comparison on handwritten digits classification.

MLSVD MLSVD_FFSRQR MLSVD_RSI MLSVD_LTSVD

Training Time [sec] 27.2121 1.5455 1.9343 0.4266
Relative Model Error 0.4099 0.4273 0.4247 0.5162
Classification Accur. 95.19% 94.98% 95.05% 92.59%

one and MLSVD_LTSVD is the fastest one. In terms of classification quality, MLSVD,
MLSVD_FFSRQR, and MLSVD_RSI are comparable, while MLSVD_LTSVD is the least
accurate one.

4.3. Solving nuclear norm minimization problem. To show the effectiveness of the
FFSRQR algorithm for the nuclear norm minimization problems, we investigate two scenarios:
the robust PCA (2.7) and the matrix completion problem (2.8). The test matrix used for the
robust PCA is introduced in [45], and the test matrices used in the matrix completion are two
real data sets. We use the IALM method [45] to solve both problems; the IALM code can be
downloaded1.

4.3.1. Robust PCA. To solve the robust PCA problem, we replace the approximate
SVD part in the IALM method [45] by various methods. We denote the actual solution to
the robust PCA problem by a matrix pair (X∗, E∗) ∈ Rm×n × Rm×n. The matrix X∗ is
X∗ = XLX

T
R , with XL ∈ Rm×k, XR ∈ Rn×k being random matrices whose entries are

independently sampled from a normal distribution. The sparse matrix E∗ is a random matrix,
where its non-zero entries are independently sampled from a uniform distribution over the
interval [−500, 500]. The input to the IALM algorithm has the form M = X∗ + E∗ and
the output is denoted by

(
X̂, Ê

)
. In this numerical experiment, we use the same parameter

settings as the IALM code for robust PCA: rank k is 0.1m and the number of non-zero entries
in E is 0.05m2. We choose the trade-off parameter λ = 1/

√
max (m,n) as suggested by

Candès et al. [8]. The solution quality is measured by the normalized root mean square error
‖X̂ −X∗‖F /‖X∗‖F .

Table 4.4 includes relative error, run time, the number of non-zero entries in Ê (‖Ê‖0),
the iteration count, and the number of non-zero singular values (#sv) in X̂ of the IALM

1http://perception.csl.illinois.edu/matrix-rank/sample_code.html

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://perception.csl.illinois.edu/matrix-rank/sample_code.html

ETNA
Kent State University and

Johann Radon Institute (RICAM)

486 Y. FENG, J. XIAO, AND M. GU

algorithm using different approximate SVD methods. We observe that IALM_FFSRQR is
faster than all the other three methods, while its error is comparable to IALM_LANSVD and
IALM_RSISVD. IALM_LTSVD is relatively slow and not effective.

TABLE 4.4
Comparison on robust PCA.

Size Method Error Time (sec) ‖Ê‖0 Iter #sv

1000× 1000

IALM_LANSVD 3.33e-07 5.79e+00 50000 22 100
IALM_FFSRQR 2.79e-07 1.02e+00 50000 25 100
IALM_RSISVD 3.36e-07 1.09e+00 49999 22 100
IALM_LTSVD 9.92e-02 3.11e+00 999715 100 100

2000× 2000

IALM_LANSVD 2.61e-07 5.91e+01 199999 22 200
IALM_FFSRQR 1.82e-07 6.93e+00 199998 25 200
IALM_RSISVD 2.63e-07 7.38e+00 199996 22 200
IALM_LTSVD 8.42e-02 2.20e+01 3998937 100 200

4000× 4000

IALM_LANSVD 1.38e-07 4.65e+02 799991 23 400
IALM_FFSRQR 1.39e-07 4.43e+01 800006 26 400
IALM_RSISVD 1.51e-07 5.04e+01 799990 23 400
IALM_LTSVD 8.94e-02 1.54e+02 15996623 100 400

6000× 6000

IALM_LANSVD 1.30e-07 1.66e+03 1799982 23 600
IALM_FFSRQR 1.02e-07 1.42e+02 1799993 26 600
IALM_RSISVD 1.44e-07 1.62e+02 1799985 23 600
IALM_LTSVD 8.58e-02 5.55e+02 35992605 100 600

4.3.2. Matrix completion. We solve the matrix completion problems for two real data
sets used in [68]: the Jester joke data set [24] and the MovieLens data set [32]. The Jester joke
data set consists of 4.1 million ratings for 100 jokes from 73, 421 users and can be downloaded
from the website http://goldberg.berkeley.edu/jester-data/. We test with
the following data matrices:

• jester-1: Data from 24, 983 users who have rated 36 or more jokes,
• jester-2: Data from 23, 500 users who have rated 36 or more jokes,
• jester-3: Data from 24, 938 users who have rated between 15 and 35 jokes,
• jester-all: The combination of jester-1, jester-2, and jester-3.

The MovieLens data set can be downloaded from
https://grouplens.org/datasets/movielens/.
We test with the following data matrices:
• movie-100K: 100, 000 ratings of 943 users for 1682 movies,
• movie-1M: 1 million ratings of 6040 users for 3900 movies,
• movie-latest-small: 100, 000 ratings of 700 users for 9000 movies.

For each data set, we let M be the original data matrix where Mij stands for the rating
of joke (movie) j by user i and Γ be the set of indices where Mij is known. The matrix
completion algorithm quality is measured by the Normalized Mean Absolute Error (NMAE)
defined by

NMAE
def
=

1
|Γ|
∑

(i,j)∈Γ |Mij −Xij |
rmax − rmin

,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://goldberg.berkeley.edu/jester-data/
https://grouplens.org/datasets/movielens/

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 487

where Xij is the prediction of the rating of joke (movie) j given by user i, and rmin, rmax are
the lower and upper bounds of the ratings, respectively. For the Jester joke data sets we set
rmin = −10 and rmax = 10. For the MovieLens data sets we set rmin = 1 and rmax = 5.

Since |Γ| is large, we randomly select a subset Ω from Γ and then use Algorithm 8 to
solve the problem (2.8). We randomly select 10 ratings for each user in the Jester joke data
sets, while we randomly choose about 50% of the ratings for each user in the MovieLens
data sets. Table 4.5 includes the parameter settings in the algorithms. The maximum iteration
number is 100 in IALM and all other parameters are the same as those used in [45].

The numerical results are included in Table 4.6. We observe that IALM_FFSRQR achieves
almost the same recoverability as other methods (except IALM_LTSVD) and is slightly faster
than IALM_RSISVD for these two data sets.

TABLE 4.5
Parameters used in the IALM method on matrix completion.

Data set m n |Γ| |Ω|
jester-1 24983 100 1.81e+06 249830
jester-2 23500 100 1.71e+06 235000
jester-3 24938 100 6.17e+05 249384

jester-all 73421 100 4.14e+06 734210
movie-100K 943 1682 1.00e+05 49918
movie-1M 6040 3706 1.00e+06 498742

movie-latest-small 671 9066 1.00e+05 52551

5. Conclusions. We have presented the Flip-Flop SRQR factorization, a variant of
the QLP factorization, to compute low-rank matrix approximations. The Flip-Flop SRQR
algorithm uses a SRQR factorization to initialize the truncated version of a column-pivoted
QR factorization and then forms an LQ factorization. For the numerical results presented, the
errors in the proposed algorithm were comparable to those obtained from the other state-of-
the-art algorithms. This new algorithm is cheaper to compute and produces quality low-rank
matrix approximations. Furthermore, we prove singular value lower bounds and residual error
upper bounds for the Flip-Flop SRQR factorization. In situations where singular values of
the input matrix decay relatively quickly, the low-rank approximation computed by Flip-Flop
SRQR is guaranteed to be as accurate as the truncated SVD. We also perform a complexity
analysis to show that Flip-Flop SRQR is faster than the approximate SVD with randomized
subspace iteration. Future work includes reducing the overhead cost in Flip-Flop SRQR and
implementing the Flip-Flop SRQR algorithm on distributed memory machines for popular
applications such as distributed PCA.

Acknowledgments. The authors would like to thank Yousef Saad, the editor, and three
anonymous referees who kindly reviewed the earlier version of this manuscript and provided
valuable suggestions and comments.

Appendix A. Partial QR factorization with column pivoting.
The details of partial QRCP are covered in Algorithm 4.

Appendix B. TUXV algorithm.
The details of TUXV algorithm are presented in Algorithm 5.

Appendix C. Computing Tucker decomposition of higher-order tensors.
Algorithm 6 computes the Tucker decomposition of higher-order tensors, i.e., sequentially

truncated higher-order SVD.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

488 Y. FENG, J. XIAO, AND M. GU

TABLE 4.6
Comparison on matrix completion.

Data set Method Iter Time NMAE #sv σmax σmin

jester-1

IALM-LANSVD 12 7.06e+00 1.84e-01 100 2.14e+03 1.00e+00
IALM-FFSRQR 12 3.44e+00 1.69e-01 100 2.28e+03 1.00e+00
IALM-RSISVD 12 3.75e+00 1.89e-01 100 2.12e+03 1.00e+00
IALM-LTSVD 100 2.11e+01 1.74e-01 62 3.00e+03 1.00e+00

jester-2

IALM-LANSVD 12 6.80e+00 1.85e-01 100 2.13e+03 1.00e+00
IALM-FFSRQR 12 2.79e+00 1.70e-01 100 2.29e+03 1.00e+00
IALM-RSISVD 12 3.59e+00 1.91e-01 100 2.12e+03 1.00e+00
IALM-LTSVD 100 2.03e+01 1.75e-01 58 2.96e+03 1.00e+00

jester-3

IALM-LANSVD 12 7.05e+00 1.26e-01 99 1.79e+03 1.00e+00
IALM-FFSRQR 12 3.03e+00 1.22e-01 100 1.71e+03 1.00e+00
IALM-RSISVD 12 3.85e+00 1.31e-01 100 1.78e+03 1.00e+00
IALM-LTSVD 100 2.12e+01 1.33e-01 55 2.50e+03 1.00e+00

jester-all

IALM-LANSVD 12 2.39e+01 1.72e-01 100 3.56e+03 1.00e+00
IALM-FFSRQR 12 1.12e+01 1.62e-01 100 3.63e+03 1.00e+00
IALM-RSISVD 12 1.34e+01 1.82e-01 100 3.47e+03 1.00e+00
IALM-LTSVD 100 6.99e+01 1.68e-01 52 4.92e+03 1.00e+00

movie-100K

IALM-LANSVD 29 2.86e+01 1.83e-01 285 1.21e+03 1.00e+00
IALM-FFSRQR 30 4.55e+00 1.67e-01 295 1.53e+03 1.00e+00
IALM-RSISVD 29 4.82e+00 1.82e-01 285 1.29e+03 1.00e+00
IALM-LTSVD 48 1.42e+01 1.47e-01 475 1.91e+03 1.00e+00

movie-1M

IALM-LANSVD 50 7.40e+02 1.58e-01 495 4.99e+03 1.00e+00
IALM-FFSRQR 53 2.07e+02 1.37e-01 525 6.63e+03 1.00e+00
IALM-RSISVD 50 2.23e+02 1.57e-01 495 5.35e+03 1.00e+00
IALM-LTSVD 100 8.50e+02 1.17e-01 995 8.97e+03 1.00e+00

movie-latest
-small

IALM-LANSVD 31 1.66e+02 1.85e-01 305 1.13e+03 1.00e+00
IALM-FFSRQR 31 1.96e+01 2.00e-01 305 1.42e+03 1.00e+00
IALM-RSISVD 31 2.85e+01 1.91e-01 305 1.20e+03 1.00e+00
IALM-LTSVD 63 4.02e+01 2.08e-01 298 1.79e+03 1.00e+00

Appendix D. IALM for solving two special nuclear norm minimization problems.
Algorithm 7 and Algorithm 8 solve the robust PCA and matrix completion problems,

respectively. In Algorithm 7, Sω (x) = sgn (x) · max (|x| − ω, 0) is the soft shrinkage
operator [29] with x ∈ Rn and ω > 0. In Algorithm 8, Ω is the complement of Ω.

Appendix E. Approximate SVD with randomized subspace iteration.
The randomized subspace iteration was proposed in [30, Algorithm 4.4] to compute an

orthonormal matrix whose range approximates the range of A. An approximate SVD can be
computed using the aforementioned orthonormal matrix [30, Algorithm 5.1]. A randomized
subspace iteration is used in routine MLSVD_RSI in Matlab toolbox tensorlab [73], and
MLSVD_RSI is by far the most efficient function that we can find in Matlab to compute ST-
HOSVD. We summarize the approximate SVD with randomized subspace iteration pseudocode
in Algorithm 9.

Now we perform a complexity analysis for the approximate SVD with randomized
subspace iteration. We first note that:

1. The cost of generating a random matrix is negligible.
2. The cost of computing B = AΩ is 2mn (k + p).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 489

Algorithm 4 Partial QRCP.
Inputs:
Matrix A ∈ Rm×n. Target rank k.
Outputs:
Orthogonal matrix Q ∈ Rm×m.
Upper trapezoidal matrix R ∈ Rm×n.
Permutation matrix Π ∈ Rn×n such that AΠ = QR.
Algorithm:
Initialize Π = In. Compute column norms rs = ‖A (1 : m, s) ‖2 (1 ≤ s ≤ n).
for j = 1 : k do

Find i = arg max
j≤s≤n

rs. Exchange rj and ri columns in A and Π.

Form Householder reflection Qj from A (j : m, j).
Update trailing matrix A (j : m, j : n)← QTj A (j : m, j : n).
Update rs = ‖A (j + 1 : m, s) ‖2 (j + 1 ≤ s ≤ n).

end for
Q = Q1Q2 · · ·Qk is the product of all reflections. R = upper trapezoidal part of A.

Algorithm 5 TUXV Algorithm.
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Outputs:
Column orthonormal matrices U ∈ Rm×k, V ∈ Rn×k, and upper triangular matrix
R ∈ Rk×k such that A ≈ URV T .
Algorithm:
Do TRQRCP on A to obtain Q ∈ Rm×k, R ∈ Rk×n, and Π ∈ Rn×n.
R = RΠT and do LQ factorization, i.e., [V,R] = qr(RT , 0).
Compute Z = AV and do QR factorization, i.e., [U,R] = qr(Z, 0).

3. In each QR step [Q,∼] = qr (B, 0), the cost of computing the QR factorization of
B is 2m (k + p)

2 − 2
3 (k + p)

3 (cf. [69]), and the cost of forming the first (k + p)

columns in the full Q matrix is m (k + p)
2

+ 1
3 (k + p)

3.

Now we count the flops for each i in the for loop:

1. The cost of computing B = AT ∗Q is 2mn (k + p).
2. The cost of computing [Q,∼] = qr (B, 0) is 2n (k + p)

2 − 2
3 (k + p)

3, and the cost
of forming the first (k + p) columns in the full Q matrix is n (k + p)

2
+ 1

3 (k + p)
3.

3. The cost of computing B = A ∗Q is 2mn (k + p).
4. The cost of computing [Q,∼] = qr (B, 0) is 2m (k + p)

2− 2
3 (k + p)

3, and the cost
of forming the first (k + p) columns in the full Q matrix is m (k + p)

2
+ 1

3 (k + p)
3.

Together, the cost of running the for loop q times is

q

(
4mn (k + p) + 3 (m+ n) (k + p)

2 − 2

3
(k + p)

3

)
.

Additionally, the cost of computing B = QT ∗A is 2mn (k + p), the cost of doing SVD of B
is O(n (k + p)

2
), and the cost of computing U = Q ∗ U is 2m (k + p)

2.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

490 Y. FENG, J. XIAO, AND M. GU

Algorithm 6 ST-HOSVD.
Inputs:
Tensor X ∈ RI1×···×Id , desired rank (k1, . . . , kd), and processing order p = (p1, · · · , pd).
Outputs:
Tucker decomposition [G;U1, · · · , Ud].
Algorithm:
Define tensor G ← X .
for j = 1 : d do
r = pj .
Compute exact or approximate rank kr SVD of the tensor unfolding G(r) ≈ ÛrΣ̂rV̂ Tr .
Ur ← Ûr.
Update G(r) ← Σ̂rV̂

T
r , i.e., applying ÛTr to G.

end for

Algorithm 7 Robust PCA Using IALM.
Inputs:
Measured matrix M ∈ Rm×n, positive number λ, µ0, µ, tolerance tol, ρ > 1.
Outputs:
Matrix pair (Xk, Ek).
Algorithm:
k = 0; J (M) = max

(
‖M‖2, λ−1‖M‖F

)
; Y0 = M/J (M); E0 = 0;

while not converged do
(U,Σ,V) = svd

(
M−Ek + µ−1k Yk

)
;

Xk+1 = USµ−1
k

(Σ)V T ;

Ek+1 = Sλµ−1
k

(
M −Xk+1 + µ−1

k Yk
)
;

Yk+1 = Yk + µk (M −Xk+1 − Ek+1);
Update µk+1 = min (ρµk, µ);
k = k + 1;
if ‖M −Xk − Ek‖F /‖M‖F < tol then

Break;
end if

end while

Now assume k + p � min (m,n) and omit the lower-order terms, then we arrive
at (4q + 4)mn (k + p) as the complexity of approximate SVD with randomized subspace
iteration. In practice, q is usually chosen to be an integer between 0 and 2.

REFERENCES

[1] O. ALTER, P. O. BROWN, AND D. BOTSTEIN, Singular value decomposition for genome-wide expression
data processing and modeling, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 10101–10106.

[2] E. ANDERSON, Z. BAI, C. BISCHOF, L. S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. DU CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK Users’ Guide, 3rd
ed., SIAM, Philadelphia, 1999.

[3] C. A. ANDERSSON AND R. BRO, Improving the speed of multi-way algorithms: Part I. Tucker3, Chemometrics
Intell. Lab. Syst., 42 (1998), pp. 93–103.

[4] M. W. BERRY, S. T. DUMAIS, AND G. W. O’BRIEN, Using linear algebra for intelligent information retrieval,
SIAM Rev., 37 (1995), pp. 573–595.

[5] C. BISCHOF AND C. VAN LOAN, The WY representation for products of Householder matrices, SIAM J. Sci.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 491

Algorithm 8 Matrix Completion Using IALM.
Inputs:
Sampled set Ω, sampled entries πΩ (M), positive number λ, µ0, µ, tolerance tol, ρ > 1.
Outputs:
Matrix pair (Xk, Ek).
Algorithm:
k = 0; Y0 = 0; E0 = 0;
while not converged do

(U,Σ,V) = svd
(
M−Ek + µ−1k Yk

)
;

Xk+1 = USµ−1
k

(Σ)V T ;

Ek+1 = πΩ

(
M −Xk+1 + µ−1

k Yk
)
;

Yk+1 = Yk + µk (M −Xk+1 − Ek+1);
Update µk+1 = min (ρµk, µ);
k = k + 1;
if ‖M −Xk − Ek‖F /‖M‖F < tol then

Break;
end if

end while

Statist. Comput., 8 (1987), pp. S2–S13.
[6] P. BUSINGER AND G. H. GOLUB, Handbook series linear algebra. Linear least squares solutions by House-

holder transformations, Numer. Math., 7 (1965), pp. 269–276.
[7] J.-F. CAI, E. J. CANDÈS, AND Z. SHEN, A singular value thresholding algorithm for matrix completion,

SIAM J. Optim., 20 (2010), pp. 1956–1982.
[8] E. J. CANDÈS, X. LI, Y. MA, AND J. WRIGHT, Robust principal component analysis?, J. ACM, 58 (2011),

Art. 11, 37 pages.
[9] E. J. CANDÈS AND B. RECHT, Exact matrix completion via convex optimization, Found. Comput. Math., 9

(2009), pp. 717–772.
[10] J. D. CARROLL AND J.-J. CHANG, Analysis of individual differences in multidimensional scaling via an

N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970), pp. 283–319.
[11] T. A. DAVIS AND Y. HU, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38

(2011), pp. Art. 1, 25.
[12] L. DE LATHAUWER AND B. DE MOOR, From matrix to tensor: Multilinear algebra and signal processing, in

Mathematics in Signal Processing IV, Inst. Math. Appl. Conf. Ser., Oxford Univ. Press, Oxford, 1998,
pp. 1–16.

[13] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, A multilinear singular value decomposition,
SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[14] , On the best rank-1 and rank-(R1, R2, · · · , RN) approximation of higher-order tensors, SIAM J.
Matrix Anal. Appl., 21 (2000), pp. 1324–1342.

[15] L. DE LATHAUWER AND J. VANDEWALLE, Dimensionality reduction in higher-order signal processing and
rank-(R1, R2, . . . , RN) reduction in multilinear algebra, Linear Algebra Appl., 391 (2004), pp. 31–55.

[16] P. DRINEAS, R. KANNAN, AND M. W. MAHONEY, Fast Monte Carlo algorithms for matrices. II. Computing
a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–183.

[17] J. A. DUERSCH AND M. GU, Randomized QR with column pivoting, SIAM J. Sci. Comput., 39 (2017),
pp. C263–C291.

[18] C. ECKART AND G. YOUNG, The approximation of one matrix by another of lower rank, Psychometrika, 1
(1936), pp. 211–218.

[19] L. ELDÉN, Matrix Methods in Data Mining and Pattern Recognition, SIAM, Philadelphia, 2007.
[20] M. FAZEL, H. HINDI, AND S. P. BOYD, Log-det heuristic for matrix rank minimization with applications to

Hankel and Euclidean distance matrices, in Proceedings of the 2003 American Control Conference, 2003,
IEEE Conference Proceedings, IEEE, Piscataway, pp. 2156–2162.

[21] M. FAZEL, T. K. PONG, D. SUN, AND P. TSENG, Hankel matrix rank minimization with applications to
system identification and realization, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 946–977.

[22] C. FRANK AND E. NÖTH, Optimizing eigenfaces by face masks for facial expression recognition, in Computer
Analysis of Images and Patterns, N. Petkov and M. A. Westenberg, eds., vol. 2756 of Lecture Notes in
Comput. Sci., Springer, Berlin, 2003, pp. 646–654.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

492 Y. FENG, J. XIAO, AND M. GU

Algorithm 9 Approximate SVD with Randomized Subspace Iteration.
Inputs:
Matrix A ∈ Rm×n. Target rank k. Oversampling size p ≥ 0. Number of iterations q ≥ 1.
Outputs:
U ∈ Rm×k contains the approximate top k left singular vectors of A.
Σ ∈ Rk×k contains the approximate top k singular values of A.
V ∈ Rn×k contains the approximate top k right singular vectors of A.
Algorithm:
Generate i.i.d Gaussian matrix Ω ∈ N (0, 1)

n×(k+p).
Compute B = AΩ.
[Q,∼] = qr (B, 0);
for i = 1 : q do
B = AT ∗Q;
[Q,∼] = qr (B, 0);
B = A ∗Q;
[Q,∼] = qr (B, 0);

end for
B = QT ∗A;
[U,Σ, V] = svd (B);
U = Q ∗ U ;
U = U (:, 1 : k);
Σ = Σ (1 : k, 1 : k);
V = V (:, 1 : k);

[23] G. W. FURNAS, S. DEERWESTER, S. T. DUMAIS, T. K. LANDAUER, R. A. HARSHMAN, L. A. STREETER,
AND K. E. LOCHBAUM, Information retrieval using a singular value decomposition model of latent
semantic structure, in Proceedings of the 11th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Y. Chiaramella, ed., ACM, New York, 1988, pp. 465–480.

[24] K. GOLDBERG, T. ROEDER, D. GUPTA, AND C. PERKINS, Eigentaste: A constant time collaborative filtering
algorithm, Inf. Retrieval, 4 (2001), pp. 133–151.

[25] G. GOLUB, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), pp. 206–216.
[26] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press,

Baltimore, 2013.
[27] M. GU, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput., 37 (2015),

pp. A1139–A1173.
[28] M. GU AND S. C. EISENSTAT, Efficient algorithms for computing a strong rank-revealing QR factorization,

SIAM J. Sci. Comput., 17 (1996), pp. 848–869.
[29] E. T. HALE, W. YIN, AND Y. ZHANG, Fixed-point continuation for l1-minimization: methodology and

convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.
[30] N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.
[31] R. A. HARSHMAN, Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”

multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1–84.
[32] J. L. HERLOCKER, J. A. KONSTAN, A. BORCHERS, AND J. RIEDL, An algorithmic framework for performing

collaborative filtering, in Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, F. Gey, M. Heaast, and R. Tong, eds., ACM, New
York, 1999, pp. 230–237.

[33] R. A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[34] D. A. HUCKABY AND T. F. CHAN, On the convergence of Stewart’s QLP algorithm for approximating the

SVD, Numer. Algorithms, 32 (2003), pp. 287–316.
[35] , Stewart’s pivoted QLP decomposition for low-rank matrices, Numer. Linear Algebra Appl., 12 (2005),

pp. 153–159.
[36] W. B. JOHNSON AND J. LINDENSTRAUSS, Extensions of Lipschitz mappings into a Hilbert space, in

Conference in Modern Analysis and Probability (New Haven, Conn., 1982), R. Beals, A. Beck, A. Bellow,
and A. Hajian, eds., vol. 26 of Contemp. Math., Amer. Math. Soc., Providence, 1984, pp. 189–206.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

FLIP-FLOP SPECTRUM-REVEALING QR FACTORIZATION 493

[37] I. T. JOLLIFFE, Principal Component Analysis, Springer, New York, 1986.
[38] J. M. KLEINBERG, Authoritative sources in a hyperlinked environment, J. ACM, 46 (1999), pp. 604–632.
[39] T. G. KOLDA, Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 243–255.
[40] T. G. KOLDA AND B. W. BADER, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455–

500.
[41] R. M. LARSEN, PROPACK-software for large and sparse SVD calculations, available at

http://sun.stanford.edu/rmunk/PROPACK.
[42] , Lanczos bidiagonalization with partial reorthogonalization, Tech. Report, PB-537, Department of

Computer Science, Aarhus University, Aarhus, Denmark, 1998.
[43] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER, Gradient-based learning applied to document

recognition, Proc. IEEE, 86 (1998), pp. 2278–2324.
[44] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK Users’ Guide: Solution of Large-Scale

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.
[45] Z. LIN, M. CHEN, AND Y. MA, The augmented Lagrange multiplier method for exact recovery of corrupted

low-rank matrices, Preprint on arXiv, https://arxiv.org/abs/1009.5055, 2010.
[46] N. LINIAL, E. LONDON, AND Y. RABINOVICH, The geometry of graphs and some of its algorithmic

applications, Combinatorica, 15 (1995), pp. 215–245.
[47] Z. LIU, A. HANSSON, AND L. VANDENBERGHE, Nuclear norm system identification with missing inputs and

outputs, Systems Control Lett., 62 (2013), pp. 605–612.
[48] Z. LIU AND L. VANDENBERGHE, Interior-point method for nuclear norm approximation with application to

system identification, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1235–1256.
[49] S. MA, D. GOLDFARB, AND L. CHEN, Fixed point and Bregman iterative methods for matrix rank minimiza-

tion, Math. Program., 128 (2011), pp. 321–353.
[50] C. B. MELGAARD, Randomized Pivoting and Spectrum-Revealing Bounds in Numerical Linear Algebra,

Ph.D. Thesis, University of California, Berkeley, 2015.
[51] M. MESBAHI AND G. P. PAPAVASSILOPOULOS, On the rank minimization problem over a positive semidefinite

linear matrix inequality, IEEE Trans. Automat. Control, 42 (1997), pp. 239–243.
[52] N. MULLER, L. MAGAIA, AND B. M. HERBST, Singular value decomposition, eigenfaces, and 3D recon-

structions, SIAM Rev., 46 (2004), pp. 518–545.
[53] M. NARWARIA AND W. LIN, SVD-based quality metric for image and video using machine learning, IEEE

Trans. Syst„ Man, and Cybernetics, Part B (Cybernetics), 42 (2012), pp. 347–364.
[54] T.-H. OH, Y. MATSUSHITA, Y.-W. TAI, AND I. SO KWEON, Fast randomized singular value thresholding

for nuclear norm minimization, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2015, IEEE Conference Proceedings, IEEE, Los Alamitos, 2015, pp. 4484–4493.

[55] G. QUINTANA-ORTÍ, X. SUN, AND C. H. BISCHOF, A BLAS-3 version of the QR factorization with column
pivoting, SIAM J. Sci. Comput., 19 (1998), pp. 1486–1494.

[56] B. RECHT, M. FAZEL, AND P. A. PARRILO, Guaranteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501.

[57] J. D. RENNIE AND N. SREBRO, Fast maximum margin matrix factorization for collaborative prediction, in
Proceedings of the 22nd International Conference on Machine Learning, L. De Raedt and S. Wrobel, eds.,
ACM Press, Neow York, 2005, pp. 713–719.

[58] V. ROKHLIN, A. SZLAM, AND M. TYGERT, A randomized algorithm for principal component analysis, SIAM
J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124.

[59] A. K. SAIBABA, HOID: higher order interpolatory decomposition for tensors based on Tucker representation,
SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1223–1249.

[60] B. SAVAS AND L. ELDÉN, Handwritten digit classification using higher order singular value decomposition,
Pattern Recognition, 40 (2007), pp. 993–1003.

[61] R. SCHREIBER AND C. VAN LOAN, A storage-efficient WY representation for products of Householder
transformations, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 53–57.

[62] A. SHASHUA AND T. HAZAN, Non-negative tensor factorization with applications to statistics and com-
puter vision, in Proceedings of the 22nd International Conference on Machine Learning, S. Dzeroski,
L. De Raedt, and S. Wrobel, eds., ACM, New York, 2005, pp. 792–799.

[63] N. D. SIDIROPOULOS, R. BRO, AND G. B. GIANNAKIS, Parallel factor analysis in sensor array processing,
IEEE Trans. Signal Process, 48 (2000), pp. 2377–2388.

[64] D. C. SORENSEN AND M. EMBREE, A DEIM induced CUR factorization, SIAM J. Sci. Comput., 38 (2016),
pp. A1454–A1482.

[65] N. SREBRO, J. RENNIE, AND T. S. JAAKKOLA, Maximum-margin matrix factorization, in NIPS’04 Proceed-
ings of the 17th International Conference on Neural Information Processing Systems, L. K. Saul, Y. Weiss,
and L. Bottou, eds., MIT Press, Cambridge, 2004, pp. 1329–1336.

[66] G. W. STEWART, The QLP approximation to the singular value decomposition, SIAM J. Sci. Comput., 20
(1999), pp. 1336–1348.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://sun. stanford. edu/rmunk/PROPACK
https://arxiv.org/abs/1009.5055

ETNA
Kent State University and

Johann Radon Institute (RICAM)

494 Y. FENG, J. XIAO, AND M. GU

[67] S. TAHERI, Q. QIU, AND R. CHELLAPPA, Structure-preserving sparse decomposition for facial expression
analysis, IEEE Trans. Image Process., 23 (2014), pp. 3590–3603.

[68] K.-C. TOH AND S. YUN, An accelerated proximal gradient algorithm for nuclear norm regularized linear
least squares problems, Pac. J. Optim., 6 (2010), pp. 615–640.

[69] L. N. TREFETHEN AND D. BAU III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[70] L. R. TUCKER, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279–

311.
[71] N. VANNIEUWENHOVEN, R. VANDEBRIL, AND K. MEERBERGEN, A new truncation strategy for the higher-

order singular value decomposition, SIAM J. Sci. Comput., 34 (2012), pp. A1027–A1052.
[72] M. A. O. VASILESCU AND D. TERZOPOULOS, Multilinear analysis of image ensembles: Tensorfaces, in

European Conference on Computer Vision 2002, A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, eds,
Lecture Notes in Computer Science vol. 2350, Springer, Berlin, 2002, pp. 447–460.

[73] N. VERVLIET, O. DEBALS, L. SORBER, M. V. BAREL, AND L. DE LATHAUWER, Tensorlab user guide,
available at http://www.tensorlab.net.

[74] J. XIAO AND M. GU, Spectrum-revealing Cholesky factorization for kernel methods, in Proceedings of the 16th
IEEE International Conference on Data Mining (ICDM), IEEE Conference Proceedings, Los Alamitos,
2016, pp. 1293–1298.

[75] J. XIAO, M. GU, AND J. LANGOU, Fast parallel randomized QR with column pivoting algorithms for reliable
low-rank matrix approximations, in Proceedings of the 24th IEEE International Conference on High
Performance Computing (HiPC), IEEE Conference Proceedings, Los Alamitos, 2017, pp. 233–242.

[76] T. ZHANG AND G. H. GOLUB, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl.,
23 (2001), pp. 534–550.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://www.tensorlab.net

