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CIRCULANT PRECONDITIONERS FOR CONVOLUTION-LIKE INTEGRAL
EQUATIONS WITH HIGHER-ORDER QUADRATURE RULES�

MICHAEL K. NGy

Abstract. In this paper, we consider solving matrix systems arising from the discretization of convolution-like
integral equations by preconditioned conjugate gradient (PCG) methods. Circulant integral operators as precondi-
tioners have been proposed and studied. However, the discretization of these circulant preconditioned equations by
employing higher-order quadratures leads to matrix systems that cannot be solved efficiently by using fast Fourier
transforms (FFTs). The aim of this paper is to propose “inverted” circulant preconditioners for convolution-like
integral equations. The discretization of these preconditioned integral equations by higher-order quadratures leads
to matrix systems that involve only Toeplitz, circulant and diagonal matrix-vector multiplications, and hence can
be computed efficiently by FFTs in each iteration. Numerical examples are given to illustrate the fast convergence
of the method and the improvement of the accuracy of the computed solutions with using higher-order quadratures.
We also apply our method to solve the convolution-like equation arising from the linear least squares estimation in
signal processing.

Key words. Integral equations, displacement kernel, quadratures, circulant matrices, Toeplitz matrices, fast
Fourier transforms, signal processing.
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1. Introduction. In this paper, we study the numerical solution of integral equation of
the form

y(t) +

Z
�

0
a(t; s)y(s)ds = g(t); 0 � t � � � 1;(1.1)

where g(�) and a(�; �) are given functions in L2[0;1) and L1(IR) \ L2(IR) respectively. We
always assume that a(t; s) is conjugate symmetric, i.e.,

a(t; s) = a(s; t);

and a(t; s) satisfies �
@

@t
+

@

@s

�
a(t; s) =

�X
j=1

jbj(t)bj(s);(1.2)

for some numbers �, j and some functions bj(�). The following are examples of a(t; s) with
this property .

(i) If a(�; �) is a displacement (or convolution or Toeplitz) kernel, we have�
@

@t
+

@

@s

�
a(t� s) = 0;

and a(t; s) satisfies (1.2) with � = 0.
(ii) If r(t; s) is the Fredholm resolvent associated with a displacement kernel a(t� s),

it has been shown in [10] that�
@

@t
+

@

@s

�
r(t; s) = u(t)u(s) � v(t)v(s);
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for some functions u(�) and v(�). Therefore, r(t; s) satisfies (1.2) with � = 2,
1 = 1, 2 = �1, b1(t) = u(t) and b2(t) = v(t).

(iii) The kernel function a(t; s) is given by the covariance function of the output of a
constant state-space model in the linear least squares estimation [8]:

ẇ(t) = Fw(t) +G�(t); w(0) = w0;

z(t) = Hw(t);

where E[�(t)�(s)�] = �(t � s) and E[w0w
�
0 ] = Π0. In this case, the covariance

function a(t; s) can be written as

a(t; s) = HeF (t�s)Π(s)H�; 8t � s;

where Π(s), the covariance of w(t) is such that

Π̇(t) = FΠ(t) + Π(t)F � + GG�; Π(0) = Π0:

Then �
@

@t
+

@

@s

�
a(t; s) = HeFtΠ̇(0)eF

�

sH�;

and the covariance function a(t; s) satisfies (1.2) with

� = rank Π̇(0):

We will consider this kind of kernel as an numerical example in x4.

Henceforth we will say that a kernel a(t; s)which satisfies (1.2) with small� is a displacement-
like kernel. For discussions of displacement-like kernels and their applications; see [7, 8].

In the following, we let I be the identity operator, and we let

(A�y)(t) =

Z
�

0
a(t; s)y(s)ds; 0 � t � �:(1.3)

We always assume thatA� is a positive definite operator. The operator equation (I+A� )y = g

(cf. (1.1)) can be solved numerically by iterative methods. We remark that conjugate gradient
methods, especially when combined with preconditioning, are known to be powerful methods
for the solution of linear systems [6]. The convergence rate of the CG method can be speeded
up by applying a preconditioner. Thus instead of solving (1.1), we solve the preconditioned
operator equation

(I + C� )�1(I +A� )y(t) = (I + C� )�1g(t); 0 � t � �:(1.4)

A good preconditioner C� is an operator that is close toA� in some norm and yet the operator
equation

(I + C� )x(t) = f(t); 0 � t � �;(1.5)

is easier to solve than (1.1) for an given function f(t). A class of candidates is the class of
operators of the form

C�x(t) =
Z

�

0
c� (t� s)x(s)ds; 0 � t � �;
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where the function c� is periodic in [0; � ]. They are called circulant integral operators in [4].
The eigenfunctions and eigenvalues of the operator C� are given by

um(t) =
1p
�
e2�imt=� ; m 2 ZZ;

and

�m(C� ) =
p
� (c� ; um)� =

p
�

Z
�

0
h� (t)ūm(t)dt; m 2 ZZ:(1.6)

Therefore, (1.5) can be solved efficiently by using the Fast Fourier Transforms (FFTs).
The paper is organized as follows. In x2, we will use circulant integral operators C�

to precondition convolution-like integral operators A� . We will show that if the functions
bj in (1.2) are in L1(IR) \ L2(IR), the preconditioned operator equations will have clustered
spectra for sufficiently large � . Hence the preconditioned conjugate gradient method will
converge superlinearly for sufficiently large � . For the discretization, we will use higher-
order quadrature rules such as the Simpson’s rule to discretize the operator equations in order
to obtain high order of accuracy of the solution. The corresponding discretization matrices
of the circulant integral operators are I + CD where C is a circulant matrix and D is a
diagonal matrix. We note that they are, in general, not circulant, and therefore their inversion
(I + CD)�1 cannot be computed by using FFTs. Hence the cost per iteration of the PCG
method will exceed O(n logn) operations. In x3, we will propose and construct “inverted”
circulant matrices for the discretization of (1.4) such that only O(n logn) operations are
required in each iteration of the PCG method even when higher-order quadrature rule is
employed. Finally, numerical examples are given in x4 to illustrate the effectiveness of the
“inverted” circulant preconditioners and the improvement of accuracy by employing higher-
order quadrature rules. Some convolution-like equations arising from the linear least squares
estimation in signal processing are also tested.

2. Convergence Analysis of Circulant Preconditioned Convolution-like Operators.
For the convolution-like integral equations considered in this paper, the operator equations
will be solved by preconditioned conjugate gradient method. In [5], Gohberg and Koltracht
showed that a(t; s) satisfies (1.2) if and only if it can be represented in the form

a(t; s) = b0(t � s) +
�X

j=1

j

Z minft;sg

0
bj(t � u)bj(s � u); 0 � t; s � �;

for some functions b0(�). Thus we can express the operator A� as follows:

A� = B(0)� +
�X

j=1

B(j)� B(j)�� ;(2.1)

where B(0)� and B(j)� are both convolution integral operators of the forms

(B(0)� )x(t) =

Z �

0
b0(t � s)x(s)ds; 0 � t � �;(2.2)

(B(j)� )x(t) =

Z
�

0
b̃j(t� s)x(s)ds; 0 � t � �;(2.3)
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with

b̃j(t) =

�
bj(t); t � 0;
0; t < 0:

The representation in (2.1) allows one to compute A�x by a FFT. Hence assuming that only
few iterations have to be carried out, solving (1.1) by iterative methods such as conjugate
gradient (CG) methods will be less expensive than direct methods.

In [4], circulant integral operators are used to preconditionconvolution integral operators.
A number of different circulant integral operators are proposed there. In this paper, we only
focus on the “optimal” circulant integral operators considered in [4]. Given the integral
operator K� with kernel function k(t; s), the corresponding “optimal” circulant integral
operator c(K� ) is defined to be the circulant integral operator that minimizes the Hilbert-
Schmidt norm

jjjK� � C� jjj2 �
Z

�

0

Z
�

0
(k(t; s)� c� (t � s))(k(t; s) � c� (t� s))dsdt(2.4)

over all circulant integral operators C� . The “optimal” circulant integral operator c(K� ) is
given by

(c(K� )y)(t) =

Z �

0
c� (t� s)x(s)ds; 0 � t � �;(2.5)

where c� (t) is

c� (t) =
1
�

Z �

��t

k(v + t� �; v)dv +
1
�

Z ��t

0
k(v + t; v)dv; �� � t � � ;(2.6)

see [2, Lemma 1]. In view of (2.1), (2.2) and (2.3), we may construct the circulant approxi-
mation P� toA� by

P� = c(B(0)� ) +
�X

j=0

jc(B(j)� )c(B(j)�� );(2.7)

where c(B(j)� ) are the corresponding “optimal” circulant integral operators of B(j)� .
We recall the following two theorems which are useful in the analysis of the spectra of

the preconditioned operators (I + P� )�1(I +A� ). Their proofs can be found in [4] and [2]
respectively.

THEOREM 2.1. Let K be a convolution integral operator with kernel function k(�) 2
L1(IR) \ L2(IR). Let c(K� ) be the optimal circulant integral operator of K� . Then for any
given � > 0, there exists a positive integer N and a �� > 0 such that for all � > ��, there is
a decomposition

K� � c(K� ) = R� + E�
with operators R� and E� satisfying

rank R� � N and jjE� jj2 � �:

THEOREM 2.2. Let K be a self-adjoint positive integral operator with kernel function
k(�; �) 2 L1(IR) \ L2(IR). Let c(K� ) be the optimal circulant integral operator of K� . Then
c(K� ) is a self-adjoint positive integral operator.
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We prove the following results.
THEOREM 2.3. Let A be a self-adjoint convolution-like integral operator with kernel

function a(�; �) satisfying (1.2). LetP� be the preconditioner forA�. If bj(t) 2 L1(IR)\L2(IR)
for 0 � j � �, then for any given � > 0, there exist a positive integer N and a �� > 0 such
that for all � > ��, there is a decomposition

A� � P� = R� + E�
with self-adjoint operators R� and E� satisfying

rank R� � N and jjE� jj2 � �:

Proof. Using 2.1, we have

B(j)�
B(j)��

� c(B(j)�
)c(B(j)��

)

= B(j)
�
R(j)�

�
+R(j)

�
B(j)�
�

+ B(j)
�
E (j)�
�

+ E (j)
�
B(j)�
�

:

It is straightforward to see that the operators (B(j)� R(j)�
� + R(j)

� B(j)�� ) and (B(j)� E (j)�� +

E (j)� B(j)�� ) are both self-adjoint with

rank (B(j)
� R(j)�

� +R(j)
� B(j)�

� ) � N

and

kB(j)
� E (j)�

� + E (j)
� B(j)�

� k2 � �

respectively.
THEOREM 2.4. Let A be a self-adjoint, positive convolution-like integral operator with

kernel function a(�; �) satisfying (1.2). Let P� be the preconditioner for A� . If bj(t) 2
L1(IR) \ L2(IR) for 0 � j � �, then there exists a �� > 0 such that for all � > ��, the
integral operators P� are positive.

Proof. Since A� is positive definite, c(B(0)� ) +
P�

j=1 jc(B(j)� B(j)�� ) is also positive
definite. Therefore, the lemma can be proved if we can show that for each 1 � j � �,

lim
�!1

kc(B(j)� B(j)�� )� c(B(j)� )c(B(j)�� )k2 = 0:

Since bj 2 L1(IR), for each given � > 0, there is a � (j)� > 0 such that
R1
�
(j)
�
jbj(s)jds < �. Let

�� � max
1�j��

(
�
(j)
� kbjk1

�
;

2� (j)� kbjk2
2

�

)
:

For simplicity, we drop the subscripts and superscripts j on functions and operators respec-
tively when their meaning is apparent. For each � > ��, we decompose the difference
B� � c(B� ) as

B� � c(B� ) = R� + E� ;

where R� and E� are convolution operators with kernel functions

r� (t) =

� � t

�
b(t+ � ); �� � t < �� + ��;

0; �� + �� � t � �
(2.8)
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and

e� (t) =

8<
:

0; �� � t < �� + ��;

� t

�
b(t+ � ); �� + �� � t � 0;

t

�
b(t); 0 � t � �

(2.9)

respectively. Using the property of circulant integral operator [2, Lemma 3], we have

c(B�B�� )� c(B� )c(B�� ) = c(E�E�� +R�E�� +R��E� ) + c(R�R�� ):(2.10)

Next we estimate the 2-norm of the two terms on the right hand side of (2.10). For the first
term, we need estimates of kE�k2 and kR�k2. For kE�k2, we obtain

kE�k2 �
Z 0

��+��

j s
�
b(s + � )jds+

Z
�

0
j s
�
b(s)jds

�
Z 0

��+��

jb(s+ � )jds+
Z

��

0

��

�
jb(s)jds+

Z
�

��

jb(s)jds < 3�:

Since kc(B� )k2 � kB�k2 (see [4]), we have

kR�k2 = kB� + c(B� ) + E�k2 � 2kB�k2 + kE�k2 � 2kbk1 + 3�:

Thus, we get

kc(E�E�� +R�E�� +R�
�E� )k2 � kE�E�� +R�E�� +R�

�E�k2

� 27�2 + 12kbk1�:

For the second term, we note by (2.6) that the kernel function of c(R�R� )� is given by

r̂� (t) =
1
�

Z �

��t

Z �

0
r� (v + t� � �w)r� (v �w)dwdv +

1
�

Z ��t

0

Z �

0
r� (v + t �w)r� (v �w)dwdv:

Using (2.8) and the fact that kr�k2
2 � kbk2

2, we can show that� jr̂� (t)j � ��

�
kbk2

2; 0 � t � ��;

jr̂� (t)j = 0; �� < t � �:

Therefore,

kc(R�R�� )k2 � 2
Z

�

0
jr̂� (t)jdt � 2��

�
kbk2

2 � �; for � > ��:

The result follows.
Combining Theorems 2.3 and 2.4, we have our main result.
THEOREM 2.5. Let A be a self-adjoint, positive convolution-like integral operator with

kernel function a(�; �) satisfying (1.2). Let P� be the preconditioner for A� . If bj(t) 2
L1(IR)\L2(IR) for 0 � j � �, then for any given � > 0, there exist a positive integer N and
a �� > 0 such that for all � > ��, at most N eigenvalues of the operator (I + P� )�1=2(I +
A� )(I + P� )�1=2 are at distance greater than � from 1.

It follows easily from Theorem 2.5 that the conjugate gradient method, when applied to
solving preconditioned operator equation (I + C� )�1(I + A� )y = (I + C� )�1g, converges
superlinearly, see [3] and [4].
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3. Construction of “Inverted” Circulant Preconditioners. Let us see when higher-
order quadratures are applied to discretize the preconditioned equation (1.4). Suppose the
interval [0; � ] be divided into n subintervals of equal length h, i.e.

� = hn:

Given any convolution integral operator K� defined on [0; � ] with the kernel function k(t),
its discretization matrix will be of the formKnDn whereKn is a Toeplitz matrix whose first
column given by

[Kn]j0 = hk(jh); j = 0; 1; � � � ; n� 1(3.1)

and Dn is a diagonal matrix that depends only on the quadrature formula used. Some
quadrature formulas can be found in [1, pp.16–17]. Thus after discretization on the operators
I +A� and I + P� , the corresponding matrices are

In +AnDn = In +B(0)
n Dn +

�X
j=1

jB
(j)
n DnB

(j)�
n Dn

and

In + PnDn = In +C(0)
n
Dn +

�X
j=1

jC
(j)
n
DnC

(j)�
n

Dn

respectively. Since the evaluation of the matrix-vector products (In + PnDn)�1z is costly
in each iteration of the preconditioned conjugate method, I+ PnDn is not a good choice as
a matrix preconditioner.

We consider using the inverse I � Q� of I + P� to precondition (1.1). Now the
preconditioned equation becomes

(I �Q� )(I + A� )y(t) = (I � Q� )g(t):(3.2)

For each iteration, we need to compute (I �Q� )x(t) for an given functionx(t). We note that

(I �Q� )x(t) = x(t) �
Z �

0
q� (t� s)x(s)ds

where

q� (t) =
�m(c(B(0)� )) +

P�

j=1 j j�m(c(B(j)� ))j2

1 + �m(c(B(0)� )) +
P�

j=1 j j�m(c(B(j)� ))j2
e2�imt=� ; 0 � t � �:(3.3)

We remark that q� is periodic in [0; � ] and Q� is also a circulant integral operator. We know
from (3.1) that we only need the values of q� (jh) for j = 0; 1; � � � ; n in order to construct
matrix preconditioner. To approximate these values, we partition the interval [��=2; �=2]
into n equal subintervals of step size h and approximate �m(c(B(j)� )) by using quadrature
formula into (1.6). We note that these approximate values of �m(c(B(j)� )) can be computed
by using FFTs in O(n logn) operations. Then the approximate values of q� (�) in (3.3) can
be calculated from m = �n=2 to m = n=2. Hence (I �Q)x(t) can be computed efficiently
using FFTs.

The main feature of the preconditioner is that it is already inverted. Hence only circulant
matrix-vector products (plus some inner products) are required in each step of PCG algorithm.
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In contrast, if circulant integral operators (see [4]) are used with higher-order quadrature rules,
then one has to invert matrix of the form I + CD which, in general, has no fast inversion
formula.

We see that the discretization of preconditioned equations are now given by

(In �QnDn)(In +B(0)
n
Dn +

�X
j=1

jB
(j)
n
DnB

(j)�
n

Dn)y = (In �QnDn)g:(3.4)

Using the transformation,

ỹ = D1=2
n
y and g̃ = D1=2

n
g;

(3.4) can be symmetrized as

h
In �D1=2

n
QnD

1=2
n

i24In +D1=2
n
B(0)

n
D1=2

n
+

�X
j=1

jD
1=2
n
B(j)

n
DnB

(j)�
n
D1=2

n

3
5 ỹ

=
h
I�D1=2

n QnD
1=2
n

i
g̃

The discretized system can then solved by conjugate gradient method. In each iteration, we
only need to compute Toeplitz, circulant and diagonal matrix-vector multiplications. All these
matrix-vector products can be computed by using FFTs, and hence the cost per iteration is
O(n logn) operations.

4. Numerical Examples. In this section, we test the effectiveness of our proposed
preconditioners using the following function a(t; s) that satisfies (1.2) with

b0(t) =
50

(1 + t2)
; b1(t) = e�2t; b2(t) = e�0:5t;

where 1 and 2 are both equal 1. We choose our right hand side function g(t) such that the
corresponding solution for the equation (1.1) is

x(t) =

�
(16� t)2; 0 � t � 16;
0; 16 < t � �:

The stopping criterion of the PCG algorithm is : the residual of the PCG method less than
10�6. The initial guess is chosen to be the zero vector.

Tables 1-3 give the numbers of iterations required for convergence. The preconditioners
are discretized according to the discussion in x2.2. The symbols I and Q indicate that (1.1)
is solved without any preconditioner and with the preconditioner I �Q� , respectively . The
discretization rule used is listed in the caption. In Table 3, the symbol P indicates that the
preconditioner I + P� is discretized by using the rectangular rule. In this case, the inverse
of the preconditioner can be computed easily using FFTs. From the tables, we see that when
no preconditioner is used or when the preconditioner I + P� is discretized by rectangular
rule, the method will converge very slowly especially for large � . However, our “inverted”
circulant preconditioner works well.

To illustrate the usefulness of higher-order quadrature rules, we give in Table 4, the error
of the numerical solutions. The error is computed as8<

:h �
nX

j=0

jy(jh) � x(jh)j2
9=
;

1=2

�
�Z

�

0
jy(t) � x(t)j2dt

�1=2

;
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�=16 �=32 �=64 �=128
n Q I Q I Q I Q I

512 8 44 9 65 8 87 8 98
1024 8 45 9 66 8 86 8 97
2048 10 50 8 68 8 85 8 97
4096 8 53 8 69 8 86 8 99
8192 8 55 8 71 8 90 8 101

TABLE 1
The numbers of iterations for the rectangular rule.

�=16 �=32 �=64 �=128
n Q I Q I Q I Q I

512 8 44 8 67 9 86 8 97
1024 8 44 8 66 8 86 8 97
2048 8 46 8 69 8 85 8 97
4096 8 47 8 70 8 87 8 98
8192 8 49 8 71 8 86 8 98

TABLE 2
The numbers of iterations for the trapezoidal rule.

where fy(jh)gn
j=0 is the computed solution and x(t) is the true solution. We see from Table

4 that the error decreases like O(h), O(h2) and O(h4) for the rectangular, trapezoidal and
Simpson’s rules respectively. The quadrature formulas we used in the test can be found in [1,
pp.16–17].

4.1. An Example in Signal Processing. Next we solve the convolution-like equations
arising from the least squares estimation in signal processing. Suppose that we have observa-
tions u(t) of a signal process z(t) with additive white noise v(t)

u(t) = z(t) + v(t);

where

E[z(t)z(s)�] = a(t; s); E[z(t)v(s)� ] = 0 and E[v(t)v(s)� ] = �(t� s):

The covariance function of the process u(�) is given by

E[u(t)u(s)�] = �(t� s) + a(t; s):

In signal processing problems, it is often necessary to estimate the linear least squares filter
for the given observed process u(t). One way to do this is to choose h� (s) so as to minimize

E[(z(� )� ẑ(� ))(z(� ) � ẑ(� ))�];

where

ẑ(� ) =

Z �

0
h� (s)v(s)ds:

In [7], Kailath has shown that h� (t) is the solution of the integral equation

h� (t) +

Z
�

0
a(t; s)h� (s)ds = a(�; t); 0 � t � �:(4.1)
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�=16 �=32 �=64 �=128
n Q P I Q P I Q P I Q P I

512 8 38 44 8 47 65 9 53 85 9 56 98
1024 8 38 46 8 47 66 8 53 86 9 56 97
2048 9 38 50 8 48 69 8 52 86 8 57 98
4096 8 39 51 8 48 70 8 53 87 8 57 99
8192 8 39 52 8 47 72 8 54 86 8 57 98

TABLE 3
The numbers of iterations for the Simpson’s rule.

� = 64 � = 128
n Rect. Trap. Simp. Rect. Trap. Simp.

512 31.8452 3.2306 0.046 60.2334 10.0034 1.4530
1024 17.4371 0.6993 0.0017 29.8999 2.5606 0.0411
2048 8.2301 0.1560 1.0123e-4 15.4156 0.6993 0.0018
4096 4.0057 0.0398 5.6782e-6 8.1231 0.1990 1.1265e-4
8192 1.9676 0.0098 7.8489e-7 4.1237 0.0288 5.7639e-6

TABLE 4
Error in the computed solution.

In the following, we compute the numerical solution of integral equation (4.1) and test
the covariance function a(t; s) of the process z(t) generated by the output of a constant
state-space model as discussed in x1. We remark that the displacement-like kernel a(t; s)
may be matrix-valued. The circulant integral operators can be constructed by matrix kernel
functions with each element being periodic functions considered in (2.7). For discussion of
preconditioned conjugate gradient methods for solving convolution integral equations with
matrix-valued kernel functions, see [9].

In the numerical test, we consider a state-space model and use the matrices F , G, H and
Π0 given by

F =

� �1 0
�2 �1

�
; G =

� p
3p
3

�
; H =

�
4

0:01

�
; Π0 =

�
1 0
0 1

�
;

to test the performance of our proposed preconditioner. It is straightforward to show that

eFt =

�
e�t 0

�2te�t e�t

�
; Π̇(0) =

�
1 1
1 1

�
=

�
1
1

� �
1 1

�
;

and that therefore the covariance function a(t; s) satisfies (1.2) with � = 1, 1 = 1 and
b1(t) = 4:01e�t�0:02te�t. Table 5 shows the number of iterations required for convergence.
We see that the number of iteration required for convergence without a preconditioner or with
the preconditioner I + P� is greater than that with the preconditioner I �Q� .

To conclude the paper, we remark that the accuracy of the computed solution depends
only on the quadrature rule used to discretize I + A� . However, the convergence rate of
the preconditioned systems and the costs per iteration of the PCG method depend on how
we discretize the preconditioning operators. From the numerical results, we see that it is
advantageous to use a higher-order quadrature rule to discretize the operator equation because
of the increased accuracy. But to speed up the convergence rate of the method and to minimize
the costs per iteration, one may need to use our proposed preconditioner.
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�=16 �=32 �=64 �=128
n Q P I Q P I Q P I Q P I

512 7 19 27 7 19 32 9 21 38 11 25 42
1024 6 19 28 7 19 34 8 22 39 11 24 45
2048 6 18 28 6 18 35 8 23 41 10 27 46
4096 6 19 29 6 19 34 8 23 40 10 27 47
8192 6 20 28 6 19 35 7 24 42 9 26 46

TABLE 5
The numbers of iterations for the example using the Simpson’s rule.
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