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BDDC AND FETI-DP ALGORITHMS WITH A CHANGE OF BASIS
FORMULATION ON ADAPTIVE PRIMAL CONSTRAINTS∗

HYEA HYUN KIM†, ERIC CHUNG‡, AND JUNXIAN WANG§

Abstract. BDDC (Balancing Domain Decomposition by Constraints) and FETI-DP (Dual-Primal Finite Element
Tearing and Interconnecting) algorithms with adaptively enriched primal constraints are considered. The coarse
component of the two algorithms is built on the set of primal unknowns consisting of those at subdomain vertices and
those from the adaptive primal constraints after a change of basis. For the FETI-DP algorithm, a more general form of
a preconditioner is proposed to extend the algorithm to the set of primal unknowns including those from the adaptive
primal constraints. In addition, it can be shown that the two algorithms share the same spectra except those equal to
one or zero when the same set of adaptive primal constraints are employed. Numerical results are included for both
two and three dimensional model problems.
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1. Introduction. A finite element discretization of the following model elliptic problem
is considered,

(1.1)
∫

Ω

ρ(x)∇u(x) · ∇v(x) dx =

∫
Ω

f(x)v(x) dx, ∀v(x) ∈ H1
0 (Ω),

where Ω is a domain in R2 or R3 andH1
0 (Ω) is the space of square integrable functions up to the

first weak derivatives with trace equal to zero. The coefficient ρ(x) can be highly heterogeneous
across the finite element boundaries. The discrete problem of the above model problem can
be efficiently solved iteratively by utilizing domain decomposition preconditioners. In this
work, BDDC (Balancing Domain Decomposition by Constraints) and FETI-DP (Dual-Primal
Finite Element Tearing and Interconnecting) algorithms with adaptively enriched primal
constraints are analyzed under a change of basis formulation. The adaptive primal constraints
are introduced to enhance the robustness of the BDDC and FETI-DP preconditioners to the
heterogeneous coefficients in the model elliptic problems. We refer to [4, 19, 7, 2, 18] for a
general introduction to standard BDDC and FETI-DP algorithms and their connections. For
the variants of the methods enriched with adaptive primal constraints we refer to [20, 21, 22, 5,
23, 15, 16, 14, 3, 11, 13]. We note that for all such algorithms certain generalized eigenvalue
problems are solved to select the set of adaptive primal constraints under a given tolerance
value. Estimates for the condition number by the given tolerance value were provided in [14]
for the FETI-DP algorithm and in [3, 23] for the BDDC algorithm, both in three dimensions.
In [13] both algorithms are considered and generalized eigenvalue problems are proposed on
face and edge nodal equivalence classes in three dimensions. We refer to [8, 9, 24, 6, 25] for
adaptive algorithms in a different framework of domain decomposition methods.
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In the authors’ previous studies [12, 13] and other related works [14], the adaptive primal
constraints in the FETI-DP algorithm are enforced by using a projection. For the proposed
algorithm it was shown that the condition numbers are controlled by a user-defined tolerance
value, which is used to select the adaptive primal constraints from generalized eigenvalue
problems on each equivalence classes, i.e., on edges and faces. For the BDDC algorithm
in [12, 13] the adaptive primal constraints can be transformed to explicit unknowns and
added to the set of primal unknowns. The standard form of the BDDC algorithm can then
be generalized to such a set of primal unknowns with the estimate of condition numbers
controlled by the user defined tolerance value. On the other hand, the FETI-DP algorithm
with a change of basis formulation to the adaptive primal constraints has a limitation in the
analysis of condition numbers. For the proposed preconditioner, one can not obtain the identity
PD = I −ED which is used to show the analysis of condition numbers in the standard FETI-
DP and BDDC methods; see (4.1) for definitions of ED and PD, and Lemma 5.2 for their
relation. In [13], it was observed that the FETI-DP algorithm presents numerical instability
and needs considerable cost for projection when the number of adaptive constraints becomes
significant.

In this work, we propose a more general form of a FETI-DP preconditioner which makes
it possible to extend the FETI-DP algorithm to the change of basis formulation for the adaptive
primal constraints. The change of basis formulation can give a more stable and efficient FETI-
DP algorithm. For the proposed preconditioner, we can obtain the identity ED +PD = I , after
the change of basis, for the FETI-DP algorithms as well, and thus, show that the condition
numbers of the adaptive BDDC and FETI-DP algorithms with the change of basis formulation
are identical. Different from the standard FETI-DP preconditioners, the blocks of subdomain
matrices and scaling matrices corresponding to the adaptive primal unknowns will appear
in the proposed preconditioner. We note that part of this work was presented at the 24th
International Conference on Domain Decomposition Methods and at the same conference
an adaptive FETI-DP algorithm with a change of basis formulation was presented by Axel
Klawonn, where different generalized eigenvalue problems are introduced and different tools
are used in the analysis of condition numbers.

This paper is organized as follows. In Sections 2 and 3, finite element spaces and adaptive
BDDC and FETI-DP algorithms are introduced, where a more general form of the FETI-DP
preconditioner is proposed. In Section 4, generalized eigenvalue problems are formed on
faces and edges to select the effective adaptive primal constraints which make the resulting
algorithms robust to the heterogeneous coefficients. In Section 5, the operators ED and PD

are shown to satisfy the property ED + PD = I , and thus the two algorithms share the same
set of eigenvalues except zeros and ones. In Section 6 numerical results are included for both
two and three dimensional model problems to show that the two algorithms give the same
nonzero extreme eigenvalues.

2. Model problem and finite element spaces. We recall the model problem in (1.1).
The domain Ω can be in two or three dimensions. We introduce a finite element space X̂ for
the given domain Ω. For a presentation of BDDC and FETI-DP algorithms, we introduce a
non-overlapping subdomain partition {Ωi}, where we assume that the subdomain boundaries
do not cut the triangles in the finite element mesh. We use the notation Xi to denote the
restriction of X̂ to Ωi. Each subdomain Ωi is then equipped with the finite element space Xi.

We further introduce Wi as the restriction of Xi to the subdomain interface unknowns,
W , and X as the product of local finite element spaces Wi and Xi, respectively. We note that
functions in W or X are decoupled across the subdomain interfaces. We then select some
primal unknowns among the decoupled unknowns on the subdomain interfaces and enforce
that finite element functions are continuous on them. We denote the corresponding spaces by
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W̃ and X̃ , respectively. We also introduce Ŵ as the subspace of W , where the unknowns are
fully coupled on the subdomain interface.

The preconditioners in BDDC and FETI-DP algorithms will be developed based on the
partially coupled space W̃ and appropriate scaling matrices. In our adaptive methods, we will
select primal unknowns from each nodal equivalence classes of subdomain interfaces. In more
detail, edges in 2D and faces in 3D are nodal equivalence classes shared by two subdomains,
edges in 3D are nodal equivalence classes shared by more than two subdomains, and vertices
are end points of edges in both 2D and 3D. We refer to [17] for these definitions.

In our approach, we first include the unknowns at subdomain vertices in the set of primal
unknowns. Adaptive primal constraints will then be selected from eigenvectors of certain
generalized eigenvalue problems on faces and edges using a given tolerance value. The
corresponding adaptive primal unknowns are then obtained by applying a change of basis on
the adaptively selected primal constraints. These explicit unknowns can then be assembled
strongly just as primal unknowns at subdomain vertices in the standard BDDC and FETI-
DP algorithms. We note that in our previous study a change of basis formulation is only
considered and analyzed for the BDDC algorithm. In this work, we will extend the change
of basis formulation to the FETI-DP algorithm by introducing a more general form of the
FETI-DP preconditioner.

3. Adaptive BDDC and FETI-DP algorithms. We introduce matrices Ki and Si for
each subdomain Ωi. The matrices Ki are obtained from a Galerkin approximation of

ai(u, v) =

∫
Ωi

ρ(x)∇u · ∇v dx

on finite element spaces Xi. Si are the Schur complements of Ki, obtained from Ki by elimi-
nating unknowns interior to Ωi. Let R̃i : W̃ →Wi be the restriction operator corresponding
to ∂Ωi, and let S̃ be a partially coupled matrix defined by

S̃ =

N∑
i=1

R̃T
i SiR̃i.

Let R̃ be the extension from Ŵ to W̃ . The discrete problem of (1.1) from the finite element
space X̂ can be reduced to the following interface problem,

R̃T S̃R̃uΓ = R̃T g̃,

where uΓ, in Ŵ , denotes the restriction of u to the subdomain interface, and g̃, in W̃ , is the
vector obtained from the right-hand side f(x).

In the BDDC algorithm the above matrix equation is solved iteratively by using the
following preconditioner,

M−1
BDDC = R̃T D̃S̃−1D̃T R̃,

where D̃ is a scaling matrix of the form

D̃ =

N∑
i=1

R̃T
i DiR̃i.

Here the matrices Di are defined for unknowns in Wi and they are introduced to resolve
heterogeneity in ρ(x) across the subdomain interface. In more details, Di consists of blocks
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D
(i)
F , D(i)

E , D(i)
V , where F denotes corresponding blocks to unknowns in faces, E to unknowns

in edges, and V to unknowns at vertices, respectively. In addition, those blocks satisfy the
partition of unity for a given F , E, and V , respectively.

The FETI-DP algorithm [7, 18, 2] is a dual form of the BDDC algorithm. After the change
of basis for the unknowns corresponding to the adaptively selected constraints, we can obtain
the resulting FETI-DP algebraic system

(3.1) BS̃−1BTλ = d,

where S̃ is the partially coupled matrix at subdomain vertices and adaptive primal unknowns,
and B is the matrix with entries 0, −1, and 1, which is used to enforce continuity for the
remaining decoupled interface unknowns. We introduce the notationM for the set of Lagrange
multipliers λ. The dimension ofM is identical to the number of continuity constraints enforced
on the remaining decoupled interface unknowns. The algebraic system (3.1) is then solved by
an iterative method with the following preconditioner

M−1
FETI =

N∑
i=1

B
(i)
D,∆Si(B

(i)
D,∆)T ,

where (B
(i)
D,∆)T : M →Wi is defined by

(3.2) (B
(i)
D,∆)Tλ|F = sign(i, λij)D

(j)
F,∆λij on each F ∈ F (i),

(3.3) (B
(i)
D,∆)Tλ|E =

∑
l∈n(E,i)

sign(i, λil)D
(l)
E,∆λil on each E ∈ E(i),

and

(3.4) (B
(i)
D,∆)Tλ|V = 0 on each V ∈ V (i).

Here F (i), E(i), and V (i) denote the set of faces, edges, and vertices of subdomain Ωi,
respectively, n(E, i) denotes the set of neighboring subdomain indices sharing the edge E
with Ωi, and λij denotes the part of Lagrange multipliers λ used to enforce continuity on the
decoupled unknowns across Ωi and Ωj . In addition, sign(i, λil) are 1 or −1 depending on
the sign of B(i)

∆ in B for the corresponding location to λil. The matrices D(j)
F,∆ and D(l)

E,∆ are

obtained from blocks of D(j)
F and D(l)

E as follows:

D
(j)
F,∆ =

[
D

(j)
F,∆∆

D
(j)
F,Π∆

]
, D

(l)
E,∆ =

[
D

(l)
E,∆∆

D
(l)
E,Π∆

]
,

where the subscripts ∆ and Π correspond to blocks in D(j)
F and D(l)

E related to the decoupled
unknowns and the adaptive primal unknowns, respectively, i.e.,

D
(j)
F =

[
D

(j)
F,∆∆ D

(j)
F,∆Π

D
(j)
F,Π∆ D

(j)
F,ΠΠ

]
, D

(l)
E =

[
D

(l)
E,∆∆ D

(l)
E,∆Π

D
(l)
E,Π∆ D

(l)
E,ΠΠ

]
.

Different from the standard FETI-DP preconditioner, the proposed preconditioner contains
blocks of the scaling matrices and local Schur complement matrices involving the adaptive
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primal unknowns. With this new form of the FETI-DP preconditioner, we can show that the
adaptive FETI-DP algorithm with the change of basis formulation has the same spectra as the
corresponding BDDC algorithm except those equal to zero or one. We can thus obtain the
same condition number bound as that of the BDDC algorithm. We note that when no adaptive
primal unknowns are chosen, this preconditioner is identical to that considered in the standard
FETI-DP algorithm.

4. Adaptively enriched primal unknowns. The adaptive constraints will be selected
by considering a generalized eigenvalue problem on each nodal equivalence class. The idea
is originated from the upper bound estimate of BDDC and FETI-DP preconditioners. We
note that the lower bound can be obtained from the partition of unity property of the scaling
matrices and it can be shown that the minimum eigenvalue is one [2, 18, 26]. In the estimate
of condition numbers of BDDC and FETI-DP algorithms, the average and jump operators are
defined as

(4.1) ED = R̃R̃T D̃, PD = BT
DB,

where B = (B∆ 0) and BT
D = (B

(1)
D,∆ · · · B(N)

D,∆)T . We note that B : W̃ → M and

BT
D : M →W ; see the definition of (B

(i)
D,∆)T in (3.2)-(3.4).

The adaptive constraints are treated just as unknowns at subdomain vertices after change
of basis formulation in both BDDC and FETI-DP algorithms, i.e., the continuities of them are
enforced explicitly. We note that in our previous work one can not get ED + PD = I when
the standard FETI-DP preconditioner is considered for the change of basis formulation, i.e.,
without the blocks from the adaptive primal unknowns in BT

D.
In the following, we review the generalized eigenvalue problems and the estimate of

condition numbers for the adaptive BDDC algorithm proposed in [13]. We first form gener-
alized eigenvalue problems for faces F , which are nodal equivalence classes shared by two
subdomains. For that we introduce S(i)

F to represent the block in Si corresponding to the
unknowns interior to F . S̃(i)

F represents the Schur complement of Si obtained by eliminating
unknowns except those interior to F . S̃(i)

F satisfies the following minimal energy property,

(4.2) vTF S̃
(i)
F vF ≤ vTSiv, for any v|F = vF ,

where v|F denotes the restriction of v to the unknowns interior to F . The notation A : B is a
parallel sum for symmetric and semi-positive definite matrices A and B defined as, see [1],

A : B = A(A+B)+B,

where (A+B)+ denotes a pseudo inverse. The parallel sum satisfies the following properties

(4.3) A : B = B : A, A : B ≤ A, A : B ≤ B,

and it was first used in [5] when forming generalized eigenvalues problems.
In 3D, for a face F , the following generalized eigenvalue problem is considered

AF vF = λÃF vF ,(4.4)

where

AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F , ÃF = S̃

(i)
F : S̃

(j)
F .
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The eigenvalues are all positive. For a given tolerance λTOL, we select eigenvectors vF,l, l ∈
N(F ), corresponding to eigenvalues λl larger than λTOL. The following constraints will then
be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)
F ) = 0, l ∈ N(F ).

After a change of basis, the above constraints can be transformed into explicit unknowns;
see [13] for more implementation details of the change of basis. The explicit unknowns are
denoted by w(i)

F,Π and they are then added to the initial set of primal unknowns. The remaining

unknowns are called dual unknowns and are denoted by w(i)
F,∆. In 2D, for an edge we can

form the generalized eigenvalue problem as in the case of a face in 3D. We will use the same
notation F to denote an edge in 2D.

For the 2D case with only edge and vertex nodal equivalence classes, we can obtain that

〈S̃(I − ED)w̃, (I − ED)w̃〉 ≤ C
∑
F

(〈AF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈AF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑
F

(〈ÃF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈ÃF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑
F

(〈Siwi, wi〉+ 〈Sjwj , wj〉)

≤ CλTOL〈S̃w̃, w̃〉,

where the estimate on the dual unknowns are bounded by λTOL in the second inequality,
and (4.3) and the property of S̃(i)

F in (4.2) are used in the third inequality. Above, we use w̃(i)
F,∆

to represent the vector with value w(i)
F,∆ at the location of dual unknowns and value zero at the

location of adaptive primal unknowns.
For an edge E in 3D, shared by more than two subdomains, we introduce the following

generalized eigenvalue problem,

AEvE = λÃEvE ,(4.5)

where

AE =
∑

m∈I(E)

∑
l∈I(E)\{m}

(D
(l)
E )TS

(m)
E D

(l)
E , ÃE =

∏
m∈I(E)

S̃
(m)
E .

Here I(E) denotes the set of subdomain indices sharing the edge E, and
∏

m∈I(E) S̃
(m)
E is the

parallel sum of S̃(m)
E . The matrices S(m)

E and S̃(m)
E are defined similarly as S(i)

F and S̃(i)
F . For

a given λTOL, the eigenvectors with their eigenvalues larger than λTOL will be selected and
denoted by vE,l, l ∈ N(E). The following constraints will be then enforced on the unknowns
in E,

(AEvE,l)
T (w

(i)
E − w

(m)
E ) = 0, l ∈ N(E), m ∈ I(E) \ {i}.

Similarly to the face case, the above constraints can be transformed into explicit unknowns after
a change of basis. We note that when we form matrices for generalized eigenvalue problems
in (4.4) and (4.5), the local Schur complement matrices S(l)

F , S̃(l)
F , S(l)

E , and S̃(l)
E are explicitly

formed in our algorithm. This adds considerable computational cost to our algorithm compared
to the standard BDDC or FEFI-DP methods. To reduce the cost one can form an economic
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version of the Schur complement matrices by solving local problems restricted on slabs of a
face F or an edge E; see [13, Section 5.2] and [16]. In [14], generalized eigenvalue problems
are defined on the closed faces shared by two subdomains and the selected adaptive primal
constraints are restricted and enforced on the open faces and open edges. In their method,
generalized eigenvalue problems are not needed for edges shared by three subdomains, but are
still needed for edges shared by more than three subdomains to enhance the set of adaptive
primal constraints.

By using the adaptively selected primal unknowns on each face F and edge E as above,
in 3D we can obtain the following estimate

(4.6) 〈S̃(I − ED)w̃, (I − ED)w̃〉 ≤ CλTOL〈S̃w̃, w̃〉,

where C is a constant depending on the maximum number of edges and faces per subdomain,
and the maximum number of subdomains sharing an edge, but independent of the coefficient
ρ(x); see [13]. We note that (4.6) is the key estimate in the analysis of the BDDC algorithm.

5. Analysis of condition number bounds. Using the adaptively enriched primal un-
knowns described in Section 4 and the estimate in (4.6), we can obtain the following estimate
of condition numbers for the BDDC algorithm; see [13].

THEOREM 5.1. The BDDC algorithm with a change of basis formulation for the adap-
tively chosen set of primal unknowns with a given tolerance λTOL has the following bound
for condition numbers,

κ(M−1
BDDCR̃

T S̃R̃) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the number of faces
per subdomain, the number of edges per subdomain, and the number of subdomains sharing
an edge E, respectively.

For the FETI-DP algorithm with the same set of primal unknowns, those at subdomain
vertices and those from the adaptive primal constraints after the change of basis, we can show
that the FETI-DP algorithm shares the same spectra with the associate BDDC algorithm except
zero and one. To obtain the result we first show the following properties of the PD operator
defined in (4.1).

LEMMA 5.2. For any w̃ in W̃ , PDw̃ in W has the same values at the location of primal
unknowns and thus PDw̃ is in W̃ . In addition, PDw̃ satisfies that

R̃i(w̃ − EDw̃) = Ri(PDw̃), ∀w̃ ∈ W̃ ,

where R̃i(w̃) and Ri(w) are restrictions of w̃ ∈ W̃ and w ∈W to Wi, respectively.
Proof. Recall the definition of PD = BT

DB and (B
(i)
D,∆)T in (3.2)-(3.4). In the following,

we simply use the notation (w)i to denote Ri(w) or R̃i(w) for w in W or W̃ . On a face F of
∂Ωi, we assume that F is shared with its neighboring subdomain Ωj . We then obtain

(PDw̃)i|F =

[
D

(j)
F,∆∆(w

(i)
F,∆ − w

(j)
F,∆)

D
(j)
F,Π∆(w

(i)
F,∆ − w

(j)
F,∆)

]
, (PDw̃)j |F =

[
D

(i)
F,∆∆(w

(j)
F,∆ − w

(i)
F,∆)

D
(i)
F,Π∆(w

(j)
F,∆ − w

(i)
F,∆)

]
,

where (PDw̃)i denotes the restriction to Wi, wi|F denotes the restriction of wi to unknowns
interior to F . From the partition of unity property D(i)

F +D
(j)
F = I , we have

D
(i)
F,Π∆ +D

(j)
F,Π∆ = 0
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and thus

D
(j)
F,Π∆(w

(i)
F,∆ − w

(j)
F,∆) = D

(i)
F,Π∆(w

(j)
F,∆ − w

(i)
F,∆),

which means PDw̃ has the same value at the location of adaptive primal unknowns in the face
F .

Similarly, for an edge E, we obtain

(PDw̃)i|E =

[∑
l∈I(E)D

(l)
E,∆∆(w

(i)
E,∆ − w

(l)
E,∆)∑

l∈I(E)D
(l)
E,Π∆(w

(i)
E,∆ − w

(l)
E,∆)

]
,

(PDw̃)k|E =

[∑
l∈I(E)D

(l)
E,∆∆(w

(k)
E,∆ − w

(l)
E,∆)∑

l∈I(E)D
(l)
E,Π∆(w

(k)
E,∆ − w

(l)
E,∆)

]
,

where I(E) denotes the set of subdomain indices sharing the edgeE and the indices i and k are
in I(E). By subtracting the primal parts in the above two terms and using

∑
l∈I(E)D

(l)
E,Π∆ =

0, we obtain ∑
l∈I(E)

D
(l)
E,Π∆(w

(i)
E,∆ − w

(l)
E,∆)−

∑
l∈I(E)

D
(l)
E,Π∆(w

(k)
E,∆ − w

(l)
E,∆)

=

 ∑
l∈I(E)

D
(l)
E,Π∆

 (w
(i)
E,∆ − w

(k)
E,∆)

= 0,

which shows that PDw̃ has the same value at the location of adaptive primal unknowns in the
edge E. Above, we have also used the partition of unity property,

∑
l∈I(E)D

(l)
E = I and thus∑

l∈I(E)D
(l)
E,Π∆ = 0.

Since (PDw̃)i|V = 0 for the unknowns at subdomain vertices V , by combining the results
on the adaptive primal unknowns in faces and edges, we conclude that PDw̃ has the same
value at the location of primal unknowns in different subdomains.

We will now show that (w̃ − EDw̃)i = (PDw̃)i. For that, we first consider (w̃ − EDw̃)i
at dual unknowns on each F of subdomain Ωi and obtain that

(w̃ − EDw̃)i|F,∆ = w
(i)
F,∆ −

∑
k=i,j

D
(k)
F,∆∆w

(k)
F,∆ −

∑
k=i,j

D
(k)
F,∆Πw

(k)
F,Π

= D
(j)
F,∆∆(w

(i)
F,∆ − w

(j)
F,∆)

= (PDw̃)i|F,∆,

where we have used w(i)
F,Π = w

(j)
F,Π,

∑
k=i,j D

(k)
F,∆∆ = I , and

∑
k=i,j D

(k)
F,∆Π = 0.

Similarly for adaptive primal unknowns on each F of subdomain Ωi, we obtain

(w̃ − EDw̃)i|F,Π = w
(i)
F,Π −

∑
k=i,j

D
(k)
F,Π∆w

(k)
F,∆ −

∑
k=i,j

D
(k)
F,ΠΠw

(k)
F,Π

= D
(j)
F,Π∆(w

(i)
F,∆ − w

(j)
F,∆)

= (PDw̃)i|F,Π,

where we also have used w(i)
F,Π = w

(j)
F,Π,

∑
k=i,j D

(k)
F,ΠΠ = I , and D(i)

F,Π∆ = −D(j)
F,Π∆.
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For the dual unknowns on each edge E,

(w̃ − EDw̃)i|E,∆ = w
(i)
E,∆ −

∑
l∈I(E)

D
(l)
E,∆∆w

(l)
E,∆ −

∑
l∈I(E)

D
(l)
E,∆Πw

(l)
E,Π

=
∑

l∈I(E)

D
(l)
E,∆∆(w

(i)
E,∆ − w

(l)
E,∆)

= (PDw̃)i|E,∆,

where we have used thatw(l)
E,Π have the same value,

∑
l∈I(E)

D
(l)
E,∆Π = 0, and

∑
l∈I(E)

D
(l)
E,∆∆ = I .

For the adaptive primal unknowns on each edge E,

(w̃ − EDw̃)i|E,Π = w
(i)
E,Π −

∑
l∈I(E)

D
(l)
E,Π∆w

(l)
E,∆ −

∑
l∈I(E)

D
(l)
E,ΠΠw

(l)
E,Π

=
∑

l∈I(E)

D
(l)
E,Π∆(w

(i)
E,∆ − w

(l)
E,∆)

= (PDw̃)i|E,Π,

where we have used thatw(l)
E,Π have the same value,

∑
l∈I(E)

D
(l)
E,Π∆ = 0, and

∑
l∈I(E)

D
(l)
E,ΠΠ = I .

By using Lemma 5.2, we can show that the two algorithms share the same set of spectra
except one and zero; see [18, 2]. Combining with the result for the BDDC algorithm in
Theorem 5.1, we have

THEOREM 5.3. The FETI-DP algorithm with the change of basis formulation has the
bound

κ(M−1
FETIFDP ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the number of faces
per subdomain, the number of edges per subdomain, and the number of subdomains sharing
an edge E, respectively.

6. Numerical results. In our experiments, we consider a unit square or cubic domain Ω
and divide it into a uniform mesh with grid size h. We partition the mesh into uniform square
or cubic subdomains, or into irregular subdomains by the METIS mesh partitioner [10]. We
use H to denote the size of the subdomains in the case of uniform square or cubic partition
and Nd to denote the number of subdomains in a partition. In the conjugate gradient method
for solving the system, the iteration is stopped when the relative residual norm is below 10−10.

6.1. 2D examples. In this section, we consider two dimensional model problems. For
a given subdomain partition and given tolerance value, we first include the unknowns at
subdomain vertices to the set of primal unknowns and then enrich the initial set of primal
unknowns by including adaptive primal unknowns selected from the generalized eigenvalue
problem on each edge under the given tolerance value.

In the first example, we consider a model problem with ρ(x) having both channels and
inclusions of high contrast as shown in Figure 6.1. For this model, we present in Table 6.1 the
results of the two algorithms when the domain is partitioned into uniform square subdomains
with a given local problem size H/h. Consistent with our theory, the two algorithms have the
same nonzero extreme eigenvalues. The two algorithms are quite robust with respect to the
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FIG. 6.1. ρ(x) with channels and inclusions: channel (ρ(x) = 103), inclusion (ρ(x) = 10−3), and elsewhere
(ρ(x) = 1).

TABLE 6.1
Performance of adaptive BDDC (Bddc) and FETI-DP (Fdp) with λTOL = 1 + log(H/h) for ρ(x) as in

Figure 6.1 with both channels and inclusions: λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter
(number of iterations), pnumF (total number of adaptive primal unknowns), and pF (number of adaptive primal
unknowns per edge).

Nd (H/h) method λmin λmax Iter pnumF pF
82 Bddc 1.00 3.11 13 178 1.58

(H/h = 32) Fdp 1.00 3.11 13 178 1.58
162 Bddc 1.00 1.75 11 604 1.25

(H/h = 16) Fdp 1.00 1.75 11 604 1.25
322 Bddc 1.00 1.47 8 2098 1.05

(H/h = 8) Fdp 1.00 1.47 9 2098 1.05

coefficient ρ(x), even with only less than two adaptive primal unknowns per edge. We can
also observe that the minimum eigenvalues are identical to one and the maximum eigenvalues
follow the tolerance value λTOL.

In the second example, we consider a more challenging case with random and high
contrast value ρ(x) in the range (10−3, 103). The value ρ(x) is piecewise constant at each
finite element. In Tables 6.2 and 6.3, the performance of the two algorithms is presented by
increasing local problem size H/h for a given uniform subdomain partition and by increasing
the number of subdomains in the uniform partition for a fixed local problem size H/h. As
in the previous example, we observe that the minimum eigenvalues are all one and the two
algorithms have the same maximum eigenvalues. In addition, for this highly heterogeneous
case we can control the condition numbers by using only less than two adaptive primal
unknowns per edge.

In Table 6.4, the results of the two algorithms are presented for the same ρ(x) considered
in the previous two tables, when irregular subdomain partitions as in Figure 6.2 are used. We
again observe that the two algorithms have the same extreme eigenvalues and they perform
well even for the quite irregular subdomain partitions, which shows the practicality of the
proposed scheme in real applications.

6.2. 3D examples. We consider three dimensional model problems in this section. Un-
knowns at subdomain vertices are included in the set of primal unknowns first, and gener-
alized eigenvalue problems defined in (4.4) and (4.5) are then used to introduce additional
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TABLE 6.2
Performance of adaptive BDDC and FETI-DP with λTOL = 1 + log(H/h) for random ρ(x) in (10−3, 103)

by increasing H/h in a fixed subdomain partition Nd = 32: λmin (minimum eigenvalues), λmax (maximum
eigenvalues), Iter (number of iterations), pnumF (total number of adaptive primal unknowns), and pF (number of
adaptive primal unknowns per edge).

H/h method λmin λmax Iter pnumF pF
6 Bddc 1.00 1.30 7 17 1.41

Fdp 1.00 1.30 7 17 1.41
12 Bddc 1.00 1.68 9 23 1.91

Fdp 1.00 1.68 9 23 1.91
18 Bddc 1.00 1.81 9 21 1.75

Fdp 1.00 1.81 9 21 1.75
24 Bddc 1.00 2.16 10 23 1.91

Fdp 1.00 2.16 10 23 1.91
30 Bddc 1.00 2.63 10 20 1.66

Fdp 1.00 2.63 10 20 1.66

TABLE 6.3
Performance of adaptive BDDC and FETI-DP with λTOL = 1 + log(H/h) for random ρ(x) in (10−3, 103)

by increasing Nd and with a fixed H/h = 16: λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter
(number of iterations), pnumF (total number of adaptive primal unknowns), and pF (number of adaptive primal
unknowns per edge).

Nd method λmin λmax Iter pnumF pF
42 Bddc 1.00 1.74 10 42 1.75

Fdp 1.00 1.74 11 42 1.75
82 Bddc 1.00 3.11 16 189 1.68

Fdp 1.00 3.11 16 189 1.68
162 Bddc 1.00 2.69 16 805 1.67

Fdp 1.00 2.69 17 805 1.67

adaptive primal unknowns on faces and edges using the tolerance values λFTOL = 1 +
log(H/h), λETOL = 1000, respectively. We note that in [13] it was observed that eigenvalues
from generalized eigenvalue problems on edges are much larger than those on faces and by
choosing larger tolerance values for edges one can choose less and still effective adaptive
constraints. Much larger eigenvalues are obtained for edges since the matrix ÃE in the gener-
alized eigenvalue problem on an edge, see (4.5), is involved by more subdomains than ÃF on
a face, see (4.4). This makes the right-hand side matrix less optimal for the edge case. In our
experiment, we thus choose different tolerance values for face and edge cases.

We first consider the model with coefficient distribution ρ(x) shown in Figure 6.3. The
performance of adaptive BDDC and FETI-DP methods is presented in Table 6.5 by increasing
H/h in a fixed subdomain partition Nd = 33. We can see that both methods have the same set
of primal unknowns, maximum eigenvalues, nearly the same minimum eigenvalues (which
are equal to one) and iteration counts except a small numerical perturbation. The number of
adaptive primal unknowns per face and per edge are relatively robust with respect to H/h and
in our test case about two per face and one per edge are chosen. The condition numbers and
iteration counts are also robust given the high contrast in the coefficient ρ(x).

We next consider highly varying and random coefficients ρ(x) = 10r, where r is chosen
randomly from (−3, 3) for each finite element. The results are listed in Table 6.6 with an
increasing Nd = N3 and a fixed H/h = 12. We observe the same performance as in the
previous case that both methods have the same set of primal unknowns, maximum eigenvalues,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BDDC AND FETI-DP WITH CHANGE OF BASIS 75

FIG. 6.2. An example of irregular subdomain partition with Nd = 16 and 1/h = 256.

TABLE 6.4
Performance of adaptive BDDC and FETI-DP for random ρ(x) in (10−3, 103) and on irregular subdomain

partitions: Nd (number of subdomains), h (element size), λmin (minimum eigenvalues), λmax (maximum eigenval-
ues), Iter (number of iterations), pnumF (total number of adaptive primal unknowns), pF (number of adaptive primal
unknowns per edge), nF (maximum number of nodes per edge), and λTOL = 1 + log(nF ).

Nd 1/h method λmin λmax Iter pnumF pF nF
16 64 Bddc 1.00 2.69 13 44 1.37 39

Fdp 1.00 2.69 13 44 1.37 39
64 129 Bddc 1.00 3.71 17 235 1.45 39

Fdp 1.00 3.71 18 235 1.45 39
256 256 Bddc 1.00 3.14 17 1059 1.53 22

Fdp 1.00 3.14 18 1059 1.53 22
16 256 Bddc 1.00 3.43 15 37 1.12 83

Fdp 1.00 3.43 15 37 1.12 83
64 256 Bddc 1.00 3.17 17 213 1.33 45

Fdp 1.00 3.17 17 213 1.33 45
256 256 Bddc 1.00 3.14 17 1059 1.53 22

Fdp 1.00 3.14 18 1059 1.53 22

TABLE 6.5
Performance of adaptive BDDC (Bddc) and FETI-DP (Fdp) for the problem with channels and inclusions

ρ(x) as in Figure 6.3 by increasing H/h in a fixed subdomain partition Nd = 33 and with λFTOL = 1 +

log(H/h), λETOL = 1000: λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations),
pnumF (total number of adaptive primal unknowns on faces), and pnumE (total number of adaptive primal unknowns
on edges). pF and pE are the number of adaptive primal unknowns per face and per edge, respectively.

H/h method λmin λmax Iter pnumF pnumE pF pE
4 Bddc 1.00 1.32 9 61 36 1.13 1.00

Fdp 1.00 1.32 9 61 36 1.13 1.00
8 Bddc 1.00 1.61 11 84 36 1.56 1.00

Fdp 1.01 1.61 11 84 36 1.56 1.00
12 Bddc 1.00 1.94 12 87 38 1.61 1.06

Fdp 1.01 1.94 13 87 38 1.61 1.06
16 Bddc 1.00 2.24 14 88 40 1.63 1.11

Fdp 1.01 2.24 14 88 40 1.63 1.11
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(a) Channels with ρ(x) = 103 (b) Inclusions with ρ(x) = 10−3

FIG. 6.3. Coefficient distribution with channels and inclusions: channels (ρ(x) = 103), small cubes (ρ(x) =
10−3), and elsewhere (ρ(x) = 1).

TABLE 6.6
Performance of adaptive BDDC and FETI-DP with λFTOL = 1 + log(H/h) and λETOL = 1000 for

highly varying and random ρ(x) in (10−3, 103) by increasing Nd and with a fixed H/h = 12: λmin (minimum
eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations), pnumF (total number of adaptive primal
unknowns on faces), and pnumE (total number of adaptive primal unknowns on edges). pF and pE are the number
of adaptive primal unknowns per face and per edge, respectively.

Nd method λmin λmax Iter pnumF pnumE pF pE
23 Bddc 1.01 3.15 15 46 18 3.83 3.00

Fdp 1.00 3.15 16 46 18 3.83 3.00
33 Bddc 1.01 5.11 20 190 115 3.52 3.19

Fdp 1.00 5.11 21 190 115 3.52 3.19
43 Bddc 1.01 5.83 23 533 320 3.70 2.96

Fdp 1.00 5.83 24 533 320 3.70 2.96

nearly the same minimum eigenvalues (which are equal to one) and iteration counts. About
four per face and three per edge are chosen as adaptive primal unknowns. The condition
numbers and iteration counts increase very mildly as Nd increases. The performance of the
two methods is presented in Table 6.7 with an increasing H/h in a fixed subdomain partition
Nd = 33, which is similar to the performance in Table 6.5. We observe that the percentages of
primal unknowns on face and edge both decrease despite the fact that the number of primal
unknowns per face and edge increases. For example, for H/h = 12, the percentages of primal
unknowns on face and edge are 3.52/121 = 2.91% and 3.19/11 = 29%, respectively, and for
H/h = 16, those are 1.95% and 27%.

Finally, for unstructured subdomain partitions as in Figure 6.4, we present the results for
ρ(x) = 1 in Table 6.8, and in Table 6.9 the results for highly varying and random coefficients
ρ(x) = 10r, where r is chosen randomly from (−3, 3) at each tetrahedron finite element. We
also observe a similar performance as in the previous cases. We choose only one adaptive
primal unknown per face and per edge for ρ(x) = 1 and a little more than one for random
ρ(x) under quite irregular subdomain partitions. It means that the two algorithms also perform
well for both irregular subdomain partitions and highly heterogeneous coefficients in three
dimensions.

7. Conclusion. In this paper, we consider BDDC and FETI-DP algorithms with adap-
tively enriched primal constraints and analyze their performance under a change of basis
formulation. The adaptive primal constraints are introduced to enhance the robustness of
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TABLE 6.7
Performance of adaptive BDDC and FETI-DP for the problem with random ρ(x) in (10−3, 103) by increasing

H/h in a fixed subdomain partition Nd = 33 and with λFTOL = 1 + log(H/h), λETOL = 1000: λmin (minimum
eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations), pnumF (total number of adaptive primal
unknowns on faces), and pnumE (total number of adaptive primal unknowns on edges). pF and pE are the number
of adaptive primal unknowns per face and per edge, respectively.

H/h method λmin λmax Iter pnumF pnumE pF pE
4 Bddc 1.00 2.34 11 91 56 1.69 1.56

Fdp 1.00 2.34 11 91 56 1.69 1.56
8 Bddc 1.00 2.53 15 147 83 2.72 2.31

Fdp 1.00 2.53 16 147 83 2.72 2.31
12 Bddc 1.01 5.11 20 190 115 3.52 3.19

Fdp 1.00 5.11 21 190 115 3.52 3.19
16 Bddc 1.01 5.42 22 237 146 4.39 4.06

Fdp 1.00 5.42 23 237 146 4.39 4.06

the BDDC and FETI-DP preconditioners for solving elliptic problems with heterogeneous
coefficients. The change of basis formulation can enhance the stability and efficiency of the
algorithms. In particular, we show that the identity ED + PD = I holds for both algorithms
using the proposed change of basis. Hence, we show that the condition numbers of the adaptive
BDDC and FETI-DP algorithms with the change of basis formulation are identical. Some
numerical examples in both 2D and 3D with both structured and unstructured subdomain
partitions are presented to demonstrate the robustness of the algorithms.
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(a) METIS decomposition

(b) One of the METIS subdomains

FIG. 6.4. Domain decomposition obtained by METIS for the unit cube, Nd = 27 and h = 1/20.
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TABLE 6.8
Performance of adaptive BDDC and FETI-DP for ρ(x) = 1 on unstructured subdomain partitions (see

Figure 6.4) and with λFTOL = 1+log(min
i
{Hi/h}), λETOL = 1000 (h (mesh size),Hi = max

x1,x2∈Ω̄i

{|x1−x2|}):

Nd(number of subdomains), λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations),
pnumF (total number of adaptive primal unknowns on faces), and pnumE (total number of adaptive primal unknowns
on edges). pF and pE are the number of adaptive primal unknowns per face and per edge, respectively.

Nd method 1/h λmin λmax Iter pnumF pnumE pF pE
8 Bddc 10 1.00 1.15 7 12 7 1.00 1.00

20 1.00 1.37 9 19 17 1.00 1.00
40 1.00 1.57 10 21 22 1.00 1.00
80 1.00 2.27 13 22 28 1.00 1.00

Fdp 10 1.00 1.15 7 12 7 1.00 1.00
20 1.00 1.37 9 19 17 1.00 1.00
40 1.00 1.57 11 21 22 1.00 1.00
80 1.00 2.27 14 22 28 1.00 1.00

27 Bddc 10 1.00 1.11 6 10 7 1.00 1.00
20 1.00 1.26 8 75 53 1.00 1.00
40 1.00 1.62 10 99 107 1.02 1.00
80 1.00 1.92 12 108 134 1.00 1.00

Fdp 10 1.01 1.11 7 10 7 1.00 1.00
20 1.00 1.27 9 75 53 1.00 1.00
40 1.01 1.62 11 99 107 1.02 1.00
80 1.01 1.92 13 108 134 1.00 1.00

64 Bddc 10 1.00 1.04 4 2 1 1.00 1.00
20 1.00 1.29 8 148 73 1.00 1.00
40 1.00 1.46 9 271 279 1.00 1.00
80 1.00 1.90 12 302 397 1.00 1.00

Fdp 10 1.01 1.04 4 2 1 1.00 1.00
20 1.01 1.29 9 148 73 1.00 1.00
40 1.01 1.47 10 271 279 1.00 1.00
80 1.01 1.90 13 302 397 1.00 1.00

[25] N. SPILLANE, V. DOLEAN, P. HAURET, F. NATAF, AND D. J. RIXEN, Solving generalized eigenvalue
problems on the interfaces to build a robust two-level FETI method, C. R. Math. Acad. Sci. Paris, 351
(2013), pp. 197–201.

[26] A. TOSELLI AND O. WIDLUND, Domain Decomposition Methods—Algorithms and Theory, Springer, Berlin,
2005.
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TABLE 6.9
Performance of adaptive BDDC and FETI-DP for random ρ(x) in (10−3, 103) on unstructured subdomain

partitions (see Figure 6.4) and with λFTOL = 1 + log(min
i
{Hi/h}), λETOL = 1000 (h (mesh size), Hi =

max
x1,x2∈Ω̄i

{|x1 − x2|}): Nd(number of subdomains), λmin (minimum eigenvalues), λmax (maximum eigenvalues),

Iter (number of iterations), pnumF (total number of adaptive primal unknowns on faces), and pnumE (total number of
adaptive primal unknowns on edges). pF and pE are the number of adaptive primal unknowns per face and per edge,
respectively.

Nd method 1/h λmin λmax Iter pnumF pnumE pF pE
8 Bddc 10 1.00 1.79 10 13 8 1.08 1.14

20 1.00 2.10 12 24 17 1.26 1.00
40 1.00 3.20 15 24 31 1.14 1.41
80 1.00 4.33 19 28 34 1.27 1.21

Fdp 10 1.00 1.79 10 13 8 1.08 1.14
20 1.00 2.10 13 24 17 1.26 1.00
40 1.00 3.20 15 24 31 1.14 1.41
80 1.00 4.33 20 28 34 1.27 1.21

27 Bddc 10 1.00 1.51 8 12 8 1.20 1.14
20 1.00 2.36 13 87 56 1.16 1.06
40 1.01 4.91 18 123 126 1.27 1.18
80 1.01 4.86 19 142 160 1.31 1.19

Fdp 10 1.02 1.51 9 12 8 1.20 1.14
20 1.00 2.36 13 87 56 1.16 1.06
40 1.00 4.91 19 123 126 1.27 1.18
80 1.00 4.86 20 142 160 1.31 1.19

64 Bddc 10 1.00 1.08 4 2 1 1.00 1.00
20 1.00 1.99 12 158 78 1.07 1.07
40 1.01 2.81 16 307 309 1.13 1.11
80 1.01 5.38 19 359 471 1.19 1.19

Fdp 10 1.00 1.08 4 2 1 1.00 1.00
20 1.00 1.99 12 158 78 1.07 1.07
40 1.00 2.81 17 307 309 1.13 1.11
80 1.00 5.38 21 359 471 1.19 1.19
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