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AN ANALYSIS OF THE POLE PLACEMENT PROBLEM II. THE MULTI-INPUT
CASE∗

VOLKER MEHRMANN† AND HONGGUO XU‡

Abstract. For the solution of the multi-input pole placement problem we derive explicit formulas for the sub-
space from which the feedback gain matrix can be chosen and for the feedback gain as well as the eigenvector matrix
of the closed-loop system. We discuss which Jordan structures can be assigned and also when diagonalizability can
be achieved. Based on these formulas we study the conditioning of the pole-placement problem in terms of pertur-
bations in the data and show how the conditioning depends on the condition number of the closed loop eigenvector
matrix, the norm of the feedback matrix and the distance to uncontrollability.
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1. Introduction. In this paper we continue the analysis of the conditioning of the pole
placement problem in [22] with the multi-input case. We study multi-input time-invariant
linear systems

ẋ = dx(t)/dt = Ax(t) +Bu(t), x(0) = x0,(1.1)

with A ∈ Cn×n,B ∈ Cn×m. For such systems we analyse the following problem:
PROBLEM 1. Multi-input pole placement (MIPP):Given a set ofn complex numbers

P = {λ1, . . . , λn} ⊂ C, find a matrixF ∈ Cm×n, such that the set of eigenvalues of
A − BF is equal toP . (Here we assume in the real case that the setP is closed under
complex conjugation.) It is well-known [14, 37] that afeedback gainmatrixF that solves
this problem for all possible setsP ⊂ C exists if and only if(A,B) is controllable, i.e.,

rank[A− λIn, B] = n, ∀λ ∈ C(1.2)

or

rank[B,AB, . . . , An−1B] = n.(1.3)

Due to its wide range of applications there is a vast literature on this problem. Exten-
sions of Ackermann’s explicit formula [1] for the single-input case were given in [33, 32].
Also many numerical algorithms were developed for this problem, see [27, 36, 15, 24, 25]
For some of these methods numerical backward stability has been established, see e.g.
[15, 25, 24, 5, 6, 3]. Nonetheless it is observed very often that the numerical results (even
from numerically stable methods or explicit formulas) are very inaccurate. This observation
led to the conjecture in [12] (supported by intensive numerical testing) that the pole place-
ment problem becomes inherently ill-conditioned when the system size is increasing. This
conjecture has been heavily debated, since some of the perturbation results derived in recent
years do not seem to support this conjecture [2, 17, 29, 18].
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The reason for the discrepancy in opinions about the conditioning of the pole assigment
problem is that one has to distinguish between two aspects of the pole placement problem, the
computation of the feedbackF and the computation of the closed loop matrixA−BF or its
spectrum, respectively. Both can be viewed asresultof the pole placement problem but they
exhibit different pertubation results. A striking example for the difference is given in [22]
for the single-input case, where the exact feedback was used but the poles of the computed
closed loop system were nowhere near to the desired poles. In our opinion the most important
goal of pole placement is that the poles of the closed loop system obtained with the computed
feedback are close to the desired ones. If the desired poles of the exact closed loop system
are very sensitive to perturbations then this ultimate goal cannot be guaranteed. And this may
happen even if the computation ofF is reliable or even exact.

A new analysis that covers all the aspects of the problem is therefore necessary and it
was given for the single-input case in [22]. In this paper we will continue this analysis for
the multi-input case. We will derive explicit formulas for the feedback matrixF . These
formulas are different from the formulas derived in [33, 32] and display all the freedom in
the solution, which is clearly form > 1 not uniquely determined from the dataA,B,P . To
remove the non-uniqueness several directions can be taken. The most common approach is
to try to minimize the norm of the feedback matrixF under all possible feedbacksF that
achieve the desired pole assigment, see [24, 27, 36, 25, 16]. Another approach is to optimize
the robustness of the closed-loop system [15].

In this paper we study the whole solution set, i.e., the set of feedbacks that place the poles
and describe it analytically. We also derive explicit formulas for the closed-loop eigenvector
matrix. Based on these formulas we will then give perturbation bounds which are multi-input
versions of the bounds for the single-input problem in [22] and display the problems that can
arise when choosing one or the other method for making the feedback unique.

Throughout the paper we will assume that(A,B) is controllable and thatrankB = m.
We will use the superscriptH to represent the conjugate transpose. All used norms are
spectral norms.

2. The null space of[A − λI,B]. We begin our analysis with a characterization of the
nullspace of[A− λI,B] for a givenλ ∈ C. Since(A,B) is controllable, from (1.2) we have
thatrank[A− λI,B] = n, ∀λ ∈ C. So the dimension of the null space ism.

Let

[
Uλ
−Vλ

]
, with Uλ ∈ Cn×m, Vλ ∈ Cm×m, be such that its columns span the null

spaceNλ of [A− λI,B], i.e.,

[
A− λIn B

] [ Uλ
−Vλ

]
= 0,(2.1)

or

(A− λIn)Uλ = BVλ.(2.2)

Before we can characterize this nullspace, we have to introduce some notation and recall
some well-known facts from linear systems theory.

The basis for most of the results concerning the analysis and also the numerical solution
of the control problem under consideration are canonical and condensed forms. The most
useful form in the context of numerical methods is the staircase orthogonal form [34, 35].

LEMMA 2.1. [35] Let A ∈ Cn×n, B ∈ Cn×m, (A,B) controllable andrank(B) = m.
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Then there exists a unitary matrixQ ∈ Cn×n such that

QHAQ =



n1 n2 . . . . . . ns
n1 A1,1 A1,2 . . . . . . A1,s

n2 A2,1 A2,2 . . . . . . A2,s

n3 0 A3,2
... . . . A3,s

...
...

...
...

ns As,s−1 As,s

, QHB =



n1 = m

n1 B1

n2 0
n3 0
...

...
ns 0

,(2.3)

with B1, A1,1, . . . , As,s square,B1 nonsingular, and the matricesAi,i−1 ∈ Cni×ni−1 , i =
2, . . . , s, all have full row rank. (n1 ≥ n2 ≥ . . . ≥ ns). The indicesni play an important
role in the following constructions and we will also need the following indices derived from
theni. Set

di := ni − ni+1, i = 1, . . . , s− 1, ds := ns,(2.4)

and

πi := d1 + . . .+ di = m− ni+1, i = 1, . . . , s− 1, πs = m.(2.5)

An immediate consequence of the staircase form is that the indicesni, di, πi are invariant
under adding multiples of the identity toA, i.e., these indices are the same for the pairs
(A,B) and(A − λI,B). This follows, since the subdiagonal blocks in the staircase form,
which determine these invariants, are the same if we add a shift to the diagonal.

If we allow nonunitary transformations we can get a more condensed form, similar to the
Luenberger canonical form [21], which follows directly from the staircase orthogonal form.

LEMMA 2.2. [21] Let A ∈ Cn×n, B ∈ Cn×m, (A,B) controllable andrank(B) = m.
Then there exist nonsingular matricesS ∈ Cn×n, T ∈ Cm×m such that

Â := S−1AS

=



d1 n2 d2 n3 . . . ds−1 ns ds
n1 Â1,1 0 Â1,2 0 . . . Â1,s−1 0 Â1,s

n2 0 In2 Â2,2 0 . . . Â2,s−1 0 Â2,s

n3 0 In3 . . . Â3,s−1 0 Â3,s

...
...

...
...

...
ns−1 Âs−1,s−1 0 Âs−1,s

ns 0 Ins Âs,s


,

B̂ := S−1BT =
[
In1

0

]
,(2.6)

where the indicesni anddi are related as in (2.4).
Let us further introduce the Krylov matrices

Kk := [B,AB, . . . , Ak−1B], K̂k := [B̂, ÂB̂, . . . , Âk−1B̂],(2.7)

and the block matrices

X̂k :=

 X̂1,1 . . . X̂1,k

...
...

X̂k,k

 ∈ Ckm×πk ,(2.8)
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Xk :=

 X1,1 . . . X1,k

...
...

Xk,k

 := diag(T, . . . , T )X̂k ∈ Ckm×πk ,(2.9)

R̂k := [Â1,1, Â1,2, . . . , Â1,k], Rk := T R̂k ∈ Cm×πk ,(2.10)

where

X̂i,i :=


di

πi−1 0
di Idi
ni+1 0

, i = 1, . . . , k,

X̂i,j :=
[ dj

πi 0
ni+1 −Âi+1,j

]
, i = 1, . . . , k − 1, j = i+ 1, . . . , k,

Xi,j := TX̂i,j, i = 1, . . . , k, j = i, . . . , k.

Let us also abbreviateX := Xs,R := Rs,K := Ks. Then we can characterize the nullspace
of [A,B] as follows.

LEMMA 2.3. LetXk, X̂k,Rk, R̂k,Kk, K̂k be as introduced in (2.7)–(2.10). Then

AKkXk = BRk, ÂK̂kX̂k = B̂R̂k, k = 1, . . . , s(2.11)

and the columns of [
U0

−V0

]
=
[
KX
−R

]
span the nullspaceN0 of [A,B].

Proof. The proof follows directly from the fact thatAKkXk = S(ÂK̂kX̂k), BRk =
S(B̂R̂k) and the special structure of the block columns inK̂k, i.e., for1 ≤ l ≤ s,

Âl−1B̂ =



d1 . . . dl−2 dl−1 nl
n1 ∗ . . . ∗ Â1,l−1 0
...

...
...

...
...

nl−1 ∗ . . . ∗ Âl−1,l−1 0
nl 0 . . . 0 0 Inl
nl+1 0 . . . 0 0 0
...

...
...

...
...

ns 0 . . . 0 0 0


,(2.12)

by just multiplying out both sides of the equations in (2.11). Note that it follows directly from
the controllability assumption and the staircase form (2.3) that the full nullspace is obtained
for k = s, since then the dimension of the space spanned by the columns of[

KX
−R

]
ism = n1, which, as noted before, is the dimension of the nullspace of[A,B].
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We need some further notation. Let

Θi,j :=
j∑
l=i

Al−iBXl,j , Θ̂i,j :=
j∑
l=i

Âl−iB̂X̂l,j, i = 1, . . . , s, j = i, . . . , s,(2.13)

and set

Wi := [Θi,i, . . . ,Θi,s] ∈ Cn×ni , i = 1, . . . , s,
W := [W1,W2, . . . ,Ws] ∈ Cn×n,(2.14)

Yi := [Xi,i, . . . , Xi,s] ∈ Cm×ni , i = 1, . . . , s,
Y := [Y1, Y2, . . . , Ys] ∈ Cm×n.

Furthermore define

Ii,j :=
[nj − ni ni

ni 0 Ini
]
, i ≥ j,(2.15)

and

N :=


0
I2,1 0

0 I3,2
...

...
... 0

0 . . . 0 Is,s−1 0

 , Ñ =


0 Im

...
...
... Im

0

 .

LEMMA 2.4. The matricesW,W1 defined in (2.14) have the following properties.
i)

W1 = KX, W = KX̃, X̃ = [X, ÑX, . . . , Ñs−1X ].(2.16)

ii)

W = AWN +BY.(2.17)

iii) W is nonsingular.
Proof.
i) follows directly from the definition ofW1 andW .
ii) Using the form ofW ,N we have

AWN = A[W1,W2, . . . ,Ws]N
= A[0,W2; . . . ; 0,Ws−1; 0]
= [0, AΘ2,2, . . . , AΘ2,s; . . . ; 0, AΘs,s; 0]
= [0,Θ1,2, . . . ,Θ1,s; . . . ; 0,Θs−1,s; 0]

−B[0, X1,2, . . . , X1,s; . . . ; 0, Xs−1,s; 0]
= W −BY.

iii) We have

W = S(S−1W )
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= S[Θ̂1,1, . . . , Θ̂1,s; . . . ; Θ̂s−1,s−1, Θ̂s−1,s, Θ̂s,s]

= S


In1 ∗ . . . ∗

In2 . . .
...

... ∗
Ins

P
for an appropriate permutation matrixP , which follows directly from the definition of̂Θi,j

in (2.13). Thus,W is nonsingular.
REMARK 1. If m = 1 (the single-input case), thenX = [a1, . . . , an−1, 1]T , R =

−a0, and by (1.3)K = [B, . . . , An−1B] is nonsingular. SinceAKX = BR, we find that
a0, . . . , an−1 are the coefficients of the (monic) characteristic polynomial ofA, i.e.,

ξ(λ) := λn +
n−1∑
k=0

akλ
k = det(λIn −A).

Using adj(λIn−A) :=
∑n−1
k=0 Akλ

k, where adj(A) represents the adjoint matrix of the square
matrixA, it is not difficult to verify thatW1 = A0B andW = [A0B, . . . An−1B].

We are now able to give a simple characterization of the nullspace of[A− λI,B] for an
arbitraryλ.

THEOREM 2.5. LetEλ,k := (I − λN)−1

[
Iπk
0

]
. Then the columns of[

Uλ,k
−Vλ,k

]
:=
[

WEλ,k
−(Rk − λY Eλ,k)

]
, k = 1, 2, . . . , s,(2.18)

span the subspacesNλ,k of dimensionπk of the nullspace of[A − λI,B]. In particular, for
k = s we obtain the whole nullspaceNλ spanned by the columns of[

Uλ
−Vλ

]
:=
[

WEλ,s
−(R− λY Eλ,s)

]
,(2.19)

which has dimensionπs = m. Hence, we have(A− λI)Uλ = BVλ.
Proof. By (2.17) we have

(A− λI)W = AW − λW = AW − λAWN − λBY = AW (I − λN)− λBY.
SinceI − λN is nonsingular, we get

(A− λI)W (I − λN)−1 = AW − λBY (I − λN)−1

and then by multiplying with

[
Iπk
0

]
from the right we obtain

(A− λI)WEλ,k = AW

[
Iπk
0

]
− λBY Eλ,k.

By Lemma 2.3 and (2.16) we have thatAW

[
Iπk
0

]
= BRk and hence the result follows.

The dimension ofNλ,k is directly determined from the fact that

rankUλ,k = rankWEλ,k = rankEλ,k = πk.

In this section we have derived explicit formulas for matrices whose columns span the
right nullspace of[A−λI,B]. These formulas will be used in the following section to derive
explicit expressions forF and also the closed loop eigenvector matrix.
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3. Formulas for F and the closed loop eigenvector matrix .In this section we derive
explicit expressions for the feedback matrixF and the closed loop eigenvector matrix. Other
explicit formulas for the feedback matrixF are given in [33, 32]. They are different from our
formulas in that they do not display the whole solution set and also do not give the closed
loop Jordan canonical form.

Set

Uλ,k := rangeUλ,k, Vλ,k := rangeVλ,k, k = 1, . . . , s,(3.1)

whereUλ,k, Vλ,k are defined in (2.18). In particular we setUλ := rangeUλ (Uλ = Uλ,s),
Vλ := rangeVλ (Vλ = Vλ,s).

Let (λ, g) be an eigenpair ofA−BF , i.e.,

(A−BF )g = λg or (A− λI)g = BFg =: Bz.

Using the representation of the nullspace of[A − λI,B] in (2.19) there is a vectorφ ∈ Cm
such thatg = Uλφ, z = Vλφ. ClearlyUλ is just the space containing all possible eigenvectors
of A−BF associated withλ.

Let us first consider a single Jordan blockJp = λI +Np, where

Np :=


0 1 0 . . . 0

0
...

...
...

...
... 0
0 1

0


p×p

.

LEMMA 3.1. Suppose thatA− BF has a Jordan block of sizep× p associated withλ
and the corresponding chain of principle vectors isg1, . . . , gp, i.e.,

(A−BF )[g1, . . . , gp] = [g1, . . . , gp]Jp.(3.2)

Let Gp := [g1, . . . , gp], Zp =: FGp =: [z1, . . . , zp]. Then there exist matricesΦp =
[φ1, . . . , φp]∈ Cm×p andΓp ∈ Cn×p such that

Gp = WΓp, Zp = RΦp − Y ΓpJp,(3.3)

where

Γp =


Φp

I2,1ΦpJp
...

Is,1ΦsJs−1
p

(3.4)

satisfiesrank Γp = p. (Here the matricesIi,1 are as defined in (2.15).)
Proof. By adding−λWN on both sides of (2.17) we obtain

W (I − λN) = (A− λI)WN +BY.

Hence we have that

W = (A− λI)WN(I − λN)−1 +BY (I − λN)−1.(3.5)
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LetE =
[
In1

0

]
then via induction we prove that there exist vectorsφj ∈ Cm such that the

following expressions hold forgk, zk.

gk = W
k∑
j=1

N j−1(I − λN)−jEφk+1−j ,(3.6)

zk = Vλφk − Y
k∑
j=2

N j−2(I − λN)−jEφk+1−j ,(3.7)

for k = 1, 2, . . . , p.
For k = 1 we have from (3.2) thatg1 is an eigenvector ofA − BF . So there exists a

φ1 ∈ Cm such that

g1 = WEλ,sφ1 = W (I − λN)−1Eφ1, z1 = Vλφ1.(3.8)

Suppose now that (3.6) and (3.7) hold fork, we will show that they also hold fork + 1.
By (3.2),(A− λI)gk+1 = Bzk+1 + gk. By (3.6), (3.5) it follows that

gk = (A− λI)W
k∑
j=1

N j(I − λN)−(j+1)Eφk+1−j

+ BY
k∑
j=1

N j−1(I − λN)−(j+1)Eφk+1−j .

Then there existsφk+1 ∈ Cm, (note thatNk = 0 for k ≥ s,) such that

gk+1 = W{(I − λN)−1Eφk+1 +
k∑
j=1

N j(I − λN)−(j+1)Eφk+1−j}

= W
k+1∑
j=1

N j−1(I − λN)−jEφk+2−j

and

zk+1 = Vλφk+1 − Y
k∑
j=1

N j−1(I − λN)−(j+1)Eφk+1−j

= Vλφk+1 − Y
k+1∑
j=2

N j−2(I − λN)−jEφk+2−j .

Now with (3.6) and (3.7) we obtain

Gp = W

p∑
j=1

N j−1(I − λN)−jEΦpN j−1
p =: WΓp,

Zp = VλΦp − Y
p∑
j=2

N j−2(I − λN)−jEΦpN j−1
p .
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Using the formula

N j−1(I − λN)−j =
s∑
k=j

(
k − 1
j − 1

)
λk−jNk−1,

we obtain

Γp =
s∑
j=1

(
s∑
k=j

(
k − 1
j − 1

)
λk−jNk−1)EΦpN j−1

p

=
s∑
j=1

(
s∑
k=j

(
k − 1
j − 1

)
λk−j

 0
Ik,1Φp

0

)N j−1
p

=
s∑

k=1

 0
Ik,1Φp

0

 (
k∑
j=1

(
k − 1
j − 1

)
λk−jN j−1

p )

=
s∑

k=1

 0
Ik,1Φp(λIp +Np)k−1

0

 =


Φp

I2,1ΦpJp
...

Is,1ΦpJs−1
p

 .
Since

p∑
j=2

N j−2(I − λN)−jEΦpN j−1
p = (I − λN)−1ΓpNp,

we getZp = VλΦp − Y (I − λN)−1ΓpNp, and then withVλ = R − λY (I − λN)−1E we
obtain

Zp = RΦp − Y (I − λN)−1


ΦpJp

I2,1ΦpJpNp
...

Is,1ΦpJs−1
p Np

 .
It is then easy to check thatZp = RΦp−Y ΓpJp by using the explicit formula for the inverse
of (I − λN)−1 and by calculating the blocks from top to bottom. Thenrank Γp = p follows
from rankW = n andrankGp = p.

After having obtained the formula for each different Jordan block, we have the following
theorem for a general Jordan matrix.

THEOREM 3.2. Let

J = diag(J1,1, . . . , J1,r1 , . . . , Jq,1, . . . , Jq,rq),(3.9)

whereJij = λiIpij + Npij . There exists anF so thatJ is the Jordan canonical form of
A−BF if and only if there exists a matrixΦ ∈ Cm×n so that

Γ :=


Φ

I2,1ΦJ
...

Is,1ΦJs−1

(3.10)
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is nonsingular. If such a nonsingularΓ exists, then withG := WΓ andZ := RΦ−Y ΓJ , we
have thatF = ZG−1 is a feedback gain that assigns the desired eigenstructure and moreover
A−BF = GJG−1.

Proof. The necessity follows directly from Lemma 3.1. For sufficiency, using (2.16),
(2.11) and (2.17), we have

AWΓ = AW1Φ +A[W2, . . . ,Ws]

 I2,1ΦJ
...

Is,1ΦJs−1


= AW1Φ +A[0,W2; . . . ; 0,Ws; 0]ΓJ
= BRΦ +AWNΓJ
= BRΦ +WΓJ −BY ΓJ = BZ +WΓJ.

SinceΓ andW are nonsingular, we get

A−BZ(WΓ)−1 = WΓJ(WΓ)−1

and thusF = Z(WΓ)−1 is a feedback matrix which completes the task.
REMARK 2.

Note thatZ := [R,−Y ]
[

Φ
ΓJ

]
=: [R,−Y ]Ψ, and one can easily verify thatΨΓ−1 has

a condensed form as the Luenberger like form (2.6). This fact indicates the relationship of
the formula (3.10) to the formulas used in the well known assignment methods via canonical
forms [37]. The following results follow from the special structure ofΓ.

COROLLARY 3.3. Consider the pole placement problem of Theorem 3.2, withJ given
as in (3.9). A necessary condition for the existence ofF with J as the Jordan canonical form
of A − BF is that Φ is chosen so that(JH ,ΦH) is controllable. A sufficient condition is
that there existsΨ ∈ Cm×n so that(JH ,ΨH) is controllable and has the same indicesnk as
(A,B).

Proof. The necessary condition is obvious. For the sufficient condition observe that we
can writeB̃ = BT with T as in (2.6). ThenW = W̃H, where

W̃ = [B̃, AB̃IH2,1, . . . , As−1B̃IHs,1],

H = diag(I2,1, . . . , Is,1)[X̂, ÑX̂, . . . , Ñs−1X̂ ].

ThusW̃ has a dual structure toΓ. ThereforeΦ = ΨT̃ can be used to determine a feedback
gainF , whereT̃ ∈ Cm×m is nonsingular and is determined by computing the condensed
from (2.6) for(JH ,ΨH).

Theorem 3.2 also leads to a characterization of the set of feedbacks that assign a desired
Jordan structure.

COROLLARY 3.4. The set of all feedbacksF that assign the Jordan structure in (3.9) is
given by

{F = ZG−1 = (RΦ− Y ΓJ)(WΓ)−1|det Γ 6= 0, Γ as in (3.10)}.(3.11)

REMARK 3. Note that we do not have to choose a matrixJ in Jordan form in Theo-
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rem 3.2. In factJ can be chosen arbitrarily, since for an arbitrary nonsingularQ,

ΓQ =


ΦQ

I2,1ΦQ(Q−1JQ)
...

Is,1ΦQ(Q−1JQ)s−1

 =


Φ̂

I2,1Φ̂Ĵ
...

Is,1Φ̂Ĵs−1

 ,
whereΦ̂ = ΦQ, Ĵ = Q−1JQ. In particular for a real problem we can chooseJ in real
canonical form and also choose a realΦ.

REMARK 4. In the single-input case, i.e.,m = 1, the Jordan form must be nondegen-
erate, see [22]. Hence forJ in (3.9), we needr1 = . . . = rq = 1. Let Φ = [φ1, . . . , φq]
andφk = [φk,1, . . . , φk,pk ] ∈ C1×pk , let ξ(λ) = det(λIn −A), Ξ(λ) = adj(λIn −A), as in
Remark 1. Then we can easily verify that

G = WΓ = [G1, . . . , Gq] diag(Φ̂1, . . . , Φ̂q),

Z = −[Z1, . . . , Zq] diag(Φ̂1, . . . , Φ̂q),

where

Gk = [Ξ(λk)B,Ξ(1)(λk)B, . . . ,Ξ(pk−1)(λk)B],(3.12)

Zk = [ξ(λk), ξ(1)(λk), . . . , ξ(pk−1)(λk)],(3.13)

Φ̂k =
pk−1∑
j=0

φk,j+1N
j
pk
.

Hereξ(k) andΞ(k) represent thek-th derivatives with respect toλ. Obviously we need̂Φk
nonsingular for1 ≤ k ≤ q, so in this case the formulas reduce to

G := [G1, . . . , Gq], , F = −[Z1, . . . , Zq]G−1,

with Gk, Zk defined in (3.12) and (3.13).
Note that this is another variation of the formulas for the single-input case, see [22].

By using the properties ofξ(λ) andΞ(λ), it is easy to rederive the formulas in [22] when
λ(A) ∩ P = ∅.

Though it is well known that for an arbitrary pole setP , if (A,B) is controllable then
there always exists anF that assigns the elements ofP as eigenvalues, it is not true that we
can assign an arbitrary Jordan structure inA−BF when there are multiple poles. This already
follows from the single-input case. See also [22, 7, 30, 31, 4, 9]. We see from Theorem 3.2
that in order to have a desired Jordan structure, the existence of a nonsingular matrixΓ as in
(3.10) is needed.

We will now discuss when we can obtain a diagonalizableA − BF . Note that in order
to have a robust closed loop system, it is absolutely essential that the closed loop system
is diagonalizable and has no multiple eigenvalues, since it is well known from the pertur-
bation theory for eigenvalues [11, 28] that otherwise small perturbations may lead to large
perturbations in the closed loop eigenvalues.

In the following we study necessary and sufficient conditions for the existence of a feed-
back that assigns for a given controllable matrix pair(A,B) and polesλ1, . . . , λq with mul-
tiplicities r1, . . . , rq and a diagonal Jordan canonical form of the closed loop system

A−BF = Gdiag(λ1Ir1 , . . . , λqIrq)G
−1 =: GΛG−1.(3.14)
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This problem has already been solved in [26, 19] using the theory of invariant polynomials.
It is also discussed in [15], where necessary conditions are given even if(A,B) is uncontrol-
lable.

Here we will give a different characterization in terms of the results of Theorem 3.2 and
the multiplicitesr1, . . . , rq. In the proof we will also show a way to explicitely construct the
eigenvector matrixG and the feedback gainF , provided they exist.

Notice that multiplication withEλ,s defined in Theorem 2.5 sets up a one to one mapping
betweenCm and the eigenspace ofA−BF associated with a poleλ. By (2.18) a vector

φ :=
[
φ̂
0

]
∈ Cm, φ̂ ∈ Cπk

uniquely determines an eigenvector asg = W (I − λN)−1Eφ ∈ Uλ,k.
LEMMA 3.5. Let (A,B) be controllable. Given arbitrary polesλ1, . . . , λk, and an

integerl with 1 ≤ l ≤ s. For each poleλi choose an arbitrary vectorgi ∈ Uλi,l, whereUλi,l
defined in (3.1) is the subspace of the nullspace of[A − λiI,B]. If k >

∑l
i=1 dii, then the

vectorsg1, . . . , gk must be linear dependent.

Proof. Sincegi ∈ Uλi,l, there exists a correspondingφi =
[
φ̂i
0

]
, with φ̂i ∈ Cπl

such thatgi = Uλi,sφi. Let Φk := [φ1, . . . , φk], Λk := diag(λ1, . . . , λk) and Γk =
Φk

I2,1ΦkΛk
...

Is,1ΦkΛs−1
k

 . By Lemma 3.1,Gk = [g1, . . . , gk] = WΓk and, sinceW is invert-

ible, rankGk = rank Γk. Applying an appropriate row permutation,Γk can be trans-

formed to

[
Γ̂k
0

]
, with Γ̂k =


Φ̂k,1

Φ̂k,2Λk
...

Φ̂k,lΛl−1
k

 and whereΦ̂k,1 = [φ̂1, . . . , φ̂k], Φ̂k,i is

the bottom(πl − πi−1) × k submatrix ofΦ̂k,1. Because the number of rows ofΓ̂k is∑l
i=1(πl − πi−1) =

∑l
i=1 dii,

rankGk = rank Γk = rank Γ̂k ≤
l∑
i=1

dii.

Sok >
∑l
i=1 dii implies thatg1, . . . , gk are linear dependent.

THEOREM 3.6. Let (A,B) be controllable. Given polesλ1, . . . , λq with multiplicities
r1, . . . , rq satisfyingr1 ≥ r2 ≥ · · · ≥ rq. Then there exists a feedback matrixF so that
Λ(A−BF ) = {λ1, . . . , λq} andA−BF is diagonalizable if and only if

k∑
i=1

ri ≤
k∑
i=1

ni, k = 1, . . . , q.(3.15)

Proof. To prove the necessity, suppose that a feedback matrixF and a nonsingular
G exist, such that (3.14) holds. PartitionG := [G1, . . . , Gq], whereGi ∈ Cn×ri with
rangeGi ⊆ Uλi . We will prove (3.15) by induction.
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If k = 1, then from Theorem 2.5 we have thatdimUλ1 = m = n1. SincerangeG1 ⊆ Uλ1 ,
rankG1 ≤ n1. On the other hand,G nonsingular implies thatrankG1 = r1 and therefore
r1 ≤ n1.

Now suppose that (3.15) holds fork. If (3.15) would not hold fork + 1 then by applying
the induction hypothesis, we obtainr1 ≥ . . . ≥ rk+1 > nk+1. SinceGi is of full column
rank and by Theorem 2.5,nk+1 = m − πk = dimUλi − dimUλi,k, it follows that li :=
dim(rangeGi ∩ Uλi,k) ≥ ri − nk+1, i = 1, . . . , k + 1. Let gi,1, . . . , gi,li be a basis of
rangeGi ∩ Uλi,k. As

k+1∑
i=1

li ≥
k+1∑
i=1

(ri − nk+1) >
k∑
i=1

(ni − nk+1) =
k∑
i=1

dii,

by Lemma 3.5,g1,1, . . . , g1,l1 , . . . , gk+1,1, . . . , gk+1,lk+1 are linear dependent. In other
words, there exists a nonzero vectorν such that[G1, . . . , Gk+1]ν = 0. HenceG is singular,
which is a contradiction.

To prove sufficiency, using Theorem 3.2, we construct a matrixΦ ∈ Cm×n so that

Γ =


Φ

I2,1ΦΨ
...

Is,1ΦΨs−1


is nonsingular, whereΨ is diagonal and has the formPΛPT with Λ is as in (3.14) andP a
permutation matrix. Let

Φ :=


d1 2d2 . . . sds

d1 Φ1,1 Φ1,2 . . . Φ1,s

d2 Φ2,2 . . . Φ2,s

...
...

...
ds Φs,s

, with Φi,i =


φ

(i)
1,1 . . . φ

(i)
1,di

...
...

φ
(i)
di,di



andφ(i)
j,j =

[
ω

(i,j)
1 , . . . , ω

(i,j)
i

]
∈ C1×i with ω(i,j)

l 6= 0 for all i = 1, . . . , s, j = 1, . . . , di,
l = 1, . . . , i. PartitionΨ accordingly as


d1 2d2 . . . sds

d1 Ψ1

2d2 Ψ2
...

...
sds Ψs

, with Ψi =

 ψi,1
...

ψi,di



andψi,j = diag(ν(i,j)
1 , . . . , ν

(i,j)
i ).
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Then we obtain

Γ =



Φ1,1 Φ1,2 . . . . . . Φ1,s

Φ2,2 Φ2,s

...
...

... Φs,s
Φ2,2Ψ2 . . . . . . Φ2,sΨs

...
...

Φs,sΨs

...
Φs−1,s−1Ψs−2

s−1 Φs−1,sΨs−2
s

0 Φs,sΨs−2
s

Φs,sΨs−1
s



.

It follows from the form ofΦi,i that, by applying a row permutation,Γ can be transformed to
the form

Γ̂ =


Γ̂1 ∗ . . . ∗

Γ̂2

...
...

...
Γ̂s

 , with Γ̂i =


Γ̂(i)

1,1 ∗ . . . ∗

Γ̂(i)
2,2

...
...

...

Γ̂(i)
di,di


and

Γ̂(i)
j,j =


1 . . . 1

ν
(i,j)
1 . . . ν

(i,j)
i

...
...

(ν(i,j)
1 )i−1 . . . (ν(i,j)

i )i−1

diag(ω(i,j)
1 , . . . , ω

(i,j)
i ).

SinceΓ̂ is block upper triangular and since eachΓ̂(i)
j,j is a product of a nonsingular diagonal

matrix and a Vandermonde matrix, which is nonsingular ifν
(i,j)
1 , . . . , ν

(i,j)
i are distinct, it

follows that the matrix̂Γ, or equivalentlyΓ, is nonsingular. So it remains to show that the
ν

(i,j)
j can be chosen from the eigenvalues so that all the occuring Vandermonde matrices are

nonsingular. It is easy to see that condition (3.15) guarantees this choice.

4. Perturbation Theory. In this section we consider how the feedback gain and the ac-
tual poles of the closed loop system change under small perturbations to the system matrices
and the given poles. It is clear from the perturbation theory for the eigenvalue problem [28]
that we need a diagonalizable closed loop system with distinct poles if we want that the closed
loop system is insensitive to perturbations. The following result, which is a generalization of
the perturbation result of Sun [29], also holds in the case of multiple poles if diagonalizable
closed loop systems exist for some choice of feedback.

THEOREM 4.1. Given a controllable matrix pair(A,B), and a set of polesP =
{λ1, . . . , λn}. Consider a perturbed system(Â, B̂) which is also controllable and a per-
turbed set of poleŝP = {λ̂1, . . . , λ̂n}. SetÂ−A =: δA, B̂−B =: δB andλ̂k−λk =: δλk,
k = 1, . . . , n. Suppose that both the pole placement problems withA,B,P andÂ, B̂, P̂ have
solutions with a diagonalizable closed loop matrix. Set

ε := ||[δA, δB]||.(4.1)
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and suppose that

max
i

ε+ |δλi|
σn([A − λiI,B])

<
3
4
,(4.2)

Then there exists a feedback gainF̂ := F + δF of (Â, B̂) such that

||δF || < 5
√
n

4
κ

√
1 + ||F̂ ||2 max

i
{
√

1 + (||B†(A− λiI)||)2 (ε+ |δλi|)
σn([A− λiI,B])

},(4.3)

λ(Â− B̂F̂ ) = P̂ andÂ− B̂F̂ is diagonalizable.
Moreover, for each eigenvalueµi of the closed loop matrixA − BF̂ , (i.e., the perturbed

feedback is used for the unperturbed system), there is a correspondingλi ∈ P such that

|µi − λi| < |δλi|+ εκ̂

√
1 + ||F̂ ||2.(4.4)

Hereκ, κ̂ are the scaled spectral condition numbers ofA−BF andÂ−B̂F̂ , respectively (cf.
[8]), σn(A) is the smallest singular value ofA, andB† is the Moore-Penrose pseudoinverse
ofB.

Proof. Suppose thatA−BF = Gdiag(λ1, . . . , λn)G−1. LetG := [g1, . . . , gn], ||gi|| = 1,

i = 1, . . . , n. LetZ = FG := [z1, . . . , zn] andwi =
[

gi
−zi

]
, then

[A− λiI,B]wi = 0.(4.5)

Consider a singular value decomposition

[A− λiI,B] = U
[

Σ 0
]
V H , with Σ = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn.(4.6)

The controllability of(A,B) implies thatσn 6= 0. SetV = [V1, V2] with V2 ∈ Cn×m, then
rangeV2 = kernel[A − λiI,B]. So there exists a nonzeroα ∈ Cm such thatwi = V2α.
Since we require||gi|| = 1, from (4.5) it follows that||zi|| ≤ ||B†(A− λiI)|| and thus

||α|| =
√
||gi||2 + ||zi||2 ≤

√
1 + ||B†(A− λiI)||2.(4.7)

Similarly for the perturbed problem there exists a matrixV̂2 ∈ Cn×m with V̂ H2 V̂2 = Im,
such that[Â − λ̂iI, B̂]V̂2 = 0, or [A − λiI,B]V̂2 = −[δA − δλiI, δB]V̂2. Using (4.6) we
have thatV H1 V̂2 = −Σ−1UH [δA− δλiI, δB]V̂2. Hence

||V H1 V̂2|| ≤ (ε+ |δλi|)/σn =: τ <
3
4
.

Performing a singular value decompositionV H2 V̂2 = Y1Σ2Y
H

2 , we obtain fromIm =
V̂ H2 V̂2 = (V H1 V̂2)H(V H1 V̂2)+ (V H2 V̂2)H(V H2 V̂2), that||Im−Σ2

2|| = ||V H1 V̂2||2 ≤ τ2. Hence
||Im − Σ2|| ≤ τ2.

Let ŵi be chosen analogous towi but for the perturbed problem and assume thatŵi = V̂2α̂,
with α̂ = Y2Y

H
1 α. Note that it may happen that for this choice ofα̂ the relatedĜ is singular.

We can overcome this difficulty as follows. By our hypothesis, a nonsingularG̃ always exists
for the perturbed problem. Consider the matrixĜ(t) = Ĝ + tG̃. Sincedet Ĝ(t) 6= 0 for
sufficiently larget anddet Ĝ(t) is a polynomial int, it has at mostn roots. So we can choose
a nonsingular̂G(t) with |t| > 0 arbitrary small. This is equivalent to chosing aw̃i for eachi,
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which tends toŵi. Moreover, in this sense, the determinedF̂ makesÂ− B̂F̂ diagonalizable.
By (4.2), (4.7) we obtain

||wi − ŵi|| = ||(V2Y1 − V̂2Y2)Y H1 α|| = ||V H(V2Y1 − V̂2Y2)Y H1 α||

=
√
||V H1 V̂2Y2Y H1 α||2 + ||(Im − Y H1 V H2 V̂2Y2)Y H1 α||2

≤ ||α||
√
||V H1 V̂2||2 + ||Im − Σ2||2 ≤ ||α||

√
τ2 + τ4 ≤ 5

4
τ ||α||.

Let Ĝ, Ẑ be constructed analogous toG, Z, thenF = ZG−1, F̂ = F + δF = ẐĜ−1.
Therefore

δF = ẐĜ−1 − ZG−1 = (Ẑ − Z)G−1 + Ẑ(Ĝ−1 −G−1)

= −[F̂ , I]
[

Ĝ−G
−(Ẑ − Z)

]
G−1

= −[F̂ , I]
[
ŵ1 − w1 . . . ŵn − wn

]
G−1.

By (4.7) andκ := ||G−1||||G|| ≥ ||G−1||, we have

||δF || ≤
√
nκ

√
1 + ||F̂ ||2 max

i
||wi − ŵi||

≤ 5
√
n

4
κ

√
1 + ||F̂ ||2 max

i
{
√

1 + ||B†(A− λiI)||2(ε+ |δλi|)
σn([A− λiI,B])

},

which implies (4.3).
For (4.4), rewriteA−BF̂ asÂ−B̂F̂ −(δA−δBF̂ ). Sinceλ(Â−B̂F̂ ) = P̂ , by applying

the Bauer-Fike Theorem, e.g. [11, pp. 342], for each eigenvalueµi of A−BF̂ there exists a

correspondinĝλi, so that|µi− λ̂i| ≤ κ̂||δA− δBF̂ || ≤ εκ̂
√

1 + ||F̂ ||2. Usingλ̂i = λi + δλi,
we obtain (4.4).

Note that under additional mild restrictions on the perturbed matrices and poles we obtain
a similar upper bound for||δF || with ||F̂ || replaced by||F ||. Such a bound for the single-input
case was given in [22]. We prefer the given bound from the computational point of view,
sinceF̂ is the quantity that is computed.

In the given upper bounds the norm ofF and the spectral condition numberκ are related.
COROLLARY 4.2. Under the hypotheses of Thereom 4.1 we have

||F || ≤
√
nκmax

i
||B†(A− λiI)||.(4.8)

Proof. Using (4.5) we obtain thatzi = B†(A − λiI)gi. Since ||gi|| = 1, ||Z|| ≤√
nmaxi ||B†(A− λiI)|| and thenF = ZG−1 yields (4.8).
Theorem 4.1 only gives upper bounds for the perturbations. This is the usual situation in

most perturbation results. To complete the perturbation theory it would be nice to show that
these bounds are tight and actually close to the exact perturbations. We will demonstrate the
tightness of the bounds via a numerical example below. The main factor that contributes to
the sensitivity of the feedback gainF and the poles of the the closed-loop systemA − BF̂
obtained with the perturbed feedbackF̂ , is S := κ

√
1 + ||F ||2. In the bound forF there is

an additional factord := 1/mini σn[A − λiI,B]. This latter factor is closely related to the
distance to uncontrollability

du(A,B) = min
λ∈C

σn[A− λI,B],(4.9)
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[10]. It is obvious ifdu(A,B) is small thend can be very large and the problem to computeF
is likely to be ill-conditioned. Ifdu(A,B) is large, then clearlyd is small and then this factor
plays a minor role in the perturbation bounds. The other dominating factorS is more difficult
to analyze. In the single-input case it was discussed in [22, 23] how this factor is influenced
by the choice of poles. It was observed thatS is essentially given by the condition number
of the Cauchy matrixC = [ 1

νi−λj ], where theνi are the eigenvalues ofA and theλi are the
desired poles. Unfortunately this condition number is usually very large, in particular if the
system dimensionn is large. In [23] it was also discussed how the polesλj can be chosen to
minimizeS. The situation in the multi-input case is much more complicated. Notice that (4.8)
implies thatS essentially behaves likeκ2. Furthermore we see from (2.16) and Theorem 3.2,
with a diagonal matrixJ , that

G = KX̃Γ

= [B,AB, . . . , As−1B]X̃ diag(I, I2,1, . . . Is,1)


Φ

ΦJ
...

ΦJs−1

 ,
whereK, X̃ are as in (2.16). If as a special case

A = diag(ν1, . . . , νn), J = diag(λ1, . . . , λn),

then there exists a permutation matrixP such that

[B,AB, . . . , As−1B]P = [diag(b11, . . . , bn1)VA, . . . ,diag(b1m, . . . , bnm)VA],

with the Vandermonde-like matrix

VA =

 1 ν1 . . . νs−1
1

...
...

...
1 νn . . . νs−1

n

 .
We also obtain analogously that there exists a premutation matrixP̃ , such that

PT


Φ

ΦJ
...

ΦJs−1

 = [diag(φ11, . . . , φ1n)VJ , . . . ,diag(φm1, . . . , φmn)VJ ]T

with a Vandermonde-like matrixVJ formed from theλj . It is well known that such Van-
dermonde matrices are usually very ill-conditioned (see [13, Chapter 21] and the references
therein), in particular ifs is large.

There may be some fortunate circumstances by which the ill conditioning of the Vander-
monde factors is cancelled out by the middle term or when forming the product, but in general
this cannot be expected.

From the relationshipnm ≤ s ≤ n − m + 1, which follows from the staircase from,
we see that for largen in order to have a smalls and thus a reasonable conditioning of the
Vandermonde matrices, we need that alsom is large.

We see from this rough analysis thatS depends critically on the choice of poles and we
can expect thatS is large ifs is large. Thus, we can conclude that ifs is large then the pole
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assignment problem will in general be ill-conditioned. It is not difficult, however, to contrive
examples with good conditioning, by taking̃A with well-conditioned eigenvector matrix (say
a normal matrix) and then, choosingB andF of small norm, formingA = Ã + BF , see
[2, 3]. But in general we can expect neither||F || norS to be small.

Another way to analyze the conditioning ofG is obtained from

AG−BZ = GJ, Z = FG.

If againA andJ are diagonal, and ifνi 6= λj , i, j = 1, . . . , n andG = [gij ]n×n, then
gij = eHi BZej/(νi − λj), whereei is theith column ofIm. SoG is a generalized Cauchy
matrix which usually has a large condition number.

Let us demonstrate the above analysis via an example.
EXAMPLE 1. LetA = diag(1, . . . , 20), P = {−1, . . . ,−20} let B be formed from the

firstm columns of a random20× 20 orthogonal matrix.
The following results were obtained on a pentium-s PC with machine precisioneps =

2.22×10−16, under Matlab Version 4.2. The MATLAB pole placement code of Miminis and
Paige [24] was used to compute the feedback gain. We ranm from 1 to 20 and in each case
we computed20 times with20 random updated matricesB. In Table 1 we list the geometric

means (over the 20 experiments) ofκ̂, F̂ , bound, err, where bound=eps||[A,B]||κ̂
√

1 + ||F̂ ||2,
and err=max1≤i≤20 |µi − λi|, with λi and the real parts ofµi arranged in increased order. In
the second column we list the average value fors taken over the 20 random tests for eachm.
(This value ofs is actually the least possible value or generic value.) Note that for all400
tests the values ofmini σn([A− λiI,B]) varied from2.0 to 2.24.

m s κ̂ F̂ Bound Err
1 20 3.5× 109 1.1× 1014 1.7× 109 7.3× 104

2 10 1.8× 1011 5.0× 109 3.9× 106 2.7× 102

3 7 2.1× 1010 2.4× 1010 2.2× 106 1.4× 102

4 5 7.4× 1011 5.8× 107 1.9× 105 2.4× 101

5 4 1.2× 1014 1.3× 105 7.3× 104 1.0× 101

6 4 2.1× 1014 2.6× 104 2.5× 104 5.8
7 3 1.7× 1014 4.2× 104 3.1× 104 2.0
8 3 1.7× 1014 1.1× 104 8.6× 103 7.8× 10−1

9 3 2.4× 1014 9.0× 103 9.8× 103 6.6× 10−1

10 2 2.1× 1014 2.6× 103 2.9× 103 3.8× 10−1

11 2 1.8× 1013 7.9× 102 6.5× 101 1.0× 10−4

12 2 9.2× 1012 5.0× 102 2.0× 101 3.6× 10−3

13 2 5.7× 1011 4.5× 102 1.1 1.5× 10−4

14 2 2.1× 1011 3.2× 102 3.0× 10−1 6.7× 10−5

15 2 3.4× 1010 2.8× 102 4.2× 10−2 1.3× 10−5

16 2 5.9× 108 2.6× 102 6.7× 10−4 3.0× 10−7

17 2 3.1× 107 2.2× 102 3.0× 10−5 1.6× 10−8

18 2 1.6× 105 2.0× 102 1.4× 10−7 1.0× 10−10

19 2 7.0× 102 1.9× 102 5.9× 10−10 9.9× 10−13

20 1 1.0 3.5× 101 1.5× 10−13 2.6× 10−14

Table 1
In this example, if we consider the poles of the closed loop matrices, it makes sense to

interpret the results of the numerical method only form ≥ 8, since only then the error is less
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than1 . Whenm becomes larger, then the computed poles become more accurate and the
bounds become tighter. Usually the bounds tend to overestimate the error by1− 4 orders of
magnitude, but they really reveal the relation of the conditioning of the closed loop matrices
and the scale of the input. Notice that the bounds are valid regardless of the methods that is
used. For each numerical method it may use some micro structures of the matrices. So the
accuray of the computed results (feedback matrices or the poles of the closed loop matrices)
may be improved.

5. Analysis of pole placement strategies.We see from the perturbation analysis that
serious numerical difficulties may arise in the pole assignment problem. First of all, ifs is
large, then we can expect that the problem is ill-conditioned, regardless which strategy is
used to resolve the freedom inF . But even ifs is small, then not every strategy to fix the
freedom inF will lead to a robust closed loop system. Clearly a minimization of||F || as
approached in [4, 16] or a local minimization as done in [36] will improve the upper bound
in (4.3). Corollary 4.2, however, indicates that the minimization ofκ as described in [15]
may be a better choice, since it automatically also minimizes an upper bound for||F ||. Note,
however, that the computational cost is an order of magnitude larger, than in the methods that
minimize||F ||.

Certainly an optimization ofS := κ
√

1 + ||F ||2 would be even more promising, since then
a smaller upper bound is optimized. Using the explicit characterization ofF , it is actually
possible to write down an explicit optimization problem forS in the form

min
Φ
S = min

Φ
{||WΓ(Φ)||||Γ(Φ)−1W−1||

√
1 + ||Z(Φ)Γ(Φ)−1W−1||},(5.1)

whereZ(Φ), Γ(Φ) are as in Theorem 3.2. Formn not too large, we can approach this mini-
mization problem with standard optimization software and actually in practice one probably
usually does not need the global minimum, but just one, whereS is small enough to guarantee
a small bound (4.3), which then can be actually computed and used as condition estimator.

6. Future research. Pole placement is often used as a substitute problem for the solu-
tion of another problem, like stabilization or damped stabilization, see, e.g., [12]. If this is
the case, then also the poles{λ1, . . . , λn} are free to vary in a given setΩ ⊂ C. For the
single-input case, where we have no freedom inF , this problem was discussed in [23].

But for the substitute problem,S might not be the right measure to optimize, since one
usually also wants that the poles are robustly bounded away from the boundary ofΩ, e.g.,
are robustly stable. Then also the distance to the complement ofΩ should be included in the
measure. This topic is currently under investigation.

The analysis that we have given can also be used to study pole assignment via output
feedback, i.e., the problem of determining a feedbackF ∈ Cm×p, such thatA− BFC has a
desired set of poles, whereC ∈ Cp×n describes an output equation of the form

y = Cx.(6.1)

It is evident from Theorem 3.2 that a solution to the output feedback problem exists if and
only if there exists a matrixΦ ∈ Cm×n so thatΓ as in (3.10) is nonsingular and

FC = ZG−1(6.2)

with Z,G as in Theorem 3.2. This condition is equivalent to

range(ZΓ−1)H ⊆ range(CW )H .(6.3)
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If (AH , CH) is also controllable, anagalous to Theorem 3.2, by considering the problem
AH − CH(BF )H = G−HΓHGH , there areZc := RcΨ− YcΓc andG−H = WcΓc, so that

BF = (ZcGH)H = W−Hc Γ−Hc ZHc .(6.4)

HereWc, Rc, Yc andΓc are similar as in the state feedback case, but for(AH , CH), Ψ ∈
Cp×n still has to be chosen. In this case the output feedback problem is solvable if and only
if there existΦ andΨ so that

WΓ = W−Hc Γ−Hc , or ΓΓHc = (WH
c W )−1.(6.5)

Note that in this case (6.2) and (6.4) are automatically satisfied from the structures ofW and
Wc. It is currently under investigation to obtain more explicit formulas for this problem.

Another important variant of the pole assignment problem is when not only poles but also
some eigenvectors of the closed loop system are given, see [20].

7. Conclusion. We have continued the analysis of the pole placement problem in [22]
for the multi-input case and we have derived explicit formulas for the feedback matrix and
the closed loop eigenvector matrix as well as new perturbation results.

We observe a similar behaviour as in the single-input case, and we come to a similar con-
clusion, that we can expect the pole placement problem to be ill-conditioned ifs the number
of blocks in the staircase form of the matrix is large. This is definitely the case whenn is
large andm is small.
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