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Abstract. In the present paper we propose a product integration rule for hypersingular integrals on the positive
semi-axis. The rule is based on an approximation of the density function f by a suitable truncated Lagrange
polynomial. We discuss theoretical aspects by proving stability and convergence of the procedure for density functions
f belonging to weighted uniform spaces. Moreover, we give some computational details for the effective construction
of the rule coefficients. For the sake of completeness, we present some numerical tests that support the theoretical
estimates and some comparisons with other numerical methods.
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1. Introduction. This paper deals with the approximation of integral transforms of the
type

Hp(fuγ , t) =

∫
=

+∞

0

f(x)

(x− t)p+1
uγ(x)dx, t > 0, p ∈ N,

uγ(x) = e−
x
2 xγ , γ ≥ 0,

(1.1)

where the integral on the right-hand side is defined as the finite part in the Hadamard sense.
Integrals of this kind are also called “hypersingular integrals” and arise in many contexts such
as singular and hypersingular boundary integral equations, which are tools for modeling many
phenomena in different branches of the applied sciences (see for instance [1, 11, 19, 25] and
the references therein).

Recently in [5, 6, 7] we have proposed several different methods for computing the
integrals (1.1), each of them useful according to the scope and/or depending on the smoothness
of the density function f . In [6] we have considered a truncated Gaussian rule suitably
modified to avoid the severe numerical cancellation arising when t is “close” to a Gaussian
node. Whenever the simultaneous approximation ofH0(fuγ , t),H1(fuγ , t), . . . ,Hp(fuγ , t)
is needed, the methods proposed in [5] and [7] can be more appropriate. Among them, for
smoother functions, with a more expensive procedure it is reasonable to use the method in [7],
while in presence of less regular functions, a local low-degree polynomial is better suited and
cheaper [5]. In any case, all of the previous methods are based on the following decomposition
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commonly adopted by many other authors:

∫ +∞

0

f(x)−
∑p
k=0

f(k)(t)
k! (x− t)k

(x− t)p+1
uγ(x)dx+

p∑
k=0

f (k)(t)

k!

∫
=

+∞

0

uγ(x)

(x− t)p+1−k dx.

This approach requires the derivatives of f or, alternatively with an additional effort, a suitable
approximation of them (see [7]).

Here we introduce a product integration rule on the basis of a straightforward approxi-
mation of f by a truncated Lagrange polynomial essentially based on Laguerre zeros, thus
obtaining

Hp(fuγ , t) =

j∑
k=1

f(xk)Ak(t) + em,p(fuγ , t) =: Hp,m(fuγ , t) + em,p(fuγ , t),

where the index j = j(m) ≤ m is the truncation index, and its role will be clarified later.
By this way, no derivatives of the density function f are needed. We prove stability and
convergence of the formulaHp,m(fuγ , t), and we provide some error estimates for functions
f in weighted uniform spaces of Zygmund type. We remark that “truncated" processes with
respect to Laguerre weights were introduced in numerical quadrature by Mastroianni and
Monegato [13, 14] and successively applied to different kinds of integrals (for instance [2, 16]),
whereas “truncated" Lagrange polynomial sequences on the semi-axis were introduced in
[10, 12] (see also [20, 24]) and on the real line in [15] (see, also, [22, 23]). In both cases the
“truncation” produces processes which are more convenient and faster convergent than the
corresponding “complete" ones.

Despite the simple expression of the rule, the major effort of the proposed approach
depends on the construction of the coefficients {Ak(t)}jk=1. We propose to compute them via
the modified moments {M (s)

k (t)}k∈N, s = 0, 1, . . . , p, with the kernels Ks(x, t) = 1
(x−t)s+1 .

By this way, the simultaneous approximation ofH0(fuγ , t),H1(fuγ , t), . . . ,Hp(fuγ , t) can
be easily performed with a computational cost of the same order.

The plan of the paper is the following: the next section contains some preliminary results
and notation. In Section 3 we state the product rule with some results on stability and the rate
of convergence of the error. In Section 4 we provide some details about the computation of the
product rule coefficients. In the successive Section 5 we propose some numerical experiments
in order to show the efficiency of the rule and provide some comparisons with other methods
available in the literature. Finally, in Section 6 the proofs of the main results are stated.

2. Basic definitions and properties. Throughout the paper the constant C will be used
several times having different meanings in different formulas. Moreover, from now on we
write C 6= C(a, b, . . .) in order to express the fact that C is a positive constant independent of
the parameters a, b, . . . and C = C(a, b, . . .) to state that C depends on a, b, . . . Moreover, if
A,B ≥ 0 are quantities depending on some parameters, then we write A ∼ B if there exists a
constant 0 < C 6= (A,B) such that

B

C
≤ A ≤ CB.

Finally, Pm will denote the space of algebraic polynomials of degree at most m.
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2.1. Function spaces. With uγ(x) = xγe−x/2, γ ≥ 0, we denote by Cuγ the following
set of functions

Cuγ =


{
f ∈ C0((0,+∞)) : limx→+∞

x→0+
(fuγ)(x) = 0

}
, γ > 0,

{
f ∈ C0([0,+∞)) : lim

x→+∞
(fuγ)(x) = 0

}
, γ = 0,

equipped with the norm

‖f‖Cuγ := ‖fuγ‖ = sup
x≥0
|(fuγ)(x)| ,

where C0(E) is the space of continuous functions on the set E. In the sequel we use
‖f‖E := supx∈E |f(x)| for any subset E ⊂ R+.

For smoother functions we introduce the Sobolev-type spaces of order r ∈ N,

Wr(uγ) =
{
f ∈ Cuγ : f (r−1) ∈ AC((0,+∞)) and ‖f (r)ϕruγ‖ < +∞

}
,

where AC((0,+∞)) denotes the set of all functions which are absolutely continuous on every
closed subset of (0,+∞) and ϕ(x) =

√
x. We equip these spaces with the norm

‖f‖Wr(uγ) := ‖fuγ‖+ ‖f (r)ϕruγ‖.

For any f ∈ Cuγ we consider the following main part of the k-th ϕ-modulus of smooth-
ness (see [4] and also [17]):

Ωkϕ(f, t)uγ = sup
0<h≤t

‖uγ∆k
hϕf‖Ikh ,

where Ikh =
[
4k2h2, Ch2

]
, C is a fixed positive constant, and

∆k
hϕf(x) =

k∑
i=0

(−1)i
(
k

i

)
f
(
x+ hϕ(x)(k − i)

)
.

The complete k-th modulus of smoothness is given by

ωkϕ(f, t)uγ = Ωkϕ(f, t)uγ + inf
P∈Pk−1

‖(f − P )uγ‖(0,4k2t2) + inf
Q∈Pk−1

‖(f −Q)uγ‖( 1
t2
,+∞).

By means of Ωkϕ(f, t)uγ we define the Zygmund-type spaces

Zλ(wα) :=

{
f ∈ Cuγ : sup

t>0

Ωkϕ(f, t)uγ
tλ

< +∞

}
of parameter 0 < λ < k, equipped with the norm

‖f‖Zλ(uγ) = ‖fuγ‖+ sup
t>0

Ωkϕ(f, t)uγ
tλ

.

We recall that with r = bλc, it is the case that Wr+1(uγ) ⊆ Zλ(uγ) ⊆ Wr(uγ), and
with 0 < λ < 1 and p ∈ N, f (p) ∈ Zλ(uγϕ

p) implies f ∈ Zλ+p(uγ) and vice versa [7,
Lemma 2.1]. Finally, it is useful to recall that for functions belonging to Zλ(uγ), 0 < λ < 1,
it holds that

(2.1) ωrϕ(f, t)uγϕp ∼ Ωrϕ(f, t)uγϕp

(see [4, p. 189]).
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2.2. Orthogonal polynomials and truncated Lagrange interpolation. Let the func-
tion wα(x) = e−xxα be the Laguerre weight of parameter α > −1, and let {pm(wα)}m be
the corresponding sequence of orthonormal polynomials with positive leading coefficients

pm(wα, x) = γm(wα)xm + terms of lower degree, γm(wα) > 0.

Denoting by xm,k, k = 1, . . . ,m, the zeros of pm(wα) in increasing order, we recall that
(see [26])

C(α)

m
< xm,1 < xm,2 < . . . < xm,m < 4m+ 2α− Cm 1

3 .

From now on, for any fixed 0 < θ < 1, the integer j := j(m) denotes the index of the zero of
pm(wα) such that

(2.2) xm,j = min
k=1,2,..,m

{xm,k : xm,k ≥ 4mθ} .

Inside the segment (0, xm,j) the distance between two consecutive zeros of pm(wα) can be
estimated as follows

∆xm,k ∼ ∆xm,k−1 ∼
√
xm,k
m

, ∆xm,k = xm,k+1 − xm,k, k = 1, 2, . . . , j.

Let Lm+1(wα, g) be the Lagrange polynomial interpolating a given function g at the zeros
of pm(wα, x)(4m − x). Denote by χj the characteristic function of the segment (0, xm,j)
with j defined in (2.2). The Lagrange polynomial Lm+1(wα, g) := Lm+1(wα, gχj) defined
in [10] (see also [12]) can be expressed as

(2.3) Lm+1(wα, g, x) =

j∑
k=1

lm,k(x)
4m− x

4m− xm,k
g(xm,k) =:

j∑
k=1

`m,k(x)g(xm,k),

where lm,k(x) = pm(wα,x)
p′m(wα,xm,k)(x−xm,k) . Setting

(2.4) P∗m = {p ∈ Pm : p(xm,k) = p(4m) = 0, k > j} ⊂ Pm,

Lm+1(wα, g) belongs to P∗m, and the operator Lm+1(wα) projects Cu onto P∗m.
About the simultaneous approximation of a function and its derivatives, we recall the

following result [7, Theorem 2.2]:
THEOREM 2.1. If f ∈ Zp+λ(uγ) with 0 < λ < 1, p ∈ N, and α, γ being two real

parameters satisfying the inequality

(2.5) max

(
0,
α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
,

then, for any integer 0 ≤ k ≤ p,

‖(f − Lm+1(wα, f))(k)ϕkuγ‖ ≤ C
{

logm

(
√
m)p+λ−k

‖f‖Zp+λ(uγ) + e−Am‖fuγ‖
}
,

where 0 < C 6= C(m, f).
REMARK 2.2. In particular, if f ∈Wp+r(uγ) with r ≥ 1, we have

‖(f − Lm+1(wα, f))(k)ϕkuγ‖ ≤ C
{

logm

(
√
m)p+r−k

‖f‖Wp+r(uγ) + e−Am‖fuγ‖
}
,

where 0 < C 6= C(m, f).
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3. The method. With uγ(x) = e−
x
2 xγ , γ ≥ 0, consider

(3.1) Hp(fuγ , t) :=

∫
=

+∞

0

f(x)

(x− t)p+1
uγ(x)dx,

where p is a nonnegative integer, t > 0, and the integral is defined in the Hadamard sense.
Following an argument used in [8], the existence of the right-hand side in (3.1) for f (p)

satisfying a Dini-type condition is assured by the following theorem:
THEOREM 3.1. Let p ≥ 1, γ ≥ 0. For any function f such that∫ 1

0

Ωϕ(f (p), t)uγϕp

t
dt < +∞

and for any t > 0, it holds that

(3.2) tp|Hp(fuγ , t)| ≤ C

(∫ 1

0

Ωϕ(f (p), t)uγϕp

t
dt+ ‖f‖Wp(uγ)

)
, 0 < C 6= C(f, t).

REMARK 3.2. In particular, if f (p) ∈ Zλ(uγϕ
p), then by (3.2) we deduce that

tp|Hp(fuγ , t)| ≤ C
(
‖f‖Zp+λ(uγ) + ‖f‖Wp(uγ)

)
, 0 < C 6= C(f, t),

and the functionHp(fuγ , t) has an algebraic singularity of order p at zero.
Now we introduce a product integration rule based on the Lagrange interpolation polyno-

mial Lm+1(wα, f) defined in (2.3). Indeed, replacing f in (3.1) by Lm+1(wα, f), we have

(3.3) Hp(fuγ , t) = Hp,m(fuγ , t) + ep,m(fuγ , t),

where, taking into account (2.3),

Hp,m(fuγ , t) = Hp(Lm+1(wα, f)uγ , t) :=

j∑
k=1

f(xm,k)Ak(t),

Ak(t) =

∫
=

+∞

0

`m,k(x)

(x− t)p+1
uγ(x)dx,

and

ep,m(fuγ , t) = Hp(fuγ , t)−Hp,m(fuγ , t) = Hp
(
(f − Lm+1(wα, f))uγ , t

)
.(3.4)

By definition of Lm+1(wα, f) it follows that

ep,m(fuγ , t) = 0, ∀f ∈ P∗m

with P∗m defined in (2.4). In Section 4 we give some details about the effective computation of
the coefficients {Ak(t)}jk=1. For now we state some results about the stability and convergence
of (3.3) in some suitable subspaces of Cuγ .

THEOREM 3.3. For any t > 0, for f ∈ Zp+λ(uγ) with 0 < λ < 1, and if α, γ satisfy the
condition

(3.5) max

(
0,
α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
,
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then it holds that

tp|Hp,m(fuγ , t)| ≤ C
(
‖f‖Zp+λ(uγ) + ‖f‖Wp(uγ)

)
logm,

where 0 < C 6= C(m, f, t).
By the previous theorem it follows that for any t > 0 the product rule is stable except for

the extra factor logm. A result concerning the error estimate is given in the next theorem.
THEOREM 3.4. Let 0 < λ < 1. For any t > 0, if f ∈ Zλ+p+q(uγ), q ∈ R+, and α, γ

satisfying (3.5), then

(3.6) tp|ep,m(fuγ , t)| ≤ C
‖f‖Zλ+p+q(uγ)√

mλ+q
logm,

and if f ∈Wp+r(uγ),r ∈ N, r ≥ 1, then we obtain

(3.7) tp|ep,m(fuγ , t)| ≤ C
‖f‖Wp+r(uγ)√

mr
logm,

where 0 < C 6= C(m, f, t).
REMARK 3.5. By the estimates (3.6) and (3.7) it follows that the error of the product rule

behaves like the best approximation error of the function space f belongs to, except for the
extra factor logm.

4. Computational details. In this section we provide some details for computing the
coefficients {A}jk=1 in (3.3). By the following expression of the fundamental Lagrange
polynomials

lm,k(wα, x) = λm,k(wα)

m−1∑
i=0

pi(wα, x)pi(wα, xm,k),

it follows that

{Ak}jk=1 =
λm,k(wα)

4m− xm,k

m−1∑
i=0

pi(wα, xm,k)Hp
(
(4m− ·)pi(wα)uγ , t

)
.

Recalling the following three-term recurrence relation for Laguerre polynomials

(4.1)


p−1(wα, x) = 0, p0(wα, x) =

1√
Γ(α+ 1)

,

ai+1pi+1(wα, x) = (x− bi)pi(wα, x)− aipi−1(wα, x),

ai =
√
i(i+ α), bi = 2i+ α+ 1,

and setting

M
(p)
i (t) :=

∫
=

+∞

0

pi(wα, x)

(x− t)p+1
uγ(x)dx, i = 0, 1, . . . ,m,

we have

Ak(t)=
λm,k(wα)

4m− xm,k

m−1∑
i=0

pi(wα, xm,k)
(

(4m− bi)M (p)
i (t)−ai+1M

(p)
i+1(t)−aiM (p)

i−1(t)
)
.
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Thus, we have to compute the sequence {M (p)
i (t)}mi=0.

By (4.1), the following recursion scheme can be deduced

(4.2)



M
(0)
1 (t) = 1

a1

{
d0 + (t− b0)M

(0)
0 (t)

}
,

M
(p)
1 (t) = 1

a1

{
1√

Γ(α+1)
Hp(uγ+1, t)− b0M (p)

0 (t)

}
, p ≥ 1,

M
(0)
i+1(t) = 1

ai+1

{
di + (t− bi)M (0)

i (t)− aiM (0)
i−1(t)

}
, i ≥ 0,

M
(p)
i+1(t) = 1

ai+1

{
M

(p−1)
i (t) + (t− bi)M (p)

i (t)− aiM (p)
i−1(t)

}
, p ≥ 1,

di =
∫∞

0
pi(wα, x)uγ(x)dx, i ≥ 0.

For computing {di}mi=0 we use the Gauss-Laguerre rule with respect to uγ .
For the starting moments M (p)

0 (t) = Hp(uγ , t)/
√

Γ(α+ 1), for all p ≥ 0, we use

Hp(uγ , t) =
1

p!

dp

dtp
H0(uγ , t),

with

H0(uγ , t) =

{
−e−t/2Ei(t/2), γ = 0,

−πtγe−t/2 cot((1 + γ)π) + 2γΓ(γ)1F1(1, 1− γ,−t/2), γ 6= 0, 1, . . . ,

where Ei(t) is the Exponential Integral function and 1F1(a, b, x) is the Confluent Hypergeo-
metric function with their first derivatives given by

d

dt
Ei(t) = − d

dt

∫ +∞

−t

e−x

x
dx =

et

t
,

d

dt
1F1(a, b; t) =

a

b
1F1(a+ 1, b+ 1, t).

As we can see, the computation of the {M (p)
i (t)}mi=0 does not involve any derivative ex-

cept the starting moments. Moreover, in order to compute {M (p)
i (t)}mi=0, all the sequences

{M (p−1)
i (t),M

(p−2)
i (t), . . . ,M

(1)
i (t),M

(0)
i (t)}mi=0 have to be determined, requiring a com-

putational cost of about 5m2 + 3mq(p+ 1) multiplicative operations, where q is the number
of values of t. Since all the p sequences of the modified moments have to be computed, the si-
multaneous approximation ofH0(fuγ , t),H1(fuγ , t), . . . ,Hp(fuγ , t) can be easily arranged
with an additional computational cost of only (p+ 1)m2 more multiplicative operations.

The sensitivity of the recurrence relation in (4.2) has been tested computationally for
different values of α and γ,

M1(t) := max
0≤i≤500

∣∣∣∣∣M
(1)
i,Q(t)−M (1)

i,D(t)

M
(1)
i,Q(t)

∣∣∣∣∣ ,
where {M (1)

i,D(t)}500
i=0 and {M (1)

i,Q(t)}500
i=0 are the sequences in double (epsD) and quadruple

(epsQ) machine precision, respectively.
In Table 4.1 we present results only for the case α = 0.5, γ = 0.6 since for other choices

of α, γ they are similar. Looking at the table we can deduce that the recurrence relation (4.2)
is essentially stable.
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TABLE 4.1
M1(t) for different values of t.

t 10−12 10−9 10−7 10−3 1 10 50
M1(t) epsD epsD epsD epsD epsD epsD 2.6e-15

5. Numerical tests. Now we propose some numerical tests to show the performance of
the product rule (3.3). The density functions will be of different smoothness, and the numerical
results will confirm the theoretical estimates. In the first two tests we also compare our results
in the cases p = 0 and p = 1 with those obtained by other methods available in the literature.
In the tables we will denote by [DBO2017a] and [DBO2017b] the methods recently proposed
in [7] and [6], respectively. Moreover, we will denote by [IT1979] a proper variant of the
method proposed by Ioakimidis and Theocaris in [9] (see also [18]) and already discussed in
[7, p. 138]. Finally, in Example 5.2, we also report the results obtained by using the method
[AD2008] introduced by Aimi and Diligenti in [1], which essentially reduces the problem to
the interval [0, 1] by a nonlinear transformation.

In all the examples, since the exact values of the integrals are unknown, we retain as exact
the values computed with m = 1000, and we set

ēp,m(fuγ , t) = |Hp,m(fuγ , t)−Hp,1000(fuγ , t)|.

All computations have been performed in double-machine precision (epsD∼2.22044e-16),
and in the tables the symbol “−” means that the machine accuracy has been achieved.

Moreover, we use the following definition of the truncation index (see [3, p. 781])

(5.1) j = min
k=1,...,m

{k : λm,k < epsD} ,

taking into account that λm,k ∼ ∆xm,kwα(xm,k). The above definition is equivalent to (2.2)
in the sense that there exists a θ ∈ (0, 1) such that xm,j−1 < 4mθ < xm,j , where j is
defined in (5.1). To have an idea of the percentage of knots involved in the truncation process,
depending on the choice of θ, see [21].

EXAMPLE 5.1. Let us consider the integral

H1(fuγ , t) =

∫
=

+∞

0

sin(x+ 5)

(x− t)
x0.6e−xdx,

where γ = 0.6, p = 0, and f(x) = sin(x + 5)e−x/2. We have f ∈ Wr(uγ) for all r, thus,
according to (3.7), by choosing α = 0 we expect fast convergence. This is confirmed by the
numerical results shown in Table 5.1. In fact, with j = 36 evaluations of the function f , we
get approximations of the integral with machine precision at different points t. As one can see
in the Tables 5.2 and 5.3, the methods [DBO2017a] and [DBO2017b] also give satisfactory
results, but, as already highlighted, both of them require the computations of the derivatives of
the function f . In addition, the method [DBO2017a] is more expensive. In fact, it requires
j + q = 104 evaluations of the density function. Finally, by inspecting Table 5.4, the rule
[IT1979] appears to be slower for t approaching 0.
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TABLE 5.1
Errors ē0,m(f, t) by the present product rule in Example 5.1

m j t = 0.01 t = 0.1 t = 1 t = 5
10 10 7.9e-4 2.2e-3 2.5e-3 2.6e-3
20 18 2.0e-6 1.9e-5 5.2e-5 4.8e-5
30 23 7.1e-9 1.3e-7 5.0e-7 1.0e-6
40 27 9.8e-11 7.6e-11 1.0e-9 9.0e-10
50 30 2.3e-12 6.7e-12 2.2e-11 3.1e-11
60 33 3.7e-14 1.2e-13 2.8e-13 3.5e-13
70 36 − − − −

TABLE 5.2
Errors by the method [DBO2017a] in Example 5.1.

m j q t = 0.01 t = 0.1 t = 1 t = 5
20 20 19 1.8e-4 2.8e-5 1.3e-5 2.3e-5
40 35 28 1.4e-7 3.0e-8 8.2e-10 4.5e-10
80 53 40 8.1e-14 1.6e-14 9.0e-15 2.3e-14
100 59 45 − − − −

TABLE 5.3
Errors by the method [DBO2017b] in Example 5.1.

m j t = 0.01 t = 0.1 t = 1 t = 5
6 6 1.1e-5 1.2e-5 1.6e-5 3.8e-5

13 13 2.1e-9 2.1e-9 3.7e-10 5.2e-10
22 19 − − − −

TABLE 5.4
Errors by the method [IT1979] in Example 5.1.

m j t = 0.01 t = 0.1 t = 1 t = 5
10 10 4.1e-4 9.3e-5 1.8e-7 1.2e-9
40 26 2.7e-5 5.6e-7 1.8e-13 −
80 37 4.9e-6 1.1e-8 − −

EXAMPLE 5.2. We consider

H1(fuγ , t) =

∫
=

+∞

0

sin(x+ 5)

(x− t)2
x0.6e−xdx,

where γ and f are the same as in the previous example and p = 1. Inspecting the results
presented in Tables 5.5–5.8, considerations similar to the ones done in the previous example
hold true both for the proposed product rule and for the rules [DBO2017a], [DBO2017b], and
[IT1979]. In this case (p = 1) we are able to compare our results also with those obtained by
the method [AD2008], and, as one can see in Table 5.9, the latter method is much slower than
our product rule.
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TABLE 5.5
Errors ē1,m(f, t) by the present product rule in Example 5.2.

m j t = 0.01 t = 0.1 t = 1 t = 5
10 10 4.1e-2 1.8e-2 1.1e-2 4.5e-3
20 19 5.7e-4 6.9e-5 7.2e-5 2.2e-4
30 23 9.1e-6 4.3e-6 2.0e-6 4.0e-7
40 27 3.2e-8 1.8e-8 8.8e-9 2.9e-9
50 31 4.9e-10 2.7e-10 1.5e-10 1.5e-19
60 34 6.1e-12 2.5e-12 1.4e-12 1.5e-12
70 36 1.2e-14 2.7e-15 5.1e-15 1.0e-15
80 39 − − − −

TABLE 5.6
Errors by the method [DBO2017a] in Example 5.2.

m j q t = 0.01 t = 0.1 t = 1 t = 5
20 20 19 2.5e-3 1.1e-3 1.2e-4 9.6e-5
40 35 28 3.9e-6 5.0e-7 1.2e-7 1.2e-7
80 53 40 5.2e-12 5.8e-13 4.8e-14 6.4e-14
100 59 45 5.4e-15 − − −

TABLE 5.7
Errors by the method in [DBO2017b] in Example 5.2.

m j t = 0.01 t = 0.1 t = 1 t = 5
5 5 4.8e-6 4.5e-6 9.8e-6 5.1e-6
10 10 1.0e-10 1.0e-10 3.5e-11 3.7e-11
20 18 eps eps eps eps

TABLE 5.8
Errors by the method [IT1979] in Example 5.2.

m j t = 0.01 t = 0.1 t = 1 t = 5
10 10 8.3988e-4 1.7563e-4 9.5187e-8 2.9087e-11
40 26 4.9043e-5 8.8342e-7 9.0383e-14 −
80 37 8.4866e-6 1.7470e-8 − −

TABLE 5.9
Errors by the method [AD2008] in Example 5.2.

m t = 0.01 t = 0.1 t = 1 t = 5
100 4.0e-3 1.4e-5, 2.7e-7 1.9e-9
200 3.7e-4 1.0e-6 2.2e-8 8.0e-11
300 2.6e-5 1.2e-7 1.5e-9 8.7e-12
400 9.9e-6 2.8e-8 8.7e-11 4.7e-12
500 1.4e-5 5.3e-8 5.4e-10 5.4e-12
600 8.6e-6 4.8e-8 5.7e-10 5.8e-12
700 5.2e-8 3.7e-8 3.0e-10 5.6e-12
800 5.7e-7 2.6e-8 8.7e-11 5.1e-12
900 1.6e-6 1.7e-8 3.6e-11 4.4e-12

1000 1.5e-6 1.0e-8 6.4e-11 3.6e-12
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EXAMPLE 5.3. Let

H1(fuγ , t) =

∫
=

+∞

0

x5/4

(4 + x2)4(x− t)2
dx,

where γ = 1.25, f(x) = ex/2

(4+x2)4 , and p = 1. Taking into account that f ∈ W13(uγ),
the theoretical error behaves like logm/m6. According to (2.5) we apply our rule choosing

Powered by TCPDF (www.tcpdf.org)
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FIG. 5.1. Errors ē1,m(f, 0.001) (top) and ē1,m(f, 5) (bottom) in Example 5.3.

α = 0.5. In Figures 5.1 and 5.2 we display the behaviour of the errors ē1,m(f, t) for increasing
values of m at different points t. As one can see, the numerical errors are in agreement with
the theoretical estimate. In fact for m = 400 (j = 243 evaluations of the function f ) we
obtain 15 exact digits.

EXAMPLE 5.4. Finally, we take

H1(fuγ , t) =

∫
=

+∞

0

|x− 2|11/2

(x2 + 5)2(x− t)2
x5/2e−x/2dx,
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FIG. 5.2. Errors ē1,m(f, 10) in Example 5.3.

TABLE 5.10
Errors ē1,m(f, t) in Example 5.4.

m j t = 0.5 t = 2.02 t = 4.1
100 66 1.8e-4 1.8e-4 3.2e-5
200 96 1.3e-5 6.3e-5 3.4e-5
400 137 1.7e-7 2.6e-6 3.6e-6
600 169 3.7e-8 4.5e-7 1.8e-6
700 134 2.5e-7 8.9e-7 4.7e-7
800 196 1.5e-7 2.1e-6 1.3e-7

where γ = 2.5, f(x) = |x−2|11/2
(x2+5)2 , and p = 1. In this case f ∈ W5(uγ), and, according to

the theoretical estimate, we expect slower convergence
(
O(logm/m2)

)
. We apply our rule

choosing α = 2.6. In Table 5.10 we present the results obtained for t = 0.5, 2.02, 4.1, and
in Figure 5.3 we display the behaviour of the numerical error ē1,900(f, t) for t ∈ [0, 4]. In
agreement with the theoretical expectation, the numerical errors increase as t approaches the
critical point 2 of the density function f .

6. The proofs. First we recall the following Lemma [8, Lemma 2.1]
LEMMA 6.1. Let f ∈ Cuγ and Pm ∈ Pm. Then∫ 1√

m

0

ωϕ(f − Pm, t)uγ
t

dt ≤ C

(
‖(f − Pm)uγ‖+

∫ 1√
m

0

ωrϕ(f, t)uγ
t

dt

)
,

where r ∈ N, with r < m and 0 < C 6= C(m, f).
LEMMA 6.2. For any f ∈ Zp+λ(uγ) with 0 < λ < 1 and p ≥ 0, under the assumption

(6.1)
α

2
+

1

4
≤ γ ≤ α

2
+

5

4
,

we have ∫ 1

0

Ωϕ(L
(p)
m+1(wα, f), t)uγϕp

t
dt ≤ C

(
‖f‖Wp(uγ) + ‖f‖Zp+λ(uγ)

)
logm,

where C 6= C(m, f).
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FIG. 5.3. Errors ē1,900(f, t) for t ∈ [0, 4] in Example 5.4.

Proof. We have∫ 1

0

Ωϕ(L
(p)
m+1(wα, f), t)uγϕp

t
dt ≤

∫ 1

0

Ωϕ((f − Lm+1(wα, f))(p), t)uγϕp

t
dt

+

∫ 1

0

Ωϕ(f (p), t)uγϕp

t
dt

=: A1 +A2.

By Lemma 6.1 with P = Lm+1(wα, f) and taking into account (2.1), it follows that

A1 ≤
∫ 1/

√
m

0

Ωϕ((f − Lm+1(wα, f))(p), t)uγϕp

t
dt

+

∫ 1

1/
√
m

Ωϕ((f − Lm+1(wα, f))(p), t)uγϕp

t
dt

≤ C
(
‖[f − Lm+1(wα, f)](p)ϕpuγ‖+

∫ 1/
√
m

0

Ωrϕ(f (p), t)uγϕp

t
dt

+ ‖[f − Lm+1(wα, f)](p)ϕpuγ‖ logm

)
,

and by Theorem 2.1 under assumption (6.1), we obtain

A1 ≤ C
logm

(
√
m)λ
‖f‖Zp+λ(uγ).(6.2)

Moreover,

A2 ≤
∫ 1/

√
m

0

Ωϕ(f (p), t)uγϕp

t
dt+

∫ 1

1/
√
m

Ωϕ(f (p), t)uγϕp

t
dt

≤ C‖f‖Zp+λ(uγ) + C‖f‖Wp(uγ) logm,

and the lemma follows.
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Proof of Theorem 3.3. By Theorem 3.1

tp|Hp,m(fuγ , t)| = tp |Hp(Lm+1(wα, f)uγ , t)|

≤ C
∫ 1

0

Ωϕ(L
(p)
m+1(wα, f), t)uγϕp

t
dt,+‖Lm+1(wα, f)‖Wp(uγ),

and by Lemma 6.2 and Theorem 2.1 under assumption (6.1), it follows that

tp|Hp,m(fuγ , t)| ≤ C
(
‖f‖Zp+λ(uγ) + ‖f‖Wp(uγ)

)
logm

+‖(f − Lm+1(wα, f))‖Wp(uγ) + ‖f‖Wp(uγ)

≤ C
(
‖f‖Zp+λ(uγ) + ‖f‖Wp(uγ)

)
logm.

Proof of Theorem 3.4. Recalling (3.4) and using Theorem 3.1

tp|ep,m(fuγ , t)| ≤ C
(∫ 1

0

Ωϕ((f − Lm+1(wα, f))(p), t)uγϕp

t
dt

+‖f − Lm+1(wα, f)‖Wp(uγ)

)
.

Now, by (6.2) and Theorem 2.1 under assumption (6.1), it follows that

tp|ep,m(fuγ , t)| ≤ C
logm

(
√
m)λ+q

‖f (p)‖Zλ+q(uγϕp),

i.e., the assertion.
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