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THE LANCZOS ALGORITHM AND COMPLEX GAUSS QUADRATURE∗
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Dedicated to Walter Gautschi on the occasion of his 90th birthday

Abstract. Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals,
where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos
algorithm are analogous to those in the positive definite case. In this survey we review these relationships with giving
references to the literature that presents them in several related contexts. In particular, the existence of the n-weight
(complex) Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for
generating biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex)
Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated
orthogonal polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the
value of the Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional
are real.
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1. Introduction. The present survey examines the interconnection between Gauss quadra-
ture for quasi-definite linear functionals and the Lanczos algorithm for generating biorthogonal
bases of the two associated Krylov subspaces.

We first briefly recall basic results on quasi-definite linear functionals and formal orthogo-
nal polynomials; see, e.g., the summary in Chihara [7] and in the literature given below. As
described in [12, Introduction], the term formal orthogonal polynomials was chosen in order
to avoid the ambiguity of the term general orthogonal polynomials (used, e.g., in [2]) since the
latter term has often appeared in literature regarding positive definite linear functionals. Some-
times (as in [7]) orthogonal polynomials is used instead of formal orthogonal polynomials,
i.e., the meaning of the simpler term is extended beyond the classical setting with a positive
definite linear functional and a Riemann-Stieltjes integral with a non-decreasing distribution
function; see, e.g., [55], [22], and [41, Section 3.3]. Since no confusion can arise, in what
follows, we will use this simplified terminology.

Let L be a linear functional on the space P of polynomials with generally complex
coefficients, L : P → C. The functional L is fully determined by its values on monomials,
called moments,

(1.1) L(λ`) = m`, ` = 0, 1, . . . ,
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51000 Banja Luka, Bosnia and Herzegovina (miroslav.pranic@pmf.unibl.org).
§Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

(strakos@karlin.mff.cuni.cz).

1

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol50s1


ETNA
Kent State University and

Johann Radon Institute (RICAM)

2 S. POZZA, M. S. PRANIĆ, AND Z. STRAKOŠ

with the associated Hankel determinants

(1.2) ∆j =

∣∣∣∣∣∣∣∣∣
m0 m1 . . . mj

m1 m2 . . . mj+1

...
...

...
mj mj+1 . . . m2j

∣∣∣∣∣∣∣∣∣ , j = 0, 1, . . .

Hankel matrices have been used in the related contexts for more than a century by many authors;
see, e.g., the seminal paper by Stieltjes [53, Sections 8–11, p. 624–630], [7, Chapter I], [27,
Section 2], and [12, Chapter 1]. The linear functional (1.1) is generally determined by an
infinite sequence of moments. This survey, however, considers linear functionals on finite-
dimensional spaces of polynomials which are characterized by finite sequences of Hankel
determinants (1.2). This approach is appropriate for linear functionals associated with finite-
dimensional Krylov subspace methods; see [41]. For the infinite-dimensional problems, we
refer, e.g., to [7, Chapter II, Section 3, in particular, Theorem 3.1] and for the relationship to
infinite-dimensional Krylov subspace methods, e.g., to [57], [28], and [43, Chapter 5], which
contain many references to original works.

In this survey we focus on quasi-definite linear functionals. Linear functionals that are
not quasi-definite are, apart from several remarks, beyond the scope of this survey. For results
in this more general setting we refer an interested reader to [12].

DEFINITION 1.1 (cf., [7, Chapter I, Definition 3.1, Definition 3.2, and Theorem 3.4]). A
linear functional L for which the first k+ 1 Hankel determinants are nonzero, i.e., ∆j 6= 0, for
j = 0, 1, . . . , k, is called quasi-definite on the space of polynomials with complex coefficients
Pk of degree at most k. In particular, if L has real moments m0, . . . ,m2k and ∆j > 0, for
j = 0, 1, . . . , k, we say that the linear functional is positive definite on Pk.

In the sequel we use for simplicity the term quasi-definite linear functional (positive
definite linear functional) for linear functionals that are quasi-definite (positive definite) on
the space of polynomials of sufficiently large degree. A quasi-definite linear functional can
be associated with a sequence of orthogonal polynomials that are uniquely determined up to
multiplicative constants.

DEFINITION 1.2. Polynomials p0, p1, . . . satisfying the conditions
1. deg(pj) = j (pj is of degree j),
2. L(pi pj) = 0, i < j,
3. L(p2j ) 6= 0,

form a sequence of orthogonal polynomials with respect to the linear functional L.
Orthogonal polynomials such that L(p2j ) = 1 are known as orthonormal polynomials. A

proof of the following classical result can be found, e.g., in [7, Chapter I, Theorem 3.1], [42,
Chapter VII, Theorem 1].

THEOREM 1.3. A sequence {pj}kj=0 of orthogonal polynomials with respect to L exists if
and only if L is quasi-definite on Pk.

A sequence of orthogonal polynomials p0, p1, . . . satisfies three-term recurrences of the
form

(1.3) δjpj(λ) = (λ− αj−1)pj−1(λ)− γj−1pj−2(λ), for j = 1, 2, . . . ,

where we set γ0 = 0, p−1(λ) = 0, p0(λ) = c (c is a given complex number different from
zero), and

αj−1 =
L(λp2j−1)

L(p2j−1)
, δj =

L(λpj−1pj)

L(p2j )
, γj−1 =

L(λpj−2pj−1)

L(p2j−2)
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(see [55, Theorem 3.2.1], [7, p. 19], [2, Theorem 2.4]). If the first n + 1 polynomials
p0, p1, . . . , pn exist, then all δ1, . . . , δn and γ1, . . . , γn−1 are different from zero. The recur-
rence (1.3) for the first n+ 1 polynomials can be written in matrix form as

(1.4) λ


p0(λ)
p1(λ)

...
pn−1(λ)

 = Tn


p0(λ)
p1(λ)

...
pn−1(λ)

+ δn


0
0
...

pn(λ)

 ,
where Tn is the irreducible tridiagonal complex matrix

Tn =


α0 δ1

γ1 α1
. . .

. . . . . . δn−1

γn−1 αn−1

 .
We say that Tn is determined by the first 2n moments m0,m1, . . . ,m2n−1 of L. The

(2n+ 1)st moment m2n present in (1.2) for j = n affects only the value of δn. Its value must
assure that ∆n 6= 0, otherwise L(p2n) = 0, and therefore pn is not an orthogonal polynomial
with respect to L.

A linear functional quasi-definite on Pn determines a family of irreducible tridiagonal
matrices that are diagonally similar, where this diagonal similarity is equivalent to a rescaling
of the sequence of orthogonal polynomials. Any irreducible tridiagonal matrix is diagonally
similar to a symmetric irreducible tridiagonal matrix called the complex Jacobi matrix. The
properties of complex Jacobi matrices are summarized, e.g., in [49, Section 4]. Here we recall
the following result that is valid for any tridiagonal matrix Tn associated with a sequence (1.4)
of orthogonal polynomials determined by a quasi-definite linear functional (see [49, Section 5]).

THEOREM 1.4 (Matching moment property). Let L be a quasi-definite linear functional
on Pn, and let Tn be given by (1.4). Then

(1.5) L(λi) = m0 e
T
1 (Tn)i e1, i = 0, 1, . . . , 2n− 1.

A proof for the matching moment property was given in [17, Theorem 2] for the linear
functionals defined by

(1.6) L(λi) = w∗Aiv, for i = 0, 1, 2, . . . ,

with A a complex matrix and w,v vectors; cf. also [11, Theorem 1]. In [54] it was obtained
by using the Vorobyev method of moments (see [57, in particular, Chapter III]). The class
of non-quasi-definite linear functionals of the kind (1.6) is treated in [29, Theorem 2.10].
We point out that assuming real moments (with the extension to complex moments being
straightforward), the matching moment properties in [17], [49], and [29] can be derived from
Theorem 5 of [27], where this issue is related to the minimal partial realization problem.

A partial realization of order 2n of a sequence of moments m0,m1, . . . is the triplet
{w, A,v}, where A is a matrix and w,v are vectors such that

(1.7) w∗Aiv = mi, for i = 0, 1, . . . , 2n− 1.

The solutions with the smallest dimension are known as minimal partial realizations of
order 2n; see, e.g., [26], [37], and [27]. The moments m0, . . . ,m2n−1 define the linear
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functional L on P2n−1. If L is quasi-definite, then by Theorem 1.4, the triplet A = Tn,
w = e1, and v = m0e1 gives a solution of the minimal partial realization problem (1.7);
cf. [27, Theorem 5]. Therefore, as beautifully presented by Gragg and Lindquist in [27] for
real moments, the matching moment property connects the minimal partial realization problem
with orthogonal polynomials, Jacobi matrices, Lanczos algorithm, continued fractions, and
other related topics. The generalization to the case of complex moments is straightforward. For
L positive definite, a concept equivalent to the minimal partial realization is presented (without
using the name) in the papers by Chebyshev from 1855–1859 [5, 6] and Christoffel from
1858 [8]; cf. the comment in [4, p. 23]. An instructive description can be found in the seminal
paper by Stieltjes on continued fractions published in 1894 [53, Sections 7–8, p. 623–625, and
Section 51, p. 688–690]; see also [41, Section 3.9.1], the survey by Gautschi [21], and the
references therein.

On the other hand, as shown in [7, Chapter I, Theorem 4.4], in the survey [44, Theo-
rem 2.14], and firstly for the positive definite case by Favard in [13], for any sequence of
polynomials satisfying

(1.8) djpj(λ) = (λ− aj−1)pj−1(λ)− cj−1pj−2(λ), j = 1, 2, . . . ,

where

p−1(λ) = 0, p0(λ) = c, c0 = 0, aj , dj , cj , c ∈ C, dj , cj , c 6= 0,

there exists a quasi-definite linear functional L such that p0, p1, . . . , are orthogonal polyno-
mials with respect to L. In other words, provided that c, dj , cj 6= 0, polynomials generated
by (1.8) are always orthogonal polynomials. In addition, they are orthonormal if and only if
cj = dj and p0 is such that L(p20) = 1.

This also means that for any irreducible tridiagonal matrix Tn, there exists a linear
functional L quasi-definite on Pn−1 such that Tn is determined by the first 2n moments of
L. As shown, e.g., in [1, proof of Theorem 2.3], two irreducible tridiagonal matrices Tn and
T̂n are determined by the first 2n moments of the same linear functional if and only if they
are diagonally similar, i.e., if Tn = D−1T̂nD, where D is an invertible diagonal matrix. Or,
equivalently, if and only if

(1.9) αi = α̂i, i = 0, 1, . . . , n− 1,

and

(1.10) δi γi = δ̂i γ̂i, i = 1, . . . , n− 1,

where the elements of T̂n are marked with a hat.
The matching moment property in Theorem 1.4 can also be interpreted as a matrix

formulation of a generalized Gauss quadrature for the approximation of quasi-definite lin-
ear functionals; see [45, 49]. Moreover, given the matrix A and the vectors v and w with
the associated quasi-definite linear functional defined by (1.6), the matrix Tn can be deter-
mined, assuming no breakdown, by the non-Hermitian Lanczos algorithm. Therefore the
non-Hermitian Lanczos algorithm can be linked with Gauss quadrature; see [17, Theorem 2].

A linear functional (1.1) with real moments can be naturally restricted to the space of
polynomials with real coefficientsR ⊂ P . If L is quasi-definite, then we can construct real
monic polynomials orthogonal with respect to L with the corresponding real tridiagonal matrix
Tn satisfying the matching moment property (1.5). In Chapter 5 of the book [12] published in
1983, Draux introduced a generalization of the Gauss quadrature formula for approximating
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the real-valued linear functionals.The associated results in [45, 49], obtained independently
of those from [12], can be considered as straightforward generalizations to the complex case.
Some results in [49] do not have, however, a straightforward real setting analogue in [12]. This
holds, e.g., for the concept of orthonormal polynomials that can have complex coefficients
even for real quasi-definite functionals.

The paper is organized as follows: In Section 2 we recall the link of the Lanczos algorithm
for generating biorthonormal bases for the spaces

span{v, Av, . . . , An−1v} and span{w, A∗w, . . . , (A∗)n−1w}

to the Stieltjes procedure for generating orthonormal polynomials. If n is the maximal number
of steps that can be performed in the Lanczos algorithm without breakdown, then there exists no
complex Gauss quadrature in the sense of [45, 49] for approximating the functional (1.6) with
more than nweights. This is presented in Section 3. Section 4 shows that the rows of the matrix
W−1 in the Jordan decomposition Jn = W ΛW−1 of the complex Jacobi matrix Jn can be
expressed as a linear combination of some particular generalized eigenvectors of Jn. The
coefficients in these linear combinations are the Gauss quadrature weights. Section 5 focuses
on quasi-definite functionals with real moments. Then the value of the Gauss quadrature is
a real number. Using a proper rescaling, the Lanczos algorithm involves only computations
with real numbers. We conclude with some remarks on the non-quasi-definite case.

Throughout the survey we deal with mathematical relationships between quantities that
are determined exactly. Since the effects of rounding errors in computations using short
recurrences are substantial, the results of this survey cannot be applied to finite-precision
computations without a thorough analysis. Such analysis is outside the scope of this survey.
As in the positive definite case, however, an understanding of the relationship assuming exact
computation is a prerequisite for any further investigation.

2. Orthogonal polynomials and the Lanczos algorithm. Let A be a square complex
matrix, and let v be a complex vector of the corresponding dimension. The nth Krylov
subspace generated by A and v is defined by

Kn(A,v) = span{v, Av, . . . , An−1v},

or, equivalently,

Kn(A,v) = {p(A)v : p ∈ Pn−1},

where Pn−1 is the subspace of polynomials of degree at most n− 1 with complex coefficients.
The basic facts about Krylov subspaces had been formulated by Gantmacher in 1934; see [19].
In particular, there exists a uniquely defined integer d = d(A,v), called the grade of v
with respect to A, so that the vectors v, . . . , Ad−1v are linearly independent and the vectors
v, . . . , Ad−1v, Adv are linearly dependent. Clearly there exists a polynomial pd(λ) of degree
d, called the minimal polynomial of v with respect to A, such that pd(A)v = 0. The other
facts about Krylov subspaces can be found elsewhere; see, e.g., [41, Section 2.2].

For a given complex matrix A and complex vectors v 6= 0,w 6= 0, consider the linear
functional on the space of polynomials with complex coefficients P (see (1.6))

(2.1) L(p) = w∗p(A)v.

Since for any polynomial p ∈ P , we get

p(A)∗ = p̄(A∗)
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with p̄ being the polynomial whose coefficients are the conjugates of the coefficients of p,
given p, q ∈ Pn−1, we have

L(pq) = w∗q(A)p(A)v = ŵ∗v̂,

with v̂ = p(A)v ∈ Kn(A,v) and ŵ = q̄(A∗)w ∈ Kn(A∗,w). We give the proof of the
following elementary fact for completeness.

THEOREM 2.1. The linear functional L defined by (2.1) determines a sequence of
orthogonal polynomials p0, . . . , pn−1 if and only if there exist bases v0, . . . ,v`−1 of K`(A,v)
and w0 . . . ,w`−1 of K`(A∗,w), ` = 1, . . . , n, satisfying the biorthogonality condition

(2.2) w∗
i vj = 0, for i 6= j, and w∗

i vi 6= 0, i, j = 0, 1, . . . , n− 1.

Proof. Given polynomials p0, . . . , pn−1 which are orthogonal with respect to L, the vec-
tors vj = pj(A)v, j = 0, 1, . . . , n−1, form a basis forKn(A,v), the vectors wi = p̄i(A

∗)w,
i = 0, 1, . . . , n− 1, form a basis for Kn(A∗,w), and

w∗
i vj = L(pipj), i, j = 0, . . . , n− 1,

satisfy the biorthogonality condition (2.2). On the other hand, let vj = pj(A)v and
wi = q̄i(A

∗)w satisfy

w∗
i vj = 0, for i 6= j, and w∗

i vi 6= 0, i, j = 0, 1, . . . , n− 1,

and pj and qi are polynomials of degree j and i, respectively. It means that the polynomial
pi is orthogonal to the polynomials q0, q1, . . . , qi−1, and therefore also to the polynomials
p0, p1, . . . , pi−1. The polynomial pi is not orthogonal to qi, and thus L(p2i ) 6= 0.

We denote by p̃0, . . . , p̃n−1 the sequence of orthonormal polynomials with respect to L.
They satisfy the three-term recurrences (cf. (1.3))

(2.3) βj p̃j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ), j = 1, 2, . . . , n− 1,

with p̃−1 = 0, p̃0 = 1/
√
m0, and

(2.4) αj−1 = L(λp̃ 2
j−1), βj−1 = L(λp̃j−2p̃j−1).

Note that βj =
√
L(p̂ 2

j ), with

(2.5) p̂j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ).

Algorithm 1 generates the sequence of the first n orthonormal polynomials p̃j ,
j = 0, 1, . . . , n− 1, using the formulas (2.3) and (2.4). In order to avoid ambiguity, we always
take the principal value of the complex square root, i.e., we consider arg(

√
c) ∈ (−π/2, π/2].

For positive definite functionals, this algorithm is known as the Stieltjes procedure [52]. Then
the coefficients βj , j = 1, . . . , n− 1, are positive. The monograph by Gautschi [22] can serve
as a valuable source of related results as well as of historical information.

The Lanczos algorithm (introduced in [39] and [40]) gives the matrix formulation of the
Stieltjes procedure; for details we refer to [2, Section 2.7.2], [31, 32, 33], [51, Chapter 7], [24,
Chapter 4], [41, Section 2.4]. Indeed, with

vj = p̃j(A)v, wj = p̃j(A
∗)w, j = 0, . . . , n− 1,
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Algorithm 1 Stieltjes Procedure.
Input: linear functional L quasi-definite on Pn−1.
Output: polynomials p̃0, . . . , p̃n−1 orthonormal with respect to L.

Initialize: p̃−1 = 0, β0 =
√
m0 =

√
L(λ0), p̃0 = 1/β0.

For j = 1, 2, . . . , n− 1

αj−1 = L(λp̃ 2
j−1(λ)),

p̂j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ),

βj =
√
L(p̂ 2

j ),

p̃j(λ) = p̂j(λ)/βj ,

end.

Algorithm 2 Lanczos algorithm.
Input: complex matrix A, two complex vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, β0 =
√
w∗v

v0 = v/β0, w0 = w/β̄0.

For j = 1, 2, . . . , n− 1

αj−1 = w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − βj−1vj−2,

ŵj = A∗wj−1 − ᾱj−1wj−1 − β̄j−1wj−2,

βj =
√
ŵ∗
j v̂j ,

if βj = 0 then stop,
vj = v̂j/βj ,

wj = ŵj/β̄j ,

end.

we have for j = 1, . . . , n− 1 that

αj−1 = L(λp̃ 2
j−1) = w∗p̃j−1(A)Ap̃j−1(A)v = w∗

j−1Avj−1.

Since β2
j = L(p̂ 2

j (λ)) with the polynomial p̂j defined by (2.5), we get

βj =
√
w∗p̂j(A)p̂j(A)v =

√
ŵ∗
j v̂j , j = 1, . . . , n− 1.

The vectors v0, . . . ,vn−1 satisfy the three-term recurrences (2.3)

βjvj = (A− αj−1)vj−1 − βj−1vj−2, for j = 1, . . . , n− 1.

Since wj = p̃j(A
∗)w,

β̄jwj = (A∗ − ᾱj−1)wj−1 − β̄j−1wj−2, for j = 1, . . . , n− 1.
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The resulting form of the Lanczos algorithm is given by Algorithm 2; see, e.g., [10, 9]. The
matrices Vn = [v0, . . . ,vn−1] and Wn = [w0, . . . ,wn−1] satisfy

AVn = VnJn + v̂ne
T
n ,

A∗Wn = WnJ
∗
n + ŵne

T
n ,

with en, the nth vector of the canonical basis, Jn, the complex Jacobi matrix associated with
the polynomials p̃0, . . . , p̃n−1,

(2.6) Jn =


α0 β1

β1 α1
. . .

. . . . . . βn−1

βn−1 αn−1

 ,

and αn−1, v̂n, ŵn are determined at step n of the Lanczos algorithm1. The biorthogonality
conditions (2.2) then give

W ∗
nVn = In,

W ∗
nAVn = Jn,

where In is the identity matrix of dimension n. Algorithm 2 can be seen as a tool for the
restriction of A to the Krylov subspace Kn(A,v) with the subsequent projection orthogonal
to Kn(A∗,w). The reduced operator on Kn(A,v) then can be expressed via the complex
Jacobi matrix Jn. The Lanczos algorithm, Algorithm 2, is based on orthonormal polynomi-
als. Obviously, any other scaling of orthogonal polynomials can be used, i.e., the Lanczos
algorithm can be based on any sequence of orthogonal polynomials associated with the linear
functional (2.1).

Recall that if L is quasi-definite on Pn−1, then βj =
√
L(p̂ 2

j ) must be different from
zero for j = 1, . . . , n− 1. Therefore no breakdown can occur in the first n− 1 steps of the
Lanczos algorithm. There is a breakdown at step n if and only if βn = 0. This can happen in
two cases:

1. one of the vectors v̂n and ŵn is the zero vector,
2. v̂n 6= 0 and ŵn 6= 0, but ŵ∗

nv̂n = 0.
In the first case, either Kn(A,v) is A-invariant or Kn(A∗,w) is A∗-invariant. This is known
as lucky breakdown (or benign breakdown) because the computation of an invariant subspace
is often a desirable result; see, e.g., [46, Section 5] and [25, Section 10.5.5]. The second
case is known as serious breakdown; for further details we refer to [50], [36, p. 34], [56,
Chapter IV], [47], [46, Section 7], and [31, 32, 33]. The previous development is summarized
in the following theorem; cf. also [3, 46].

THEOREM 2.2. Let A ∈ CN×N , v ∈ CN , and w ∈ CN be the input for the Lanczos
algorithm, let mk = w∗Akv, and let ∆k be the corresponding Hankel determinants (1.2) for
k = 0, 1, . . . There are no breakdowns at the first n− 1 steps of the Lanczos algorithm if and
only if

(2.7)
n−1∏
k=0

∆k 6= 0.

1The coefficient αn−1 in Jn and the vectors v̂n and ŵn are well-defined even in the case of breakdown at
step n.
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There is a breakdown at the subsequent step n if and only if, in addition to (2.7), ∆n = 0.
In other words, the Lanczos algorithm has a breakdown at step n if and only if the linear
functional (2.1) is quasi-definite on Pn−1 but not on Pn.

If the matrix A is Hermitian, v = w 6= 0, and d = d(A,v) is the grade of v with respect
to A, then the moments of L defined by (2.1) are real, and there exists a non-decreasing
distribution function µ supported on the real axis having d points of increase such that L can
be represented by the Riemann-Stieltjes integral

L(p) =

∫
R
p(λ) dµ(λ), for p ∈ P ;

see, e.g., [24, Section 7.1] and [41, Section 3.5]. Then L is a positive definite linear functional
on Pd−1, the corresponding Hankel determinants ∆j , j = 0, . . . , d − 1, are positive, and
∆d = 0; see, e.g., [7, Chapter I, Definition 3.1 and Theorem 3.4] and [49, Section 2].

3. Gauss quadrature and the Lanczos algorithm. Consider a non-decreasing distribu-
tion function µ(λ) on R having finite limits at ±∞ and infinitely many points of increase. If
all the moments of the Riemann-Stieltjes integral

mi =

∫
R
λi dµ(λ), i = 0, 1, . . .

exist and are finite, then we can define the positive definite linear functional on the space of
polynomials with real coefficients L : R → R as

(3.1) L(p) =

∫
R
p(λ) dµ(λ), p ∈ R .

Then the Gauss quadrature is given by the unique n-node quadrature formula which matches
the first 2n moments of the Riemann-Stieltjes integral (3.1). The classical results on Gauss
quadrature can be found in many books; see, e.g., [55, Chapters III and XV], [7, Chapter I,
Section 6]; [22, Section 1.4], [23, Chapter 3.2], [41, Section 3.2]. The 1981 survey by
Gautschi [21] contains many results as well as historical comments on the matter. In this
section we present results about the extension of the Gauss quadrature for the approximation
of quasi-definite linear functionals L : P → C with generally complex moments

mi = L(λi), i = 0, 1, . . .

We recall the definition of a matrix function; for more information including equivalence
to the other definitions of matrix function, see, e.g., [34]. A function f is defined on the
spectrum of the given matrix A if for every eigenvalue λi of A there exist f (j)(λi), for
j = 0, 1, . . . , si−1, where si is the order of the largest Jordan block of A in which λi appears.
Let Λ be a Jordan block of A of size s corresponding to the eigenvalue λ. The matrix function
f(Λ) is then defined as

f(Λ) =



f(λ) f ′(λ)
1!

f(2)(λ)
2! . . . f(s−1)(λ)

(s−1)!

0 f(λ) f ′(λ)
1! . . . f(s−2)(λ)

(s−2)!

...
. . . . . . . . .

...
...

. . . . . . f ′(λ)
1!

0 . . . . . . 0 f(λ)


.
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Denoting by

A = Wdiag(Λ1, . . . ,Λν)W−1

the Jordan decomposition of A, the matrix function f(A) is defined by

f(A) = Wdiag(f(Λ1), . . . , f(Λν))W−1.

Given a linear functional L on the space of sufficiently smooth functions, consider the
quadrature of the form (see [12, Chapter 5], [45, Section 2], and [49, Section 7])

(3.2) L(f) ≈ Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi), n = s1 + · · · + s`,

with ωi,j the weights, λi the nodes, and si the multiplicity of the node λi. Notice that the
number of distinct nodes in (3.2) is equal to `, and ` may be less than n. If we count the
multiplicities, then the number of nodes is equal to n, which is also the number of weights
in (3.2). In order to avoid ambiguity, we refer to (3.2) as the n-weight quadrature instead of
the n-point or n-node quadrature as is usually done. For any choice of (distinct) nodes λi,
i = 1, . . . , `, and their multiplicities si such that s1 + · · · + s` = n, it is possible to achieve
that the quadrature (3.2) is exact for any f from Pn−1. As shown in [12, Theorem 5.1] or in
the proof of Theorem 7.1 in [49], it is necessary and sufficient to take

(3.3) ωi,j = L(hi,j),

where hi,j are polynomials from Pn−1 such that

h
(t)
i,j (λk) = 1, for λk = λi and t = j,

h
(t)
i,j (λk) = 0, for λk 6= λi or t 6= j,

with k = 1, 2, . . . , ` and t = 0, 1, . . . , si − 1. In this case we say that the quadrature (3.2) is
interpolatory since it can be obtained by applying the linear functional L to the generalized
(Hermite) interpolating polynomial for the function f at the nodes λi of the multiplicities si.

In [49], it is referred to (3.2) as the the n-weight Gauss quadrature if and only if the
following three properties are satisfied.

• G1: the n-weight Gauss quadrature attains the maximal algebraic degree of exactness
2n− 1, i.e., it is exact for all polynomials of degree at most 2n− 1.
• G2: the n-weight Gauss quadrature is well-defined and it is unique. Moreover, Gauss

quadratures with a smaller number of weights also exist and they are unique.
• G3: the Gauss quadrature of a function f can be written as the quadratic form
m0 e

T
1 f(Jn)e1, where Jn is the complex Jacobi matrix containing the coefficients

from the three-term recurrences for orthonormal polynomials associated with L;
m0 = L(λ0).

In what follows we will refer to this quadrature as complex Gauss quadrature. We will,
however, use the adjective complex only when it is necessary to emphasize the difference with
respect to the standard n-node Gauss quadrature described at the beginning of this section.

The property G3 assumes the existence of the first n orthonormal polynomials with respect
to L, i.e., by Theorem 1.3, it considers only quasi-definite linear functionals on Pn. Naturally,
we can state the following theorem. The detailed proof and discussion can be found, e.g., in
[49, Section 7, in particular Corollaries 7.4 and 7.5].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

THE LANCZOS ALGORITHM AND COMPLEX GAUSS QUADRATURE 11

THEOREM 3.1. Let L be a linear functional on P . There exists the n-weight complex
Gauss quadrature, i.e., the quadrature (3.2) having properties G1, G2, and G3, if and only if
L is quasi-definite on Pn.

The nodes λi, i = 1, . . . , `, of the n-weight Gauss quadrature (3.2) and their multiplicities
si, s1 + · · · + s` = n, coincide with:

• the roots of the n-degree orthonormal polynomial p̃n with respect to L with their
corresponding multiplicities;

• the eigenvalues of the complex Jacobi matrix Jn with their corresponding algebraic
multiplicities;

see, e.g., [49, Theorem 7.1 and the discussion on pp. 21–22]. The weights are given by (3.3).
Theorem 3.1 says that the definition of the complex Gauss quadrature (3.2) satisfying G1–G3
cannot be used for non-quasi-definite linear functionals. A slightly different definition for
an arbitrary real-valued linear functional defined on R was given in [12, Section 5]; Draux
considers Gauss quadrature (3.2) having a maximal possible degree of exactness (which is
2n− 1 in the quasi-definite case).

The property G3 is actually a consequence of the properties G1 and G2 [49, Corollary 7.5].
We have formulated it explicitly in order to stress the link of the complex Gauss quadrature
with complex Jacobi matrices. Complex Gauss quadrature (3.2) for a quasi-definite linear
functionalL : P → C is associated with a complex Jacobi matrix Jn, which is unique provided
that the arguments of the off-diagonal complex entries are in (−π/2, π/2]. Moreover, by
Favard’s theorem (see Section 1), any complex Jacobi matrix determines the Gauss quadrature
for some quasi-definite linear functional. The setting in [12] considers the Gauss quadrature
for real linear functionals on the space of polynomials with real coefficients L : R → R,
and therefore the link with complex Jacobi matrices (i.e., symmetric irreducible tridiagonal
matrices; see Section 1) is not given there.

If the linear functional quasi-definite on Pn is given by (2.1), then the associated complex
Jacobi matrix (2.6) can be constructed by performing n steps of Algorithm 2; see Section 2.
Property G3 then depicts the Lanczos algorithm as a matrix formulation of the Gauss quadra-
ture (see [17, in particular Theorem 2]). Analogous arguments for the block Lanczos algorithm
can be found, e.g., in [14, Section 3].

The same can be stated for any linear functional L quasi-definite on Pn. Given the num-
bers m0,m1, . . . ,m2n such that the Hankel determinants ∆j are nonzero for j = 0, 1, . . . , n
(see (1.2)), there always exist a square matrix A and vectors v and w such that

w∗Akv = mk, k = 0, . . . , 2n.

For instance, take A ∈ C(2n+1)×(2n+1) and v,w ∈ C2n+1 as

A =


0 1

0
. . .
. . . 1

0

 , v =


m0

m1

...
m2n

 , w =


1
0
...
0

 .
Then the first 2n + 1 moments of L and the first 2n + 1 moments of the functional
L̃(f) = w∗f(A)v are equal, and L̃ is quasi-definite on Pn. Moreover, the n-weight Gauss
quadrature for L can be identified with m0e

T
1 f(Jn)e1, where Jn is the complex Jacobi matrix

obtained at step n of Algorithm 2 with the input A, v, and w. Therefore any complex Gauss
quadrature given by G1–G3 can be constructed by the Lanczos algorithm.

We remark that if L is quasi-definite on Pn−1 but not quasi-definite on Pn, then the
Lanczos algorithm has a breakdown at step n; see Theorem 2.2. However, the nth step of
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Algorithm 2 still gives the complex Jacobi matrix Jn related to the recurrences of the n
orthonormal polynomials p̃0, . . . , p̃n−1. The quadrature rule L(f) ≈ m0e

T
1 f(Jn)e1 is not

the complex Gauss quadrature since its degree of exactness is larger than 2n− 1, i.e.,

L(λk) = m0e
T
1 (Jn)ke1, k = 0, 1, . . . , j,

where j ≥ 2n; see [49, Sections 7 and 8]. However, since Draux considers in [12] Gauss
quadrature (3.2) having a maximal possible degree of exactness, property G3 formulates Gauss
quadrature in the sense of [12] (in the real setting).

4. Jordan decomposition of complex Jacobi matrices. Let Jn be an arbitrary n × n
complex Jacobi matrix. Then there exists a linear functional L, quasi-definite on Pn, such that
Jn contains the coefficients from the three-term recurrences for orthonormal polynomials p̃j ,
j = 0, 1, . . . , n, associated with L. Jn is a non-derogatory matrix (see, e.g., [49, Section 4]),
i.e., it has ` distinct eigenvalues λ1, . . . , λ` all having geometric multiplicity 1. We write its
Jordan decomposition as

(4.1) Jn = Wdiag(Λ1, . . . ,Λ`)W
−1,

where Λi is the Jordan block of dimension si associated with the eigenvalue λi, i=1, . . . , `.
For any t = 1, . . . , n, there is exactly one integer i between 1 and ` and exactly one integer
j between 0 and si − 1 such that t = s1 + . . . + si−1 + j + 1 (here, for i = 1, s0 ≡ 0). In
other words, a fixed t uniquely determines i and j, and vice versa, a fixed i and j uniquely
determine t. The tth column wt(i,j) of W can be written as (see [48, p. 274], [38, Lemma 2],
and [49, Proposition 4.4])

(4.2) wt(i,j) =
1

j!


0j

p̃
(j)
j (λi)

...
p̃
(j)
n−1(λi)

 ,
where 0j is the zero vector of length j. The next theorem, which can also be derived,
considering the extension to complex linear functionals and Favard’s theorem, from the
formulas on page 277 of [48], gives explicit formulas for the rows of W−1.

THEOREM 4.1. Let Jn = Wdiag(Λ1, . . . ,Λ`)W
−1 be the Jordan decomposition of an

n× n complex Jacobi matrix Jn. Let L be the quasi-definite linear functional on Pn such that
Jn contains the coefficients from the three-term recurrences for the orthonormal polynomials
p̃0, . . . , p̃n with respect to L, and let

∑`
i=1

∑si−1
j=0 ωi,j f

(j)(λi) be the Gauss quadrature for
L defined by (3.2) and (3.3). Then the rth row vTr(i,j) of W−1,

vTr(i,j) = eTr(i,j)W
−1, r = s1 + · · ·+ si−1 + j + 1 (s0 ≡ 0 for i = 1),

has the following representation

(4.3) vr(i,j) =

si−1∑
ν=j

ν!ωi,ν wt(i,ν−j),

with wt(i,ν−j) defined by (4.2).
Proof. Let V be the n× n matrix with the rows vr(i,j), r = 1, . . . , n, given by (4.3). We

show that WV = In, i.e., V = W−1. Denote the kth row of W by aTk and the mth column
of V by bm, and we prove that

aTk bm = L(p̃k−1p̃m−1).
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By (4.2) the qth element of ak is

ak,q =
p̃
(j)
k−1(λi)

j!
, q = s0 + s1 + . . .+ si−1 + j + 1,

where for k − 1 < j we have p̃(j)k−1(λi) = 0. Using (4.3), the qth element of bm is

bm,q =

si−1∑
ν=j

ν!ωi,ν
p̃
(ν−j)
m−1 (λi)

(ν − j)!
= j!

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi).

Thus we get, by rearranging the order of summations,

n∑
q=1

ak,qbm,q =

n∑
q=1

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi)p̃

(j)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j

j∑
u=0

(
j

u

)
p̃
(j−u)
m−1 (λi)p̃

(u)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j(p̃m−1p̃k−1)(j)(λi) = L(p̃k−1p̃m−1),

which gives the result.
The weights ωi,j defined by (3.3) of the Gauss quadrature in Theorem 4.1 can be expressed

by the matrix W and its inverse; see [38, Equations (8) and (11)].
REMARK 4.2. The fact that a complex Jacobi matrix Jn is symmetric is associated with

the requirement WV = In and therefore the orthogonal polynomials p̃j , j = 0, . . . , n, being
orthonormal. The previous development can be easily modified for the Jordan decomposition
Tn = Wdiag(Λ1, . . . ,Λ`)W

−1 of an arbitrary irreducible tridiagonal matrix Tn. The repre-
sentation (4.2) of the columns of W then uses the orthogonal polynomials pj satisfying the
three-term recurrences with the coefficients given by Tn (see, e.g., [49, Proposition 4.4]),

(4.4) wt(i,j) =
1

j!


0j

p
(j)
j (λi)

...
p
(j)
n−1(λi)

 .
The matrix V with the rows defined by (4.3) satisfies

WV = diag(L(p20), . . . ,L(p2n−1)),

i.e.,

W−1 = V diag(1/L(p20), . . . , 1/L(p2n−1)).

The rows of W−1 can then be written as

(4.5) vr(i,j) =

si−1∑
ν=j

ν!ωi,ν w̃t(i,ν−j),
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with

(4.6) w̃t(i,j) =
1

j!


0j

p
(j)
j (λi)/L(p2j )

...
p
(j)
n−1(λi)/L(p2n−1)

 ;

cf. [48], where real monic orthogonal polynomials are considered.

5. The Gauss quadrature for linear functionals with real moments. Let us now focus
on a quasi-definite linear functional L : P → C which has real moments mj = L(λj), for
j = 0, 1, . . . Restricting L to the space of polynomials with real coefficientsR gives a real-
valued linear functional. We can still use the complex Gauss quadrature Gn described in
Section 3 to approximate L and its restriction toR. At first glance, the idea of approximating
such a functional by the quadrature with complex nodes and weights does not seem attractive.
As we will see, however, the value of Gn(f) is, for suitable f , always a real number.

As presented above, in [12, Chapter 5] Draux defined a slightly different Gauss quadrature
for arbitrary real-valued linear functional defined on the space of polynomials with real
coefficients R. Using Draux’s definition based on the maximal degree of exactness, it is
possible to approximate real-valued linear functionals which are not quasi-definite, which
means that, in general, Draux quadrature does not satisfy the properties G1–G3 in Section 3.
If L is a linear functional with real moments, quasi-definite on the space of polynomials with
real coefficients, then the complex Gauss quadrature Gn is equal to the n-weight quadrature
defined by Draux. In general, we have the following statement:

THEOREM 5.1. Let L be a quasi-definite linear functional on Pn whose moments
m0, . . . ,m2n−1 are real, and let Gn be the associated Gauss quadrature (3.2),

Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi).

Then the following holds:
1. The nodes λi, i = 1, . . . , `, are real or appear in complex conjugate pairs, i.e., for

any λi /∈ R with multiplicity si, there is a node λm = λi with the same multiplicity.
2. For any λi ∈ R we have ωi,j ∈ R, j = 0, 1, . . . , si − 1. If λi /∈ R and λm = λi,

then ωm,j = ωi,j for j = 0, 1, . . . , si − 1.
3. If f is a real-valued function satisfying f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and
j = 0, 1, . . . , si − 1, then Gn(f) is a real number.

Proof. The monic orthogonal polynomials π0, π1, . . . , πn associated with L satisfy

πj(λ) = (λ− αj−1)πj−1(λ)− ηj−1πj−2(λ), j = 1, 2, . . . , n,

with α0 = m1/m0, π−1(λ) = 0, π0(λ) = 1, and

αj−1 =
L(λπ2

j−1)

L(π2
j−1)

, ηj−1 =
L(π2

j−1)

L(π2
j−2)

, j = 2, . . . , n .

The moments of L are real, which implies that αj−1, ηj−1 ∈ R for j = 2, . . . , n, and the
polynomials πj , j = 0, 1, . . . , n, have real coefficients. Since the roots of πn are the nodes
λ1, . . . , λ` with the corresponding multiplicities s1, . . . , s`, we have proved the first statement.
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Let Tn be the tridiagonal matrix associated with π0, . . . , πn. Then Tn is real and has
the eigenvalues λ1, . . . , λ` with multiplicities s1, . . . , s`. We prove the second statement by
induction on j using the Jordan decomposition

Tn = Wdiag(Λ1, . . . ,Λ`)W
−1

with (4.4), (4.5), and (4.6). If λi is not real, then there exists an eigenvalue λm = λi with
sm = si. Since πk(λ̄) = πk(λ), for k = 0, . . . , n, then

wt(i,j) = wu(m,j), w̃t(i,j) = w̃u(m,j), j = 0, 1, . . . , si − 1.

Fix j = si − 1 = sm − 1 as the base case of the inductive proof. Then the expression (4.5)
gives

(vr(i,si−1))
T = (si − 1)!ωi,si−1(w̃t(i,0))

T ,

(vq(m,sm−1))
T = (si − 1)!ωm,sm−1(w̃t(i,0))

∗.

Using (vr(i,si−1))
Twr(i,si−1) = 1 and (vq(m,sm−1))

Twr(i,si−1) = 1 with the two previous
equations, it follows that

1

ωi,si−1
= (si − 1)! (w̃t(i,0))

Twr(i,si−1) and
1

ωm,sm−1
= (si − 1)! (w̃t(i,0))Twr(i,si−1) .

Hence ωi,si−1 = ωm,sm−1, which finishes the initial step. Let us fix j between 0 and
si − 2, and let ωi,k = ωm,k, k = j + 1, . . . , si − 1, be the inductive assumptions. Then
(vt(i,j))

Twt(i,j) = 1 and (4.5) give

si−1∑
ν=j

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j) = 1.

The first summand on the left-hand side of the previous equation can be written as

j!ωi,j (w̃r(i,0))
Twt(i,j) = 1−

si−1∑
ν=j+1

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j)

= 1−
si−1∑
ν=j+1

ν!ωm,ν (w̃q(m,ν−j))T wu(m,j)

= j!ωm,j (w̃q(m,0))Twu(m,j)

= j!ωm,j (w̃r(i,0))
Twt(i,j).

Therefore, ωi,j = ωm,j , for j = 0, 1, . . . , si − 1. If, on the other hand, λi is real, then an
analogous induction gives ωi,j ∈ R, j = 0, 1, . . . , si − 1. In this case, the vectors wt(i,j) and
w̃t(i,j) are real, which finishes the proof of the second part of the statement.

Finally, if f is a real-valued function satisfying f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and
j = 0, 1, . . . , si − 1, then Gn(f) is real by construction.

As shown in the proof of Theorem 5.1, if L is a linear functional with real moments,
quasi-definite on Pn, then there exists an irreducible real tridiagonal matrix Tn associated with
the monic orthogonal polynomials π1, . . . , πn. Therefore by (1.9) all the tridiagonal matrices
determined by a quasi-definite linear functional with real moments have real numbers on the
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Algorithm 3 Lanczos algorithm in the real number setting.
Input: real matrix A, two real vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, γ0 = 0, ŝ = 1, s = 1,

v0 = v/||v||, w0 = w/(w∗v0).

For j = 1, 2, . . . , n

αj−1 = s ·w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − γj−1vj−2,

ŵj = A∗wj−1 − αj−1wj−1 − γj−1wj−2,

s = sign (ŵ∗
j v̂j),

if s = 0 then stop,

δj =
√
|ŵ∗

j v̂j |,

γj = s · ŝ · δj ,
ŝ = s,

vj = v̂j/δj ,

wj = ŵj/δj ,

end.

main diagonal. Moreover, by (1.10) the elements at the super-diagonal of the corresponding
(complex symmetric) Jacobi matrix are either real or pure imaginary. Notice that a complex
Jacobi matrix Jn is real if and only if it is determined by a linear functional positive definite
on Pn; see, e.g., [44, Theorem 2.14].

The previous discussion can now be applied to the Lanczos algorithm with a real input.
For the given real matrix A and v 6= 0,w 6= 0 real vectors, the moments of the linear
functional L : P → C defined by

(5.1) L(p) = w∗p(A)v, p ∈ P,

are real. The output after n steps of the Lanczos algorithm is real if and only if the algorithm
is based on orthogonal polynomials satisfying the three-term recurrences with real coefficients.
Since Algorithm 2 is based on orthonormal polynomials, its n steps cannot result in a real
output unless the functional (5.1) is positive definite on Pn. If this assumption cannot be used,
then the output of the Lanczos algorithm is real provided that the algorithm is based on monic
orthogonal polynomials. However, in this case there is no further rescaling of the vectors v̂j
and ŵj , j = 0, 1, . . . If the rescaling of the vectors v̂j , ŵj is required (for any reason), then
one can use the following modification; cf. [30, Section 2, in particular, equation (2.21a)].
The polynomials p0 = p̃0, . . . , pj−1 = p̃j−1 are constructed by Algorithm 1 as long as they
have real coefficients, i.e., as long as L(p̂ 2

k ), k = 0, 1, . . . , j − 1, is positive. When L(p̂ 2
j ) is

negative, then we rescale p̂j in the following way:

δj =
√
|L(p̂ 2

j )|, pj =
p̂j
δj
.
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Thus we get the sequence of orthogonal polynomials such that L(p2j ) is either 1 or −1. The
other coefficients from the three-term recurrences are also real. They are given by

γj =
L(λpj−1pj)

L(p2j−1)
=
L(p2j )

L(p2j−1)
δj =

{
δj , if L(p2j−1) · L(p2j ) = 1
−δj , if L(p2j−1) · L(p2j ) = −1,

αj =
L(λp2j )

L(p2j )
=

{
L(λp2j ), if L(p2j ) = 1
−L(λp2j ), if L(p2j ) = −1.

The resulting form of the Lanczos algorithm involving only real number computations is given
as Algorithm 3; see, e.g., Algorithm 1 with equation (2.21a) in [30]. The tridiagonal matrix
Tn = W ∗

nAVn obtained by the first n iterations of the algorithm has sub- and super-diagonal
elements such that δj = γj or δj = −γj , for j = 1, . . . , n− 1.

6. Conclusion. This survey presents in comprehensive form the Lanczos algorithm as
a matrix representation of complex Gauss quadrature with pointing out many related results
published in various contexts previously. The weights ωi,j of the Gauss quadrature (3.2)
appear in the representation (4.3) of the rows of W−1 from the Jordan decomposition (4.1)
of the corresponding complex Jacobi matrix. When the moments of the quasi-definite linear
functional approximated by the Gauss quadrature Gn are real, the non-real nodes and weights
of Gn come in conjugate pairs. Therefore, the value of Gn(f) is a real number whenever the
real-valued function f satisfies f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and j = 0, 1, . . . , si − 1.
This property is linked with the fact that if the input is real, then the Lanczos algorithm with
an appropriate rescaling can be performed in the real number setting.

If the linear functional L is not quasi-definite on Pn, then the maximal algebraic degree of
exactness of the n-weight quadrature (3.2) is not given a priori (see Section 3). The well-known
Theorem 1.3 shows that it is not possible to define a sequence of n orthogonal polynomials for
a linear functional which is not quasi-definite on Pn (it should be recalled that throughout the
paper, as pointed out at the beginning of Section 1, the term orthogonal polynomials covers also
the widely used term formal orthogonal polynomials). Therefore it is not trivial to extend Gauss
quadrature and the Lanczos algorithm to the case of a non-quasi-definite linear functional. In
order to extend the discussed results to the non-quasi-definite case, it is required to define a
sequence of polynomials q0, q1, . . . , qn satisfying some relaxed orthogonality conditions; see,
e.g., [12, Chapter 1]. These polynomials satisfy short recurrences that generalize the three-term
recurrences (1.3) (see, e.g., [26, p. 222–223], Remark 1.2 in [12, p. 71], and Theorem 2 in
[27]). The polynomials qj , j = 0, 1, . . . , n, determine the Gauss quadratures with at most n
weights as defined in [12, Chapter 5] for the case of real-valued linear functionals, and they are
at the basis of the look-ahead strategies for the Lanczos algorithm; see, e.g., [15, 18, 16, 32]
and [35, Section 6.3]. Moreover, the matching moment property for arbitrary linear functionals
is also related to the minimal partial realization problem for a general sequence of moments;
see [27, Section 3]. Assuming real moments (with the extension to complex moments being
straightforward), the results about Gauss quadrature for an arbitrary linear functional and
about the minimal partial realization of a general sequence of moments were published in
the same year (1983) by Draux [12, Chapter 5] and by Gragg and Lindquist [27]. We remark
that the Gauss quadrature from [12] and the minimal partial realization described in [27] are
equivalent. Further connections between Gauss quadrature for arbitrary linear functionals on
the space of polynomials with complex coefficients, the look-ahead Lanczos algorithm, and
the minimal partial realization problem will be considered elsewhere.
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