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BIORTHOGONAL RATIONAL KRYLOV SUBSPACE METHODS∗

NIEL VAN BUGGENHOUT†, MARC VAN BAREL†, AND RAF VANDEBRIL†

Abstract. A general framework for oblique projections of non-Hermitian matrices onto rational Krylov subspaces
is developed. To obtain this framework we revisit the classical rational Krylov subspace algorithm and prove that the
projected matrix can be written efficiently as a structured pencil, where the structure can take several forms such as
Hessenberg or inverse Hessenberg. One specific instance of the structures appearing in this framework for oblique
projections is a tridiagonal pencil. This is a direct generalization of the classical biorthogonal Krylov subspace method,
where the projection becomes a single non-Hermitian tridiagonal matrix and of the Hessenberg pencil representation
for rational Krylov subspaces. Based on the compact storage of this tridiagonal pencil in the biorthogonal setting, we
can develop short recurrences. Numerical experiments confirm the validity of the approach.
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1. Introduction. Krylov subspace methods, introduced by A. N. Krylov [18], are an
indispensable tool in science and engineering for transforming large datasets to manageable
sizes. There is an enormous amount of variants of Krylov subspace methods. A good
overview can be found in the books of Saad [28] and van der Vorst [34] and the paper by
Gutknecht [15]. In this article we focus on a particular type of Krylov subspace methods,
namely the rational Krylov subspace methods in a non-orthogonal, but oblique projection
process. This allows to save the projected matrix as two tridiagonal matrices, which is a
more data-sparse representation compared to the Hessenberg pair arising from orthogonal
projections.

Rational Krylov subspaces were introduced by Ruhe [25] illustrating that faster conver-
gence could be obtained when, e.g., approximating non-dominating eigenvalues [26] and
constructing a reduced-order model for dynamical systems [11, 12, 13].

Arnoldi [2] linked Hessenberg matrices to the orthogonal basis stemming from a Krylov
subspace and developed an iteration to build up these bases. Iterative construction of matrices
involved in biorthogonal Krylov subspace methods are due to Lanczos [19], where an oblique
projection results in a tridiagonal matrix. Even though the oblique projection process is less
stable than the classical orthogonal projection, there is a significant gain in memory storage and
computing time. A nice introduction into biorthogonal Krylov subspace methods is provided
by Saad [27]. The most popular biorthogonal method for solving systems of equations is the
BiCGStab method of van der Vorst [33].

Biorthogonal Krylov subspace methods for rational Krylov subspaces have been described
only partially in the literature [11, 12, 13]. This article will generalize previous results and
provide a general framework. We will prove that the oblique projection linked to biorthogonal
rational Krylov subspaces results in a matrix pencil of which both matrices can be chosen to
be tridiagonal, possibly non-Hermitian. The highly structured pencil allows us to develop a
short recursion to compute the biorthogonal bases and the projected pencil. To derive these
results, we first need to reconsider the structure of the orthogonally projected matrix linked to
a classical rational Krylov subspace. We prove that instead of the single rational Hessenberg
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matrix, we can also work with a pair of matrices of particular structure such as Hessenberg or
inverse Hessenberg.

Gutknecht studied short recursions, (k, l)-step methods for fixed-point equations [14, 16],
by means of a Hessenberg-triangular pencil. Some classical Krylov subspace methods can
be described by (k, l)-step methods, e.g., BiCG is a (2, 1)-step method. The biorthogonal
rational Lanczos method introduced here does not immediately fit into this framework.

Some notable results are provided below, which are in some sense special cases of the
general framework provided here. We discuss which spaces are used and what structure the
projection onto these subspaces exhibits.

Using orthogonality of Laurent polynomials, Jagels and Reichel [17] constructed a
recurrence for extended Krylov subspaces with regularity in the poles (a repetition of i ≥ 1
timesA and one timeA−1) and a symmetric matrixA. They represented their projected matrix
as a single matrix. Schweitzer [29] constructed in a similar way a nonsymmetric Lanczos
iteration for extended Krylov subspaces, only valid when a negative and a positive power
is alternated in both spaces. Gallivan, Grimme, and Van Dooren derived a nonsymmetric
rational Lanczos iteration [12]. They use the same poles in both subspaces and represent
the projection as a pencil, which is a tridiagonal pencil except for some off-diagonal fill-in
when a change of a pole occurs. Watkins [37] provided the first elegant representation of the
AGR/CMV-factorization [1, 6, 9, 30, 37] as a matrix pencil; for a nice overview of the history
we refer to the paper by Simon [30]. This factorization is in fact also a biorthogonal relation
but for unitary matrices.

Some elementary results are provided in Section 2 with a focus on sparsity and low-
rank structure. Section 3 discusses rational Krylov subspace methods and the structure of
the projection. Section 4 deals with biorthogonal rational Krylov subspace methods and an
overview presenting all possible structures. In Section 5 a rational Lanczos iteration is derived
based on the tridiagonal pencil structure and some numerical experiments are performed
illustrating the validity of the approach.

2. Basics. Since this text will rely on matrix computations and the main results involve
sparsity and low-rank structure, this section is devoted to these types of structure (structure
will refer from now on to both sparsity and low-rank structure). Useful elementary results for
standard Krylov subspace methods are repeated in Section 2.1. For more details, see, e.g.,
[20, 24, 27]. Using the QR factorization, we introduce inv-Hessenberg, extended Hessenberg,
and rational Hessenberg matrices in Section 2.2.

2.1. Standard Krylov subspaces. Standard Krylov subspace methods perform an or-
thogonal projection of some matrix A ∈ Cm×m onto the Krylov subspace

Kn(A, v) = span{v,Av,A2v, . . . , An−1v},

with a starting vector v ∈ Cm, ‖v‖2 = 1. Note that these subspaces are nested, i.e., the
inclusion Kn−1 ⊆ Kn holds. Using the Arnoldi iteration [2], a nested orthonormal basis Vn
for Kn can be iteratively constructed together with the projection onto the lower-dimensional
subspace Kn−1(A, v): V Hn−1AVn−1 = Hn−1 ∈ C(n−1)×(n−1). A basis Vn ∈ Cm×n for a
subspace Sn of dimension n is called nested if S1 ⊆ S2 ⊆ S3 ⊆ . . . , where Si is spanned
by the first i columns of Vn. The projected matrix Hn has upper Hessenberg structure, i.e.,
hi,j = 0 for i > j + 1, where hi,j denotes the element on the ith row and jth column of Hn.
An alternative notation that will be used is (Hn)i,j . In general Hn exhibits no particular
structure above its diagonal.

REMARK 2.1. Throughout this text we assume that no breakdowns occur, i.e., no
subdiagonal element hi+1,i of the projection Hi+1 = V Hi+1AVi+1 is zero. Since a zero
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would imply that the subspace Ki is invariant under multiplication with A or in other words,
AKi = Ki, here every occasion where it is impossible to expand the current subspace Si, i.e.,
Si+1 = Si, will be called a breakdown. Typically a breakdown is a lucky event, i.e., a lucky
termination, and we will therefore not focus on it. Serious breakdowns can also occur; see
Gutknecht [15] and the references therein for details.

For a full reduction, i.e., n = m, the subscripts are dropped, V HAV = H , H ∈ Cm×m.
The structure of Hn can be represented as shown in Figure 2.1, where struct(M) of some
matrix M shows generic nonzero elements as × and omits the zeros. In case of a Hermitian
matrix AH = A, the orthogonal projection onto Kn(A, v) results in a Hermitian Hessenberg
matrix V Hn AVn = Tn. Or in other words, it has Hessenberg structure both above and below
its diagonal and is therefore tridiagonal, which is displayed in Figure 2.1. Since we assumed
no breakdowns, the Hessenberg and tridiagonal matrices are both proper, i.e., no zeros appear
on the subdiagonal.

× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×
× ×




(a) struct(Hn).

× ×
× × ×
× × ×
× × ×
× × ×
× × ×
× ×




(b) struct(Tn).

FIG. 2.1. Generic nonzero elements of a Hessenberg matrix Hn and tridiagonal matrix Tn are represented as ×.

2.2. Sparsity and low-rank structure. The sparsity that a Hessenberg matrix exhibits
below its diagonal is also contained in its QR factorization. The QR factorization decomposes
a matrix into the product of a unitary matrix Q and an upper triangular matrix R. To discuss
the QR factorization of a Hessenberg matrix we require core transformations. Core transfor-
mations in this text will refer to unitary matrices Ci that equal the unit matrix up to a 2× 2
unitary block embedded on the diagonal starting in row and column i:

Ci =


Ii−1

× ×
× ×

In−i−1

 ,
where Ci is of size n×n and Ik denotes the unit matrix of size k×k. To compactly visualize a

core transformation Ci, the notation �� will be used, with the top arrow pointing at row i and
the bottom arrow pointing at row i+ 1. Multiplication from the left with a core transformation
Ci, i.e., CiM , only affects the ith and (i+ 1)st rows of the matrix M .

LEMMA 2.2 (QR factorization of Hessenberg matrices). Consider a proper upper
Hessenberg matrix H ∈ Cn×n, hi,j = 0, for i > j + 1. Then the QR factorization of H can
be written as H = C1C2 · · ·Cn−1R, where the Ci are nontrivial core transformations.

We will refer to C1C2 · · ·Cn−1 as a descending pattern of core transformations. In case
of an ascending pattern Q = Cn−1 · · ·C2C1, the matrix QR forms an inv-Hessenberg matrix.
Inv-Hessenberg matrices have a low-rank structure below their diagonal similar to the structure
of inverse Hessenberg matrices. We distinguish them from inverse Hessenberg matrices since
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they do not have to be invertible. More details can be found in, e.g., the book by Vandebril et
al. [36], where they are called Hessenberg-like matrices.

Now a logical next step is to look at the structure of Z = QR if the shape (the ordering
of core transformations) contains ascending and descending patterns, i.e., a permutation of
C1C2 · · ·Cn−1. To be able to discuss this we note that CiCj = CjCi, for |i − j| > 1.
Whenever a descending pattern CiCi+1 occurs, a Hessenberg block is formed and whenever
an ascending pattern Ci+1Ci occurs, an inv-Hessenberg block is formed.

EXAMPLE 2.3. Take, for example, Q = C1C4C5C6C3C2 corresponding to the shape

��
�

�
�

�
�

�
��

��

.

The structure ofZ = QR is visualized similarly as by Mertens and Vandebril [23] in Figure 2.2.
The dashed and dotted lines highlight the structure.

struct(Z) =

× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

× × ×
× ×




FIG. 2.2. Extended Hessenberg matrix Z obtained by a shape of core transformations Q = C1C4C5C6C3C2

such that Z = QR.

From the structure in Figure 2.2 and the corresponding shape of Q it is clear that
C1C2 forms a Hessenberg block Z1:3,1:3 (indicated by a dotted line), C4C3C2 forms an
inv-Hessenberg block Z2:5,2:5 (the low-rank part is indicated by a dashed line), and C4C5C6

forms again a Hessenberg block Z4:7,4:7.
A matrix containing both ascending and descending patterns of core transformations will

be referred to as an extended Hessenberg matrix and links to the projection onto an extended
Krylov subspace [35], which is a special case of a rational Krylov subspace.

3. Rational Krylov subspaces. Rational Krylov subspaces [25] will be denoted by
K(A, v; Ξ), where A and v are defined as before and the poles are given by Ξ = {ξ1, ξ2, . . . },
with ξk ∈ C̄ = {C ∪∞}. If the kth pole is finite, then a shift-invert operator (νkA− µkI)−1

expands the subspace Kk(A, v, {ξi}k−1
i=1 ). The ratio of µk and νk satisfies µk/νk = ξk, which

is the kth pole. We call this a pole since it is the pole of the shift-invert operator (A− ξkI)−1.
If the kth pole is infinite, then a multiplication with A expands the subspace. First, the
single-matrix representation of the orthogonal projection onto a rational Krylov subspace
is considered in Section 3.1 and afterwards the pencil representation of this projection is
discussed in Section 3.2 for a Hessenberg pencil and in Section 3.3 for an inv-Hessenberg
pencil.
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3.1. Single-matrix representation. Consider an orthonormal nested basis Vn ∈ Cm×n

for Kn(A, v; Ξ), with A ∈ Cm×m, v ∈ Cm, and given poles Ξ. Orthogonally projecting the
matrix A onto Kn and expressing the result using a single matrix Zn provides the equation

V Hn AVn = Zn.

The structure of the rational Hessenberg matrix Zn can be deduced from the choice of poles.
It allows for a factorization as Zn = QR + D, where QR forms an extended Hessenberg
matrix and D is a diagonal matrix containing the poles of the corresponding rational Krylov
subspace [8]. An expansion using a shift-invert operator (finite pole) leads to an inv-Hessenberg
block, and an expansion using a multiplication with A (infinite pole) leads to a Hessenberg
block [3]. Example 3.1 illustrates this.

EXAMPLE 3.1. Consider the extended Krylov subspace corresponding to the example
from before, Z = C1C4C5C6C3C2R, given in Figure 2.2 with

K7 = span{v,Av,A−1v,A−2v,A2v,A3v,A4v}.

The corresponding poles are Ξ = {∞, 0, 0,∞,∞,∞}. If the poles are chosen as
Ξ = {∞, ξ2 = µ2

ν2
, ξ3 = µ3

ν3
,∞,∞,∞}, then the space constructed is

span{v,Av, (ν2A− µ2I)−1v, (ν2A− µ2I)−1(ν3A− µ3I)−1v,A2v,A3v,A4v},

and the decomposition becomes Z = QR+D as displayed in Figure 3.1, where ξ2 and ξ3 are
the poles and the remaining elements of D can be chosen freely.

struct(Z) =

× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

× × ×
× ×




+

×
×

ξ2

ξ3

×
×
×




FIG. 3.1. Rational Hessenberg matrix Z corresponding to the projection onto K(A, v; Ξ) from Example 3.1,

with Ξ = {∞, ξ2, ξ3,∞,∞,∞}.

The structure of the single-matrix representation can be explained through its link with
the Hessenberg pencil representation discussed in Section 3.2; see Camps et al. [8].

3.2. Pencil representation. A pencil representation of the projected matrix onto a ratio-
nal Krylov subspace can be constructed via an Arnoldi iteration. Theorem 3.2 provides the
rational Arnoldi iteration in its most general form, i.e., the expansion of the subspace is done
with the operator (νkA− µkI)−1(ρkA− ηkI).

THEOREM 3.2 (Rational Arnoldi iteration [25]). Consider a matrix A ∈ Cm×m

and an orthonormal nested basis Vn for a rational Krylov subspace Kn(A, v; Ξn), where
Ξn = {ξ1, ξ2, . . . , ξn−1} ∈ C̄. The recurrence relation to obtain a basis Vn+1 for the space
Kn+1(A, v; Ξn+1) with Ξn+1 = {Ξn, ξn} in matrix form reads as follows:

AVn+1Kn = Vn+1Hn,
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with Hn and Kn Hessenberg matrices of size (n + 1) × n. The ratio of their subdiagonal
elements equals the poles of the rational Krylov subspace

(Kn)k+1,k

(Hn)k+1,k
= ξk, k = 1, 2 . . . , n.

Proof. Considering the formula for expanding the Krylov subspace Kk(A, v; Ξ) by a
multiplication with (νkA − µkI)−1(ρkA − ηkI), the subspace is invariant under the shift
operator (ρkA − ηkI). Afterwards, an orthogonalization with respect to all vectors in the
current basis Vk =

[
v1 v2 · · · vk

]
is done using hik, i = 1, . . . , k, and a normalization

using hk+1,k. This leads to a Gram-Schmidt orthogonalization procedure

(3.1) hk+1,kvk+1 = (νkA− µkI)−1(ρkA− ηkI)vk − h1kv1 − · · · − hkkvk.

Rewriting (3.1) reveals the kth column of the matrices Hk and Kk:

(νkA− µkI)hk+1,kvk+1 = (ρkA− ηkI)vk − (νkA− µkI)

k∑
i=1

hikvi

νkAhk+1,kvk+1 + νkA

k∑
i=1

hikvi − ρkAvk = −ηkvk + µk

k∑
i=1

hikvi + µkhk+1,kvk+1

A

(
(νk

k+1∑
i=1

hikvi)− ρkvk
)

= µk

(
k+1∑
i=1

hikvi

)
− ηkvk

Aνk
[
v1 . . . vk vk+1

]


h1k
...

hkk − ρk/νk
hk+1,k

 = µk
[
v1 . . . vk vk+1

]


h1k
...

hkk − ηk/µk
hk+1,k

 .

The last equation reveals that the subdiagonal element ratio is µkhk+1,k

νkhk+1,k
= µk

νk
= ξk.

From Theorem 3.2 we obtain a Hessenberg pencil (Hn,Kn) satisfying Zn = HnK
−1
n

with Kn nonsingular, which represents the projection

(3.2) V Hn AVnKn = Hn.

Such a Hessenberg pencil will be called proper if it has no subdiagonal elements hi+1,i

and ki+1,i simultaneously zero. Theorem 3.2 implies that Hn and Kn are linked and their
subdiagonal ratios reveal the poles of the rational Krylov subspace from which they originate.
These ratios are, however, invariant when Hn and Kn are both multiplied with an upper
triangular matrix R from the right, illustrating that the Hessenberg pencil (Hn,Kn) is not
unique.

An implicit Q-theorem for matrix pencils (Hn,Kn) exists if the poles and the starting
vector are chosen and the structure of the matrices in this pencil is fixed. If the structure of
the matrices is chosen to be Hessenberg, then the implicit Q-theorem can be found in the
dissertation of Berljafa [4], the paper by Berljafa et al. [5], and the paper of Camps et al. [8].
Theorem 3.3 states this result and shows a one-to-one relation between Hessenberg pencils
and rational Krylov subspaces. Therefore manipulating poles in the pencil corresponds to
manipulating the subspaces.
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THEOREM 3.3 (Rational implicit Q-theorem [4, 5, 8]). Consider a decomposition of the
form

AVn+1Kn = Vn+1Hn

with (n+ 1)× n Hessenberg matrices Hn and Kn, poles ξi =
hi+1,i

ki+1,i
, for i = 1, . . . , n, and

Vn+1 an orthonormal nested basis for the rational Krylov subspace Kn+1(A, v; Ξ), where
v = Vn+1e1 is the first column of Vn+1 and Ξ = {ξ1, ξ2, . . . , ξn} is the set of poles. Then
the Hessenberg pencil (Hn,Kn) and the orthonormal matrix Vn+1 are essentially uniquely
determined by the starting vector v and the poles Ξ.

Note that Theorem 3.3 states the uniqueness of the Hessenberg pencil. The pencil can,
however, also be represented using matrices with another structure than Hessenberg since for
a nonsingular matrix C, the pair (HnC,KnC) also satisfies (3.2). Besides the Hessenberg
pencil, another important representation is an inv-Hessenberg pencil. This representation is
discussed in Section 3.3 and is important for the derivation of the main result of this text
provided in Section 4.

3.3. Inv-Hessenberg pencil. An inv-Hessenberg pencil satisfying (3.2) is constructed
in this section.

PROPERTY 3.1 (Transfer through property [35]). A shape of core transformations can be
transferred through an upper triangular matrix R without altering the shape.

EXAMPLE 3.4. The equality C1C3C2C4R = R̃C̃1C̃3C̃2C̃4 holds, where R̃ is upper
triangular. The matrices involved will generally change (their elements), but the shape, i.e.,
the mutual ordering of the core transformations (and therefore the structure of the resulting
matrix) remains the same.

LEMMA 3.5 (Turnover lemma [36, Lemma 9.38]). Consider the product of three core
transformations Gi−1GiĜi−1. Then there exists an equivalent representation ΓiΓi−1Γ̂i

� ��
�

�
� =

�
�

�
�� �

Gi−1GiĜi−1 = ΓiΓi−1Γ̂i,

with matrices defined as

Gi−1 :=

 ci−1 si−1

−si−1 ci−1

1

 Gi :=

1
ci si
−si ci

 Ĝi−1 :=

 ĉi−1 ŝi−1

−ŝi−1 ĉi−1

1


Γi :=

1
γi σi
−σi γi

 Γi−1 :=

 γi−1 σi−1

−σi−1 γi−1

1

 Γ̂i :=

1
γ̂i σ̂i
−σ̂i γ̂i

 .
For the ease of notation, Theorem 3.6 is stated and proved for a full reduction (n = m)

but is valid for partial reductions as well.
THEOREM 3.6 (Inv-Hessenberg pencil for the projection onto rational Krylov subspaces).

Let V ∈ Cm×m be an orthonormal nested basis for a rational Krylov subspace Km(A, v; Ξ),
withA ∈ Cm×m, v ∈ Cm, and the poles Ξ. Then the orthogonal projection onto this subspace
can be represented as two inv-Hessenberg matrices H inv,K inv, i.e., they satisfy the equation
V HAVK inv = H inv.

Proof. The existence of a Hessenberg pair (H,K) satisfying

V HAVK = H
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follows immediately from the Arnoldi iteration in Theorem 3.2. From Lemma 2.2 and
Property 3.1 it follows that there exist upper triangular matrices RH and RK and unitary
matrices consisting of a descending pattern of core transformations QH and QK such that

V HAV RKQK = RHQH .

Let us write it in a manner such that the structures are clear:

V HAV RK

��
��

��
. . .

��

= RH

��
��

��
. . .

��

Multiplying from the right with QHK annihilates the descending pattern of core transformations
on the left-hand side.

V HAV RK = RH

��
��

��
. . .

��

�
�

�

�
�

�

. .
.

��

Using the turnover operation repeatedly (see [36] for details), it is possible to rearrange the
core transformations to obtain another shape.

AV RK = RH

��
��

��
. . .

��

�
�

�

�
�

�

. .
.

��

Multiplying from the right to annihilate the descending pattern of core transformations brings
them back to the left-hand side.

AV RK

�
�

�

�
�

�

. .
.

��

= RH

�
�

�

�
�

�

. .
.

��

Using the notation from before yields the following, where the dashed lines indicate a low-rank
structure:

V HAV K inv = H inv

Hence, we have constructed an inv-Hessenberg pair (H inv,K inv) which satisfies the matrix
equality

V HAVK inv = H inv.
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3.4. Connection to other factorizations. Theorem 3.6, Theorem 3.2, and the result
from Section 3.1 are summarized in Table 3.1. The structure of the single matrix representation
also appeared in a paper by Mach et al. [21], and the Hessenberg pencil representation is a
classical result by Ruhe [25]. These results about the structure provide the tools for deriving
the tridiagonal pencil representation of oblique projections onto rational Krylov subspaces in
Section 4.

TABLE 3.1
Summary of structures following from orthogonal projections onto a rational Krylov subspace with basis V .

V HAV = Z V HAVK = H

4. Biorthogonal rational Krylov subspaces. This section provides results concerning
the possible structures of a biorthogonal projection onto rational Krylov subspaces. Section 4.1
provides results for the single-matrix representation. The main result of that section has been
proven for extended Krylov subspaces by Mach et al. [22]. Section 4.2 provides novel results
concerning the structure of the pencil representation, elegantly generalizing the tridiagonal
structure obtained by the non-Hermitian Lanczos iteration. Section 4.3 provides an overview
of the structures which are generalized by the results in this section. Based on the tridiagonal
pencil, a Lanczos iteration for rational Krylov subspaces is developed in Section 5.

4.1. Single-matrix representation. The structure of a biorthogonal projection expressed
as a single matrix Zn = WH

n AVn is given in Theorem 4.1. Here Vn and Wn are biorthogonal
bases, i.e., WH

n Vn = I , for two rational Krylov subspaces K(A, v; Ξ) and L(AH , w;Φ),
respectively, with A ∈ Cm×m, v, w ∈ Cm, and Ξ, Φ two (possibly) independent sets of
poles. For the sake of readability the corresponding proof and all subsequent proofs are
provided for a full reduction (i.e., n = m). The structure of Zn can be deduced using matrix
factorizations rather than relying on the orthogonality of the basis vectors for the subspaces;
see, e.g., [17, 29, 37].

THEOREM 4.1 (Structure of biorthogonal projections in single-matrix representations).
Consider A ∈ Cm×m and rational Krylov subspaces K(A, v; Ξ) and L(AH , w;Φ) with
biorthogonal bases V,W ∈ Cm×m, respectively. Ξ and Φ are two sets containing poles
that are not in the spectrum of A. Under the assumption that no breakdowns occur, the
biorthogonal projection can be written as

WHAV = Z,

where Z has the structure below its diagonal determined by the poles of K and the structure
above its diagonal determined by the poles of L.

Proof. A similar proof appears in [22]. The proof is added for completeness. Consider
the matrices ZV and ZW

ZV = V̂ HAV̂ , ZW = ŴHAHŴ ,
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where V̂ and Ŵ are orthogonal bases for the rational Krylov subspaces K(A, v; Ξ) and
L(AH , w;Φ), respectively, with wHv = 1. In general for the orthogonal bases we have
ŴH V̂ 6= I , but taking the non-pivoted LR decomposition of the matrix product ŴH V̂ will
allow us to construct biorthogonal bases V and W . The non-pivoted LR decomposition,
consisting of a lower triangular L and an upper triangular R, will retain the nestedness of the
bases V̂ and Ŵ and will make the bases orthogonal to each other:

ŴH V̂ = LR, ⇒ L−1ŴH︸ ︷︷ ︸
=:WH

V̂ R−1︸ ︷︷ ︸
=:V

= I, ⇒WHV = I.

This decomposition exists if and only if ŴH V̂ is strongly nonsingular, otherwise it will break
at the first singular principal minor. This break corresponds to a breakdown and is typical
for biorthogonal methods. In this case the structural results hold up to the occurrence of the
breakdown. The structure of Z can be derived as follows. First consider

AV = V Z, ⇒ A V R︸︷︷︸
V̂

= V R︸︷︷︸
V̂

R−1ZR, ⇒ AV̂ = V̂ R−1ZR︸ ︷︷ ︸
ZV

,

which provides the equality

(4.1) Z = RZVR
−1.

Second, consider the relations

AHW = WZH ⇒ AHWLH︸ ︷︷ ︸
Ŵ

= WLH︸ ︷︷ ︸
Ŵ

L−HZHLH ⇒ AHŴ = Ŵ L−HZHLH︸ ︷︷ ︸
ZW

,

which provides the equality

(4.2) ZH = LHZWL
−H .

Multiplication with an upper triangular matrix preserves the structure in the lower triangular
part. Hence, the structure of Z is the same as the structure of ZV for the lower triangular
part, following from (4.1). The structure of the upper triangular part of Z is the same as the
structure of the lower triangular part of ZW , following from (4.2).

Theorem 4.1 is illustrated by Example 4.2 for extended Krylov subspaces.
EXAMPLE 4.2. Consider A ∈ C8×8 and the extended Krylov subspaces

K8 = span{v,Av,A2v,A3v,A4v,A−1v,A5v,A−2v},
L8 = span{w, (AH)−1w,AHw, (AH)−2w, (AH)−3w, (AH)−4w, (AH)2w, (AH)3w}.

An orthogonal projection onto these subspaces results in matrices ZV for K8 and ZW for L8

and biorthogonal projection onto K8 and L8 results in Z. The structure of these matrices
is provided in Figure 4.1. In case of rational Krylov subspaces we only have to include
a diagonal matrix containing the poles. Note the extended Hessenberg structure for the
orthogonal projections and the same structure appearing in the biorthogonal projection but
now below as well as above the diagonal. Black lines are added to highlight the structure.

The following lemma provides a result for unitary matrices stated by Bunse-Gerstner
and Faßbender [7], Stewart [31], and several others. It follows easily from Theorem 4.1 and
illustrates how the theorem can be used as a general framework to derive structures arising
from projection onto Krylov subspaces.
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(c) WHAV = Z.

FIG. 4.1. Structure of orthogonal and biorthogonal projection onto the extended Krylov subspaces K8 and L8
in a single-matrix representation; see Example 4.2.

LEMMA 4.3. Consider a unitary matrix U ∈ Cm×m, some starting vector v ∈ Cm,
and an orthogonal nested basis V for the standard Krylov subspace Km(U, v). Under the
assumption that no breakdown occurs, the projection Z = V HUV has Hessenberg structure
below and inv-Hessenberg structure above the diagonal.

Proof. Consider a unitary matrix U , U−1 = UH and rational (more precisely extended)
Krylov subspaces

K(U, v; Ξ = {∞,∞, . . . }), K(UH , v;Φ = {0, 0, . . . }),

with respective orthogonal bases V̂ and Ŵ . Since U−1 = UH , K(U, v; Ξ) = K(UH , v;Φ) =
K(U, v), and therefore V̂ = Ŵ =: V , which implies that V̂ HŴ = V HV = I . Hence, they
are simultaneously orthogonal and biorthogonal bases. Using the knowledge from Section 3.1
it is clear that the structure of

ZV = V̂ HAV̂ , ZW = ŴHAHŴ ,

is Hessenberg and inv-Hessenberg, respectively. Theorem 4.1 then states that Z = ŴHAV̂ =
V HAV has Hessenberg structure in its lower triangular part and inv-Hessenberg structure in
its upper triangular part.

Retrieving the poles of both spaces K and L from the single-matrix representation Z is
possible but rather technical, especially in the parts where the matrix is not of Hessenberg form.
The next section is concerned with the pencil representation which allows a more elegant
retrieval of the poles in case a tridiagonal pencil is used.

4.2. Pencil representation. The main contribution of this text is the general pencil
structure given in Theorem 4.4. A specific instance is a tridiagonal pencil, which is described
in Lemma 4.5. As a consequence of the tridiagonal pencil, a six-term recurrence relation can
be derived for the biorthogonal bases for the rational Krylov subspaces in Section 5.

THEOREM 4.4 (Pencil structure of biorthogonal projections onto rational Krylov sub-
spaces). Consider A ∈ Cm×m, two vectors v, w ∈ Cm, and two rational Krylov subspaces
K(A, v; Ξ) and L(AH , w;Ψ), where Ξ and Ψ are two sets of poles (not in the spectrum of
A). Let V̂ , Ŵ ∈ Cm×m be orthogonal nested bases and V,W ∈ Cm×m biorthogonal nested
bases for K and L, respectively. Then there exist H,K,HV ,KV , HW ,KW such that

V̂ HAV̂ KV = HV , ŴHAHŴKW = HW , WHAVK = H,

and the structure of the pencil (H,K) is related to the structure of the pencils (HV ,KV )
and (HW ,KW ). With “inverted structure” being short for meaning that a Hessenberg block
becomes an inv-Hessenberg block and vice versa, the structure can be related as follows:

• H has the same structure below its diagonal as HV , and above its diagonal it has
the inverted structure of KW ;
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• K has the same structure below its diagonal as KV , and above its diagonal it has
the inverted structure of HW .

Proof. From the orthogonal bases V̂ and Ŵ , the biorthogonal bases V and W can be
constructed as in Theorem 4.1, i.e., V := V̂ R−1 and WH := L−1ŴH . Substituting the
expressions for the biorthogonal bases in the equation of the orthogonal projection (3.2)
provides{

AV̂ KV = V̂ HV

AHŴKW = ŴHW

⇔
{
AV̂ R−1RKV = V̂ R−1RHV

AHŴL−HLHKW = ŴL−HLHHW

⇔
{
AV RKV = V RHV

AHWLHKW = WLHHW

⇔
{
WHAV RKV = RHV

V HAHWLHKW = LHHW

.

Taking the Hermitian conjugate of the second equation and rewriting it reveals the connection
between the matrices at play{

WHAV RKV = RHV

WHAV L−1H−H
W = L−1K−H

W

.

Since these expressions are only unique up to right multiplication with a nonsingular matrix
B, we get {

RKVB = L−1H−H
W ,

RHVB = L−1K−H
W .

To obtain a particular choice for the structure of H and K, it suffices to represent B in its
RL-decomposition (assuming it exists), where R is an upper triangular matrix and L a lower
triangular matrix{

RKVB = L−1H−H
W

RHVB = L−1K−H
W

⇔
{
RKVRBLB = L−1H−H

W

RHVRBLB = L−1K−H
W

⇔
{
RKVRB = L−1H−H

W L−1
B =: K

RHVRB = L−1K−H
W L−1

B =: H
.

For the remainder of this proof, H and K are defined as in the last equations. Other choices
are possible because of the non-uniqueness of the pencil representation. Since R and RB are
upper triangular matrices, they preserve the structure in the lower triangular part. This means
that K and KV have the same lower triangular structure and so do H and HV . On the other
hand K shares its upper triangular structure with H−H

W and H with K−H
W since L and LB are

lower triangular matrices.
Starting from Theorem 4.4, it is straightforward to prove the following lemma.
LEMMA 4.5 (Tridiagonal pencil for biorthogonal rational Krylov subspaces). Consider

some matrix A ∈ Cm×m and vectors v, w ∈ Cm. Let V,W ∈ Cm×m be biorthogonal bases
for the rational Krylov subspaces K(A, v; Ξ) and L(AH , w;Ψ), where the poles are not in the
spectrum of A. The equation

(4.3) WHAV S = T

representing the projection onto K and orthogonal to L is satisfied for a tridiagonal pen-
cil (T, S).
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Proof. If (HV ,KV ) is chosen to be a Hessenberg pair (Theorem 3.2) and (HW ,KW )
to be an inv-Hessenberg pair (Theorem 3.6), then Theorem 4.4 guarantees that (T, S) has a
tridiagonal structure.

The pencil analogue to Lemma 4.3 can be derived from Theorem 4.4. This illustrates the
ease with which structures in the pencil form can be derived using this theorem. We stress that
this result is only of theoretical use, not of practical.

LEMMA 4.6. Consider a unitary matrix U ∈ Cm×m, some starting vector v ∈ Cm,
and an orthogonal nested basis V for the standard Krylov subspace K(U, v). Under the
assumption that no breakdown occurs, the equation V HUVK = H is satisfied for a proper
lower bidiagonal and upper bidiagonal pencil (H,K).

Proof. Consider a unitary matrix U , U−1 = UH and the same subspaces K(U, v; Ξ) and
K(UH , v;Φ) as in the proof of Lemma 4.3 with respective orthogonal bases V̂ and Ŵ . Note
that V̂ = Ŵ =: V . The pencil representation of orthogonal projections onto these subspaces
are the following

V̂ HUV̂ KV = HV , ŴHUHŴKW = HW .

For (HV ,KV ), consider the standard case: KV is upper triangular and HV is of Hessenberg
form. For (HW ,KW ), choose HW to be of inv-Hessenberg form and KW to be upper
triangular. Then following from Theorem 4.4, the structure of (H,K) is a lower bidiagonal
and upper bidiagonal pencil.

Lemma 4.6 together with Lemma 4.3 show that a unitary Hessenberg matrix Z can be
factorized as the product of a lower bidiagonal matrixH and the inverse of an upper bidiagonal
matrix K [36] using the notation from the lemmas.

4.3. Connection to other factorizations. The results from this section generalize many
well-known results such as the non-Hermitian Lanczos iteration [19], the Hermitian rational
Lanczos iteration [10] , the AGR- or CMV-factorization [37], and more recent results by
Jagels and Reichel [17], Schweitzer [29], and others. Table 4.1 visualizes the structures of
biorthogonal projection onto rational Krylov subspaces. The main contribution of this paper
are the entries on the right, i.e., biorthogonal projection onto rational Krylov subspaces for
pencil representations. Through Theorem 4.4 it is possible to relate the structures appearing in
Table 3.1 to those in Table 4.1.

TABLE 4.1
Summary of pencil structures occurring for biorthogonal projections onto rational Krylov subspaces with bases

V and W .

WHAV = Z WHAVK = H

5. Rational Lanczos iteration. A Lanczos-type iteration which constructs biorthogonal
bases for rational Krylov subspaces is discussed in this section. Section 5.1 states results
concerning the appearance of the poles of rational Krylov subspaces as ratios in the tridiagonal
pencil (4.3). These results allow for the development of the Lanczos-type iteration. Matlab

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

464 N. VAN BUGGENHOUT, M. VAN BAREL AND R. VANDEBRIL

code implementing this iteration can be found as an additional resource for this document1

and is also available on the internet [32]. Some numerical results for this iteration are given
in Section 5.2. These serve as a proof of concept—we have not yet focused on numerical
stability.

5.1. Lanczos-type iteration. For the construction of a Lanczos-type iteration we must
know how the poles appear in the tridiagonal pencil (4.3); Lemma 5.1 and Lemma 5.2 describe
this.

LEMMA 5.1. Assume we have WHAV S = T as in Theorem 4.4. The ratio of the
subdiagonal elements of (T, S) reveals the poles Ξ = {ξ1, ξ2, . . . , ξm−1} of K(A, v; Ξ)

Ti+1,i

Si+1,i
= ξi, i = 1, 2, . . . ,m− 1.

Proof. From Theorem 3.2 it follows that the ratio of the subdiagonal elements of
(HV ,KV ) equals the poles

(HV )i+1,i

(KV )i+1,i
= ξi, i = 1, 2, . . . ,m− 1,

and since

Ti+1,i

Si+1,i
=
Ri+1,i+1(HV )i+1,i(RB)ii
Ri+1,i+1(KV )i+1,i(RB)ii

=
(HV )i+1,i

(KV )i+1,i
, i = 1, 2, . . . ,m− 1,

the assertion follows, where in the first equality we used a result stated in the proof of
Theorem 4.4 with R and RB upper triangular matrices.

LEMMA 5.2. Let (T, S) be the tridiagonal pencil satisfying (4.3). The ratio of the
superdiagonal elements of the pencil (T, S) reveals the (complex conjugate of the) poles
Ψ = {ψ1, ψ2, . . . , ψm−2} of L(AH , w;Ψ)

Ti,i+1

Si,i+1
= ψ̄i−1, i = 2, 3, . . . ,m− 1.

Proof. Assume we have WHAV S = T as in Theorem 4.4. Note that another tridiagonal
pencil (S̃, T̃ ) exists for which

(5.1) V HAHWT̃ = S̃.

Equation (4.3) represents a projection ontoK and orthogonal toL and equation (5.1) represents
a projection onto L and orthogonal to K. Hence, from Lemma 5.1 we know that the ratios of
the subdiagonals of (T, S) and (S̃, T̃ ) reveal the poles of K and L, respectively.

Starting from Equation (4.3) and (5.1) we can relate the matrix pencils as follows{
WHAV = TS−1

V HAHW = S̃T̃−1
⇒
{
WHAV = TS−1

WHAV = T̃−H S̃H

concluding that TS−1 = T̃−H S̃H . Rewriting this equation as T̃HT = S̃HS leads to two
pentadiagonal matrices. Let us assign a variable to each off-diagonal element; diagonal

1The matlab script RationaLanczos.m can be found at
http://etna.ricam.oeaw.ac.at/volumes/2011-2020/vol51/addition/
RationalLanczos.m
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elements are marked by an “x” because these are not relevant for the proof.

x τ̃1
t̃1 x τ̃2

t̃2 x
. . .

. . .
. . . τ̃n−1

t̃n−1 x



H 

x τ1
t1 x τ2

t2 x
. . .

. . .
. . . τn−1

tn−1 x



=



x σ̃1
s̃1 x σ̃2

s̃2 x
. . .

. . .
. . . σ̃n−1

s̃n−1 x



H 

x σ1
s1 x σ2

s2 x
. . .

. . .
. . . σn−1

sn−1 x

 .

Hence, by equating the second superdiagonals and second subdiagonals of both pentadiagonal
matrices we get {

tiτ̃
H
i+1 = siσ̃

H
i+1

τi+1t̃
H
i = σi+1s̃

H
i

i = 1, . . . ,m− 2,

⇒
{
ξi = ti/si = σ̃Hi+1/τ̃

H
i+1

ψi = s̃i/t̃i = τHi+1/σ
H
i+1

i = 1, . . . ,m− 2,

where the last equality uses the result from Lemma 5.1.
Note that Lemma 5.2 allows for freedom in the choice of T1,2 and S1,2. The results from

Theorem 4.5, Lemma 5.1, and Lemma 5.2 can be used to construct a six-term recurrence
relation, which builds biorthogonal bases for rational Krylov subspaces. This is the Lanczos-
type iteration; a code is included which implements this. The derivation of the iteration is
omitted since it is straightforward but lengthy.

5.2. Numerical experiments. The validity of the Lanczos-type iteration [32] is verified
by applying it to solve an eigenvalue problem. Three characteristics of the algorithm will be
monitored:

• ‖WH
n Vn − I‖2: a measure for the biorthogonality of the bases W and V ,

• ‖WH
n+1AVn+1Sn − Tn‖2: a measure for the quality of the oblique projection, and

• a Ritz plot visualizing the quality of the Ritz values as approximations to the eigen-
values.

The projection measure uses the expansion matrices (Tn, Sn) resulting from the Lanczos
iteration, i.e., they are of dimension (n+ 1)×n. We compare the Ritz values θ(n) of (Tn, Sn),
the matrices where the last row of (Tn, Sn) is removed, with the eigenvalues λ of A. Ritz
plots visualize how close the n Ritz values θ(n)i , 1 ≤ i ≤ n, are to the closest eigenvalue
λi := min

λ
|θ(n)i − λ| for increasing n. The colours show how accurate the approximation is:

red: ‖θ(n)i − λi‖2 < 10−8, yellow: ‖θ(n)i − λi‖2 < 10−5,

green: ‖θ(n)i − λi‖2 < 10−2, blue: ‖θ(n)i − λi‖2 ≥ 10−2.

EXAMPLE 5.3. Consider a random 50 × 50 upper triangular matrix with eigenvalues
λi = i, i = 1, 2, . . . , 50. Krylov subspaces K(A, v; Ξ) and L(AH , w;Φ) are built using
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v = w and Ξ = Φ = {0, 24.1, 0, 24.1, . . . }. Biorthogonal projection using these subspaces
lead to Figure 5.1a for the biorthogonality measure, Figure 5.1b for the measure quantifying
the projection (T, S), and Figure 5.2 displaying the Ritz plot. The Ritz plot clearly shows
that convergence is concentrated around the chosen poles 0 and 24.1. This is the expected
behaviour; the convergence of rational Krylov methods can be focused on certain parts of the
spectrum [25].

0 5 10 15 20 25
10−16

10−7

102

(a) ‖WH
n Vn − I‖2.

0 5 10 15 20 25
10−16

10−6

104

(b) ‖WH
n+1AVn+1Sn − Tn‖2.

FIG. 5.1. Measures for Example 5.3 with n the dimension of the rational Krylov subspaces.
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−20
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20

40

60

1

FIG. 5.2. Ritz plot for Example 5.3 with n the dimension of the rational Krylov subspaces.

EXAMPLE 5.4. To show the connection between the convergence of the eigenvalues and
biorthogonality, we choose a pole closer to an eigenvalue. This leads to faster convergence
to this eigenvalue and thus to a faster loss of biorthogonality [24]. The poles chosen now are
Ξ = Φ = {0, 24 + 10−5, 0, 24 + 10−5, . . . }. Figure 5.4 indicates that the eigenvalue λ = 24
is found in fewer iterations than in Example 5.3. This leads to a faster loss of biorthogonality
of the bases, illustrated in Figure 5.3a. Figure 5.3b displays that the quality of the projection is
related to the biorthogonality of the bases.

Note that we did not use examples where Ξ 6= Φ since the behaviour of such choices is
not comparable with any existing Lanczos-type iterations and subject to future research. From
Example 5.3 and Example 5.4 we conclude that the novel Lanczos-type iteration exhibits the
expected behaviour, i.e., it is comparable to the behaviour of known iterations. Hence, the
validity of the rational Lanczos iteration is substantiated.

6. Conclusion. A general framework to predict the various structures arising in the
context of rational Krylov subspace methods is developed. From this framework a pair of short
recurrence relations for biorthogonal bases of rational Krylov subspaces is deduced. Based on
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FIG. 5.3. Measures for Example 5.4 with n the dimension of the rational Krylov subspaces.
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FIG. 5.4. Ritz plot for Example 5.4 with n the dimension of the rational Krylov subspaces.

the short recurrence relation, a Lanczos-type iteration is derived which constructs these bases
together with a tridiagonal pencil representing the obliquely projected matrix. The framework
generalizes many classical and more recent results, as does the novel rational Lanczos iteration.
Numerical tests are performed as a proof of concept for the iteration.

6.1. Future Research. A proper analysis of the numerical behaviour of the Lanczos
iteration could provide the means to make it more stable. Furthermore the relation between
biorthogonal rational Krylov subspaces and biorthogonal functions will be looked into.
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