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Abstract. When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method,
the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we
develop and analyze additive Schwarz preconditioners for the systems that appear in each iteration of the primal-dual
active set algorithm. Numerical results that corroborate the theoretical estimates are also presented.
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1. Introduction. Let Ω be a bounded polygonal domain in R2, f ∈ L2(Ω), and
ϕ ∈ H3(Ω) ∩W 2,∞(Ω) such that ϕ < 0 on ∂Ω. The obstacle problem for a clamped
Kirchhoff plate occupying Ω is to find

(1.1) u = argmin
v∈K

[1

2
a(v, v)− (f, v)

]
,

where (·, ·) is the inner product for L2(Ω),

a(v, w) =

∫
Ω

D2v : D2w dx =

∫
Ω

2∑
i,j=1

( ∂2v

∂xi∂xj

)( ∂2w

∂xi∂xj

)
dx, ∀ v, w ∈ H2

0 (Ω),

(1.2)

and K is the subset of H2
0 (Ω) defined by

(1.3) K = {v ∈ H2
0 (Ω) : v ≥ ϕ on Ω}.

Here and throughout the paper we follow the standard notation for differential operators,
function spaces, and norms that can be found for example in [1, 12, 14]. In particular H2

0 (Ω)
is the subspace of H2(Ω) whose members vanish up to the first-order derivatives on ∂Ω.

Since K is a nonempty closed convex subset of the Hilbert space H2
0 (Ω), it follows from

the standard theory of calculus of variations [20, 25] that the obstacle problem (1.1) has a
unique solution u ∈ K characterized by the fourth-order variational inequality

a(u, v − u)− (f, v − u) ≥ 0, ∀ v ∈ K.

The numerical solution of the obstacle problem (1.1)–(1.3) by a generalized finite element
method was studied in [9]. The discrete variational inequalities resulting from the generalized
finite element method were solved by a primal-dual active set algorithm [6, 7, 23, 24], where
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an auxiliary system of equations involving the inactive nodes had to be solved in each iteration.
Since this is a fourth-order problem, these systems become very ill-conditioned when the
number of degrees of freedom becomes large. The goal of this paper is to develop one-level
and two-level additive Schwarz domain decomposition preconditioners for the systems that
appear in the primal-dual active set algorithm. We note that a two-level additive Schwarz
preconditioner for the plate bending problem (without the obstacle) using the same generalized
finite element method was investigated in [10].

There is a sizable literature on domain decomposition methods for second-order variational
inequalities [3, 4, 5, 13, 26, 27, 28, 34, 35, 36, 37, 39]. (References for related multigrid
methods can be found in the survey article [21].) On the other hand the literature on domain
decomposition methods for fourth-order variational inequalities is quite small. The only
work [32] that we know of treats an alternating Schwarz algorithm for the plate obstacle
problem discretized by a mixed finite element method.

We note that most of the domain decomposition algorithms for variational inequalities are
based on the subspace correction approach except the one in [27], where the author considered
a multibody second-order elliptic problem with inequality constraints on the interfaces of the
bodies, and the nonoverlapping domain decomposition preconditioners in that paper are also
designed for the auxiliary systems that appear in a primal-dual active set algorithm.

The rest of the paper is organized as follows. We recall the partition of unity method in
Section 2 and the primal-dual active set algorithm in Section 3. We set up an overlapping
domain decomposition in Section 4 and study the one-level and two-level additive Schwarz
preconditioners in Section 5 and Section 6. Numerical results that corroborate the theoretical
estimates are presented in Section 7, and we end with some concluding remarks in Section 8.

2. A partition of unity method. Conforming finite element methods for the fourth-order
problem (1.1)–(1.3) requireC1 finite element spaces. In the classical setting this would involve
polynomials of high degrees in the construction of the local approximation spaces [12, 14].
An alternative is to employ generalized finite element methods [2, 29] that allow simple local
approximation spaces. This was carried out in [9] using a flat-top partition of unity method
(PUM) from [15, 22, 30, 31]. Below we recall some basic facts concerning the PUM in [9].

Let {Ωi}ni=1 be an open cover of Ω such that there exists a collection of nonnegative
functions φ1, . . . , φn ∈W 2

∞(R2) with the following properties:

suppφi ⊂ Ωi, for 1 ≤ i ≤ n,
n∑
i=1

φi = 1, on Ω,

|φi|Wm
∞(R2) ≤

C

(diam Ωi)m
, for 0 ≤ m ≤ 2, 1 ≤ i ≤ n.

From here on we use C (with or without subscript) to denote a generic positive constant that
can take different values at different appearances.

Let Vi be a subspace of biquadratic polynomials defined on the local patch Ωi whose
members satisfy the homogeneous Dirichlet boundary conditions on ∂Ω, i.e., v = ∂v/∂n = 0
on ∂Ω for all v ∈ Vi. The generalized finite element space VG ⊂ H2

0 (Ω) is given by

VG =

n∑
i=1

φiVi.

There are many choices in the construction of the partition of unity. We use a flat-top partition
of unity where each Ωi is an open rectangle and each φi is the tensor product of two one-
dimensional flat-top functions. The flat-top region Ωflat

i inside Ωi is the set where φi = 1,
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and the degrees of freedom for the local space Vi are all associated with nodes on Ωflat
i . An

illustration for such a construction is given in Figure 2.1 for a square domain Ω. Details for
the construction and examples for other domains can be found in [9].

FIG. 2.1. a) Ωi (bounded by dotted lines) and Ωflat
i (shaded in grey); b) Nodes for the interior DOFs.

From now on we assume that the diameters of the patches are comparable to a mesh size
h and denote the generalized finite element space by Vh. Let Nh be the set of the nodes in the
local patches (solid dots in Figure 2.1b)) that correspond to the degrees of freedom of the local
basis functions. (The cardinality of Nh is the dimension of Vh.) The discrete problem is to
find

(2.1) uh = argmin
v∈Kh

[1

2
a(v, v)− (f, v)

]
,

where

Kh = {v ∈ Vh : v(p) ≥ ϕ(p), ∀ p ∈ Nh}.

REMARK 2.1. Since the nodes inNh are located at the flat-top regions of the local patches,
the constraints for Kh are box constraints. Let the interpolation operator Πh : H2

0 (Ω) −→ Vh
be defined by

Πhζ =

n∑
i=1

(Πiζ)φi,

where Πi is the local nodal interpolation operator for Vi. Then Πhu belongs to Kh, and hence
Kh is a nonempty closed convex subset of Vh. It follows from the standard theory that (2.1)
has a unique solution uh ∈ Kh characterized by the discrete variational inequality

(2.2) a(uh, v − uh)− (f, v − uh) ≥ 0, ∀ v ∈ Kh.

Moreover we have [9, Theorem 3.2]

|u− uh|H2(Ω) ≤ Chα,

where the index of elliptic regularity α ∈ ( 1
2 , 1] is determined by the angles at the corners of

Ω (α = 1 if Ω is convex), and the positive constant C depends on the solution u, the obstacle
function ϕ, the estimates for the local nodal interpolation operators, and the estimates for the
partition of unity {φ1, . . . , φn}.

We will need the following interpolation error estimate [9, Equation (2.9)] in the analysis
of the domain decomposition preconditioners:

(2.3)
1∑

m=0

hm|ζ −Πhζ|Hm(Ω) + h2|Πhζ|H2(Ω) ≤ CΠh
2|ζ|H2(Ω), ∀ ζ ∈ H2(Ω),
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where the positive constant CΠ is independent of h. We will also need the estimate

(2.4) ‖v‖2L2(Ω) ≈ h
2
∑
p∈Nh

v2(p), ∀ v ∈ Vh

that follows from standard estimates for the biquadratic polynomials defined over the patches.

3. A primal-dual active set algorithm. Let the function λh : Nh −→ R be defined by

(3.1) a(uh, v)− (f, v) =
∑
p∈Nh

λh(p)v(p), ∀ v ∈ Vh.

The discrete variational inequality (2.2) is equivalent to (3.1) together with the optimality
conditions

uh(p)− ϕ(p) ≥ 0, λh(p) ≥ 0, and (uh(p)− ϕ(p))λh(p) = 0, ∀ p ∈ Nh,

which can also be written concisely as

(3.2) λh(p) = max
(
0, λh(p) + c(ϕ(p)− uh(p))

)
, ∀ p ∈ Nh.

Here c is any positive number.
The system defined by (3.1) and (3.2) can be solved by a semi-smooth Newton iteration

that is equivalent to a primal-dual active set method [6, 7, 23, 24]. Given an approximation
(uk, λk) of (uh, λh), the semi-smooth Newton iteration obtains the next approximation by
solving the following system of equations:

a(uk+1, v)− (f, v) =
∑
p∈Nh

λk+1(p)v(p), ∀ v ∈ Vh,(3.3a)

uk+1(p) = ϕ(p), ∀ p ∈ Ak,(3.3b)
λk+1(p) = 0, ∀ p ∈ Nh \Ak,(3.3c)

where Ak = {p ∈ Nh : λk(p)+c(ϕ(p)−uk(p)) > 0} is the active set determined by (uk, λk)
and c is a (large) positive constant. The iteration terminates when Ak+1 = Ak. Given a
sufficiently accurate initial guess, the primal-dual active set algorithm converges superlinearly
to the unique solution of (2.2) [23, Theorem 3.1].

In view of (3.3b) and (3.3c), we can reduce (3.3a) to an auxiliary system that only involves
the unknowns uk+1(p) for p ∈ Nh\Ak. For small h, this is a large, sparse, and ill-conditioned
system that can be solved efficiently by a preconditioned Krylov subspace method such as
the preconditioned conjugate gradient method. This preconditioning problem can be posed
in the following general form. Let Ñh be a subset of Nh. We define the truncation operator
T̃h : Vh −→ Vh by

(T̃hv)(p) =

{
v(p) if p ∈ Ñh,
0 if p ∈ Nh \ Ñh.

Then T̃h is a projection from Vh onto Ṽh = T̃hVh. Let Ãh : Ṽh −→ Ṽ ′h be defined by

〈Ãhv, w〉 = a(v, w), ∀ v, w ∈ Ṽh,

where 〈·, ·〉 is the canonical bilinear form on V ′h×Vh. We want to construct preconditioners for
Ãh whose performance is independent of Ñh. Since the partition of unity method is defined in
terms of overlapping patches, it is natural to consider additive Schwarz domain decomposition
preconditioners [19]. Note that (2.4) implies

(3.4) ‖T̃hv‖L2(Ω) ≤ C‖v‖L2(Ω), ∀ v ∈ Vh.
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4. Domain decomposition. Let the subdomains {Dj}Jj=1 form an overlapping domain
decomposition of Ω such that

(4.1) diamDj ≈ H, for 1 ≤ j ≤ J,

and

(4.2) any point in Ω can belong to at most Nc many subdomains.

We also assume that the boundaries of D1, . . . , DJ are aligned with the boundaries of the
patches underlying the generalized finite element space Vh. An example of four overlapping
subdomains for a square domain Ω is depicted in Figure 4.1. Details for the construction of
D1, . . . , DJ are available in [10].

FIG. 4.1. Domain decomposition for a square domain Ω with four overlapping subdomains (bounded by the
dotted lines).

Note that (4.1) implies

(4.3) J ≈ H−2,

provided that the subdomains D1, . . . , DJ are shape regular.
We assume that there exists a partition of unity ψ1, . . . , ψJ ∈W 2

∞(R2) with the following
properties:

J∑
j=1

ψj = 1, on Ω,(4.4a)

ψj ≥ 0, for j = 1, . . . J,(4.4b)

ψj = 0, on Ω \Dj , 1 ≤ j ≤ J,(4.4c)

|ψj |Wk
∞(Ω) ≤ C†δ−k, for j = 1, . . . , J and k = 0, 1, 2.(4.4d)

Here δ (≥ h) measures the overlap among the subdomains D1, . . . , DJ .

5. A one-level additive Schwarz preconditioner. Let Ṽj be the subspace of Ṽh whose
members vanish at all the nodes outside Dj , and let Aj : Ṽj −→ Ṽ ′j be defined by

〈Ajv, w〉 = a(v, w), ∀ v, w ∈ Ṽj .

The one-level additive Schwarz preconditioner BOL : Ṽ ′h −→ Ṽh is defined by

BOL =

J∑
j=1

IjA
−1
j Itj ,
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where Ij : Ṽj −→ Ṽh is the natural injection.
THEOREM 5.1. We have

(5.1) κ(BOLÃh) =
λmax(BOLÃh)

λmin(BOLÃh)
≤ Cδ−4,

where δ (≥ h) measures the overlap among the subdomains D1, . . . , DJ and the positive
constant C is independent of h, H , J , δ, and Ñh.

Proof. Let vj ∈ Ṽj , 1 ≤ j ≤ J , be arbitrary. We have the standard estimate [10,
Lemma 1]:

a
( J∑
j=1

Ijvj ,

J∑
j=1

Ijvj

)
≤ C]

J∑
j=1

a(vj , vj),

where the positive constant C] only depends on Nc. It follows from the standard additive
Schwarz theory [12, 28, 33, 38] that

(5.2) λmax(BOLÃh) ≤ C].

Given any v ∈ Ṽh, we have vj = Πh(ψjv) ∈ Ṽj ,

(5.3)
J∑
j=1

vj = Πh

[( J∑
j=1

ψj

)
v
]

= Πhv = v,

and
J∑
j=1

a(vj , vj) =

J∑
j=1

|Πh(ψjv)|2H2(Ω)

≤ C
J∑
j=1

2∑
k=0

|ψj |2W 2−k
∞ (Ω)

|v|2Hk(Dj)(5.4)

≤ C
2∑
k=0

δ−2(2−k)|v|2Hk(Ω) ≤ C[δ
−4a(v, v),

where the positive constant C[ depends only on CΠ in (2.3), Nc in (4.2), C† in (4.4d), and
constants for Poincaré-Friedrichs inequalities associated with H2

0 (Ω). It follows from (5.3),
(5.4), and the standard additive Schwarz theory that

(5.5) λmin(BOLÃh) ≥ δ4C−1
[ .

The estimates (5.2) and (5.5) imply (5.1) with C = C]C[.
REMARK 5.2. The estimate (5.1) is identical to the one for the plate bending problem

without an obstacle, i.e., the obstacle is invisible to the one-level additive Schwarz precondi-
tioner.

REMARK 5.3. Under the assumption that the subdomains D1, . . . , DJ are shape regular,
we can improve the estimate (5.1) to

(5.6) κ(BOLÃh) ≤ Cδ−3H−1

by the arguments in [8, Section 8]. (Similar arguments for second-order problems can be
found in [38, Lemma 3.10].) We will assume this is the case in the discussion below.

Since δ decreases as H decreases (or equivalently as J increases), the one-level algorithm
is not a scalable algorithm. Nevertheless the condition number estimate (5.6) can still be a big
improvement over the estimate κ(Ãh) ≈ h−4 for the original system.
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5.1. Small overlap. In the case of small overlap among the subdomains, we have δ ≈ h,
and hence

(5.7) κ(BOLÃh) ≤ Ch−3H−1,

which indicates that asymptotically

κ(BOLÃh) will increase by a factor of 8 after each refinement if H is kept fixed.(5.8)

On the other hand the estimate (5.7) also indicates that

κ(BOLÃh) will increase by a factor of 2 if H decreases by a factor of 2
(or equivalently if J increases by a factor of 4) while h is kept fixed.

(5.9)

5.2. Generous overlap. In the case of generous overlap among the subdomains, we have
δ ≈ H , and hence

(5.10) κ(BOLÃh) ≤ CH−4 ≈ J2.

It follows from (5.10) that

κ(BOLÃh) increases as J increases,(5.11)

and

κ(BOLÃh) remains constant as h decreases provided H (equivalently J)
is kept fixed.

(5.12)

6. A two-level additive Schwarz preconditioner. Let VH be a coarse generalized finite
element subspace of H2

0 (Ω) associated with patches whose diameters are comparable to the
diameters of the subdomains D1, . . . , DJ in the decomposition of Ω. We define Ṽ0 ⊂ Ṽh by

Ṽ0 = T̃hΠhVH

and the operator A0 : Ṽ0 −→ Ṽ ′0 by

〈A0v, w〉 = a(v, w), ∀ v, w ∈ Ṽ0.

The two-level additive Schwarz preconditioner BTL : Ṽ ′h −→ Ṽh is given by

BTL =

J∑
j=0

IjA
−1
j Itj ,

where I0 : Ṽ0 −→ Ṽh is also the natural injection.
Let QH be the orthogonal projection from L2(Ω) onto VH . The operator R0 : Vh −→ Ṽ0

is defined by

R0v = T̃hΠhQHv, ∀ v ∈ Vh.

The following result is useful for the analysis of BTL.
LEMMA 6.1. We have

(6.1) ‖v−R0v‖L2(Ω)+h|v−R0v|H1(Ω)+h2|v−R0v|H2(Ω) ≤ CH2|v|H2(Ω), ∀ v ∈ Ṽh.
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Proof. From (2.3) we have the estimate

‖ζ −QHζ‖L2(Ω)≤ ‖ζ −ΠHζ‖L2(Ω) ≤ CH2|ζ|H2(Ω), ∀ ζ ∈ H2(Ω),

which together with (2.3) and (3.4) implies that for any v ∈ Ṽh,

‖v −R0v‖L2(Ω) = ‖v − T̃hΠhQHv‖L2(Ω) = ‖T̃h(v −ΠhQHv)‖L2(Ω)

≤ C‖v −ΠhQHv‖L2(Ω) ≤ C
(
‖v −Πhv‖L2(Ω) + ‖Πh(v −QHv)‖L2(Ω)

)
≤ C

(
‖v −Πhv‖L2(Ω) + ‖v −QHv‖L2(Ω)

)
≤ CH2|v|H2(Ω).

The estimates for |v − R0v|H1(Ω) and |v − R0v|H2(Ω) then follow from inverse estimates.

THEOREM 6.2. We have

(6.2) κ(BTLÃh) =
λmax(BTLÃh)

λmin(BTLÃh)
≤ C min

(
(H/h)4, δ−4

)
,

where the positive constant C is independent of H , h, J , δ, and Ñh.
Proof. The following upper bound for the maximum eigenvalue of BTLÃh is again

standard [10, Lemma 1]:

λmax(BTLÃh) ≤ C̃],

where C̃] only depends on the number Nc in (4.2).
Let v ∈ Ṽh be arbitrary, v0 = R0v ∈ Ṽ0, and vj = Πh(ψj(v − v0)) ∈ Ṽj . We have

(6.3)
J∑
j=0

vj = v0 + Πh

[( J∑
j=1

ψj

)
(v − v0)

]
= v0 + (v − v0) = v,

and by (6.1),

a(v0, v0) = |R0v|2H2(Ω) ≤ 2|v −R0v|2H2(Ω) + 2|v|2H2(Ω)(6.4)

≤ C(1 +H4h−4)|v|2H2(Ω) ≤ CH
4h−4a(v, v).

Using (4.4d) and (6.1) we also find

J∑
j=1

a(vj , vj) =

J∑
j=1

|Πh(ψj(v − v0))|2H2(Ω) ≤ C
J∑
j=1

|ψj(v − v0)|2H2(Ω)

≤ C
J∑
j=1

2∑
k=0

|ψj |2W 2−k
∞ (Ω)

|v −R0v|2Hk(Dj)

≤ C
2∑
k=0

δ−2(2−k)
J∑
j=1

|v −R0v|2Hk(Dj)

≤ C
2∑
k=0

δ−2(2−k)|v −R0v|2Hk(Ω)

≤ C
(H4

δ4
+

H4

δ2h2
+
H4

h4

)
|v|2H2(Ω) ≤ C(H/h)4a(v, v).

(6.5)
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It follows from (6.3)–(6.5) that
J∑
j=0

a(vj , vj) ≤ C̃[(H/h)4a(v, v).

On the other hand, by taking v0 = 0 and vj = Πh(ψjv), for 1 ≤ j ≤ J , we have

J∑
j=0

a(vj , vj) ≤ C[δ−4a(v, v)

by (5.4). Hence the standard theory for additive Schwarz preconditioners implies that

λmin(BTLÃh) ≥ 1

min
(
C̃[(H/h)4, C[δ−4

) ·
Consequently the estimate (6.2) holds with C = C̃] max(C̃[, C[).

REMARK 6.3. The estimate (6.2) is different from the estimate for the plate bending
problem without obstacles that reads

κ(BTLAh) ≤ C
(H
δ

)4

.

This difference is caused by the necessity of a truncation in the construction of Ṽ0 when the
obstacle is present.

REMARK 6.4. Under the assumption that the subdomains D1, . . . , DJ are shape regular,
the estimate (6.2) can be improved to

(6.6) κ(BTLÃh) ≤ C min
(
(H/h)4, δ−3H−1

)
.

We will assume that this is the case in the discussion below.
The estimates (6.6) indicate that the two-level algorithm is scalable as long as the ratio

H/h remains bounded, and

the condition number for the two-level algorithm is (up to a constant) at least
as good as the one-level algorithm.

(6.7)

6.1. Small overlap. In the case of small overlap where δ ≈ h, we have

(H/h)4 � h−3H−1 if H5 � h,

which indicates that

κ(BTLÃh) < κ(BOLÃh)

for small H (or equivalently for large J) if h is kept fixed.
(6.8)

6.2. Generous overlap. In the case of generous overlap where δ ≈ H , we have the
following analog of (5.12):

κ(BTLÃh) remains constant as h decreases provided H (equivalently J)
is kept fixed.

(6.9)

Moreover, we have

(H/h)4 � H−4 if H2 � h,

which again indicates that

κ(BTLÃh) < κ(BOLÃh)

for small H (or equivalently for large J) if h is kept fixed.
(6.10)
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7. Numerical results. We consider the obstacle problem in [9, Example 4.2], where
Ω = (−0.5, 0.5)2, f = 0, and ψ(x) = 1 − 5|x|2 + |x|4. We discretize (1.1) by the PUM
using rectangular patches (cf. Figure 2.1) with h ≈ 2−`, where ` is the refinement level. As
` increases from 1 to 8, the number of degrees of freedom increases from 4 to 583696. The
discrete variational inequalities are solved by the primal-dual active set (PDAS) algorithm in
Section 3, where the constant c in (3.2) is taken to be 108.

FIG. 7.1. a) Graph for the obstacle function ϕ; b) Graph for the solution uh at refinement level 8.

Graphs for the obstacle function ϕ and the solution uh (at refinement level 8) are displayed
in Figure 7.1. The discrete active set (level 8) and the graph for the discrete Lagrange multiplier
λh (level 8) are given in Figure 7.2, where we observe that λh is positive along the boundary
of the contact set, i.e., the free boundary is the strongly active set.

FIG. 7.2. a) Discrete active set Ah at refinement level 8; b) Graph for the discrete Lagrange multiplier λh at
refinement level 8.

For the purpose of comparison, we first solve the auxiliary systems in each iteration of
the PDAS algorithm by the conjugate gradient (CG) method without a preconditioner. The
average condition number during the PDAS iteration and the time to solve the variational
inequality are presented in Table 7.1. The PDAS iterations fail to stop (DNC) within 48 hours
at level 8. We then solve the auxiliary systems by the preconditioned conjugate gradient (PCG)
method using the additive Schwarz preconditioners associated with J subdomains. The mesh
size H for the coarse generalized finite element space is ≈ 1/

√
J . We say the PCG method
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TABLE 7.1
Average condition number (κ) and time to solve the variational inequality (tsolve) by the CG algorithm.

` κ tsolve (sec)
1 1.0000× 100 8.4889× 10−2

2 2.8251× 102 1.1865× 10−1

3 6.2071× 103 8.7772× 10−1

4 9.3827× 104 9.7040× 10+0

5 1.7843× 106 1.1611× 10+2

6 3.0294× 107 4.3516× 10+3

7 4.9776× 108 9.8090× 10+4

8 8.0687× 109 DNC

has converged if ‖Br‖2 ≤ 10−15‖b‖2, where B is the preconditioner, r is the residual, and b
is the load vector. The initial guess for the PDAS algorithm is taken to be the solution at the
previous level or 0 if 22` = J . The subdomain problems and coarse problem are solved by a
direct method based on the Cholesky factorization.

7.1. Small overlap. In this case we have δ ≈ h. The numbers of PDAS iterations for
the one-level and two-level algorithms are given in Table 7.2. The results are similar. (The
numbers only differ at three locations where they appear in red.) For both algorithms, the
PDAS iterations fail to stop within 48 hours at level 8 when J = 4, which is due to the large
sizes of the subdomain problems.

TABLE 7.2
Number of PDAS iterations with small overlap.

J = 4 J = 16 J = 64 J = 256
` one-level two-level one-level two-level one-level two-level one-level two-level

1 1 1 - - - - - -
2 5 5 4 4 - - - -
3 12 12 12 12 14 14 - -
4 21 21 21 21 21 30 29 29
5 22 22 22 22 22 22 22 47
6 47 47 47 47 47 47 47 89
7 66 66 66 66 66 66 66 66
8 DNC DNC 64 64 64 64 64 64

The average condition numbers of the preconditioned auxiliary systems during the PDAS
iterations are reported in Tables 7.3 and 7.4. Comparing to the average condition number in
Table 7.1, both algorithms show marked improvement. The behavior of the condition numbers
for the one-level algorithm in Table 7.3 agrees with the observations in (5.8) and (5.9). A
comparison of Table 7.3 and Table 7.4 shows that

max
κ(BTLÃh)

κ(BOLÃh)
≈ 1.24,

where the maximum is taken over all the corresponding entries in Table 7.3 and Table 7.4,
which agrees with (6.7). Moreover, κ(BTLÃh) is smaller than κ(BOLÃh) for J large, as
observed in (6.8).

The time to solve for both algorithms is documented in Tables 7.5 and 7.6. To compare
the performance of these two algorithms, we have recorded in red the faster times that appear
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TABLE 7.3
Average condition number, one-level with small overlap.

` J = 4 J = 16 J = 64 J = 256

1 0.000× 10+0 - - -
2 3.950× 10+0 2.187× 10+0 - -
3 4.351× 10+0 6.395× 10+0 5.886× 10+0 -
4 4.928× 10+0 1.116× 10+1 2.301× 10+1 3.751× 10+1

5 9.825× 10+0 6.154× 10+1 1.057× 10+2 2.846× 10+2

6 2.489× 10+1 4.296× 10+2 8.012× 10+2 1.504× 10+3

7 1.441× 10+2 3.341× 10+3 6.397× 10+3 1.226× 10+4

8 1.053× 10+3 2.650× 10+4 5.135× 10+4 9.913× 10+4

TABLE 7.4
Average condition number, two-level with small overlap.

` J = 4 J = 16 J = 64 J = 256

1 0.000× 10+0 - - -
2 4.909× 10+0 2.486× 10+0 - -
3 5.161× 10+0 6.296× 10+0 6.219× 10+0 -
4 5.568× 10+0 1.235× 10+1 9.804× 10+0 3.880× 10+1

5 1.025× 10+1 5.147× 10+1 2.704× 10+1 1.097× 10+1

6 2.519× 10+1 3.268× 10+2 6.817× 10+1 3.508× 10+1

7 1.447× 10+2 1.164× 10+3 3.056× 10+2 7.647× 10+1

8 1.060× 10+3 8.726× 10+3 2.034× 10+3 3.401× 10+2

in Table 7.6. It is observed that the two-level algorithm is advantageous when h is small
and J is large, which agrees with the observation in (6.8). Comparing to the solution time
in Table 7.1, we see that the PCG using either preconditioner is much more efficient for the
large problems at higher refinement levels. At refinement level 7, the solution time for the
one-level algorithm using 256 subdomains is roughly 100 times faster than that for the CG
algorithm without a preconditioner, and the solution time for the two-level algorithm using
256 subdomains is roughly 200 times faster.

TABLE 7.5
Time to solve (in seconds), one-level with small overlap.

` J = 4 J = 16 J = 64 J = 256

1 8.1317× 10−2 - - -
2 3.8073× 10−1 1.0504× 10+0 - -
3 1.2931× 10+0 5.7371× 10+0 9.3857× 10+0 -
4 4.1499× 10+0 1.2460× 10+1 2.2179× 10+1 4.2931× 10+1

5 2.7210× 10+1 2.5699× 10+1 3.0170× 10+1 6.0450× 10+1

6 6.9396× 10+2 2.3698× 10+2 1.5836× 10+2 1.9689× 10+2

7 1.4585× 10+4 3.2359× 10+3 9.9417× 10+2 8.4106× 10+2

8 DNC 4.0802× 10+4 9.2843× 10+3 3.9043× 10+3

The averaged condition number for the PDAS iteration at refinement level 8 together
with the time to solve the variational inequality are displayed in Table 7.7 with an increasing
number of subdomains. The scalability of the algorithm is clearly observed.
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TABLE 7.6
Time to solve (in seconds), two-level with small overlap, where the entries in red represent faster times than

those in Table 7.5 (one-level).

` J = 4 J = 16 J = 64 J = 256

1 8.5648× 10−2 - - -
2 5.0521× 10−1 1.3693× 10+0 - -
3 1.8366× 10+0 7.8522× 10+0 1.1167× 10+1 -
4 5.0832× 10+0 1.7047× 10+1 3.9022× 10+1 6.7449× 10+1

5 2.8294× 10+1 3.2915× 10+1 4.1276× 10+1 1.9943× 10+2

6 6.9796× 10+2 2.6202× 10+2 1.6060× 10+2 4.0555× 10+2

7 1.4319× 10+4 3.0723× 10+3 7.8729× 10+2 4.3991× 10+2

8 DNC 3.9900× 10+4 6.3162× 10+3 1.1682× 10+3

TABLE 7.7
Average condition number (κ) and time to solve the variational inequality (tsolve) for the two-level algorithm

with small overlap at refinement level 8.

J κ tsolve (sec)
4 1.060× 10+3 DNC

16 8.726× 10+3 4.4624×10+4

64 2.034× 10+3 5.3898×10+3

256 3.401× 10+2 1.0143×10+3

7.2. Generous overlap. In this case we have δ ≈ H . The numbers of PDAS iterations
for the one-level and two-level algorithms are given in Table 7.8. The results are again similar.
(The numbers only differ at one location where they appear in red.) For both algorithms, the
PDAS iterations fail to stop within 48 hours at level 7 when we only use 4 subdomains and
at level 8 when we only use up to 16 subdomains. Comparing with Table 7.2, we clearly see
the adverse effect of the large overlap on the sizes of the subdomain problems and on the
communication time.

TABLE 7.8
Number of PDAS iterations with generous overlap.

J = 4 J = 16 J = 64 J = 256
` one-level two-level one-level two-level one-level two-level one-level two-level

1 1 1 - - - - - -
2 5 5 4 4 - - - -
3 12 12 12 12 14 14 - -
4 21 21 21 21 21 30 29 29
5 22 22 22 22 22 22 22 22
6 47 47 47 47 47 47 47 47
7 DNC DNC 66 66 66 66 66 66
8 DNC DNC DNC DNC 64 64 64 64

The average condition numbers of the preconditioned auxiliary systems observed during
the PDAS iterations are displayed in Tables 7.9 and 7.10. At refinement level 8, the average
condition numbers for the one-level preconditioner are less than 52, and those for the two-level
preconditioner are less than 16; a big improvement over the average condition number of
8× 109 for the auxiliary system itself.

The behavior of the condition numbers for the one-level algorithm in Table 7.9 agrees
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TABLE 7.9
Average condition number, one-level with generous overlap.

` J = 4 J = 16 J = 64 J = 256

1 0.000× 10+0 - - -
2 1.000× 10+0 2.187× 10+0 - -
3 1.000× 10+0 2.929× 10+0 5.886× 10+0 -
4 1.000× 10+0 2.695× 10+0 6.083× 10+0 3.751× 10+1

5 1.000× 10+0 2.712× 10+0 6.129× 10+0 4.914× 10+1

6 1.000× 10+0 2.693× 10+0 6.216× 10+0 5.020× 10+1

7 DNC 2.669× 10+0 6.289× 10+0 5.145× 10+1

8 DNC DNC 6.316× 10+0 5.207× 10+1

TABLE 7.10
Average condition number, two-level with generous overlap.

` J = 4 J = 16 J = 64 J = 256

1 0.000× 10+0 - - -
2 1.250× 10+0 2.486× 10+0 - -
3 1.250× 10+0 3.012× 10+0 6.219× 10+0 -
4 1.250× 10+0 2.785× 10+0 4.386× 10+0 3.880× 10+1

5 1.250× 10+0 2.729× 10+0 5.213× 10+0 1.164× 10+1

6 1.250× 10+0 2.696× 10+0 5.310× 10+0 1.342× 10+1

7 DNC 2.669× 10+0 5.653× 10+0 1.489× 10+1

8 DNC DNC 5.748× 10+0 1.663× 10+1

with the observations in (5.11) and (5.12). The behavior of the condition numbers for the
two-level algorithm in Table 7.10 also agrees with the observation in (6.9). A comparison of
Table 7.9 and Table 7.10 indicates that κ(BTLÃh) is smaller than κ(BOLÃh) for J large, as
observed in (6.10). Moreover, we have

max
κ(BTLÃh)

κ(BOLÃh)
≈ 1.25,

where the maximum is taken over all the corresponding entries in Table 7.9 and Table 7.10,
which agrees with (6.7).

The time to solve for both algorithms is presented in Tables 7.11 and 7.12. A comparison
of these two tables again indicates that the two-level algorithm is only advantageous when h is
small and J is large. For J = 64, this is observed for level 7 and 8. For J = 256, this is not
yet observed at level 8.

We also compare Table 7.5 (resp., Table 7.6) and Table 7.11 (resp.,Table 7.12) by recording
the faster times that appear in Table 7.11 (resp., Table 7.12) in red. It is observed that for a fixed
number of subdomains, the algorithm with generous overlap eventually loses its advantage as
the one with a better condition number because of the increase of communication time when
the mesh is refined.

8. Concluding remarks. We investigated two additive Schwarz domain decomposition
preconditioners for the auxiliary systems that appear in a primal-dual active algorithm for
the numerical solution of the obstacle problem for the clamped Kirchhoff plate, where the
discretization is based on a partition of unity generalized finite element method. The condition
number estimates for the one-level additive Schwarz preconditioner are identical to those for
the plate bending problem in the absence of an obstacle. On the other hand, the condition
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TABLE 7.11
Time to solve (in seconds), one-level with generous overlap, where the entries in red represent faster times in

comparison with those in Table 7.5 (small overlap).

` J = 4 J = 16 J = 64 J = 256

1 1.0883× 10−1 - - -
2 3.5694× 10−1 1.0510× 10+0 - -
3 1.0364× 10+0 6.0472× 10+0 9.1838× 10+0 -
4 6.9156× 10+0 1.4521× 10+1 1.8781× 10+1 4.1750× 10+1

5 1.1226× 10+2 6.4720× 10+1 2.8115× 10+1 4.3907× 10+1

6 4.2799× 10+3 1.5403× 10+3 2.2077× 10+2 1.2364× 10+2

7 DNC 3.2500× 10+4 3.5810× 10+3 5.1525× 10+2

8 DNC DNC 5.6323× 10+4 3.9372× 10+3

TABLE 7.12
Time to solve (in seconds), two-level with generous overlap, where the entries in red represent faster times in

comparison with those in Table 7.6 (small overlap).

` J = 4 J = 16 J = 64 J = 256

1 7.7797× 10−2 - - -
2 3.9949× 10−1 1.3328× 10+0 - -
3 1.1620× 10+0 7.1329× 10+0 1.0951× 10+1 -
4 7.4408× 10+0 1.7123× 10+1 3.2808× 10+1 5.7805× 10+1

5 1.1291× 10+2 6.7401× 10+1 3.3208× 10+1 8.2053× 10+1

6 4.0284× 10+3 1.5499× 10+3 2.2770× 10+2 1.4431× 10+2

7 DNC 3.2466× 10+4 2.9299× 10+3 5.2275× 10+2

8 DNC DNC 4.0677× 10+4 4.7345× 10+3

number estimates for the two-level additive Schwarz preconditioner are different because the
creation of the coarse problem requires a truncation procedure at the fine level. The theoretical
estimates are confirmed by numerical results, which also indicate that for large problems the
best performance (in terms of time to solve) is obtained by the two-level algorithm with small
overlap.

In our computations we solve the subdomain problems and the coarse problem using a
direct solve based on the Cholesky factorizations of the matrices. Because the active set and
hence the matrices change from one PDAS iteration to the next, we have to recompute the
Cholesky factorization during each PDAS factorization, which is time consuming for large
matrices. Since the change in the active set eventually becomes small, the performance of
our method can be improved by using a fast modification of the Cholesky factorization that
is discussed for example in [16, 17, 18]. Similar additive Schwarz domain decomposition
preconditioners for elliptic optimal control problems can be found in [11].
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