
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 49, pp. 244–273, 2018.
Copyright c© 2018, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol49s244

NONLINEAR BDDC METHODS WITH APPROXIMATE SOLVERS∗

AXEL KLAWONN†‡, MARTIN LANSER†‡, AND OLIVER RHEINBACH§

Abstract. New nonlinear BDDC (Balancing Domain Decomposition by Constraints) domain decomposition
methods using inexact solvers for the subdomains and the coarse problem are proposed. In nonlinear domain
decomposition methods, the nonlinear problem is decomposed before linearization to improve concurrency and
robustness. For linear problems, the new methods are equivalent to known inexact BDDC methods. The new
approaches are therefore discussed in the context of other known inexact BDDC methods for linear problems.
Relations are pointed out, and the advantages of the approaches chosen here are highlighted. For the new approaches,
using an algebraic multigrid method as a building block, parallel scalability is shown for more than half a million
(524 288) MPI ranks on the JUQUEEN IBM BG/Q supercomputer (JSC Jülich, Germany) and on up to 193 600 cores
of the Theta Xeon Phi supercomputer (ALCF, Argonne National Laboratory, USA), which is based on the recent
Intel Knights Landing (KNL) many-core architecture. One of our nonlinear inexact BDDC domain decomposition
methods is also applied to three-dimensional plasticity problems. Comparisons to standard Newton-Krylov-BDDC
methods are provided.

Key words. nonlinear BDDC, nonlinear domain decomposition, nonlinear elimination, Newton’s method,
nonlinear problems, parallel computing, inexact BDDC, nonlinear elasticity, plasticity

AMS subject classifications. 68W10, 68U20, 65N55, 65F08, 65Y05

1. Introduction. Nonlinear BDDC (Balancing Domain Decomposition by Constraints)
domain decomposition methods were introduced in [24] for the parallel solution of nonlinear
problems and can be viewed as generalizations of the well-known family of BDDC methods
for linear elliptic problems [11, 15, 35, 37]. They can also be seen as nonlinearly right-
preconditioned Newton methods [30]. Classical, linear BDDC methods are closely related to
the earlier linear FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal) methods,
e.g., [18, 33, 41]. The connection of nonlinear FETI-DP and nonlinear BDDC methods is
weaker [24].

In our nonlinear BDDC method with inexact solvers, the nonlinear problem

A(ū) = 0

is first reduced to the interface Γ by a nonlinear elimination of all degrees of freedom in the
interior of the subdomains. This results in a nonlinear Schur complement operator (see (2.9))

SΓ(uΓ),

defined on the interface. After a Newton linearization, the tangent DSΓΓ of the nonlinear
Schur complement SΓ (see (2.16)) can then be preconditioned by a BDDC preconditioner;
cf. [24, Sections 4.2 and 4.3]. As opposed to [24], however, in this paper we will return to an
equivalent formulation using the tangent DA of the original operator A in order to apply a
BDDC method with inexact subdomain solvers. Moreover, we will write our nonlinear BDDC
method in the form of a nonlinearly right-preconditioned Newton method; see Section 2.2.

∗Received July 31, 2017. Accepted October 12, 2018. Published online on December 19, 2018. Recommended
by Martin J. Gander. This work was supported in part by Deutsche Forschungsgemeinschaft (DFG) through the
Priority Programme 1648 "Software for Exascale Computing" (SPPEXA) under grants KL 2094/4-1, KL 2094/4-2,
RH 122/2-1, and RH 122/3-2.
†Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Köln, Germany

({axel.klawonn, martin.lanser}@uni-koeln.de).
‡Center for Data and Simulation Science, University of Cologne, Germany.
§Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und Informatik, Technische

Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg
(oliver.rheinbach@math.tu-freiberg.de).

244

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol49s244

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 245

Nonlinear BDDC and FETI-DP methods are related to nonlinear FETI-1 methods [39]
and nonlinear Neumann-Neumann methods [6]. Other nonlinear domain decomposition (DD)
methods are the ASPIN (Additive Schwarz Preconditioned Inexact Newton) method [9, 10, 19,
20, 22, 23] and RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) [17].

In the nonlinear DD methods in [24, 30], exact solvers are used to solve the linearized
local subdomain problems and the coarse problem. As for linear DD methods, this can limit
the parallel scalability. For linear problems, these limits have been overcome by using efficient
preconditioners for the coarse problem [32, 38, 42] or the local subdomain problems [16, 32,
34]. The currently largest range of weak parallel scalability of a domain decomposition method
(to almost 800 000 processor cores) was achieved for elasticity in [27] by a combination of a
nonlinear FETI-DP method [24] with an inexact solver for the coarse problem [26, 32] using
the complete Mira supercomputer at Argonne National Laboratory (USA). Similar results
were achieved for a BDDC method for scalar elliptic problems using an inexact solver for the
coarse problem [2].

The present paper extends the nonlinear BDDC methods from [24, 30] by a combination
of different inexact BDDC approaches. For linear problems, the new inexact methods are,
depending on the choice of the linear preconditioner, equivalent to one of the inexact BDDC
methods introduced in [36] and related to the preconditioners introduced in [16].

One nonlinear BDDC variant is closely related to a recent nonlinear FETI-DP method with
inexact solvers (proposed in [28]), which has already been tested for more than half a million
MPI ranks on the JUQUEEN supercomputer (Jülich Supercomputing Centre, Germany).
At the core of both of these methods, i.e., the one proposed here and the nonlinear FETI-
DP method [28], is the choice of an efficient parallel preconditioner for the DK̃ operator;
see (2.20) in Section 2.3. For this, we will choose a parallel AMG (algebraic multigrid)
method [21], which has scaled to more than half a million MPI ranks for linear elasticity by
itself [3].

2. Nonlinear BDDC. In this section, we first present the nonlinear BDDC method as
introduced in [24] and then derive our new nonlinear BDDC method with inexact solvers.

2.1. A nonlinear finite element problem. Let Ω ⊂ Rd, d = 2, 3, be a computa-
tional domain and Ωi, i = 1, . . . , N, a nonoverlapping domain decomposition such that
Ω =

⋃N
i=1 Ωi. Each subdomain Ωi is discretized by finite elements, the corresponding local

finite element spaces are denoted by Wi, i = 1, . . . , N , and the product space is defined
by W = W1 × · · · ×WN . We further define the global finite element space corresponding
to Ω by V h = V h(Ω) and the isomorphic space Ŵ ⊂W of all functions from W which are
continuous in all interface variables between the subdomains. The interface can be written as
Γ :=

⋃N
i=1 ∂Ωi \ ∂Ω. We are interested in solving a nonlinear problem

(2.1) A(ū) = 0

in the global finite element space V h. In our context, it is useful to reformulate problem (2.1)
using local nonlinear finite element problems

Ki(ui) = fi

in the local subdomain finite element spaces Wi, i = 1, . . . , N . Here, we have ui ∈ Wi,
Ki : Wi →Wi, and the right-hand sides fi contain all terms that are independent of ui, e.g.,
static volume forces. These local problems originate from the finite element discretization of a
nonlinear partial differential equation on the subdomains. The explicit form of Ki(ui) and fi
is strongly problem dependent. A detailed description how to obtain Ki(ui) and fi for a given

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

246 A. KLAWONN, M. LANSER, AND O. RHEINBACH

TABLE 2.1
Properties of a good nonlinear preconditioner N .

1. N : V h → U ⊂ V h,
2. the solution g∗ of A(g∗) = 0 is in the range of N ,
3. N puts the current iterate into the neighborhood of the solution; see also [8], and
4. N(ū) is easily computable compared to the inverse action of A(ū).

nonlinear differential equation is presented in [24, Section 5.1]. There, we use the p-Laplace
equation as a model problem.

Using restriction operators Ri : V h →Wi, i = 1, . . . N , and the notation

K(u) :=

 K1(u1)
...

KN (uN)

 , f :=

 f1

...
fN

 , u :=

u1

...
uN

 , R :=

R1

...
RN

 ,
we can write (2.1) in the form

(2.2) RTK(Rū)−RT f︸ ︷︷ ︸
=A(ū)

= 0.

Using (2.2) and the chain rule, we can assemble the Jacobian matrix DA(ū) of A(ū) using
the local tangential matrices DKi(Riū), i = 1, . . . , N , i.e.,

(2.3) DA(ū) = RT DK(Rū) R,

where

DK(Rū) =

DK1(R1ū)
. . .

DKN (RN ū)

is the block-diagonal matrix of the local subdomain tangential matrices.

2.2. Nonlinear BDDC methods. After having introduced a nonlinear problem and some
useful notation, we now define a nonlinear BDDC algorithm.

In the standard Newton-Krylov-BDDC method, problem (2.1) is first linearized and then
solved by a Krylov subspace method using a BDDC domain decomposition preconditioner con-
structed for the tangent matrix. Instead, we consider the decomposed nonlinear problem (2.2)
and insert a nonlinear right preconditioner, which represents the nonlinear elimination of
subdomain interior variables.

We have recently introduced a unified framework which allows to compress all nonlinear
FETI-DP and BDDC methods into a single algorithm; see [30] for a more detailed description
of nonlinear preconditioning in FETI-DP and BDDC methods. We briefly summarize the
general ideas from [30] for better readability. Instead of solving (2.2) by Newton’s method,
we solve the nonlinearly preconditioned system

(2.4) A(N(ū)) = 0,

where N is a nonlinear preconditioner fulfilling the properties shown in Table 2.1.
Applying Newton’s method to (2.4) and applying a BDDC preconditioner to the tangent

leads to the nonlinear BDDC algorithm presented in Algorithm 1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 247

Algorithm 1: Nonlinear BDDC algorithm; taken from [30].

Init: ū(0)

Iterate over k:
Compute: g(k) := N(ū(k))
If ||A(g(k))|| sufficiently small

break; /* Convergence of nonlinear right-preconditioned method */
Solve iteratively with some linear BDDC preconditioner:
DA(g(k))DN(ū(k)) δū(k) = A(g(k))
Update: ū(k+1) := ū(k) − α(k)δū(k)

End Iteration

Let us remark that the choice of the nonlinear preconditioner N and the linear BDDC
preconditioner to solve the linearized system DA(g(k))DN(ū(k)) δū(k) = A(g(k)) in Al-
gorithm 1 are independent of each other and thus will be discussed separately. As with all
right-preconditioned methods, we are searching for a solution g∗ = N(ū∗) of A(g∗) = 0 but
are technically not interested in ū∗. The existence of g∗ has to be guaranteed, which requires
Assumption 2 in Table 2.1 to be fulfilled.

2.3. Choosing a nonlinear preconditioner. We will now discuss two different choices
for the nonlinear right preconditioner N .

The Newton-Krylov method. The trivial choice

N(ū) = NNK(ū) := ū

reduces to the well-known Newton-Krylov-BDDC (NK-BDDC) approach. The NK-BDDC
method will be used as a baseline to which we can compare our new parallel implementation
of the nonlinear BDDC method (NL-BDDC) with inexact solvers.

The nonlinear Schur complement method. As in [24], a nonlinear elimination of all
degrees of freedom in the interior of the subdomains is performed before linearization. To
derive NL-BDDC within our framework, we first have to decompose and sort all degrees of
freedom in the interior part of all subdomains (I) and the interface (Γ), which is also common
in linear domain decomposition methods. We obtain

(2.5) A(ū) =

[
AI(ū)

AΓ(ū)

]
=

[
KI(Rū)− fI

RT
ΓKΓ(Rū)−RT

ΓfΓ

]
= RTK(Rū)−RT f,

where

RT =

[
I 0
0 RT

Γ

]
.

For the tangent DA(ū) (see (2.3)) we have the following block form of the tangential matrix

(2.6) DA(ū) =

[
DKII(Rū) DKIΓ(Rū)RΓ

RT
ΓDKΓI(Rū) RT

ΓDKΓΓ(Rū)RΓ

]
.

We now define the second nonlinear preconditioner implicitly by the first line of (2.5),
i.e.,

(2.7) KI(NNL,I(ū), RΓūΓ)− fI = 0,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

248 A. KLAWONN, M. LANSER, AND O. RHEINBACH

where ū = (ūTI , ū
T
Γ)T and NNL is then defined as

(2.8) N(ū) = NNL(ū) := (NNL,I(ū)T , ūTΓ)T .

It follows from (2.7) that the nonlinear right preconditioner NNL removes the nonlinear
residual in the interior of the subdomains. It represents the nonlinear elimination of the
subdomain interior variables uI . The nonlinear operator

(2.9)
[

0
SΓΓ(ūΓ)

]
= A(NNL(u))

represents the nonlinear Schur complement on the interface Γ; see [24, eq. (4.11)].
Details of the nonlinear Schur complement method. In each step the computation of

g(k) := NNL(ū(k)) in Algorithm 1 is performed using an inner Newton iteration

g
(k)
I,l+1 := g

(k)
I,l + δg

(k)
I,l ,

converging to g(k)
I , with

(2.10) δg
(k)
I,l := −

(
DK(g

(k)
I,l)II

)−1 (
KI(g

(k)
I,l , RΓū

(k)
Γ)− fI

)
,

and g(k) = (g
(k)
I , ū

(k)
Γ). Since (2.7) exclusively operates on interior degrees of freedom, the

inner Newton iteration can be carried out on each subdomain individually and thus in parallel.
We will now take a closer look at the linear system

(2.11) DA(g(k))DNNL(ū(k)) δū(k) = A(g(k)),

which is obtained from a Newton linearization of the right-preconditioned nonlinear sys-
tem (2.4). Using (2.6), (2.7), and the chain rule, it can be easily verified that

DA(g(k)) =

[
DKII(Rg(k)) DKIΓ(Rg(k))RΓ

RT
ΓDKΓI(Rg(k)) RT

ΓDKΓΓ(Rg(k))RΓ

]
,(2.12)

DNNL(ū(k)) =

[
0 −DK−1

II (Rg(k))DKIΓ(Rg(k))RΓ

0 I

]
,(2.13)

and

A(g(k)) =

[
0

RT
ΓKΓ(Rg(k))−RT

ΓfΓ

]
.(2.14)

Using δū(k) = (δū
(k)
I , δū

(k)
Γ), (2.12), (2.13), and (2.14), our equation (2.11) becomes

(2.15)
[
0 0
0 DSΓΓ(g(k))

] [
δū

(k)
I

δū
(k)
Γ

]
=

[
0

RT
ΓKΓ(Rg(k))−RT

ΓfΓ

]
,

where

DSΓΓ(g(k)) :=

RT
ΓDKΓΓ(Rg(k))RΓ −RT

ΓDKΓI(Rg(k))
(
DKII(Rg(k))

)−1

DKIΓ(Rg(k))RΓ

(2.16)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 249

is the Schur complement of the tangential matrix on the interface Γ. The operator DSΓΓ

can also be viewed, by the implicit function theorem, as the tangent of the nonlinear Schur
complement in (2.9); see [24]. A solution of (2.15) can be obtained by solving the Schur
complement system

DSΓΓ(g(k)) δū
(k)
Γ = RT

ΓKΓ(Rg(k))−RT
ΓfΓ.

Since ūI has been eliminated, we can choose an arbitrary value for δū(k)
I . Indeed, δū(k)

I is
only used as an update for the initial value for the computation of g(k+1)

I . Let us remark that
we obtain the original nonlinear BDDC method as suggested in [24] by choosing δū(k)

I = 0.
A formulation allowing the use of an inexact BDDC method. In this paper, we decide

to use a slightly different approach and return to the full system (2.11) instead of the Schur
complement system (2.15). To be able to use inexact linear BDDC preconditioners, which
have to be applied to the completely assembled tangential matrix DA(·), we remove the inner
derivative DNNL(·) in the system (2.11) and simply solve

(2.17) DA(g(k)) δū(k) = A(g(k))

instead. It can easily be seen that, because of the identity block in (2.13), this does not
change the update δū(k)

Γ of the interface variables. The Newton step is thus not changed using
this modification. However, by solving (2.17), we also compute a δū(k)

I in the interior of
the subdomains. We use this to improve the initial value for the computation of g(k+1) by
performing the optional update g(k)

I + δū
(k)
I . We have found that this strategy can lead to

significant improvements in practice, i.e., less inner Newton iterations and improved robustness.
Omitting the interior update is, in our experience, never beneficial and therefore we will not
discuss this in detail in this paper. Nonetheless, we give a brief example in Figure 4.9.

2.4. Choosing a linear BDDC preconditioner. In this section, we discuss how to pre-
condition the linearized system DA(g(k)) δū(k) = A(g(k)) (see (2.17)), which is solved by a
Krylov subspace method. We consider the version of the BDDC method which is applied to
the assembled operator DA(g(k)), whereas the original BDDC preconditioner [11, 15, 35, 37]
is applied to the Schur complement DSΓΓ(g(k)).

For the construction of linear BDDC preconditioners applicable to the assembled linear
system DA(g(k)) = RTDK(Rg(k))R, we have to further subdivide the interface Γ into
primal (Π) and the remaining dual (∆) degrees of freedom. Partial finite element assembly in
the primal variables is used to enforces continuity in these degrees of freedom. The primal
variables usually represent vertices of subdomains but can also represent edge or face averages
after a change of basis; see, e.g., [24, 35] and the references therein. Let us therefore introduce
the space W̃ ⊂ W of functions which are continuous in all primal variables as well as the
corresponding restriction operator R : W̃ →W . The partially assembled tangential system is
then obtained in the usual fashion by

DK̃(g(k)) := R
T
DK(Rg(k))R.

With a scaled operator R̃D : V h → W̃ , we can define a first BDDC-type preconditioner by

(2.18) M−1
1 (g(k)) := R̃T

D

(
DK̃(g(k))

)−1

R̃D

as suggested in [36, p. 1417]. The operator R̃D is obtained from the restriction R̃ : V h → W̃
by multiplying each row of R̃, which corresponds to a dual variable, by the inverse of

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

250 A. KLAWONN, M. LANSER, AND O. RHEINBACH

the multiplicity, i.e., the number of subdomains which the corresponding physical node
belongs to. The linear preconditioner M−1

1 can be interpreted as a lumped version of the
standard BDDC preconditioner since, following [36, Theorem 2], the preconditioned system
M−1

1 (g(k))DA(g(k)) has, except for some eigenvalues equal to 0 and 1, the same eigenvalues
as the preconditioned FETI-DP system with a lumped preconditioner. This preconditioner
reduces the computational cost per iteration but also results in a linear factor of Hs/h in the
condition number estimate and thus often in slow convergence. It should only be used when
memory is scarce.

To obtain a more robust BDDC preconditioner for the assembled system DA(g(k)), we
have to include discrete harmonic extensions of the jump on the interface to the interior part of
the subdomains. First, we define a discrete harmonic extension operator H : W̃ → V h by

(2.19) H(g(k)) :=

[
0 −

(
DK(g(k))II

)−1
DK̃(g(k))TΓI

0 0

]
,

where DK(g(k))II and DK̃(g(k))ΓI are blocks of the partially assembled tangential matrix

(2.20) DK̃(g(k)) =

[
DK(g(k))II DK̃(g(k))TΓI

DK̃(g(k))ΓI DK̃(g(k))ΓΓ

]
.

Let us remark that the matrix DK(g(k))II is block-diagonal, and thus applications of(
DK(g(k))II

)−1
only require local solves on the interior parts of the subdomains and are

easily parallelizable.
We also define the jump operator PD : W̃ → W̃ by

(2.21) PD = I − ED := I − R̃R̃T
D.

This jump operator is standard in the FETI-DP theory, and it is there usually defined as
PD = BT

DB; see [41, Chapter 6] and [36] for more details. Here, B is the standard jump
matrix with exactly one 1 and one −1 per row, and each row corresponds to a jump between
two degrees of freedom belonging to the same physical quantity but different subdomains. In
BD, the indexD represents the usual scaling. We now define the second BDDC preconditioner
introduced by Li and Widlund in [36, eq. (8)] as

(2.22) M−1
2 (g(k)) :=

(
R̃T

D −H(g(k))PD

)(
DK̃(g(k))

)−1 (
R̃D − PT

DH(g(k))T
)
.

The preconditioned system M−1
2 (g(k))DA(g(k)) has, except for some eigenvalues equal to

0 and 1, the same eigenvalues as the standard BDDC preconditioner applied to the Schur
complement; see [36, Theorem 1] for a proof. Therefore, under sufficient assumptions
(see [36, Assumption 1]), the condition number κ of the preconditioned system is bounded by

κ(M−1
2 (g(k))DA(g(k))) ≤ Φ(Hs, h).

The exact form of the function Φ(Hs, h) depends on the problem and the choice of the primal
constraints, e.g., if for a homogeneous linear elasticity problem appropriate primal constraints
are chosen, then we obtain the well-known condition number bound
Φ(Hs, h) = C(1 + log(Hs/h))2. Here, Hs always denotes the maximal diameter of all
subdomains and h the maximal diameter of all finite elements.

The computational kernels of the exact BDDC preconditioner M−1
2 consist of sparse

direct solvers to compute the action a) of DK−1
II (see (2.19)), which represents harmonic

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 251

extensions to the interior of the subdomains and b) of DK̃−1 (see (2.22)), which represents
the solution of subdomain problems coupled in the primal unknowns. The step b) can be
implemented by b1) applying a sparse direct solver to compute the action of DK̃−1

BB and by
b2) applying a sparse direct solver to solve the coarse problem, i.e., DS̃−1

ΠΠ; see, e.g., (2.28).
Here, DK̃BB is the non-primal block in (2.27) andDS̃ΠΠ the Schur complement in the primal
variables defined in (2.29). In the inexact BDDC variants presented in the literature, the sparse
direct solvers are replaced by approximations; see the following sections.

2.5. Using inexact solvers—implemented variants. In this section, we describe those
variants of nonlinear BDDC methods using inexact solvers which we implemented in our
parallel software; see Table 2.2. We start with the variants proposed by Li and Widlund [36].

In this paper, we assume DK̂(g(k)) to be a spectrally equivalent preconditioner for
DK̃(g(k)) (as in inexact FETI-DP [32, Section 6.1]) and DK̂(g(k))II to be spectrally equiv-
alent to DK(g(k))II . In our numerical experiments, DK̂(g(k))−1 and DK̂(g(k))−1

II are im-
plemented by a fixed number of algebraic multigrid (AMG) V-cycles to replace DK̃(g(k))−1

and DK(g(k))−1
II , respectively. Let us remark that DK̂(g(k))−1 requires an MPI parallel

implementation of an AMG method, whereas for DK̂(g(k))−1
II a sequential AMG implemen-

tation on each subdomain (and thus processor core or hardware thread) is sufficient, due to the
favorable block-diagonal structure of DK(g(k))II .

Replacing DK(g(k))−1
II in H by DK̂(g(k))−1

II as suggested in [36, Section 7], we obtain
the inexact discrete harmonic extension

(2.23) Ĥ(g(k)) :=

[
0 −

(
DK̂(g(k))II

)−1

DK̃(g(k))TΓI

0 0

]
,

which is an approximation of the discrete harmonic extension operator H .
We can now define a linear inexact BDDC preconditioner to be applied to the tangent

system (2.17). Finally, the inexact linear lumped BDDC preconditioner is defined as

(2.24) M̂−1
1 (g(k)) := R̃T

D

(
DK̂(g(k))

)−1

R̃D

and the inexact linear BDDC preconditioner as

(2.25) M̂−1
2 (g(k)) :=

(
R̃T

D − Ĥ(g(k))PD

)(
DK̂(g(k))

)−1 (
R̃D − PT

DĤ(g(k))T
)
,

where DK̂ is assumed to be spectrally equivalent to DK̃, and Ĥ is the inexact harmonic
extension (2.23), where we assume DK̂(g(k))II to be spectrally equivalent to DK̂II .

Let us remark that in NL-BDDC, the computation of g(k) := NNL(ū(k)) requires the
solution of (2.7) in each Newton step. This is performed by an inner Newton iteration, and
in each of the Newton steps, the linear system defined in (2.10) has to be solved. A Krylov
subspace method using DK̂(g(k))−1

II as a preconditioner is used to solve (2.10).
Of course, also sparse direct solvers can be used for the discrete harmonic extensions,

e.g., using H(g(k)) instead of Ĥ(g(k)), which defines

(2.26) M̂−1
2,EDHE(g(k)) :=

(
R̃T

D −H(g(k))PD

)(
DK̂(g(k))

)−1 (
R̃D − PT

DH(g(k))T
)
.

Here, the abbreviation EDHE marks the use of exact discrete harmonic extensions, i.e., by
using a sparse direct solver. This preconditioner allows us to study the effect of replacing
DK̃−1 by DK̂−1 separately from the harmonic extensions.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

252 A. KLAWONN, M. LANSER, AND O. RHEINBACH

Using a block factorization. We can represent the inverse of

(2.27) DK̃(g(k)) =

[
DK(g(k))BB DK̃(g(k))TΠB

DK̃(g(k))ΠB DK̃(g(k))ΠΠ

]

in block form as

(2.28) DK̃−1 =

[
DK−1

BB 0
0 0

]
+

[
−DK−1

BBDK̃
T
ΠB

I

]
DS̃−1

ΠΠ

[
−DK̃ΠBDK

−1
BB I

]
,

where DS̃ΠΠ is the Schur complement

(2.29) DS̃ΠΠ = DK̃ΠΠ −DK̃ΠB (DKBB)
−1
DK̃T

ΠB

representing the BDDC coarse operator. The operator DS̃ΠΠ is identical to the coarse matrix
DKC frequently used in [16] and [1]. Defining approximations DŜ−1

ΠΠ for DS̃−1
ΠΠ and using

the block factorization (2.28), we introduce

(2.30) D
̂̂
K

−1

=

[
DK−1

BB 0
0 0

]
+

[
−DK−1

BBDK̃
T
ΠB

I

]
DŜ−1

ΠΠ

[
−DK̃ΠBDK

−1
BB I

]
.

Replacing DK̂−1 and Ĥ in (2.25) by D ̂̂K−1

and H , respectively, we define the next inexact
BDDC preconditioner,

(2.31) M̂−1
3 :=

(
R̃T

D −HPD

)(
D
̂̂
K

)−1 (
R̃D − PT

DH
T
)
.

In M̂−1
3 , we use direct sparse solvers on the subdomains, i.e., for DK−1

BB and DK−1
II , and

thus we can afford to form the exact coarse Schur complement DS̃ΠΠ; see (2.30). The inverse
DS̃−1

ΠΠ is then computed inexactly using algebraic multigrid; see (2.30). This approach hence
corresponds to the highly scalable irFETI-DP method [26, 33]. In this inexact BDDC, null
space corrections are not necessary. Note that for null space corrections, a basis of the null
space has to be known explicitly; for many applications beyond scalar diffusion this is not the
case.

Note that the use of the factorization (2.28) was proposed for one of the variants of inexact
FETI-DP methods; see [32, formula (8)]. The same factorization has been used earlier for the
construction of inexact domain decomposition methods; see, e.g., [41, Chapter 4.3]. Let us
finally list all implemented variants in Table 2.2.

2.6. Comparison with other inexact BDDC algorithms. Independently of Li and Wid-
lund [36], three different inexact BDDC methods for linear problems have been introduced by
Dohrmann in [16]. These approaches are competing with the inexact BDDC method by Li
and Widlund [36] and our inexact FETI-DP methods, which were introduced in [32] at about
the same time. All these efforts were driven by the scalability limitations of exact FETI-DP
and BDDC methods, which became apparent on a new generation of supercomputers.

The full potential of inexact iterative substructuring approaches was then first demon-
strated for the inexact FETI-DP methods, which were found to be highly scalable for linear and
nonlinear problems on large supercomputers [26, 33] and which later scaled to the complete
JUQUEEN and Mira supercomputers [27]. Recently, in [1], Badia et al. presented an imple-
mentation of an inexact BDDC preconditioner based on [16], which is also highly scalable.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 253

TABLE 2.2
Implemented variants of Inexact BDDC Preconditioners for DA.

Application of DK̃−1 Application of H Name

Exact computation
using (2.28) and sparse direct
solvers for DK−1

BB and S̃−1
ΠΠ

Lumped variant and thus no dis-
crete harmonic extension is used

M−1
1 ; see (2.18)

Inexact computation
using a single BoomerAMG
V-cycle to approximate DK̃−1

Lumped variant and thus no dis-
crete harmonic extension is used

M̂−1
1 ; see (2.24)

Exact computation
using (2.28) and sparse direct
solvers for DK−1

BB and S̃−1
ΠΠ

Exact computation
using sparse direct solvers for
DK−1

II

M−1
2 ; see (2.22)

Inexact computation
using a single BoomerAMG
V-cycle to approximate DK̃−1

Exact computation
using sparse direct solvers for
DK−1

II

M̂−1
2,EDHE ; see (2.26)

Inexact computation
using a single BoomerAMG
V-cycle to approximate DK̃−1

Inexact computation
using BoomerAMG to approximate
DK−1

II ; see (2.23)
M̂−1

2 ; see (2.25)

Inexact computation
using (2.28) and sparse direct
solvers for DK−1

BB but a single
BoomerAMG V-cycle to approxi-
mate S̃−1

ΠΠ; see (2.30)

Exact computation
using sparse direct solvers for
DK−1

II

M̂−1
3 ; see (2.31)

Even more recently, Zampini [44] presented an inexact BDDC code, which also implements
the approach from [16] efficiently in parallel.

Note that these two recent parallel inexact BDDC implementations [1] and [44] need
to apply a null space correction in every iteration of the preconditioner since they are based
on [16], where a null space property [16, eq. (48)] is necessary for the two variants covered
by the theory. This requires a basis for the null space to be known. In our implementation
presented in this paper, however, it is not necessary to use a null space correction. Also in our
FETI-DP methods with inexact subdomain solvers (iFETI-DP) [31, 32], a null space correction
is not necessary.

We will review all these BDDC variants and present them in our notation in the following
sections, i.e., Section 2.6.1 and Section 2.6.2.

2.6.1. Equivalence of approaches in the case of exact solvers. In this section, we
will discuss that, if exact solvers are used, the approaches by Li and Widlund [36] and
Dohrmann [16] are equivalent. As a consequence, for exact solvers, the approaches in Badia
et al. [1] and in Zampini [44] are also equivalent since they are both based on Dohrmann [16].
Later, in Section 2.6.2, we discuss differences when inexact solvers are used.

First, we need another representation of the assembled tangential matrix, i.e.,

DA = R̃T (DK̃)R̃ =

[
DKII DK̃T

ΓI R̃Γ

R̃T
Γ DK̃ΓI R̃T

Γ DK̃ΓΓ R̃Γ

]
.

Keep in mind that the BDDC preconditioner for the full matrix using exact solvers in [16,
eq. (5)] (and the identical one in [1, eq. (13)]) can be written in our notation as

(2.32) M−1
3 = PI +H R̃T

D

(
DK̃

)−1

R̃DHT ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

254 A. KLAWONN, M. LANSER, AND O. RHEINBACH

with a correction on the interior part of the subdomains PI : V h → V h defined by

PI :=

[
DK−1

II 0
0 0

]
and a discrete harmonic extensionH : V h → V h defined by

H :=

[
0 −DK−1

II DK̃
T
ΓIR̃Γ

0 I

]
.

We will now reduce both M−1
3 and M−1

2 to the same block-system and thus show the
equivalence of the two preconditioners.

The inverse of DK̃ has the well-known representation

(2.33) DK̃−1 = PI +

[
−DK−1

II DK̃
T
ΓI

I

]
DS̃−1

ΓΓ

[
−DK̃ΓIDK

−1
II I

]
,

where the Schur complement on the interface is defined by

DS̃ΓΓ = DK̃ΓΓ −DK̃ΓIDK
−1
II DK̃

T
ΓI .

Inserting (2.33) into (2.32) and by a simple computation, we obtain

(2.34) M−1
3 = PI +

[
−DK−1

II DK̃
T
ΓIED,Γ

R̃T
D,Γ

]
DS̃−1

ΓΓ

[
−ET

D,ΓDK̃ΓIDK
−1
II R̃D,Γ

]
,

using the fact that

R̃D =

[
I 0

0 R̃D,Γ

]
and defining the averaging operator ED,Γ = R̃ΓR̃

T
D,Γ.

Let us now reduce M−1
2 as defined in (2.22) to the same form. Combining the definition

of ED,Γ and the definition of PD from (2.21), we can write

(2.35) PD =

[
0 0
0 I − ED,Γ

]
.

Combining (2.35) and (2.19), we obtain by a direct computation

(2.36) R̃T
D −H PD =

[
I DK−1

II DK̃
T
ΓI(I − ED,Γ)

0 R̃T
D,Γ

]
for the first factor in (2.22). Inserting (2.33) into (2.22), we see that

(R̃T
D −H PD)PI(R̃D − PT

D HT) = PI ,

and, secondly, from (2.36) that

(R̃T
D −H PD)

[
−DK−1

II DK̃
T
ΓI

I

]
=

[
−DK−1

II DK̃
T
ΓIED,Γ

R̃T
D,Γ

]
.

Combining all, we have

(2.37) M−1
2 = PI +

[
−DK−1

II DK̃
T
ΓIED,Γ

R̃T
D,Γ

]
DS̃−1

ΓΓ

[
−ET

D,ΓDK̃ΓIDK
−1
II R̃D,Γ

]
,

and thus, comparing (2.37) and (2.34), we obtain M−1
2 = M−1

3 .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 255

2.6.2. Different strategies for using inexact solvers. Since we have seen that all vari-
ants [1, 16, 36] and also [44] are identical in the case of exact solvers, we can write all inexact
variants in the same notation and provide a brief discussion of advantages and disadvantages
in this section.

To improve readability, we will refer to the three inexact preconditioners defined by
Dohrmann in [16] as M̂−1

D,1 (see [16, p. 155]), M̂−1
D,2, (see [16, eq. (30)]), and M̂−1

D,3 (see [16,

eq. (39)]), to the inexact preconditioner defined by Li and Widlund in [36] as M̂−1
LW (see [36,

p. 1423]), and to the inexact variant presented by Badia, Martin, and Principe in [1] as M̂−1
BMP

(see [1, eq. (13)]). Let us remark that M̂−1
2 = M̂−1

LW .
The different variants differ in the way how the action of DK̃−1 and how the discrete

harmonic extensions H to the interior of the subdomains are approximated; see the remarks
on the computational kernels at the end of Section 2.4.

The approaches from the literature in a common notation. Let us first point out an
important difference of the preconditioner M̂−1

2 (see (2.25)) to the other inexact BDDC
preconditioners. In M̂−1

2 , as also in iFETI-DP [32], the operator DK̃−1 is replaced by an
inexact version DK̂−1. The inexact version DK̂−1 can be constructed from the standard
block factorization

(2.38) DK̃−1 =

[
DK−1

BB 0
0 0

]
+

[
−DK−1

BBDK̃
T
ΠB

I

]
DS̃−1

ΠΠ

[
−DK̃ΠBDK

−1
BB I

]
,

where DS̃ΠΠ = DK̃ΠΠ − DK̃ΠBDK
−1
BBDK̃

T
ΠB is the coarse problem. But instead of

using (2.38), a preconditioner for DK̃ can also directly be constructed; see the discussion
in [32, Section 4] and the numerical results for BoomerAMG applied directly to DK̃ in [31,
Table 5] for iFETI-DP; also see [36, p. 1423].

In contrast, in all other methods, i.e., M̂−1
3 , M̂−1

BMP , and M̂−1
D,i, i = 1, 2, 3, the operator

is first split into a fine and a coarse correction using (2.38).
By choosing an approximation DKBB of DKBB , an approximation to the primal Schur

complement DS̃ΠΠ can be defined, i.e.,

DSΠΠ = DK̃ΠΠ −DK̃ΠB

(
DKBB

)−1
DK̃T

ΠB .

This approximate coarse matrix DSΠΠ is denoted by DK̃C in [16, eq. (20)]. Defining an

approximation DŜ
−1

ΠΠ for DS
−1

ΠΠ and using (2.38), we obtain

DK
−1

=

[
DK

−1

BB 0
0 0

]
+

[
−DK−1

BBDK̃
T
ΠB

I

]
DŜ

−1

ΠΠ

[
−DK̃ΠBDK

−1

BB I
]
,

which can be viewed as an approximation of DK̃−1.
The first inexact preconditioner introduced by Dohrmann [16, p. 155] then is

M̂−1
D,1 :=

(
R̃T

D −HPD

) (
DK

)−1
(
R̃D − PT

DH
T
)
,

the second [16, eq. (30)] is

M̂−1
D,2 :=

(
R̃T

D − ĤPD

) (
DK

)−1
(
R̃D − PT

DĤ
T
)
,

where, additionally, an approximate discrete harmonic extension Ĥ is used as in (2.23).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

256 A. KLAWONN, M. LANSER, AND O. RHEINBACH

Similarly, we can write [1, eq. (13)]) as

M̂−1
BMP :=

(
R̃T

D − ĤPD

)(
DK

)−1 (
R̃D − PT

DĤ
T
)
,

where

DK
−1

=

[
DK

−1

BB 0
0 0

]
+

[
−DK−1

BBDK̃
T
ΠB

I

]
DŜ

−1

ΠΠ

[
−DK̃ΠBDK

−1

BB I
]
.

Here, DŜ
−1

ΠΠ is an approximation to DS
−1

ΠΠ, while

DSΠΠ := DSΠΠ +DK̃ΠBDK
−1

BB

(
DKBBDK

−1

BB − I
)
DK̃T

ΠB

itself is an approximation to DSΠΠ or, respectively, to DS̃ΠΠ. Let us remark that in [1] only
sequential AMG implementations are used, while we apply a parallel AMG on a subset of
cores to construct DŜ−1

ΠΠ; see also Section 3.3.
Note that, for reliable convergence, in general these three inexact BDDC preconditioners

need to use an additional null space correction, which we have omitted in the presentation
here; see [16, Section 4.2].

Finally, the third inexact BDDC preconditioner by Dohrmann [16, eq. (39)] is

M̂−1
D,3 :=

(
R̃T

D −HPD

) (
DK

)−1
(
R̃D − PT

DH
T
)
.

This variant is not covered by the theory in [16] but is reported to perform well without a null
space correction. Here, H is an approximation to the discrete harmonic extension defined by

H :=

[
I −

(
DK̂II

)−1

DKII −
(
DK̂II

)−1

DK̃T
ΓI

0 0

]
.

A brief discussion of the different approaches. Let us briefly discuss the different inexact
solvers needed in the inexact BDDC methods. The matrix DKBB is block-diagonal, and thus
a few V-cycles of a sequential AMG method applied to each block separately is sufficient
to construct DK

−1

BB . The same is true for the approximate harmonic extensions Ĥ and H ,
which can be computed by applying AMG to each block of DKII . If a coarse problem is
explicitly formed, then, for scalability, a parallel AMG method should be applied to define

DŜ
−1

ΠΠ or DŜ
−1

ΠΠ as, e.g., in [26, 33]. As common in parallel multigrid methods, this parallel
AMG method can run on a small subset of computing cores. If the AMG methods is directly
applied to DK̃ as in M̂−1

2 , then a highly scalable parallel AMG method operating on all cores
is mandatory.

In the inexact BDDC variants making use of the block factorization (2.38), the coarse
problem can be solved in parallel to the local subdomain problems.

To prove a condition number bound for the inexactly preconditioned systems with precon-
ditioners M̂−1

D,i, i = 1, 2, M̂−1
BMP , it is necessary that the matrices[

DKBB DKT
ΠB

DKΠB DKΠΠ

]
and DK are spectrally equivalent and thus need to have the same null space. To guarantee
this, an explicit null space correction (kernel correction) in DKBB is necessary, which can
be performed locally on each subdomain; see [16, Section 4.2]. This is a disadvantage of the
approaches introduced in [16] since the null space of DK has to be explicitly known.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 257

3. Implementation remarks. We have implemented the inexact nonlinear BDDC meth-
ods using PETSc 3.6.4 [5] and MPI. For all inexact solves, we use one or two V-cycles of
BoomerAMG [21]; see Section 3.3 for details. In case of exact solves, we always apply the
sparse direct solver UMFPACK [12]. We distribute all subdomains Ωi, i = 1, . . . , N, to all
available MPI ranks. For simplicity, we assume throughout the following discussion that we
have exactly one subdomain Ωi per process ranki, even though our software is capable of
handling several subdomains on each MPI rank. We always use Krylov subspace methods
such as CG (Conjugate Gradient) or GMRES (Generalized Minimal Residual) to solve all
linear systems. Therefore, it is sufficient to describe the application of the BDDC operators to
appropriate vectors. Let us also remark that our implementation uses building blocks from our
highly scalable implementation of the inexact nonlinear FETI-DP method presented in [28]
which itself is based on [24].

3.1. Discussion of the parallel data structures. In every Krylov iteration the linear
preconditioner is applied to an MPI-parallel and fully assembled residual vector b̄ ∈ V h. In
our software package, b̄ is distributed to all available MPI ranks such that communication
is minimized. More precisely, each entry of b̄, which belongs to a degree of freedom in the
interior part of a subdomain Ωk, is stored on the corresponding rankk. Entries of b̄ belonging to
the interface between several subdomains are stored on a rank handling one of the neighboring
subdomains. Similarly, we distribute primally assembled vectors b̃ ∈ W̃ to all MPI ranks.
Here, all entries corresponding to uncoupled, non-primal degrees of freedom on the subdomain
Ωk are again stored on rankk. The primal variables are distributed evenly to all or a subset of
all MPI ranks.

The application of the operators R : W̃ →W and R : V h →W on b̃ and b̄, respectively,
are implemented using PETSc’s VecScatter class. Therefore, applications of R and R cause an
MPI_Scatter operation, while applications of R

T
and RT cause an MPI_Gather operation on

all MPI ranks. In general, R is more expensive since it causes communication in all interface
variables, while R only causes communication in the few primal variables. The restriction
R̃ : V h → W̃ is not implemented explicitly. Instead, we always connect R and R

T
in series

and apply the necessary scaling in the primal degrees of freedom. In general, all scalings
marked with an index D are performed using the PETSc function VecPointwiseMult. This is
done completely locally and in parallel on each subdomain, i.e., in the space W . The jump
operator PD = I − R̃R̃T

D can be implemented using those building blocks.
In M̂−1

2 and M̂−1
2,EDHE , the matrix DK̃(g(k)) has to be assembled explicitly as an

MPI parallel matrix of PETSc’s type MPIAIJ using the subdomain tangential matrices
DKi(Rig

(k)), i = 1, . . . , N . The matrix DK̃(g(k)) is distributed to all MPI ranks in a
row-wise fashion, equivalently to the distribution of b̃; see also [28] for more details. There-
fore, this assembly process requires only communication in the primal variables. For larger
numbers of MPI ranks, this is currently more efficient in PETSc than the complete assembly of
DA(g(k)), which is not necessary in our software and always avoided. To avoid unnecessary
buffer space during the assembly of DK̃(g(k)), we precompute an estimate of the number
of nonzero entries in each row of DK̃(g(k)) using only local information obtained from an
analysis of the sparsity patterns of DKi(Rig

(k)), i = 1, . . . , N . This way, a nearly optimal
preallocation for the MPIAIJ matrix can be used. It is also possible to overlap the communi-
cation of the assembly process with local work in the BDDC setup process. For the inexact
solve DK̂(g(k))−1, we use one or two V-cycles of MPI parallel BoomerAMG [21] applied
to DK̃(g(k)). For the inexact harmonic extension Ĥ , we use a sequential BoomerAMG on
each subdomain, applied to the interior part of the local tangential matrix. For details about
the AMG setup, see Section 3.3.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

258 A. KLAWONN, M. LANSER, AND O. RHEINBACH

When using M̂−1
3 , we use the same building blocks as described above since solely

the application of BoomerAMG to DK̃(g(k)) is replaced by (2.30). Therefore, instead of
assembling DK̃(g(k)) as described above, we now assemble the smaller Schur complement
matrix DS̃ΠΠ(g(k)) on a smaller subset of MPI ranks, e.g., one percent of the available MPI
ranks. Analogously, a restriction operator R : W̃ → W is no longer needed, and instead
we have implemented a primal restriction operator RΠ : W̃Π → WΠ using again PETSc’s
VecScatter class. Here, WΠ is the space of the unassembled local primal variables on the
subdomains. Finally, as before, for the inexact solve DŜ−1

ΠΠ, we use parallel BoomerAMG.
All remaining operations in (2.30) are completely local to each MPI rank.

For the exact preconditioner M−1
2 , we decided to use the same building blocks as for

M̂−1
3 , but we create a local copy of DS̃ΠΠ(g(k)) on each MPI rank and apply a direct solver

for an exact solution of the coarse problem.

3.2. Application of the tangential matrix. An application of the operator

DA(g(k)) = RTDK(Rg(k))R

to a vector b̄ ∈ V h can be performed in two different fashions. The first one is straight-
forward, namely scattering b̄ to the local subdomains by using R, then applying DKi(Rig

(k)),
i = 1, . . . , N, on each subdomain in parallel, and finally gathering and assembling the local
results using RT . This variant is efficient and highly scalable, and we always choose it
when using M̂−1

3 . Considering M̂−1
2 , we need to store the local matrices DKi(Rig

(k)),

i = 1, . . . , N , in addition to DK̃(g(k)). To increase the memory efficiency, we propose a
second variant utilizing the representation DA(g(k)) = R̃TDK̃(g(k))R̃. Here, we can delete
all local copies of DKi(Rig

(k)), i = 1, . . . , N , after DK̃(g(k)) has been built. Let us remark
that the amount of communication as well as the local work is slightly higher compared to the
first variant. We implemented both approaches, and, in the case of M̂−1

2 , the user can choose
if he or she can afford the additional memory requirements of the potentially faster variant.

3.3. Inexact solves with BoomerAMG. Let us finally discuss the BoomerAMG setup
used. Since we are concerned with systems of PDEs, e.g., elasticity or plasticity prob-
lems, we always use nodal coarsening approaches throughout this paper for DK̂(g(k))−1,
DŜΠΠ(g(k))−1, or DK̂(g(k))−1

II . We always use the highly scalable HMIS coarsening [14] in
combination with the extended+i interpolation [13, 43]. Additionally, the interpolation matrix
is truncated to a maximum of three entries per row. This guarantees an appropriate operator
complexity. A threshold of 0.3 is used for the detection of strong couplings. We can also
use the GM (global matrix) or the LN (local neighborhood) interpolation approach (see [4]),
which allow to interpolate near null space vectors exactly. This approach can help to improve
scalability and performance of AMG for elasticity problems significantly [3]. For elasticity
and plasticity problems, the rigid body motions are computed, transformed if a change of basis
is used in the BDDC coarse space, and restricted to W̃ . This leads to a slightly more expensive
setup but improves numerical scalability. For the subdomain Dirichlet problems, the GM or
LN approaches are not used since, for problems with large Dirichlet boundary, the standard
approaches are sufficient and have lower setup cost. For an overview of the performance of the
different AMG approaches for linear elasticity problems; see also [3]. A detailed discussion
on the effect of the GM approach used in M̂−1

2 and M̂−1
2,EDHE is presented in [29].

4. Numerical results.

4.1. Model problems and geometries. Since our focus is on structural mechanics, in
this paper we consider three different mechanical problems. First, we use the classical linear

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 259

elastic material model in order to demonstrate weak scaling of our implementation for linear
problems. Let us remark that in the linear case both NL-BDDC and NK-BDDC are the same
method. To compare the different nonlinear approaches, we consider a hyperelastic Neo Hooke
model and, finally, a J2 elasto-plasticity problem.

4.2. Computational platforms. We perform our computations on a Tier-3 and a
Tier-1/Tier-0 supercomputer of the German High Performance Computing Pyramid and on
Theta:

• Theta: 231 424 cores (Cray XC40, Intel Xeon Phi 7230 64C 1.3 GHz); 5.8 PFlops;
operated by Argonne National Laboratories, USA; ranked 16th in the current TOP500
list (June, 2017).

• JUQUEEN (Tier-1/0): 458 752 Blue Gene/Q cores (PowerPC A2 1.6 GHz; 16 cores
and 16 GB per node); 5.0 PFlops; operated by Jülich Supercomputing Center (JSC)
providing computing time for Germany and Europe; ranked 21th in the current
TOP500 list (June, 2017).
• MagnitUDE (Tier-3): 13 536 cores (Broadwell XEON E5-2650v4 12C 2.2GHz; 24

cores and 72 GB per node); 476.5 TFlops NEC Cluster; operated by Center for
Computational Sciences and Simulation (CCSS) of the Universität Duisburg-Essen
(UDE) providing computing ressources for UDE; TOP500 rank 430 (June, 2017).

4.3. Weak scalability for linear problems. We first apply our inexact preconditioners
M−1

2 , M̂−1
2 , M̂−1

2,EDHE , and M̂−1
3 to linear problems in two and three dimensions. This

avoids effects from a varying number of Newton iterations. We do not present results for M̂−1
1

since, generally, we do not recommend its use except when being very scarce on memory.

4.3.1. Linear elastic beam bending problem on JUQUEEN. Let us first take a detailed
look at the preconditioner M̂−1

2 . In Table 4.1 and the corresponding Figure 4.1, we present
weak scalability for a problem of a two-dimensional beam scaled up from 32 to 524 288 MPI
ranks and subdomains using 16 to 262 144 computational cores of the JUQUEEN BlueGene/Q
supercomputer, respectively. We thus use two MPI ranks per computational core. This setup
makes the most efficient use of the hardware threads for our kinds of problems [25, 27].

The linear beam domain Ω = [0, 8]×[0, 1] is fixed on the left and a volume force is applied
in y-direction. Using a relative stopping tolerance of 1e-8 in the CG method, between 19 and
23 CG iterations are necessary until convergence, which confirms the numerical scalability of
the method. Our parallel implementation is highly scalable and shows a parallel efficiency
of 80% using 524 288 MPI ranks to solve a problem with more than 26 billion degrees of
freedom. In Figure 4.2, we present detailed timings for the setup of M̂−1

2 (Figure 4.2, left) and
for a single preconditioned CG iteration (Figure 4.2, right). We here use the GM interpolation
in BoomerAMG; see Section 3.3. The scalability of the setup is reasonable with an expected
increase in the runtime of the parallel BoomerAMG setup for the construction of DK̂(g(k))−1

as well as a slight increase in the runtime of the communication intense parts such as the
construction of the VecScatters. As it can be seen in Figure 4.2 (right), the scalability of the
average runtime of a single preconditioned CG iteration is almost perfect, and the larger part
of time is spent in the different AMG V-cycles.

4.3.2. Linear elastic cube on JUQUEEN. As a three-dimensional test problem, we
consider a linear elastic cube Ω = [0, 1]× [0, 1]× [0, 1] with Dirichlet boundary conditions
on ∂Ω. A remarkable 74% of parallel efficiency is achieved for M̂−1

2 ; see Table 4.2 and the
corresponding Figure 4.6. Weak scaling tests from 64 MPI ranks and 1.5 million degrees of
freedom to 262 144 MPI ranks and 6.3 billion degrees of freedom are presented in Table 4.2
and Figure 4.6. In Figure 4.7 (left), as in two dimensions, an increase in the runtime of the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

260 A. KLAWONN, M. LANSER, AND O. RHEINBACH

communication intense parts of the BDDC setup (parallel AMG setup, VecScatter setup) can
be observed, while the scalability of the average runtime of a single CG iteration is again
nearly perfect; see Figure 4.7 (right).

4.3.3. Linear elastic beam bending problem on Theta. Our problem setup is similar
to the one used in Table 4.1 but using a slightly longer beam Ω = [0, 16] × [0, 1] to better
fit the number of available cores. Also the number of degrees of freedom handled per core
is much larger compared to the computations on JUQUEEN—the largest problem on 193K
Knights Landing cores consists of 30 billion degrees of freedom. On Theta, we use one MPI
process for each core.

We provide a brief comparison of the different preconditioners M−1
2 , M̂−1

2 , M̂−1
2,EDHE ,

and M̂−1
3 on the Knights Landing supercomputer Theta in Figure 4.3. Theta is ALCF’s

(Argonne Leadership Computing Facility) stepping stone to the next generation 200 petaflop
Aurora supercomputer. For comparison, we also added the exact BDDC preconditioner M−1

2 ,
where a sequential copy of the coarse problem is factorized exactly on each core. This version
runs out of memory beyond 65K cores.

We conclude from Figure 4.3 that the performance of all inexact preconditioners, except
for M̂−1

3 without GM interpolation, is very similar (both in terms of GMRES iterations as well
as computing time) to the exact BDDC preconditioner up to 65K cores, but the inexact methods
continue to scale when the exact methods fail. All three inexact variants M̂−1

2 , M̂−1
2,EDHE , and

M̂−1
3 equipped with BoomerAMG with the GM approach show a very similar performance

with respect to time range and number of GMRES iterations. The preconditioner M̂−1
3 without

GM interpolation, however, suffers from the use of the standard interpolation designed for
systems of PDEs whose null spaces exclusively consist of the translations. This interpolation
is inappropriate for the bending problem considered here, resulting in bad performance.

We also include results for heterogeneous compressible (ν = 0.3) linear elasticity prob-
lems. Therefore, we consider stiff inclusions (E = 210 000) in a soft matrix material
(E = 210). Each of the circular inclusions is embedded in a single subdomain. Here,
M̂−1

3 outperforms M̂−1
2 and M̂−1

2,EDHE in terms of GMRES iterations and runtime since
the sparse direct solvers can optimally resolve the heterogeneity on the subdomains and the
parallel Boomer AMG is only used on the coarse problem in M̂−1

3 ; see Figure 4.4 for the
results.

4.3.4. Comparison of the performance on Intel KNL and IBM BG/Q. We also in-
clude a comparison of the performance for Intel Xeon Phi Knights Landing (Theta) and
IBM BlueGene/Q (JUQUEEN); see Figure 4.5. Here, KNL is approximately 1.4 times faster
for M−1

2 as well as M̂−1
3 and more than 2 times faster for M̂−1

2 since the performance of
BoomerAMG is much better on KNL compared to the BlueGene/Q. Considering the sparse
direct solver UMFPACK, the performance gap is smaller. The weak scaling behavior is similar
on both machines and only slightly better on the KNL. Let us remark that for these tests we
use a single MPI rank per core on both machines.

4.3.5. Linear elastic brick on Theta. We also include results for a domain Ω = [0, 2]×
[0, 1]× [0, 1] obtained on Theta, again comparing M̂−1

2 and M̂−1
3 for the same linear homoge-

neous elasticity problem; see Figure 4.8. The weak scaling test starts on 128 Knights Landing
cores with a problem size of 3.1 million degrees of freedom and is scaled up to 128 000
Knights Landing cores with a problem size of 3.1 billion degrees of freedom. Especially
M̂−1

3 is numerically stable, and the obtained parallel efficiency of 68% is acceptable. A
better scalability is prevented by the AMG setup, which is not scaling optimally on Knights
Landing for a three-dimensional elasticity problem, at least with our choice of interpolation

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 261

TABLE 4.1
Linear 2D beam bending Ω = [0, 8] × [0, 1]; using M̂−1

2 ; homogeneous and compressible linear elastic
material with E = 210 and ν = 0.3; P2 finite elements and Hs/h = 80; one V-cycle of BoomerAMG with nodal
HMIS coarsening and extended+i interpolation is used in all AMG applications, and additionally the GM approach is
used in all parallel AMG applications; the BDDC coarse space consists of vertex constraints; It. denotes the number
of CG iterations; the baseline of the parallel efficiency Eff. is the fastest time to solution on 32 MPI ranks (1 node);
using two MPI ranks for each core.

Time Time Time Time
MPI to Assembly Setup CG
ranks D.o.f. It. Solution Eff. K(i) M̂−1

2

32 1 644 162 20 48.6s 100% 4.5s 9.9s 34.2s
128 6 565 122 21 50.8s 96% 4.5s 10.2s 36.1s
512 26 237 442 21 50.7s 96% 4.5s 10.1s 36.1s

2 048 104 903 682 19 47.5s 102% 4.5s 10.2s 32.8s
8 192 419 522 562 20 49.4s 98% 4.5s 10.4s 34.5s

32 768 1 677 905 922 19 48.2s 101% 4.5s 10.7s 33.0s
131 072 6 711 255 042 21 53.1s 92% 4.5s 11.7s 36.8s
524 288 26 844 282 882 23 60.6s 80% 4.5s 15.3s 40.7s

FIG. 4.1. Weak scaling of M̂−1
2 for a linear elasticity problem in two dimensions. See Table 4.1 for correspond-

ing results and problem details.

(ext+i) and coarsening (HMIS) strategies. This effect is even more significant for M̂−1
2 , where

BoomerAMG is applied to the complete matrix DK̃; see Figure 4.8 (right). The latter one is
the potentially faster preconditioner since the sparse direct solver UMFPACK is comparably
slow for three-dimensional elasticity problems. Therefore, the preconditioner M̂−1

2 , which
does not use any sparse direct solvers, is 2.3 times faster than M̂−1

3 on 128 cores.

4.4. Nonlinear hyperelasticity with increasing load. After the sanity check of our
BDDC preconditioners M−1

2 , M̂−1
2 , M̂−1

2,EDHE , and M̂−1
3 for linear problems, we consider

the nonlinear preconditioner NNL (see (2.8)) applied to nonlinear problems. We will observe

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

262 A. KLAWONN, M. LANSER, AND O. RHEINBACH

FIG. 4.2. Weak scaling of M̂−1
2 for a linear elasticity problem in two dimensions. Left: setup of the linear

BDDC preconditioner split into the setup of the local AMGs DK̂−1
II , the setup of the parallel AMG DK̂−1, the

assembly of DK̃, and the setup of the different VecScatter. Right: average time per CG iteration split into the
application of DA, the application of DK̂−1

II , the application of DK̂−1, and the application of the different
VecScatter operations.

TABLE 4.2
Linear Elastic 3D Cube Ω = [0, 1] × [0, 1] × [0, 1]; using M̂−1

2 ; P1 finite elements and Hs/h = 20;
homogeneous and compressible linear elastic material with E = 210 and ν = 0.3; one V-cycle of BoomerAMG with
nodal HMIS coarsening and extended+i interpolation is used for all AMG applications; the BDDC coarse space
consists of vertex constraints and continuity in the midpoint of each edge; It. denotes the number of CG iterations;
the baseline of the parallel efficiency Eff. is the fastest time to solution on 64 MPI ranks (2 nodes); using two MPI
ranks for each core; discretized with piecewise linear finite elements (P1).

Time Time Time Time
MPI to Assembly Setup CG
ranks D.o.f. It. Solution Eff. K(i) M̂−1

2

64 1 594 323 26 63.2s 100% 22.9s 10.3s 30.0s
512 12 519 843 29 67.2s 94% 22.9s 10.3s 33.9s

4 096 99 228 483 31 71.3s 89% 23.0s 11.7s 36.6s
32 768 790 124 163 32 75.0s 84% 23.1s 13.5s 38.4s

262 144 6 306 213 123 35 85.4s 74% 23.1s 19.4s 43.0s

an enlarged radius of convergence and increased efficiency compared to the corresponding
standard Newton-Krylov BDDC iterations.

In this section, we decided to use exclusively the linear preconditioner M̂−1
2 , which

makes the most efficient use of the available memory. Throughout this and the following
sections, we always use a relative stopping tolerance of 1e-6 for the CG method in all linear
solves. We stop the inner Newton iteration on a subdomain in NL-BDDC if the 2-norm of
the restriction of δg(k)

I,l to the subdomain is smaller than 1e-6; see (2.10) for the definition of

δg
(k)
I,l . The outer Newton iteration is stopped if the 2-norm of the Newton update is smaller

than 1e-8 in three dimensions or, respectively, 1e-6 in two dimensions. In general, the choice
of the stopping criterion for the inner Newton iteration can have a significant impact on the
overall performance of NL-BDDC. Here, solving to a stopping tolerance of 1e-6 is always

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 263

FIG. 4.3. Linear 2D beam bending Ω = [0, 16] × [0, 1] computed on Theta; homogeneous and compressible
linear elastic material withE = 210 and ν = 0.3; P2 finite elements andHs/h = 140; one V-cycle of BoomerAMG
with nodal HMIS coarsening and extended+i interpolation is used in all AMG applications, and additionally the GM
approach is used in most parallel AMG applications (variants marked with GM in the legend); the BDDC coarse
space consists of vertex constraints; using one MPI rank per core; comparison of M−1

2 , M̂−1
2 , M̂−1

2,EDHE , and

M̂−1
3 ; largest problem has 30 billion degrees of freedom. Left: number of GMRES iterations. Right: total time to

solution.

FIG. 4.4. Linear Heterogeneous Elasticity 2D problem Ω = [0, 1]×[0, 1] computed on Theta; heterogeneous
and compressible linear elastic material with E = 210 000 and ν = 0.3 in circular inclusions and E = 210 and
ν = 0.3 in matrix material; P2 finite elements and Hs/h = 120; one V-cycle of BoomerAMG with nodal HMIS
coarsening and extended+i interpolation is used in all AMG applications; the BDDC coarse space consists of vertex
constraints; using one MPI rank per core; discretized with piecewise quadratic finite elements (P2); comparison of
M−1

2 , M̂−1
2 , M̂−1

2,EDHE , and M̂−1
3 ; largest problem has 22.3 billion degrees of freedom. Left: number of GMRES

iterations. Right: total time to solution.

accurate enough. Even faster times to solution and increased robustness can be achieved by
using an advanced stopping strategy already introduced in [30, Section 4]. Let us remark that
we always use a step length of α(k) = 1 in our experiments. We can show that NL-BDDC
allows for larger load steps compared to NK-BDDC in the case of heterogeneous nonlinear
hyperelasticity problems. We consider a Neo-Hooke material model with stiff inclusions
(E = 210 000) in a soft matrix material (E = 210). Each inclusion is embedded in a single
subdomain.

In Table 4.3, we present the results of a deformation of a square built of a heterogeneous
Neo-Hooke material. We test different loads from 0.01 up to 0.8 and apply the deformation

F =

[
load 0

0 −load · ν

]

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

264 A. KLAWONN, M. LANSER, AND O. RHEINBACH

FIG. 4.5. Comparison KNL and BG/Q; see Figure 4.4 for a problem description.

FIG. 4.6. Weak scaling of M̂−1
2 for a linear elasticity problem in three dimensions. See Table 4.2 for

corresponding results and details.

on the boundary, always in a single load step. From Table 4.3, we learn that NL-BDDC is
always the faster method for both problem sizes (64 and 1 024 subdomains) since it reduces
the number of global Newton steps and GMRES iterations. Moreover, NK-BDDC fails for
loads larger than 0.5, while NL-BDDC remains stable. This effect illustrates the enlarged
convergence radius of NL-BDDC. A visual representation of the results for 1 024 subdomains
and MPI ranks is presented in Figure 4.10 and Figure 4.11. Let us remark that the local
nonlinear solves (the inner iterations) stay robust even for larger loads. The local problems are
easier to solve than the global problem due to the smaller problem size, the smaller number of
strong nonlinearities, and, since always a Dirichlet-type constraint is applied on the complete
boundary, also due to the simple boundary conditions. We also provide results for NL-BDDC
without any interior update δū(k)

I in the outer Newton iteration in Figure 4.9; see (2.17) and the
discussion in the following lines. Omitting the update leads to an increased number of inner
iterations and total time to solution. Therefore, we included the update in all other numerical
results.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 265

FIG. 4.7. Weak scaling of M̂−1
2 for a linear elasticity problem in three dimensions. Left: setup of the linear

BDDC preconditioner split into the setup of the local AMGs DK̂−1
II , the setup of the parallel AMG DK̂−1, the

assembly of DK̃, and the setup of the different VecScatter. Right: average time per CG iteration split into the
application of DA, the application of DK̂−1

II , the application of DK̂−1, and the application of the different
VecScatter operations. Using two MPI ranks for each core.

FIG. 4.8. Linear 3D Cube Ω = [0, 2] × [0, 1] × [0, 1]; see Table 4.2 for a problem description.

We perform similar experiments and obtain similar results in three dimensions; see Ta-
ble 4.4. Here, NK-BDDC does not fail to converge for larger loads, but the number of
GMRES iterations is drastically increased. In comparison, there is only a moderate increase in
NL-BDDC.

For larger loads, NL-BDDC can be more than six times faster than NK-BDDC in three
dimensions for a hyperelastic problems. We present the results with 4 096 MPI ranks and
subdomains in Figure 4.12 and Figure 4.13.

We also compare the parallel efficiency of both methods in a weak scaling context. As
a fair baseline, we always use the runtime of the faster of the two methods on 64 MPI ranks
with the same load. Despite of nonlinear effects as, e.g., an increasing number of Newton
steps, the parallel efficiency of NL-BDDC for 4 096 MPI ranks is higher than 72% for all
investigated loads. In contrast, the parallel efficiency of NK-BDDC deteriorates drastically
with an increasing load; see Figure 4.12 (right).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

266 A. KLAWONN, M. LANSER, AND O. RHEINBACH

TABLE 4.3
Nonlinear 2D Square Ω = [0, 1] × [0, 1]; heterogeneous and compressible Neo-Hooke material with

E = 210 000, ν = 0.3 in circular inclusions inside the subdomains and E = 210, ν = 0.3 in the remain-
ing matrix material; P2 finite elements and Hs/h = 50; one V-cycle of BoomerAMG with nodal HMIS coarsening
and extended+i interpolation is used for all AMG applications; for the parallel AMG the GM approach is used
additionally; the BDDC coarse space consists of vertex constraints; It. denotes the number of GMRES iterations;
computations for N = 64 and N = 1 024 subdomains on 2 and 32 nodes of JUQUEEN, respectively; using two
MPI ranks per computational core; discretized with P2 elements.

It. Time to Sol. Outer It. Inner It.
N d.o.f. load NK NL NK NL NK NL NK NL

0.01 125 72 83.5s 66.8s 3 2 - 5
0.1 169 97 114.0s 91.8s 4 2 - 7
0.2 293 101 190.1s 106.0s 5 3 - 9
0.3 213 99 143.8s 104.4s 5 3 - 9

64 1 283 202 0.4 345 130 228.1s 126.1s 5 3 - 9
0.5 357 119 233.3s 121.0s 6 3 - 10
0.6 - 139 - 182.6s - 3 - 13
0.7 - 143 - 146.1s - 3 - 10
0.8 - 139 - 170.7s - 3 - 11

0.01 146 87 97.1s 76.6s 3 2 - 5
0.1 201 116 134.1s 104.1s 4 2 - 7
0.2 395 125 255.9s 114.7s 5 2 - 8
0.3 317 116 208.0s 107.8s 5 2 - 8

1 024 20 492 802 0.4 643 151 430.9s 170.7s 6 2 - 8
0.5 621 132 396.0s 130.8s 6 3 - 10
0.6 - 155 - 188.3s - 3 - 13
0.7 - 181 - 171.7s - 3 - 10
0.8 - 163 - 184.7s - 3 - 11

FIG. 4.9. Increasing load for NL-BDDC with and without interior update in the outer loop for an inhomogeneous
Neo-Hooke hyperelasticity problem in two dimensions and 64 subdomains; see Table 4.3 for the corresponding
problem description. The bar plots belong to the inner iterations.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 267

FIG. 4.10. Time to Solution for an increasing load for NL-BDDC and NK-BDDC for an inhomogeneous
Neo-Hooke hyperelasticity problem in two dimensions and 1 024 subdomains; see Table 4.3 for the corresponding
results and details. For load steps larger than 0.5, we do not have convergence for NK-BDDC.

FIG. 4.11. Increasing load for NL-BDDC and NK-BDDC for an inhomogeneous Neo-Hooke hyperelasticity
problem in two dimensions and 1 024 subdomains; Left: total number of GMRES iterations (sum over all Newton
steps); Right: number of Newton iterations, the number of inner Newton iterations in NL-BDDC is marked too; see
the labels; see Table 4.3 for the corresponding results and details.

For the case of load = 0.8, we also show the superior scalability of NL-BDDC by
presenting a complete weak scaling study from 64 to 262 144 MPI ranks in Figure 4.14. For
the 262 144 MPI rank case, Newton-Krylov did not converge in a reasonable runtime.

4.5. Nonlinear J2 elasto-plasticity with increasing load. Similar to Section 4.4, we
apply the deformation

F =

load 0 0
0 −load · ν 0
0 0 −load · ν

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

268 A. KLAWONN, M. LANSER, AND O. RHEINBACH

TABLE 4.4
Nonlinear 3D Cube Ω = [0, 1] × [0, 1] × [0, 1]; heterogeneous and compressible Neo-Hooke material with

E = 210 000 and ν = 0.3 in inclusions inside subdomains and E = 210 and ν = 0.3 in the remaining matrix
material; one V-cycle of BoomerAMG with nodal HMIS coarsening and extended+i interpolation for all AMG
applications; the BDDC coarse space consists of vertex constraints and the midpoints of all edges; It. denotes the
number of GMRES iterations; Eff. denotes the parallel efficiency, with the faster of the two methods for the same
load on 64 MPI ranks as a baseline; computations for N = 64 and N = 4 096 subdomains on 2 and 128 nodes of
JUQUEEN, respectively; using 2 MPI ranks per computational core; discretized with P1 elements.

It. Time to Sol. Outer It. Inner It. Eff.
N d.o.f. load NK NL NK NL NK! NL NK NL NK NL

0.01 129 59 30.4s 29.2s 4 2 - 5 96% 100%
0.2 219 91 52.7s 51.9s 7 3 - 10 98% 100%
0.4 906 100 142.0s 64.8s 10 3 - 14 46% 100%

64 206 763 0.6 296 91 63.6s 63.0s 8 3 - 14 99% 100%
0.8 582 143 98.7s 74.7s 9 4 - 15 76% 100%
1.0 2081 323 256.5s 111.0s 7 5 - 19 43% 100%

0.01 180 120 39.1s 40.8s 3 2 - 5 75% 72%
0.2 441 128 95.9s 63.2s 6 3 - 10 54% 82%
0.4 1087 150 216.0s 80.0s 10 3 - 14 30% 81%

4 096 12 519 843 0.6 442 144 105.0s 78.4s 8 3 - 14 60% 80%
0.8 869 226 170.6s 95.6s 9 4 - 15 44% 78%
1.0 4751 538 747.3s 151.1s 15 5 - 17 15% 73%

FIG. 4.12. Left: time to solution for an increasing load for NL-BDDC and NK-BDDC for an inhomogeneous
Neo-Hooke hyperelasticity problem in three dimensions and 4 096 subdomains; Right: parallel efficiency for the
different loads; the runtime of the faster method for the same load on 64 MPI ranks is used as a baseline; see Table 4.4
for the corresponding results and details.

with different choices for load to the three-dimensional cube [0, 1] × [0, 1] × [0, 1] built of
dual-phase steel. We used a J2 elasto-plasticity model with an exponential hardening. The
parameter choices and different yield stresses for the martensitic and ferritic phases can be
found in the caption of Table 4.5 or, in more detail, in [7, Fig. 10]. In contrast to Section 4.4,
we do not apply the complete load in a single load step but in several incremental load steps.

Considering local martensitic inclusions enclosed in a single subdomain each, in Table 4.5,
NL-BDDC is again superior and more stable. Only for small loads (0.01) applied in many
load steps (more than 2), NK-BDDC shows a better performance. For larger loads, especially
if applied in few steps, NL-BDDC is faster. The load of 0.08 applied in 2 load steps can
finally not be handled by NK-BDDC. In contrast, NL-BDDC shows a slight increase of 14%
in runtime compared to applying half of the load, i.e., 0.04.

Finally, in Table 4.6, we consider a representative volume for a dual-phase steel with
martensite and ferrite phases; see Figure 4.15. For this challenging problem, we see that for a

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 269

FIG. 4.13. Increasing load for NL-BDDC and NK-BDDC for an inhomogeneous Neo-Hooke hyperelasticity
problem in three dimensions and 4 096 subdomains; Left: total number of GMRES iterations (sum over all Newton
steps); Right: number of Newton iterations, the number of inner Newton iterations in NL-BDDC is marked too; see
the labels; see Table 4.4 for the corresponding results and details.

FIG. 4.14. Weak scaling for a nonlinear Neo-Hooke problem; see Table 4.4 for a problem description. NK-
BDDC failed to solve the problem on 262 144 in a reasonable time.

small load of 0.005, the performance of NK and NL is very similar with a slight advantage for
NK. However, for a load step of 0.01 and the largest load step, the NK approach breaks down
whereas NL continues to converge.

Nevertheless, we again observe an enlarged convergence radius for large loads (0.01)
applied in only two load steps, where NK-BDDC diverges and NL-BDDC remains stable.

5. Conclusion. We have presented a new and highly scalable nonlinear BDDC precondi-
tioner with inexact solvers. For linear problems, the method reduces to the approach introduced
in [36]. We have provided a discussion and comparison of different inexact and approximate
BDDC approaches [16, 36] from the literature.

Weak parallel scalability of the new method and the implementation was shown to more
than half a million parallel tasks for linear elasticity problems in two and three dimensions. We
were able to show the improved performance of the new nonlinear BDDC method compared

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

270 A. KLAWONN, M. LANSER, AND O. RHEINBACH

TABLE 4.5
Nonlinear 3D Dual-Phase Steel Cube Ω = [0, 1]× [0, 1]× [0, 1]; heterogeneous J2 elasto-plasticity material

with exponential hardening, E = 206 000, and ν = 0.3; in the martensitic inclusions inside the subdomains the
yield stresses are y0 = 1 000 and y∞ = 2 750; in the ferritic matrix material the yield stresses are y0 = 260 and
y∞ = 580; one V-cycle of BoomerAMG with nodal HMIS coarsening and extended+i interpolation for all AMG
applications; the LN approach is used for parallel AMG applications; the BDDC coarse space consists of vertex
constraints and the midpoints of all edges; It. denotes the number of GMRES iterations; computations for N = 216
subdomains on 216 cores of MagnitUDE; discretized with piecewise quadratic elements (P2).

It. Time to Sol. Outer It. Inner It.
Load Load Steps NK NL NK NL NK NL NK NL

8 596 538 226.3s 254.9s 22 21 - 28
0.01 4 434 379 153.9s 162.3s 13 12 - 17

2 457 230 152.6s 100.6s 10 6 - 10
8 1 058 865 374.8s 371.8s 29 24 - 37

0.02 4 818 498 280.5s 220.0s 18 12 - 22
2 458 326 160.6s 144.3s 9 6 - 12
8 1 534 1 049 531.2s 461.2s 34 24 - 45

0.04 4 843 640 296.9s 284.4s 17 12 - 24
2 852 470 296.1s 211.4s 12 8 - 14
8 1 594 1 251 561.6s 554.7s 33 24 - 48

0.08 4 1 341 909 465.6s 402.9s 20 16 - 28
2 - 540 - 241.9s - 8 - 16

TABLE 4.6
Nonlinear 3D RVE Ω = [0, 1] × [0, 1] × [0, 1]; same material as in Table 4.5; the material distribution,

obtained from an EBSD measurement of dual-phase steel, is depicted in Figure 4.15; one V-cycle of BoomerAMG
with nodal HMIS coarsening and extended+i interpolation for all AMG applications; the LN approach is used for
parallel AMG applications; the BDDC coarse space consists of vertex constraints and the midpoints of all edges;
It. denotes the number of GMRES iterations; computations for N = 216 subdomains on 216 cores of MAgnitUDE;
discretized with piecewise quadratic elements (P2).

It. Time to Sol. Outer It. Inner It.
Load Load Steps NK NL NK NL NK NL NK NL

8 502 466 187.9s 214.1s 20 19 - 25
0.005 4 285 267 109.9s 123.2s 11 10 - 13

2 238 216 82.5s 88.6s 7 6 - 9
8 762 693 288.2s 302.8s 27 22 - 29

0.01 4 556 504 191.4s 213.5s 15 14 - 23
2 - 466 - 167.2s - 9 - 19

to the standard Newton-Krylov BDDC approach. Our computations show that NL-BDDC
can deliver the result of a simulation up to six times faster than a classical Newton-Krylov
approach and shows superior parallel scalability for nonlinear problems.

We also show that the performance on the Knights Landing supercomputer Theta can be
more than two times better than that on the BG/Q supercomputer JUQUEEN using the same
number of cores.

Acknowledgments. This work was supported in part by the German Research Foun-
dation (DFG) through the Priority Programme 1648 “Software for Exascale Computing”
(SPPEXA) under grants KL 2094/4-1, KL 2094/4-2, RH 122/2-1, and RH 122/3-2.

This research used resources of the Argonne Leadership Computing Facility (Theta),
which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 271

FIG. 4.15. Material distribution of dual-phase steel obtained by an EBSD measurement used for computations
in Table 4.6. This RVE is part of a larger structure presented in [7].

within the Director’s Discretionary Program.
The authors gratefully acknowledge the computing time granted by the Center for Compu-

tational Sciences and Simulation (CCSS) of the Universität of Duisburg-Essen and provided on
the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1
FUGG) at the Zentrum für Informations- und Mediendienste (ZIM).

The authors also gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) JUQUEEN [40] at Jülich Supercomputing Centre (JSC, www.fz-
juelich.de/ias/jsc). GCS is the alliance of the three national supercomputing centres HLRS
(Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie
der Wissenschaften), funded by the German Federal Ministry of Education and Research
(BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK),
Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

REFERENCES

[1] S. BADIA, A. F. MARTÍN, AND J. PRINCIPE, On the scalability of inexact balancing domain decomposition
by constraints with overlapped coarse/fine corrections, Parallel Comput., 50 (2015), pp. 1–24.

[2] , Multilevel balancing domain decomposition at extreme scales, SIAM J. Sci. Comput., 38 (2016),
pp. C22–C52.

[3] A. H. BAKER, A. KLAWONN, T. KOLEV, M. LANSER, O. RHEINBACH, AND U. M. YANG, Scalability
of classical algebraic multigrid for elasticity to half a million parallel tasks, in Software for Exascale
Computing—SPPEXA 2013–2015, H.-J. Bungartz, P. Neumann, and E. W. Nagel, eds., vol. 113 of Lect.
Notes Comput. Sci. Eng., Springer, Cham, 2016, pp. 113–140.

[4] A. H. BAKER, T. V. KOLEV, AND U. M. YANG, Improving algebraic multigrid interpolation operators for
linear elasticity problems, Numer. Linear Algebra Appl., 17 (2010), pp. 495–517.

[5] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, Efficient management of parallelism in object
oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset, and H. P. Langtangen, eds., Birkhäuser, Boston, 1997, pp. 163–202.

[6] F. BORDEU, P.-A. BOUCARD, AND P. GOSSELET, Balancing domain decomposition with nonlinear relocal-

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

272 A. KLAWONN, M. LANSER, AND O. RHEINBACH

ization: parallel implementation for laminates, in Proc. First Int. Conf. on Parallel, Distributed and Grid
Computing for Engineering, B. H. V. Topping and P. Iványi, eds., Civil-Comp Press, Stirlingshire, 2009,
Paper 4.

[7] D. BRANDS, D. BALZANI, L. SCHEUNEMANN, J. SCHRÖDER, H. RICHTER, AND D. RAABE, Computational
modeling of dual-phase steels based on representative three-dimensional microstructures obtained from
ebsd data, Arch. Appl. Mech., 86 (2016), pp. 575–598.

[8] P. R. BRUNE, M. G. KNEPLEY, B. F. SMITH, AND X. TU, Composing scalable nonlinear algebraic solvers,
SIAM Rev., 57 (2015), pp. 535–565.

[9] X.-C. CAI AND D. E. KEYES, Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput.,
24 (2002), pp. 183–200.

[10] X.-C. CAI, D. E. KEYES, AND L. MARCINKOWSKI, Non-linear additive Schwarz preconditioners and
application in computational fluid dynamics, Internat. J. Numer. Methods Fluids, 40 (2002), pp. 1463–
1470.

[11] J.-M. CROS, A preconditioner for the Schur complement domain decomposition method, in Domain Decom-
position Methods in Science and Engineering, I. Herrera, D. Keyes, O. B. Widlund, and R. Yates, eds.,
National Autonomous University of Mexico (UNAM), Mexico City, 2003, pp. 373–380.

[12] T. A. DAVIS, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans.
Math. Software, 30 (2004), pp. 167–195.

[13] H. DE STERCK, R. D. FALGOUT, J. W. NOLTING, AND U. M. YANG, Distance-two interpolation for parallel
algebraic multigrid, Numer. Linear Algebra Appl., 15 (2008), pp. 115–139.

[14] H. DE STERCK, U. M. YANG, AND J. J. HEYS, Reducing complexity in parallel algebraic multigrid
preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019–1039.

[15] C. R. DOHRMANN, A preconditioner for substructuring based on constrained energy minimization, SIAM J.
Sci. Comput., 25 (2003), pp. 246–258.

[16] , An approximate BDDC preconditioner, Numer. Linear Algebra Appl., 14 (2007), pp. 149–168.
[17] V. DOLEAN, M. J. GANDER, W. KHERIJI, F. KWOK, AND R. MASSON, Nonlinear preconditioning: how to

use a nonlinear Schwarz method to precondition Newton’s method, SIAM J. Sci. Comput., 38 (2016),
pp. A3357–A3380.

[18] C. FARHAT, M. LESOINNE, AND K. PIERSON, A scalable dual-primal domain decomposition method, Numer.
Linear Algebra Appl., 7 (2000), pp. 687–714.

[19] C. GROSS, A Unifying Theory for Nonlinear Additively and Multiplicatively Preconditioned Globalization
Strategies: Convergence Results and Examples From the field of Nonlinear Elastostatics and Elastody-
namics, PhD. Thesis, Math-Nat. Fak., RFW University Bonn, Bonn, 2009.

[20] C. GROSS AND R. KRAUSE, On the globalization of ASPIN employing trust-region control strategies -
convergence analysis and numerical examples, Tech. Rep. 2011-03, Inst. Comp. Sci., Universita della
Svizzera italiana, Lugano, 2011.

[21] V. E. HENSON AND U. M. YANG, BoomerAMG: a parallel algebraic multigrid solver and preconditioner,
Appl. Numer. Math., 41 (2002), pp. 155–177.

[22] F.-N. HWANG AND X.-C. CAI, Improving robustness and parallel scalability of Newton method through
nonlinear preconditioning, in Domain Decomposition Methods in Science and Engineering, R. Kornhuber,
R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, eds., vol. 40 of Lect. Notes Comput. Sci. Eng.,
Springer, Berlin, 2005, pp. 201–208.

[23] , A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms, Comput.
Methods Appl. Mech. Engrg., 196 (2007), pp. 1603–1611.

[24] A. KLAWONN, M. LANSER, AND O. RHEINBACH, Nonlinear FETI-DP and BDDC methods, SIAM J. Sci.
Comput., 36 (2014), pp. A737–A765.

[25] , FE2TI (ex_nl/fe2) EXASTEEL - Bridging scales for multiphase steels, Software, 2015.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/
_node.html

[26] , Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential
equations, SIAM J. Sci. Comput., 37 (2015), pp. C667–C696.

[27] , FE2TI: computational scale bridging for dual-phase steels, in Parallel Computing: On the Road to
Exascale; Proceedings of ParCo2015, G. R. Joubert, H. Leather, M. Parsons, F. Peters, and M. Sawyer,
eds., IOS Series Advances in Parallel Computing, IOS Press, Amsterdam, 2016, pp. 797–806.
Also: TUBAF Preprint: 2015-12, TU Bergakademie Freiberg, Freiberg
http://tu-freiberg.de/fakult1/forschung/preprints.

[28] , A highly scalable implementation of inexact nonlinear FETI-DP without sparse direct solvers, in
Numerical mathematics and advanced applications—ENUMATH 2015, B. Karasözen, M. Manguoğlu,
M. Tezer-Sezgin, S. Göktepe, and Ö. Uğur, eds., vol. 112 of Lect. Notes Comput. Sci. Eng., Springer,
Cham, 2016, pp. 255–264.

[29] , Using algebraic multigrid in inexact BDDC domain decomposition methods, in Domain Decomposition
Methods in Science and Exngineering XXIV, P. E. Bjørstad, S. C. Brenner, L. Halpern, R. Kornhuber,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html
http://tu-freiberg.de/fakult1/forschung/preprints

ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR BDDC METHODS WITH INEXACT SOLVERS 273

H. H. Kim, T. Rahmann, O. B. Widlund, eds., in vol. 125 of Lect. Notes Comput. Sci. Eng., Springer,
Basel, 2017, in press.

[30] A. KLAWONN, M. LANSER, O. RHEINBACH, AND M. URAN, Nonlinear FETI-DP and BDDC methods: a
unified framework and parallel results, SIAM J. Sci. Comput., 39 (2017), pp. C417–C451.

[31] A. KLAWONN, L. F. PAVARINO, AND O. RHEINBACH, Spectral element FETI-DP and BDDC preconditioners
with multi-element subdomains, Comput. Methods Appl. Mech. Engrg., 198 (2008), pp. 511–523.

[32] A. KLAWONN AND O. RHEINBACH, Inexact FETI-DP methods, Internat. J. Numer. Methods Engrg., 69
(2007), pp. 284–307.

[33] , Highly scalable parallel domain decomposition methods with an application to biomechanics, ZAMM
Z. Angew. Math. Mech., 90 (2010), pp. 5–32.

[34] J. LI AND O. B. WIDLUND, On the use of inexact subdomain solvers for BDDC algorithms, Tech. Rep.
TR2005-871, Department of Computer Science, Courant Institute, New York, 2005.

[35] , FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer. Methods Engrg., 66 (2006),
pp. 250–271.

[36] , On the use of inexact subdomain solvers for BDDC algorithms, Comput. Methods Appl. Mech. Engrg.,
196 (2007), pp. 1415–1428.

[37] J. MANDEL AND C. R. DOHRMANN, Convergence of a balancing domain decomposition by constraints and
energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639–659.

[38] J. MANDEL, B. SOUSEDÍK, AND C. R. DOHRMANN, Multispace and multilevel BDDC, Computing, 83
(2008), pp. 55–85.

[39] J. PEBREL, C. REY, AND P. GOSSELET, A nonlinear dual-domain decomposition method: application to
structural problems with damage, Inter. J. Multiscal Comp. Eng., 6 (2008), pp. 251–262.

[40] M. STEPHAN AND J. DOCTER, JUQUEEN: IBM Blue Gene/Q R© Supercomputer System at the Jülich
Supercomputing Centre, Journal Large-Scale Res. Facilities, 1 (2015), Article A1, 18 pages.

[41] A. TOSELLI AND O. B. WIDLUND, Domain Decomposition Methods—Algorithms and Theory, Springer,
Berlin, 2005.

[42] X. TU, Three-level BDDC in three dimensions, SIAM J. Sci. Comput., 29 (2007), pp. 1759–1780.
[43] U. M. YANG, On long-range interpolation operators for aggressive coarsening, Numer. Linear Algebra Appl.,

17 (2010), pp. 453–472.
[44] S. ZAMPINI, PCBDDC: a class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput., 38 (2016),

pp. S282–S306.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

