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TIME-MULTIPATCH DISCONTINUOUS GALERKIN SPACE-TIME
ISOGEOMETRIC ANALYSIS OF PARABOLIC EVOLUTION PROBLEMS∗
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Abstract. In this paper, we present a new time-multipatch discontinuous Galerkin Isogeometric Analysis (IgA)
technology for solving parabolic initial-boundary problems in space and time simultaneously. We prove coercivity of
the IgA variational problem with respect to a suitably chosen norm that together with boundedness, consistency, and
approximation results yields a priori discretization error estimates in this norm. Furthermore, we provide efficient
parallel generation and parallel multigrid solution technologies. Finally, we present first numerical results on massively
parallel computers.
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1. Introduction. Fully discrete schemes for parabolic initial-boundary value problems
(IBVP) are usually derived by discretizing either first in space by means of some spatial
discretization method like the finite element method and then in time by some time-stepping
method or vice versa. The former methods are called vertical methods of lines [55], the
latter horizontal methods of lines or Rothe’s methods [32]. Time-stepping methods are
sequential in time. To overcome this curse of sequentiality on massively parallel computers,
new methods must be developed for parallelizing in the time dimension. Time parallel methods
have a long and exciting history that can be found in the very nice paper [19] on 50 Years
of Time Parallel Time Integration. Space-time finite element methods for parabolic and
hyperbolic partial differential equations (PDEs) go back to the 80s and 90s of the last century
[3, 4, 21, 26, 27, 60] and have enjoyed a revival during the last couple of years due to the
availability of massively parallel computers with thousands or hundred thousands of cores; see,
e.g., [1, 2, 5, 6, 37, 38, 40, 41, 46, 47, 48, 56, 57, 58, 59] for some resent mathematical papers
related to parabolic problems. Moreover, there are several recent papers on the efficient use
of various space-time methods for solving exciting engineering problems involving moving
computational spatial domains and/or interfaces; see, e.g., [8, 28, 29, 50, 51, 52, 53, 54] and
the references therein.

In [34], we were inspired by looking at the time variable t in a parabolic problem
as just another variable, say, xd+1 if x1, . . . , xd are the spatial variables, and at the time
derivative as a strong convection in the direction xd+1 that can numerically be treated in a
stable way by special discretization techniques known from convection-dominated elliptic
convection-diffusion problems; see, e.g., [49]. The most popular stabilizing method is the
Streamline-Upwind Petrov-Galerkin (SUPG) method introduced in [13]. We have used time-
upwind test functions to construct stable single-patch space-time Isogeometric Analysis (IgA)
schemes where the discrete bilinear form is coercive (elliptic) on the IgA space with respect to
a suitably chosen mesh-dependent energy norm. This coercivity (ellipticity) property together
with a corresponding boundedness property and consistency as well as approximation results
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for the IgA spaces yields the corresponding a priori discretization error estimates. A posteriori
error estimates that can be used for space-time adaptivity are derived in [33].

IgA was introduced in [25] as a new discretization methodology for PDE-based models.
The core idea of IgA is to use the same smooth and high-order superior finite-dimensional
B-spline or NURBS spaces for parametrizing the computational domain and for approximating
the solution of the PDE model under consideration. IgA approaches have successfully been
applied to the solution of a wide range of linear and nonlinear problems. Their benefits have
been highlighted in many publications; see, e.g., the monograph [14], the survey paper [10],
and the references therein. Although results related to the approximation properties of B-
splines and their use for discretizing PDEs have been given before (see, e.g., [45] and [24]),
the theoretical frame involving the parametrization mappings has been started in [7], where the
authors studied the approximation properties of B-splines (NURBS) in bent Sobolev spaces. In
particular, they showed that the mapped B-splines have the same approximation order in terms
of the mesh size h as the piecewise polynomials of the same degree p; see also [9, 10, 11] for
the generalization of these approximation results.

In this paper, we generalize the results of [34] from the single-patch to time-multipatch
discontinuous Galerkin (dG) space-time IgA schemes. As in [34], we consider the linear
parabolic IBVP: find u : Q→ R such that

(1.1) ∂tu−∆u = f in Q, u = 0 on Σ, and u = u0 on Σ0,

as a typical parabolic model problem posed in the space-time cylinder Q = Ω × [0, T ]
= Q ∪ Σ ∪ Σ0 ∪ ΣT , where ∂t denotes the partial time derivative, ∆ is the Laplace operator,
f is a given source function, u0 are the given initial data, T is the final time, Q = Ω× (0, T ),
Σ = ∂Ω × (0, T ), Σ0 := Ω × {0}, ΣT := Ω × {T}, and Ω ⊂ Rd (d = 1, 2, 3) denotes the
spatial computational domain with the boundary ∂Ω. The spatial domain Ω is supposed to
have a singlepatch NURBS representation as it is used in CAD [44]. More precisely, the
space-time cylinder Q =

⋃N
n=1Qn is composed of N subcylinders (patches or time slices)

Qn = Ω×(tn−1, tn), n = 1, . . . , N , where 0 = t0 < t1 < . . . < tN = T is some subdivision
of the time interval [0, T ]; see also Figure 2.1 for an illustration. The time faces between
the time patches are denoted by Σn = Qn+1 ∩ Qn = Ω × {tn}, where ΣN = ΣT . Every
space-time patch Qn = Φn(Q̂) in the physical domain Q can be represented as the image
of the parameter domain Q̂ = (0, 1)d+1 by means of a sufficiently regular IgA (B-spline,
NURBS, etc.) map Φn : Q̂ → Qn that can easily be constructed from the spatial IgA map
from Ω̂ = (0, 1)d to Ω. In particular, each Qn can have its own mesh defined according to the
characteristics of the problem. Therefore, the IgA spaces Vh0, which we are going to use, are
smooth in each time patch Qn but discontinuous across the time faces Σn. For stabilizing the
time discretization, the method incorporates ideas of streamline diffusion methodology. The
continuity of the patch-wise defined approximate solutions is ensured by introducing simple
“upwind” jump terms across the interfaces. The jump terms do not include normal fluxes. This
simplifies the error analysis. Moreover, the whole method can easily be implemented on a
parallel platform. We develop a thorough theoretical study of the method. After defining the
appropriate discontinuous B-spline spaces and the related discrete norm, we prove that the
constructed discrete bilinear form is coercive (elliptic) with respect to this norm. This property
ensures uniqueness and existence of the IgA solution. Based on this ellipticity result, a related
boundedness result, and the consistency of the discrete bilinear form, we can easily estimate
the discretization error by the best approximation error with respect to the discrete norm. With
the help of the approximation results from [10, 11], we derive discretization error estimates
taking into account that the exact solution can exhibit anisotropic regularity behavior, i.e.,
different regularity properties with respect to time and space directions.
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Finally, we have to solve one huge linear system Lhuh = fh of IgA equations defining all
the control points in space and time all at once. The fast generation and the fast solution of this
system is an issue. In our case, we can benefit from the special time-multipatch dG structure of
the discretization that leads to a block-bidiagonal system matrix Lh = blockbidiag(−Bi,Ai),
where the block-diagonal matrices Ai, i = 1, . . . , N , and the block-subdiagonal matrices Bi,
i = 2, . . . , N , have tensor-product representations. These properties lead to a fast generation
of the matrix Lh. The block-bidiagonal structure of the system matrix Lh enables us to solve
the system sequentially from one space-time patch to the next space-time patch similar to a
time-stepping scheme. However, we want to overcome this curse of sequentiality since we
want to use the power of massively parallel computers with hundred or thousands of cores to
solve this system efficiently. Similar to [20], we propose a space-time multigrid method that
solves the complete system Lhuh = fh in parallel. In fact, we use the space-time multigrid
method as preconditioner in a GMRES solver. The numerical results presented in the paper
confirm not only our convergence rate estimates but also show the efficiency of the generation
and solver technology proposed in the paper. The first numerical results for the lowest-order
splines can be found in our proceedings paper [35], where we consider the simplified case of
the same smoothness of the solution in space and time.

The remainder of the paper is organized as follows. In Section 2, besides introducing some
notation and preliminaries, the stable time-multipatch dG space-time IgA scheme is derived.
Section 3 provides a complete a priori discretization error analysis, whereas Section 4 gives
the matrix representation of our time-multipatch dG space-time IgA scheme and describes the
parallel space-time multigrid preconditioned GMRES solver. Finally, we present and discuss
the first numerical results in Section 5 and draw some conclusions in Section 6.

2. The model problem and its stable space-time IgA discretization.

2.1. Preliminaries. Let Ω be a bounded Lipschitz domain in Rd, d = 1, 2, or 3, with
the boundary Γ = ∂Ω. For any multi-index α = (α1, . . . , αd) of non-negative integers
α1, . . . , αd, we define the differential operator ∂αx = ∂α1

x1
. . . ∂αd

xd
, with ∂xj

= ∂/∂xj , for
j = 1, . . . , d. As usual, L2(Ω) denotes the Lebesgue space of all Lebesgue measurable

and square-integrable functions endowed with the norm ‖v‖L2(Ω) =
( ∫

Ω
|v(x)|2 dx

) 1
2

, and
L∞(Ω) denotes the space of functions that are essentially bounded. For a non-negative integer
`, we define the standard Sobolev space

H`(Ω) = {v ∈ L2(Ω) : ∂αx v ∈ L2(Ω) for all |α| =
∑d
j=1 αj ≤ `},

endowed with the norm

‖v‖H`(Ω) =

( ∑
0≤|α|≤`

‖∂αx v‖2L2(Ω)

) 1
2

,

whereas the trace space of H1(Ω) is denoted by H
1
2 (Γ). Further, we introduce the subspace

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ} of all functions v from H1(Ω) with zero traces on Γ.

Let J = (0, T ) be the time interval with some final time T > 0. For later use, we define the
space-time cylinder Q = Ω × J and its boundary parts Σ = ∂Ω × J , ΣT = Ω × {T}, and
Σ0 = Ω× {0} such that ∂Q = Σ ∪ Σ0 ∪ ΣT . Analogously to the definition of ∂αx , we now
define the spatial gradient ∇xv = (∂x1

v, . . . , ∂xd
v). Let ` and m be non-negative integers.
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For functions defined in the space-time cylinder Q, we introduce the Sobolev spaces

H`,m(Q) =

{
v ∈ L2(Q) : ∂αx v ∈ L2(Q) for 0 ≤ |α| ≤ `,

and ∂itv ∈ L2(Q), i = 0, 1, . . . ,m

}
,

where ∂t = ∂/∂t and, in particular, with the subspaces

H1,0
0 (Q) = {v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, v = 0 on Σ} and

H1,1
0,0̄

(Q) = {v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, ∂tv ∈ L2(Q), v = 0 on Σ, v = 0 on ΣT }.

We equip the above spaces with the following norms and seminorms

‖v‖H`,m(Q) =

( ∑
|α|≤`

‖∂(α1,...,αd)
x v‖2L2(Q) +

m∑
i=0

‖∂itv‖2L2(Q)

) 1
2

and

|v|H`,m(Q) =

( ∑
|α|=`

‖∂(α1,...,αd)
x v‖2L2(Q) + ‖∂mt v‖2L2(Q)

) 1
2

,

respectively. Furthermore, we recall Cauchy’s and Young’s inequalities

(2.1)
∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ‖u‖L2(Ω)‖v‖L2(Ω) and
∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ε

2
‖u‖2L2(Ω) +

1

2ε
‖v‖2L2(Ω),

which hold for all functions u and v from L2(Ω) and for any fixed ε ∈ (0,∞). We also recall
Friedrichs’ inequality, which we later need in the form

‖v‖L2(Q) ≤ CΩ‖∇xv‖L2(Q),(2.2)

which holds for all v ∈ H1(Q) with vanishing trace on Σ; see, e.g., [12] for a proof of
Friedrichs’ inequality.

In what follows, positive constants c and C appearing in inequalities are generic constants
which do not depend on the mesh-size h. In many cases, we will indicate what the constants
may depend on for an easier understanding of the proofs. Frequently, we will write a ∼ b
meaning that c a ≤ b ≤ C a with generic positive constants c and C.

2.2. The parabolic model problem. Using the standard procedure and integration by
parts with respect to both x and t, we can easily derive the following space-time variational
formulation of (1.1): find u ∈ H1,0

0 (Q) such that

(2.3) a(u, v) = l(v) for all v ∈ H1,1
0,0̄

(Q),

with the bilinear form

a(u, v) = −
∫
Q

u(x, t)∂tv(x, t) dx dt+

∫
Q

∇xu(x, t) · ∇xv(x, t) dx dt

and the linear form

l(v) =

∫
Q

f(x, t)v(x, t) dx dt+

∫
Ω

u0(x)v(x, 0) dx,

where the source f ∈ L2(Q) and the initial conditions u0 ∈ L2(Ω) are given.
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For simplicity, we only consider homogeneous Dirichlet boundary conditions on Σ.
However, the analysis presented in our paper can easily be generalized to other classes of
boundary conditions. The space-time variational formulation (2.3) has a unique solution; see,
e.g., [30, 31]. In these monographs, besides existence and uniqueness results, one can also
find useful a priori estimates and regularity results.

ASSUMPTION 2.1. We assume that the solution u of (2.3) belongs to the space
V = H1,0

0 (Q) ∩H`,m(Q) with some ` ≥ 2 and m ≥ 1.

2.3. B-spline spaces and patch parametrizations. In this section, we briefly present
the B-spline spaces and the B-spline parametrizations for the physical space-time patches
(subdomains). We refer to [14, 15, 45] for a more detailed introduction to B-splines.

To describe more clearly the basic material, we start with the B-spline spaces for the
univariate case. Let the integer p1 denote the B-spline degree and the integer n1 denote the
number of basis functions. We now consider a partition Z = {0 = z1, z2, . . . , zM = 1} of
the interval [0, 1] with the subintervals [zj , zj+1], where j = 1, . . . ,M − 1. Based on Z , we
introduce a knot-vector Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn1+p1+1 = 1} and the associated vector
of the knot repetitionsM = {m1, . . . ,mM}. This means,

Ξ = {0 = ξ1, . . . , ξm1︸ ︷︷ ︸
=z1

, ξm1+1 = . . . = ξm1+m2︸ ︷︷ ︸
=z2

, . . . , ξn1+p1+1−mM
, . . . , ξn1+p1+1 = 1︸ ︷︷ ︸
=zM

}.

We assume that m1 = mM = p1 + 1 and mj ≤ p1 for all internal knots. Such a knot-vector
Ξ is also called open knot-vector. The B-spline basis functions are defined by the Cox-de Boor
recursion formula

(2.4) Bi,j =
x− ξi
ξi+j − ξi

Bi,j−1(x) +
ξi+j+1 − x
ξi+j+1 − ξi+1

Bi+1,j−1(x),

where j is running from 1 to p1 and Bi,0(x) = 1 if ξi ≤ x ≤ ξi+1 and 0 otherwise; see, e.g.,
[14, 15].

The multivariate B-spline spaces can easily be derived through tensor-product procedures
of the univariate spaces. Let us consider the unit cube Q̂ = (0, 1)d+1 ⊂ Rd+1, which we
will refer to as the parametric domain. Following the same steps as in the univariate case, we
consider integers pk and nk that indicate the given B-spline degree and the number of basis
functions of the B-spline space in the xk-direction, respectively, with k = 1, . . . , d+ 1. We
introduce the corresponding open-knot vectors Ξk = {0 = ξk1 ≤ ξk2 ≤ . . . ≤ ξknk+pk+1 = 1},
the vectors Zk, and the vectors Mk. We associate with each knot vector Ξk the space
B̂Ξk of B-spline basis functions of degree pk, where k = 1, . . . , d + 1. On the paramet-
ric domain Q̂, we define the tensor-product B-spline space B̂Ξd+1 =

⊗d+1
k=1 B̂Ξk , where

Ξd+1 = (Ξ1, . . . ,Ξk, . . . ,Ξd+1).
In practice, it is usually more convenient to describe the computational domain as a union

of subdomains (patches) and to develop a multi-patch IgA approach. In this paper, we describe
the space-time cylinder Q as a union of non-overlapping time patches Q1, Q2, . . . , QN . We
consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval [0, T ] and denote the
subintervals by Jn = (tn−1, tn). We now define the time patches Qn = Ω× Jn and the faces
Σn = Qn+1 ∩Qn = Ω× {tn} between the time patches, where we identify ΣT and ΣN . In
that way, we have the decomposition Q =

⋃N
n=1Qn. A schematic illustration is presented in

Figure 2.1.
We now proceed with the definition of the B-spline spaces in every Qn as well as the

corresponding parametrizations. For simplicity, let us assume that the B-spline degree is the
same for all directions and for all time patches Qn, i.e., pk,n = p for k = 1, . . . , d+ 1, and let
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FIG. 2.1. (a) The decomposition of the space-type cylinder Q into space-time patches Qn together with the
mesh in the parametric domain Q̂ produced by the knot-vectors Ξk

n. (b) The space-time patches Qn with their
interfaces and the graph of u for the case of Q ⊂ R2.

the integer nk,n denote the number of basis functions of the B-spline space in xk-direction.
In the following, we simply write nk for nk,n, but we allow different nk in different time
patches Qn, with n = 1, . . . , N . For every Qn, we introduce the (d+ 1)-dimensional vector
of knot-vectors Ξd+1

n = (Ξ1
n, . . . ,Ξ

k
n, . . . ,Ξ

d+1
n ), with the particular components given by

Ξkn = {0 = ξk1 ≤ ξk2 ≤ . . . ≤ ξknk+p+1 = 1}. For all the internal knots, we again assume that
mk
j ≤ p, with mk

j being the associated multiplicities. The components Ξkn of Ξd+1
n induce a

mesh Tn
ĥn

(Q̂) = {Êm}Mn
m=1 in Q̂, where Êm are the micro elements and ĥn is the mesh size,

which is defined as follows: given a micro element Êm ∈ Tnĥn
(Q̂), we set ĥÊm

= diam(Êm),

and we define ĥn = max{ĥÊm
}. We set ĥ = maxn=1,...,N{ĥn}. We refer the reader to [14]

for more information about the meaning of the knot vectors in CAD and IgA.
Given the knot vector Ξkn in every direction k = 1, . . . , d+ 1, we construct the associated

univariate B-spline basis functions {B̂n1,k(x̂k), . . . , B̂nnk,k
(x̂k)} using the Cox-de Boor recur-

sion formula (2.4); see also [14, 15] for more details. Accordingly, on the mesh Tn
ĥn

(Q̂), the

basis functions of the multivariate B-spline space B̂Ξd+1
n

are defined by the tensor-product of
the corresponding univariate B-spline basis functions spanning the spaces B̂Ξk

n
, i.e.,

B̂Ξd+1
n

=

d+1⊗
k=1

B̂Ξk
n

= span{B̂nj (x̂)}nB=n1·...·nk·...·nd+1

j=1 ,

where each B̂nj (x̂) has the form

B̂nj (x̂) =B̂nj1(x̂1) · . . . · B̂njk(x̂k) · . . . · B̂njd(x̂d).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

132 C. HOFER, U. LANGER, M. NEUMÜLLER, AND I. TOULOPOULOS

According to the IgA approach, every time patch Qn is the image of the parameter domain by
means of a parametrization mapping Φn defined by the control points and the corresponding
B-spline basis functions. More precisely, we assume that we are given the control points Cn

j

related to Qn, and we parametrize each space-time patch Qn by

Φn : Q̂→ Qn = Φn(Q̂), x = Φn(x̂) =

nB∑
j=1

Cn
j B̂

n
j (x̂),(2.5)

where x̂ = Φ−1
n (x), n = 1, . . . , N ; cf. [14].

For every Qn, we construct a mesh TnhQn
(Qn) = {Em}Mn

m=1, where the elements Em are

the images of Êm ∈ Tnĥn
(Q̂) under Φn, i.e., Em = Φn(Êm). Also, for each E ∈ TnhQn

(Qn),

we denote its support extension by Ẽ, where the support extension is defined to be the interior
of the set formed by the union of the supports of all B-spline functions whose supports
intersects E. Accordingly to the parametric mesh, we let hEm

= diam(Em) and define
hQn = max{hEm : Em ∈ TnhQn

(Qn)}, and the global physical mesh size is h = maxhQn .
For n = 1, . . . , N , we construct the B-spline space BΞd+1

n
on Qn by

BΞd+1
n

:= span
{
Bnj |Qn : Bnj (x) = B̂nj ◦Φ−1

n (x), for j = 1, . . . , nB

}
.

The global B-spline space Vh with components on every BΞd
n

is defined by

Vh := V 1
h1
× . . .× V NhN

:= BΞd+1
1
× . . .× BΞd+1

N
.

ASSUMPTION 2.2. The meshes Tn
ĥn

(Q̂) are uniform, i.e., for every Ê ∈ Tn
ĥn

(Q̂), there

exist a number γn > 0 such that γn ≤ ĥn/ρÊ , where ρÊ is the radius of the inscribed circle
of Ê.

REMARK 2.3. Since the parametrizations Φn, n = 1, . . . , N , are fixed, under Assump-
tion 2.2, we have that ĥn ∼ hQn

. Thus, below, we use hn for denoting any of the mesh sizes,
parametric or physical. For simplicity, we assume that hn ≤ 1 for all n = 1, . . . , N .

The parametrization mappings Φn, n = 1, . . . , N , can be considered to be bi-Lipschitz
homeomorphisms [10]. To simplify the analysis, we further consider the following regularity
properties imposed on Φn, n = 1, . . . , N .

ASSUMPTION 2.4. Assume that every Φn and Φ−1
n , n = 1, . . . , N , are sufficiently

smooth (C1 diffeomorphisms) and that there exist constants 0 < c < C such that
c ≤ |det JΦn

| ≤ C, where JΦn
is the Jacobian matrix of Φn, i.e., JΦn

=
∂(Φn,1,...,Φn,d+1)

∂(x̂1,...,x̂d,t̂)
.

Assumption 2.4 helps in simplifying the form of the constants which appear in the relations
between the norms of the pull-back solution and the physically relevant solution.

COROLLARY 2.5. Let Assumption 2.4 hold, and let u ∈ H`,m(Q) with ` ≥ 2 and m ≥ 1.
Then its pull-back û = u ◦Φn is in H1,1(Q̂), and there exist constants c1 and c2 depending
only on Φn and Φ−1

n and not on u such that c1‖û‖H1,1(Q̂) ≤ ‖u‖H1,1(Qn) ≤ c2‖û‖H1,1(Q̂).
To keep the notation simple, in what follows, we will use the superscript n to denote the

restrictions to Qn, e.g., un := u|Qn .
We denote the global discontinuous B-spline space and the local continuous patch-wise

B-spline spaces by

(2.6) V0h =
{
vh ∈ L2(Q) : vh|Qn

∈ BΞd+1
n

(Qn), forn = 1, . . . , N, and vh|Σ = 0
}

and

(2.7) V n0h =
{
vh ∈ BΞd+1

n
(Qn), forn = 1, . . . , N, and vh|Σ = 0

}
,
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respectively. Notice that vh ∈ V0h is discontinuous across Σn. We introduce the notations

vnh,+ = lim
ε→0+

vh(tn + ε), vnh,− = lim
ε→0−

vh(tn + ε),

JvhKn = vnh,+ − vnh,−, JvhK0 = v0
h,+,

where JvhKn denotes the jump of vh across Σn, for n ≥ 1, and JvhK0 = v0
h,+ denotes the trace

of vh on Σ0. For a smooth function u, we obviously have JuKn = un+ − un− = 0, for n ≥ 1,
and JuK0 = u|Σ0

.

2.4. Stable multipatch space-time dG IgA discretization. Let us consider the space-
time patchQn, and let us denote the outer normal to ∂Q by n=(n1, . . . , nd, nd+1)=(nx, nt).
For the time being, we assume that un−1 is known. Let vnh ∈ V n0h and wnh = vnh + θn hn∂tv

n
h

with some positive parameter θn, which will be defined later. Note thatwnh
∣∣
Σ

= 0. Multiplying
∂tu−∆u = f by wnh , integrating over Qn, and applying integration by parts, we arrive at the
variational identity∫

Qn

(∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x vnh + θn hn∇xu · ∇x∂tvnh) dx dt

−
∫
∂Qn

nx · ∇xu(vnh + θn hn∂tv
n
h) dx+

∫
Σn−1

un−1
+ vn−1

h,+ dx

=

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σn−1

un−1
− vn−1

h,+ dx,

for n = 1, . . . , N , where we used that un−1
− = un−1

+ = un−1 on every Σn−1. Furthermore,
using nx|Σn

= 0 and wh = 0 on Σ, we have

aQn
(u, vh) :=

∫
Qn

(∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x vnh + θn hn∇xu · ∇x∂tvnh) dx dt

+

∫
Σn−1

JuKn−1 vn−1
h,+ dx

=

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt,

for all n = 2, . . . , N , and

aQ1(u, vh) :=

∫
Q1

(∂t u (v1
h + θ1 h1∂tv

1
h) +∇x u · ∇x v1

h + θ1 h1∇xu · ∇x∂tv1
h) dx dt

+

∫
Σ0

JuK0 v0
h,+ dx

=

∫
Q1

f (v1
h + θ1 h1∂tv

1
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Summing over all Qn, we conclude that

(2.8) ah(u, vh) = lh(vh), ∀vh ∈ V0h,

where

ah(u, vh) =

N∑
n=1

aQn(u, vh)
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and

lh(vh) =

N∑
n=1

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Now, the space-time dG IgA variational scheme for (1.1) can be formulated as follows: find
uh ∈ V0h such that

(2.9) ah(uh, vh) = lh(vh), ∀vh ∈ V0h.

In the following lemma, we cite a few auxiliary results that will be used in the error
analysis below. For the proofs, we refer to [7, 9, 16]; see also the discussion in [36].

LEMMA 2.6. Let Qn be a space-time patch, and let v ∈ H1(Qn), vh ∈ BΞd+1
n

, and
E ∈ Tnhn

(Qn). Then there are positive constants Ctr, Cinv,0, and Cinv,1 depending on Φn

and the quasi-uniform properties of Tnhn
(Qn) such that

‖v‖2L2(∂E) ≤ Ctrh
−1
n

(
‖v‖L2(E) + hn |v|H1(E)

)2
,(2.10a)

‖vh‖2L2(∂E) ≤ Cinv,0h
−1
n ‖vh‖2L2(E),(2.10b)

‖∇vh‖2L2(E) ≤, Cinv,1h
−2
n ‖vh‖2L2(E).(2.10c)

By the inequalities (2.10), we can easily infer the inverse inequalities

‖∂tvh‖2L2(E) ≤ Cinv,1h
−2
n ‖vh‖2L2(E)

and

‖∂t∂xivh‖2L2(E) ≤ Cinv,1h
−2
n ‖∂xivh‖2L2(E).

Motivated by the definition of the bilinear form ah(·, ·) in (2.9), we introduce the mesh-
dependent dG norm

‖v‖dG =

( N∑
n=1

(
‖∇xv‖2L2(Qn) + θn hn ‖∂tv‖2L2(Qn) +

1

2
‖JvKn−1‖2L2(Σn−1)

)
+

1

2
‖v‖2L2(ΣN )

) 1
2

,

in which we are going to estimate the discretization error.
LEMMA 2.7. The discrete bilinear form ah(·, ·) defined in (2.9) is V0h-elliptic, i.e.,

ah(vh, vh) ≥ Ce‖vh‖2dG, for vh ∈ V0h,(2.11)

where Ce = 0.5 for 0 < θn ≤ C−2
inv,0.

Proof. Using Green’s formula
∫
Qn

(∂tvh vh + vh ∂tvh) dx dt =
∫
∂Qn

ntv
2
h ds, we obtain

the identity∫
Qn

∂tvh vh dx dt =
1

2

∫
Qn

∂t v
2
h dx dt =

1

2

∫
Σn

(vnh,−)2 dx− 1

2

∫
Σn−1

(vn−1
h,+ )2 dx.(2.12)
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The definition of aQn
(·, ·) and the identity (2.12) yield

aQn
(vh, vh) =

∫
Qn

(
1

2
∂tv

2
h + θnhn(∂tvh)2 + |∇xvh|2 +

θnhn
2

∂t|∇xvh|2
)
dx dt

+

∫
Σn−1

JvhKn−1vn−1
h,+ dx

=

∫
Qn

(
θnhn(∂tvh)2 + |∇xvh|2

)
dx dt+

∫
∂Qn

θnhn
2
|∇xvh|2nt ds

+

∫
Σn−1

(
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+ −

1

2
(vn−1
h,+ )2

)
dx+

1

2

∫
Σn

(vnh,−)2 dx

= θnhn‖∂tvh‖2L2(Qn) + ‖∇xvh‖2L2(Qn)

+
θnhn

2

(
‖∇xvh‖2L2(Σn) − ‖∇xvh‖

2
L2(Σn−1)

)
+

∫
Σn−1

(
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+ −

1

2
(vn−1
h,+ )2

)
dx+

1

2

∫
Σn

(vnh,−)2 dx

≥ θnhn‖∂tvh‖2L2(Qn) + ‖∇xvh‖2L2(Qn) −
θnhn

2
‖∇xvh‖2L2(Σn−1)

+

∫
Σn−1

(
1

2
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+

)
dx+

1

2

∫
Σn

(vnh,−)2 dx

≥ θnhn‖∂tvh‖2L2(Qn) +
(
1−

θn C
2
inv,0

2

)
‖∇xvh‖2L2(Qn)

+

∫
Σn−1

(
1

2
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+

)
dx+

1

2

∫
Σn

(vnh,−)2 dx,

where we have used (2.10) at the last step in the estimates above. Summing over all Qn, we
obtain

ah(vh, vh) =

N∑
n=1

aQn(vh, vh) ≥
N∑
n=1

θnhn‖∂tvh‖2L2(Qn) +

(
1−

θn C
2
inv,0

2

)
‖∇xvh‖2L2(Qn)

+

N∑
n=1

1

2
‖JvhKn−1‖2L2(Σn−1) +

1

2
‖vNh,−‖2L2(ΣN ).

Choosing 0 < θn ≤ C−2
inv,0, we arrive at (2.11) with Ce = 0.5.

REMARK 2.8. The V0h-ellipticity (2.11) of the bilinear form ah(·, ·) implies uniqueness
of the solution uh of the IgA scheme (2.9) and, in the finite-dimensional case, uniqueness
yields existence. Thus, there always exists a unique IgA solution of the space-time IgA
scheme (2.9). Moreover, we can easily derive an a priori estimate. Indeed, using the discrete
solution uh as test function in (2.9), the inequalities defined in (2.1) and (2.2) yield

Ce‖uh‖2dG ≤ ah(uh, uh) =
∣∣lh(uh)

∣∣
≤
∣∣∣ N∑
n=1

∫
Qn

f (unh + θnhn∂tu
n
h) dx dt

∣∣∣+
∣∣∣ ∫

Σ0

u0 u
0
h,+ dx

∣∣∣
≤
√

2Cstab

(
‖f‖L2(Q) + ‖u0‖L2(Σ0)

)
‖uh‖dG,
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whereCstab depends on the constant in (2.2) and on θmax = maxn{θn}. Form these estimates,
we immediately get the a priori bound

‖uh‖dG ≤
√

2CstabC
−1
e

(
‖f‖L2(Q) + ‖u0‖L2(Σ0)

)
.

Later, in the discretization error analysis, we need continuity properties for ah(·, ·). Let V and
V0h be the spaces defined in Assumption 2.1 and in (2.6). We define the space V0h,∗ = V +V0h

endowed with the norm

‖v‖dG,∗ =

(
‖v‖2dG +

N∑
n=1

(θnhn)−1‖v‖2L2(Qn) +

N∑
n=2

‖vn−1
− ‖2L2(Σn−1)

) 1
2

.

LEMMA 2.9. Let u ∈ V0h,∗. Then the boundedness inequality

|ah(u, vh)| ≤ Cb‖u‖dG,∗‖vh‖dG(2.13)

holds for all vh ∈ V0h, where Cb = max(Cinv,1 θmax, 2) with θmax = maxn{θn} ≤ C−2
inv,0.

Proof. For the first and the interface jump terms of ah, we use (2.12) and (2.1) and obtain

N∑
n=1

(∫
Qn

∂tu vh dx dt+

∫
Σn−1

JuKn−1 vn−1
h,+ dx

)
(2.14)

= −
N∑
n=1

∫
Qn

u ∂tvh dx dt+

N∑
n=1

(∫
Σn

u vnh,− dx−
∫

Σn−1

u vn−1
h,+ dx

+

∫
Σn−1

JuKn−1 vn−1
h,+ dx

)

≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2
) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2
) 1

2

+

N∑
n=2

∫
Σn−1

(vn−1
h,− − v

n−1
h,+ )un−1

− dx+

∫
ΣN

vnh,−u
n
− dx

≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2
) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2
) 1

2

+

( N∑
n=2

‖vn−1
h,− − v

n−1
h,+ ‖

2
L2(Σn−1)

) 1
2
( N∑
n=2

‖un−1
− ‖2L2(Σn−1)

) 1
2

+ ‖uN−‖L2(ΣN )‖vNh,−‖L2(ΣN )

≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2
) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2
) 1

2

+
√

2

(
1

2

N∑
n=1

‖JvhKn−1‖2L2(Σn−1) +
1

2
‖vNh ‖2L2(ΣN )

) 1
2

×
√

2

( N∑
n=2

‖un−1
− ‖2L2(Σn−1) +

1

2
‖uN−‖2L2(ΣN )

) 1
2

.
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For the second term, an application of Cauchy’s inequality yields

N∑
n=1

∫
Qn

(θnhn)
1
2 ∂tu (θnhn)

1
2 ∂tvh dx dt+

N∑
n=1

∫
Qn

∇xu · ∇xvh dx dt(2.15)

≤
( N∑
n=1

θnhn‖∂tu‖2L2(Qn)

) 1
2
( N∑
n=1

θnhn‖∂tvh‖2L2(Qn)

) 1
2

+
( N∑
n=1

‖∇xu‖2L2(Qn)

) 1
2
( N∑
n=1

‖∇xvh‖2L2(Qn)

) 1
2

.

For the last term, we apply Cauchy’s and an inverse inequality to show

N∑
n=1

∫
Qn

∇xu · (θnhn)∇x∂tvh dx dt(2.16)

≤
( N∑
n=1

‖∇xu‖2L2(Qn)

) 1
2
( N∑
n=1

(θnhn)2
d∑
i=1

∫
Qn

(∂t∂xi
vh)2 dx dt

) 1
2

≤
( N∑
n=1

‖∇xu‖2L2(Qn)

) 1
2
( N∑
n=1

(θnhn)2Cinv,1h
−2
n

d∑
i=1

∫
Qn

(∂xi
vh)2 dx dt

) 1
2

≤ Cinv,1θmax
( N∑
n=1

‖∇xu‖2L2(Qn)

) 1
2
( N∑
n=1

‖∇xvh‖2L2(Qn)

) 1
2

,

where θmax = maxn{θn} ≤ C−2
inv,0. Gathering together the bounds (2.14), (2.15), and (2.16)

and setting Cb = max(Cinv,1 θmax, 2) yield the desired result.
LEMMA 2.10. Let Assumption 2.1 hold, and let uh ∈ V0h be the dG IgA solution of (2.9).

Then the Galerkin orthogonality

ah(u− uh, vh) = 0(2.17)

holds for all vh ∈ V0h.
Proof. Subtracting (2.9) from (2.8) directly yields the Galerkin orthogonality (2.17).

3. A priori discretization error analysis. Based on the quasi-interpolation error esti-
mates presented in [7, 10] (see also [36, 45]), we below construct quasi-interpolation operators
Πn
h : H`,m(Qn) → BΞd+1

n
(Qn), for n = 1, . . . , N , suitable for providing anisotropic in-

terpolation error estimates. Utilizing these estimates, we show the desirable anisotropic
discretization error estimates at the end of this section.

3.1. Multivariate quasi-interpolants in the parameter domain Q̂ . Let Z be a par-
tition of the interval I = (0, 1), i.e., Z = {0 = z1, z2, . . . , zM = 1}, with the subintervals
Ij = (zj , zj+1), j = 1, . . . ,M − 1, and let h = maxj=1,...,M−1{zj+1 − zj} be the maximal
mesh size. Based on Z , we consider a knot-vector Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 = 1}
and the associated vector of knot multiplicitiesM = {m1, . . . ,mM}. Let s = 0 or s = 1, the
integer ` be such that 0 ≤ s ≤ ` ≤ p+ 1, and let f ∈ H`(I). Due to the quasi-interpolation
estimates presented in [10, 45], we can construct a quasi-interpolant Π̂h : H`(I) → B̂Ξ(I)
such that the interpolation estimate

|f − Π̂hf |Hs(I) ≤ Ch`−s ‖f‖H`(I)
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holds, where the positive constant C depends on p and on the uniformity parameters of the
partition but not on h. The previous construction of the univariate quasi-interpolation can
be extended to the multi-dimensional case by means of a tensor-product construction like
those presented in Section 2.3. For example, let f ∈ H`(Q̂) with ` ≥ 1, and let Π̂Ξk be the
corresponding k-th univariate quasi-interpolation operator onto B̂Ξk . Then we construct the
multi-dimensional B-spline interpolation operator Π̂Ξd+1 by the tensor product

Π̂Ξd+1f =

d+1⊗
k=1

Π̂Ξkf.(3.1)

The general quasi-interpolation properties of the multivariate B-spline interpolants are inherited
by the corresponding properties of the univariate interpolants. We refer to [7, 10, 45] for a
comprehensive analysis of the properties of the tensor-product B-spline interpolants.

3.2. Anisotropic quasi-interpolation in space-time patches Qn. Let f ∈ H`,m(Q),
with ` ≥ 2 and m ≥ 1. As usual, we denote its restriction to the space-time patches Qn by
fn = f |Qn , for n = 1, . . . , N . Further, we denote its pull-back function by f̂n = f ◦Φn.
We note that, in general, f̂n does not inherit the regularity of f but rather belongs to a bent
Sobolev spaceH`(Q̂) = H`1(I)⊗. . .⊗H`d(I)⊗H`d+1(I),which allows less regularity across
the microelement interfaces, where H`1(I), . . . ,H`d+1(I) are the corresponding univariate
bent-Sobolev spaces; see [7, 10]. To derive anisotropic quasi-interpolation estimates, we
have strongly been inspired by the results presented in [10, 11], which are also suitable for
anisotropic meshes. The generalization here is that we provide anisotropic interpolation
estimates that follow the anisotropic regularity of the solution. In the spirit of (3.1), we define
the interpolant Π̂Ξd+1

n
f̂n of the pull-back f̂n in the parameter domain Q̂. For simplicity,

we shall write Π̂n
h instead of Π̂Ξd+1

n
. Accordingly, we define the quasi-interpolant of fn as

Πn
hf

n =
(
Π̂n
h f̂

n
)
◦Φ−1

n in the physical space-time patches Qn. By extension, we can define
the global interpolant Πh : H`,m(Q)→ Vh as (Πhf)|Qn

= Πn
hf

n; see, e.g., [10].
Before stating estimates on how well Πhf approximates f ∈ H`,m(Q), some terminology

is required. We recall the definition of the differential operator

∂(α,m)f := ∂(α1,...,αd,m)f =
∂α1 . . . ∂αd∂m

∂xα1
1 . . . ∂xαd

d ∂tm
f

from Section 2.1. In order to derive the anisotropic estimates, we have to introduce the
derivatives with respect to the coordinate system that is naturally induced by the mappings
Φn : Q̂→ Qn; see (2.5). We again note that the mappings Φn are constructed on relatively
coarse meshes and are highly smooth (polynomials) on the microelements of those meshes.

We recall that the columns of the Jacobian matrix of Φn (see (2.5) and Assumption 2.4)
have the form [∂Φn,1

∂x̂i
, . . . ,

∂Φn,d
∂x̂i

,
∂Φn,d+1

∂x̂i

]>
=
[∂Φn,1
∂x̂i

, . . . ,
∂Φn,d
∂x̂i

, 0
]>
,

where we have used the fact that ∂Φn,d+1

∂x̂i
= 0, for i = 1, . . . , d, which easily follows from the

tensor-product construction of each Φn. We now introduce the notation

gn,i(x, t) =
[∂Φn,1
∂x̂i

(Φ−1
n (x, t)), . . . ,

∂Φn,d
∂x̂i

(Φ−1
n (x, t)), 0

]>
.
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Then the derivatives of f with respect to the spatial Φn-coordinates are given as follows: the
first derivatives are just the directional derivatives with respect to gn,i for i = 1, . . . , d, i.e.,

∂f(x, t)

∂gn,1
= ∇f(x, t) · gn,1(x, t),

...
∂f(x, t)

∂gn,d
= ∇f(x, t) · gn,d(x, t),

(3.2a)

whereas the “one-directional” high-order derivatives are given by

∂αif

∂gαi
n,i

=
∂

∂gn,i

(
. . .
( ∂f

∂gn,i

))
︸ ︷︷ ︸

αi−times

.(3.2b)

Let the multi-indexα = (α1, . . . , αd) be defined as in Section 2.1. To deal with multi-direction
derivatives, we introduce the notations xα,q = xα1

1 . . . , xαd

d , xqd+1, where x ∈ Rd+1, q ∈ N0,

DαΦn
f =

∂α1

∂gα1
n,1

. . .
∂αdf

∂gαd

n,d

, and Dα,qΦn
f =

∂α1

∂gα1
n,1

. . .
∂αd

∂gαd

n,d

∂qf

∂gqn,d+1

.

In relation to the derivatives Dα,qΦn
f , we define the norms and seminorms

‖f‖2Hα,q
Φn

(Qn) =

α1∑
s1=0

. . .

αd∑
sd=0

q∑
sd+1=0

|f |2Hα,q
Φn

(Qn),(3.3)

and

|f |2Hα,q
Φn

(Qn) =
∑

E∈Tn
hn

(Qn)

|f |2Hα,q
Φn

(E),(3.4)

respectively, where |f |2
Hα,q

Φn
(E)

= ‖Dα,qΦn
f‖L2(E). We now introduce the space Hα,qΦn

(Qn)

endowed with the norm ‖ · ‖Hα,q
Φn

(Qn) = ‖ · ‖Hα,q
Φn

(Qn). Below, we show a relation between the
norms based on the gn,i-directional derivatives and those based on the usual partial derivatives.

PROPOSITION 3.1. Let f : Q→ R be a smooth function, and let Assumption 2.4 hold.
Then, for |α| = 1 and for all E ∈ Tnhn

(Qn), we have the equivalence relations

(3.5) ‖∂αf‖L2(E) ∼
∑
|α|=1

‖Dα,0Φn
f‖L2(E) and ‖f‖H`,m(E) ∼

∑
|α|=1

‖f‖H`α,m
Φn

(E),

where the associated constants depend on p, γ, gn,i, and Φn.
Proof. The inequalities (3.5) immediately follow from (3.2a), (3.3), (3.4), and (3.2).
ASSUMPTION 3.2. For simplicity, we assume that p+ 1 ≥ max(`,m); cf. also Assump-

tion 2.1.
THEOREM 3.3. Let the Assumptions 2.2, 2.4, and 3.2 hold. Let E ∈ Tnhn

(Qn) and Ẽ
be its support extension. Furthermore, let f ∈ H`,m(Qn) with ` ≥ 2 and m ≥ 1. Then the
quasi-interpolation estimates(∑

E∈Tn
hn

(Qn) |∇x(f −Πn
hf)|2L2(E)

) 1
2 ≤ Cx

(
h`−1
n + hmn

)
‖f‖H`,m(Qn),(3.6a) (∑

E∈Tn
hn

(Qn) |∂t(f −Πn
hf)|2L2(E)

) 1
2 ≤ Ct

(
h`n + hm−1

n

)
‖f‖H`,m(Qn),(3.6b) (∑

E∈Tn
hn

(Qn) |f −Πn
hf |2L2(E)

) 1
2 ≤ C0

(
h`n + hmn

)
‖f‖H`,m(Qn)(3.6c)
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hold, where the positive constants Cx, Ct, and C0 only depend on d, p, γ,gn,i, and Φn.
Proof. We already noted above that the last component of gn,i is equal to zero. This

implies that the derivatives ∂f(x,t)
∂gn,i

do not include terms like ∂f
∂t ; see (3.2). Since f ∈ H`,m(Q),

we conclude that f ∈ H`α,0
Φn

(Qn) ∩H0,m
Φn

(Qn), where α is a multi-index with d-components
such that |α| = 1. Making use of the interpolation results presented in [10] (see Theorem 4.18),
we arrive at the estimate

‖Dα,0Φn
(f −Πn

hf)‖L2(E) ≤ c1
(
h`−1
n + hmn

)∑
|α|=1‖f‖H`α,m

Φn
(Ẽ).(3.7)

Using (3.5) and (3.7), we can derive the interpolation error estimate

‖∇x(f −Πn
hf)‖L2(E) ≤ c2

∑
|α|=1‖D

α,0
Φn

(f −Πn
hf)‖L2(E)(3.8)

≤ c3
(
h`−1
n + hmn

)
‖f‖H`,m(Ẽ),

with positive constants c2 and c3 depending on d, p, γ, and Φn. Summing over all E in
Tnhn

(Qn), the estimate (3.8) yields

∑
E

‖∇x(f −Πn
hf)‖2L2(E) ≤ c4

(
h`−1
n + hmn

)2 ∑
E

‖f‖2
H`,m(Ẽ)

,(3.9)

≤ c5
(
h`−1
n + hmn

)2 ∑
E

∑
E′∈Ẽ

‖f‖2H`,m(E′),

where the constants c4 and c5 only depend on the constant c3. Now, we observe that the last
double sum in (3.9) consists of repeated element norm terms of the form ‖f‖H`,m(E). More
precisely, for every element E ∈ Tnhn

(Qn), the related norm term ‖f‖H`,m(E) appears as
many times in (3.9) as the number of the extension supports Ẽ, lets say ENb,Ẽ , to which
the element E belongs. Due to the construction procedure of B-splines, ENb,Ẽ depends
on the underlying B-spline degree and the knot repetitions mi, i.e., the smoothness of the
B-splines across the microelement interfaces. Setting Emax,Ẽ = maxE∈Tn

hn
(Qn){ENb,Ẽ},

the inequality (3.9) gives∑
E

‖∇x(f −Πn
hf)‖2L2(E) ≤ c5Emax,Ẽ

(
h`−1
n + hmn

)2 ∑
E

‖f‖2H`,m(E)

≤ C2
x

(
h`−1
n + hmn

)2

‖f‖2H`,m(Qn),

and the estimate (3.6a) follows. Following a similar procedure, we can show the estimates
(3.6b) and (3.6c).

THEOREM 3.4. Let ` ≥ 2 and m ≥ 1 be integers, and let f ∈ H`,m(Q). Furthermore,
let the Assumptions 2.2, 2.4, and 3.2 hold, and let Πn

hf be the corresponding quasi-interpolant
defined above. Then there exist constants C∗1 and C∗2 independent of f and h but dependent on
the constants from (2.10) and (3.6) such that the following quasi-interpolation error estimates

‖f −Πn
hf‖L2(∂Qn) ≤ C∗1

(
h
`− 1

2
n + h

m− 1
2

n

)
‖f‖H`,m(Qn),(3.10a)

‖f −Πhf‖dG,∗ ≤ C∗2
(
h`−1 + hm−

1
2

)
‖f‖H`,m(Q)(3.10b)

hold.
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Proof. Using first the trace inequalities given in (2.10) and then (3.6), we get

‖f −Πn
hf‖2L2(∂Qn) ≤ Ctr

(
h−1
n

(
‖f −Πn

hf‖2L2(Qn) + hn ‖∇f −∇Πn
hf‖2L2(Qn)

))
≤ (C∗1 )2 (h

2(`− 1
2 )

n + h
2(m− 1

2 )
n )‖f‖2H`,m(Qn).

Recalling the definition of ‖ · ‖dG,∗ and using again (3.6) as well as the just proven estimate
(3.10a), we obtain

‖f −Πhf‖2dG,∗ =

N∑
n=1

(
‖∇x(f −Πn

hf)‖2L2(Qn) + θn hn ‖∂t(f −Πn
hf)‖2L2(Qn)

+
1

2
‖J(f −Πhf)n−1K‖2L2(Σn−1)

)
+

1

2
‖f −ΠN

h f‖2L2(ΣN ) +

N∑
n=1

1

θnhn
‖f −Πn

hf‖2L2(Qn)

+

N∑
n=2

‖(f −Πn−1
h f)n−1

− ‖2L2(Σn−1)

≤
N∑
n=1

(
C0,n

(
h2(`−1)
n + h

2(m− 1
2 )

n

)
+ C1,n

(
h

2(`− 1
2 )

n + h
2(m− 1

2 )
n

)
+ C2,n(θn hn)−1

(
h2`
n + h2m

n

))
‖f‖2H`,m(Qn)

≤
N∑
n=1

Cn

(
h2(`−1)
n + θnh

2`−1
n + h2m−1

n + θnh
2m−1
n

)
‖f‖2H`,m(Qn)

≤ (C∗2 )2
(
h2(`−1) + h2(m− 1

2 )
)
‖f‖2H`,m(Q),

where Cn = C0,n + C1,n + C2,n and (C∗2 )2 = maxn=1,...,N{(1 + θn)Cn}. We mention
that a reduction of the terms h`−1 and h`−

1
2 has been performed. This completes the proof

of (3.10b).

3.3. Discretization error estimate. We are now in the position to prove the discretiza-
tion error estimate in the dG-norm ‖ · ‖dG.

THEOREM 3.5. Let u and uh solve (2.3) and (2.9), respectively. Under Assumption 2.1,
there exist a positive generic constant C, which is independent of h, such that

‖u− uh‖dG ≤ C(h`−1 + hm−
1
2 ) ‖u‖H`,m(Q).(3.11)

Moreover, if 1 ≤ m < ` ≤ p+ 1, then

‖u− uh‖dG ≤ Chm−
1
2 ‖u‖H`,m(Q).(3.12)

Proof. Using the V0h ellipticity (2.11) and the boundedness estimate (2.13) as well as the
consistency (2.17), we obtain

‖uh −Πhu‖2dG ≤ C−1
e ah(uh −Πhu, uh −Πhu) = C−1

e ah(u−Πhu, uh −Πhu)

≤ (Cb/Ce)‖u−Πhu‖dG,∗‖uh −Πhu‖dG.
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Hence, applying the triangle inequality ‖u− uh‖dG ≤ ‖u−Πhu‖dG,∗ + ‖uh −Πhu‖dG, we
derive

‖u− uh‖dG ≤ (1 + (Cb/Ce))‖u−Πhu‖dG,∗.(3.13)

Utilizing estimate (3.10) in (3.13) yields (3.11). Estimate (3.12) is a direct result of (3.11).

REMARK 3.6. We remark that for the case of highly smooth solutions, i.e., when
p+ 1 ≤ min(`,m), the estimate (3.11) takes the form

‖u− uh‖dG ≤ C hp ‖u‖Hp+1,p+1(Q).

4. Matrix representation and space-time multigrid. We recall the discrete variational
problem given in (2.9), where we want to find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h,

with V0h := V 1
0h × . . .× V N0h and

ah(uh, vh) =

N∑
n=1

aQn
(uh, vh),

where the local bilinear form for each space-time patch n = 1, . . . , N is given by

aQn(uh, vh) =

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x unh · ∇x(vnh + θn hn∂tv

n
h) dx dt

+

∫
Σn−1

JuhKn−1 vn−1
h,+ ds

=

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x unh · ∇x(vnh + θn hn∂tv

n
h) dx dt

+

∫
Σn−1

un−1
h,+ vn−1

h,+ ds−
∫

Σn−1

un−1
h,− vn−1

h,+ ds

=: bQn
(unh, v

n
h)−

∫
Σn−1

un−1
h,− vn−1

h,+ ds.

For the local spaces V n0h defined by (2.7), we now introduce the simpler notation ϕnj for the
B-spline basis functions such that

V n0h = span{ϕnj }
Nn
j=1,

for n = 1, . . . , N . Then, from the discrete problem (2.9), we obtain the linear system

Lhuh :=


A1

−B2 A2

−B3 A3

. . . . . .
−BN AN




u1

u2

u3
...
uN

 =


f

1
f

2
f

3
...
f
N

 =: f
h
,(4.1)

with the matrices

An[i, j] := bQn
(ϕnj , ϕ

n
i ), for i, j = 1, . . . , Nn,
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on the diagonal for n = 1, . . . , N , and the matrices

Bn[i, k] :=

∫
Σn−1

ϕn−1
k,− ϕn−1

i,+ ds, for k = 1, . . . , Nn−1 and i = 1, . . . , Nn,

on the lower off-diagonal for n = 2, . . . , N . Moreover, the right-hand sides are given by

f
n
[i] := lh(ϕni ), i = 1, . . . , Nn,

for n = 1, . . . , N . The linear system (4.1) can be solved by solving the local space-time
problems sequentially from one space-time patch to the next space-time patch, i.e., as for a
time-stepping scheme

Anun = f
n

+ Bnun−1 for n = 2, . . . , N.

In this work, we will solve the linear system (4.1) by using a space-time multigrid approach
similar to the one proposed in [20]. In particular, we apply an (inexact) damped Jacobi scheme
as smoother, i.e.,

uk+1
h = ukh + ωD−1

h

[
f
h
− Lhu

k
h

]
for k = 1, 2, . . . ,

where we use the block diagonal matrix Dh := diag{An}Nn=1 and the damping parameter
ω = 1

2 ; see also [20]. We speed up the application of the smoothing iteration by replacing the
exact inverse of Dh by some appropriate approximation. In detail, we will apply one V-cycle
iteration of an algebraic multigrid solver (hypre [17, 18]) with respect to the diagonal matrices
An, n = 1, . . . , N , i.e., for each single space-time patch Qn. For the single patch case, this
type of solvers where successfully used in [34]. For the space-time multigrid approach, we
construct a space-time hierarchy by always combining two space-time patches to one coarser
space-time patch, where we always apply standard coarsening in the time and space directions.
We then have all the components available for setting up a standard multigrid V-cycle. The
advantage is that this method is fully parallel with respect to space and time since we use an
additive smoother in time and apply standard parallel solvers in space. Moreover, we will use
one iteration of this space-time multigrid V-cycle as a preconditioner for the GMRES method.

If the IgA maps Φn : Q̂→ Qn, n = 1, . . . , N , preserve the tensor-product structure of
the IgA basis functions ϕni , then we can use this information to save assembling time and
storage costs for the linear system (4.1). In this case, we can write the basis functions ϕni in
the form

ϕni (x, t) = φnix(x)ψnit(t), with ix ∈ {1, . . . , Nn,x} and it ∈ {1, . . . , Nn,t},

where Nn = Nn,xNn,t. Using this representation, we can write the matrices An, for
n = 1, . . . , N , as

An = Mn,x ⊗Kn,t + Kn,x ⊗Mn,t,

with the standard mass and stiffness matrices with respect to space

Mn,x[ix, jx] :=

∫
Ω

φnjxφ
n
ix dx, Kn,x[ix, jx] :=

∫
Ω

∇xφnjx · ∇xφ
n
ix dx,

where ix, jx = 1, . . . , Nn,x, and the corresponding matrices with respect to time

Kn,t[it, jt] :=

∫ tn

tn−1

∂tψ
n
jt(ψ

n
it + θnhn∂tψ

n
it) dt+ ψnjt(tn−1)ψnit(tn−1),

Mn,t[it, jt] :=

∫ tn

tn−1

ψnjt(ψ
n
it + θnhn∂tψ

n
it) dt,
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TABLE 5.1
Error in the dG-norm and convergence rates in terms of eoc for B-spline degrees 2, 3, and 4.

p = 2 p = 3 p = 4
refinement error eoc error eoc error eoc

0 2.78183E-01 - 3.75765E-02 - 8.82743E-03 -
1 5.65687E-02 2.30 7.06373E-03 2.41 7.69525E-04 3.51
2 1.34029E-02 2.08 8.08757E-04 3.12 4.58646E-05 4.07
3 3.30531E-03 2.02 9.84041E-05 3.04 2.89757E-06 3.98
4 8.23479E-04 2.01 1.22122E-05 3.01 1.83866E-07 3.98
5 2.05689E-04 2.00 1.52369E-06 3.00 1.16102E-08 3.99
6 5.14104E-05 2.00 1.90371E-07 3.00 7.29856E-10 3.99
7 1.28518E-05 2.00 2.37934E-08 3.00 4.83346E-11 3.92

with it, jt = 1, . . . , Nn,t. The matrices on the off-diagonal Bn, n = 2, . . . , N , can be written
in the form

Bn := M̃n,x ⊗Nn,t,

with the matrices

M̃n,x[ix, kx] :=

∫
Ω

φn−1
kx

φnix dx and Nn,t[it, kt] := ψn−1
kt

(tn−1)ψnit(tn−1),

where ix = 1, . . . , Nn,x, kx = 1, . . . , Nn−1,x, it = 1, . . . , Nn,t, and kt = 1, . . . , Nn−1,t.

5. Numerical examples. In the following, we present numerical examples supporting
the theory developed in this paper. In Section 5.1, we verify the a priori error estimate from
Theorem 3.5 for higher-order B-splines. In Section 5.2, we show the parallel performance of
the space-time solver introduced in Section 4.

5.1. Convergence studies. In the first example, the diffusion problem is considered
in the two-dimensional space-time cylinder Q = Ω × (0, 4) with Ω = (0, 1). We choose
homogeneous boundary conditions and the source function

f(x, t) = π sin(πx)
(

1
2 cos(π2 (t+ 1)) + π sin(π2 (t+ 1))

)
resulting from the exact solution u(x, t) = sin(πx) sin(π2 (t+ 1)). The space-time cylinder
Q is decomposed into four space-time patches Qn = Ω × (tn−1, tn) where the partition in
time is given by {t0, t1, t2, t3, t4} = {0, 1, 2, 3, 4}; see Fig. 5.1(a). The problem has been
solved on a sequence of meshes obtained from an initial mesh by uniform refinements; see
also Fig. 5.1(a).

According to Figure 5.1(a), the mesh on Q1 and Q3 has one additional refinement. We
discretize the problem using B-splines of degree p = {2, 3, 4} and choose θn = 0.2 for
all space-time patches. The final linear system (4.1) is solved by means of a direct solver,
where we used the PARDISO 5.0.0 Solver Project [42, 43]. The algorithm is realized in
the isogeometric open source C++ library G+SMO1. The solution uh on a coarse mesh with
h = 0.25 is visualized in Figure 5.1(a). The error in the dG-norm and the convergence rates
in terms of eoc are presented in Table 5.1 and plotted in Figure 5.1(b). We observe that the
obtained experimental order of convergence (eoc), defined by eoc = ln(ei−1/ei)/ln(hi−1/hi)
with ei := ‖u− uhi

‖dG, coincide with the theoretically predicted rates of convergence from
Theorem 3.5 for smooth solutions u; see also Remark 3.6. To be more precise, we observe
that ‖u− uh‖dG behaves like O(hp), where p is the B-spline degree.

1G+SMO = Geometry plus Simulation MOdules; see also http://gs.jku.at/gismo.
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FIG. 5.1. (a) The solution uh on Q having non-matching meshes across the interface after two uniform
refinements of the initial mesh. (b) Convergence plots for polynomial degrees p = {2, 3, 4}.

5.2. Parallel solver studies. Here we apply the parallel multigrid solver that was in-
troduced in Section 4 to solve the arising linear systems (4.1) for the case p = 1, i.e., for
lowest-order splines. In detail, we consider the simulation time T = 1 and the computa-
tional domain Ω ⊂ R3 given by the control points (0, 0, 0)>, (1, 0, 0)>, (1, 1, 0)>, (0, 1, 0)>,
(−1/4,−1/4, 1)>, (1, 0, 1)>, (1, 1, 1)>, (−1/4, 5/4, 1)>; see also Figure 5.2. For the initial
space-time mesh, we use one space-time patch (N = 1) which is decomposed into 64 elements
in space and 8 elements with respect to time. We then apply uniform refinement with respect to
space, and, at the same time, we increase the number of space-time patches by a factor of two,
i.e., we apply uniform refinement in space and time. Throughout all computations, we use the
parameter θn = 0.2 for all space-time patches. Moreover, we assemble the linear systems and
apply the parallel space-time multigrid solver, discussed in Section 4, as a preconditioner for
the GMRES method. For the problem in space, we make use of the software library MFEM2,
where the AMG library hypre is used as parallel solver in space. For the time parallelization,
we use the software developed in [20]. For all examples, we stop the GMRES method when a
relative residual error of 10−12 is reached.

In Table 5.2, we present the numerical results for the manufactured solution

u(x, t) = sin(πx1) sin(πx2) sin(πx3) sin(πt),

which is regular. For this example, we observe the optimal convergence rates in the dG-norm,
which are predicted by the theory given in Theorem 3.5. Furthermore, we also obtain quite
small iteration numbers for the preconditioned GMRES method. In Table 5.2, we denote the
number of cores which are used for the hypre AMG solver and the number of cores which are
used for the time parallelization by cx and ct, respectively. Hence, we use cxct cores overall.
To fit the problem into the memory of the machine, we increase the number of cores in space

2MFEM = Modular Finite Element Methods; see also mfem.org
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FIG. 5.2. Computational spatial domain Ω decomposed into 4096 elements (left) and distributed over 32
processors (right). The numerical solution given in Table 5.2 is plotted at t = 0.5.

TABLE 5.2
Convergence results in dG-norm for a regular solution as well as iteration numbers and solution times for the

parallel space-time multigrid preconditioned GMRES method.

N overall dof ‖u− uh‖dG eoc cx ct cores iter time [s]
1 1 125 3.56223E-01 - 1 1 1 1 0.03
2 13 122 1.77477E-01 1.01 1 2 2 13 1.87
4 176 868 8.86255E-02 1.00 1 4 4 15 21.47
8 2 587 464 4.42868E-02 1.00 4 8 32 15 100.48

16 39 546 000 2.21376E-02 1.00 32 16 512 17 94.32
32 618 246 432 1.10675E-02 1.00 256 32 8192 17 162.90
64 9 777 365 568 5.53340E-03 1.00 2048 64 131072 17 211.33

and time for N > 8. In detail, we double the number of cores with respect to time, and we
increase the number of cores with respect to space by a factor of 8 for each level. This results
in an almost constant workload for each processor forN ≥ 8. In Table 5.2, we observe that the
solution times increase for N = 16 and N = 32. This does not lead to a completely perfect
weak scaling behavior. This is mainly affected by the efficiency of the parallel AMG solver
hypre. In particular, one iteration of the AMG solver needs 2.20, 2.01, 2.71, 3.54 seconds for
N = 8, 16, 32, 64, respectively, which explains the computational times given in Table 5.2.
Finally, we can solve a linear system consisting of 9 777 365 568 unknowns in less than
4 minutes.

In Table 5.3, we give the convergence rates for the manufactured solution

u(x, t) = cos(βx1) cos(βx2) cos(βx3)(1− t)α ∈ Hs,α+ 1
2−ε(Q)

for α = 0.75, β = 0.3, an arbitrary s ≥ 2, and an arbitrary small ε > 0. This solution has
lower regularity with respect to time; see also [40]. By (3.12) in Theorem 3.5, the asymptotic
convergence rate with respect to h is then (almost) given by 0.75. In Table 5.3, we observe
the expected reduced convergence rates predicted by Theorem 3.5. We also observe that the
solver is not effected at all by the regularity of the solution.

All parallel computations have been performed on the cluster Vulcan BlueGene/Q at
Livermore, USA.
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TABLE 5.3
Convergence results in dG-norm for a low regularity solution as well as iteration numbers and solution times

for the parallel space-time multigrid preconditioned GMRES method.

N overall dof ‖u− uh‖dG eoc cx ct cores iter time [s]
1 1 125 1.58022E-02 - 1 1 1 1 0.03
2 13 122 8.88627E-03 0.83 1 2 2 13 2.00
4 176 868 5.41668E-03 0.71 1 4 4 15 21.48
8 2 587 464 3.33881E-03 0.70 4 8 32 15 100.57

16 39 546 000 2.05545E-03 0.70 32 16 512 17 94.43
32 618 246 432 1.25859E-03 0.71 256 32 8192 17 171.83
64 9 777 365 568 7.65921E-04 0.72 2048 64 131072 17 211.49

6. Conclusions. We have presented and analyzed a time-multipatch discontinuous
Galerkin space-time IgA method for solving initial-boundary value problems for linear
parabolic partial differential equations. The method proposed uses discontinuous Galerkin
techniques with time-upwind fluxes for establishing the communication of the discrete solution
across the time-patch interfaces. Furthermore, time-upwind diffusion techniques were used for
stabilizing the time discretization within each patch. A complete discretization error analysis
was developed in a suitable energy norm including the case where the solution can exhibit
different regularity behavior with respect to the space and time directions. The convergence
rate estimates were confirmed by numerical experiments. We have proposed fast techniques
for generating and solving the huge system of IgA equations on massively parallel computers.
The parallel experiments were performed for a 3D spatial domain Ω yielding a 4D space-time
cylinder Q = Ω × (0, T ) but only for the case p = 1, where the IgA coincides with the
FEM. In this paper, we have always assumed that the spatial computational domain Ω has
a singlepatch representation. The multipatch representation of Ω, which is more important
in practice, in connection with dG coupling in space [36] and Dual-Primal IsogEometric
Tearing and Interconnection (IETI-DP) solution techniques [22, 23] is work in progress. This
approach is quite flexible with respect to the adaption of the discretization to the behavior of
the solution. At the same time, it allows a fast generation and solution of the system of IgA
equations due to the fact that the local space-time patches into which the space-time cylinder
Q is decomposed have tensor-product structure. A complete unstructured decomposition of
the space-time cylinder Q into patches, which was considered in [39], loses this structure, and,
therefore, an efficient implementation is cumbersome.
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