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FINE-GRAIN PARALLEL RRB-SOLVER FOR 5-/9-POINT STENCIL PROBLEMS
SUITABLE FOR GPU-TYPE PROCESSORS∗

MARTIJN DE JONG†, AUKE VAN DER PLOEG‡, AUKE DITZEL‡, AND KEES VUIK†

Abstract. Preconditioners based on incomplete factorization are very popular for a fast convergence of the
PCG-algorithm. However, these preconditioners are hard to parallelize since most operations are inherently sequential.
In this paper we present the RRB-solver, which is a PCG-type solver using an incomplete Cholesky factorization
based on the Repeated Red-Black (RRB) method. The RRB-solver scales nearly as well as Multigrid, and in this paper
we show that this method can be parallelized very efficiently on modern computing architectures including GPUs. For
an efficient parallel implementation a clever storage scheme turns out to be the key. The storage scheme is called
r1/r2/b1/b2 and it ensures that memory transfers are coalesced throughout the algorithm, yielding near-optimal
performance of the RRB-solver. The r1/r2/b1/b2-storage scheme in combination with a CUDA implementation
on the GPU gives speedup factors of more than 30 compared to a sequential implementation on one CPU core for
5-/9-point stencils problems. A comparison with algebraic Multigrid further shows that the RRB-solver can be
implemented very efficiently on the GPU.
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1. Introduction. Poisson-type problems given by 5- or 9-point stencils arise in many
applications and in many research fields. For example, in our real-time ship simulator a
Poisson-type problem given by a 5-point stencil needs to be solved multiple times per second
in order to compute realistic, interactive waves and realistic ship movements [8]. The size
of this Poisson-type problem is directly related to the size of the computational domain of
interest, e.g., a harbour, a river, or a sea. To fulfil the requirements of a real-time simulation, a
very fast solver is required; simply stated: the faster the solver, the larger the domain that can
be computed in real-time.

The proposed solution method in this paper can be applied to solve Poisson-type problems
given by 9-point stencils as well. Therefore, throughout this paper we consider a linear system
of the form

(1.1) Ax = b,

where A ∈ Rn×n is a large symmetric positive definite (SPD) matrix given by the stencils, · N ·
W C E
· S ·

(i,j)

or

 NW N NE
W C E
SE S SW

(i,j)

for each node (i, j) in a rectangular n×n grid. Here N refers to ‘North’, NE to ‘North-East’,
and so on. There are several methods that can be used to solve (1.1):

1. A direct method, for example a construction of a complete Cholesky decomposition.
All fill-in occurring during the Gaussian elimination is within a relatively small
band around the main diagonal. An advantage is that with this method relatively
high speed-ups can be obtained on parallel architectures with block versions; the
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drawback, however, is that the number of operations increases rather fast with grid
refinement. For example, when a rectangular n×n grid is used, the size of the matrix
is n2, and the width of the above-mentioned band is n. In that case, the number of
required operations is O(n4). Special reordering methods can be used to speed up
the computations; however, these techniques have poor parallelization opportunities.
Examples of software: Mumps [1], Umfpack [7], Pardiso [15].

2. A spectral method (e.g., Fishpack [16]) is very fast and parallelizable. However, it is
limited to matrices having constant coefficients.

3. Iterative methods. They may be classified into stationary and gradient methods. The
stationary methods of Jacobi and Gauss-Seidel are the earliest iterative methods and
they are based on a splitting of the matrix. For many cases they can be accelerated by
using relaxation techniques, leading, for example, to the well-known successive over-
relaxation (SOR) method. In case of an SPD matrix, one can also use the Conjugate
Gradient (CG) method. In exact arithmetic, this method finds an approximate solution
in such a way that the A-norm of the error is minimized over the Krylov subspace

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0},

where r0 = b−Ax0 is the initial residual. Hence the residual at step k can be written
as Pk(r0), in which Pk is the ‘optimal’ polynomial of degree less than k − 1 such
that Pk(0) = I .
It is possible to use Chebychev polynomials to give bounds for the convergence rate
of the CG method based on the fact that they cannot produce better reductions of the
error than the optimal polynomial. A well-known upper bound for the error is [17]:

(1.2) ‖xk − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖x0 − x‖A,

where ‖ · ‖A denotes the A-norm, and κ(A) := λmax/λmin the spectral condition
number, i.e., the ratio of the largest to the smallest eigenvalue of A. The convergence
behaviour of CG thus strongly depends on the spectral condition number. The con-
vergence rate can often strongly be improved by applying CG to the preconditioned
system

(1.3) M−1Ax = M−1b.

The SPD matrix M is called the preconditioner. There is a wide choice of precondi-
tioners, see, for example, [5] and [14].
The matrixM should be a proper approximation ofA, such that the spectral condition
number of M−1A is much smaller than that of A, and solving the systems Mz = r
should be cheap. One possibility is to try to make a SParse Approximation of the
Inverse (SPAI-methods). However, even when the coefficient matrix itself is very
sparse, its inverse is often not, and therefore it is questionable if a proper SPAI-
preconditioner can be constructed. For symmetric matrices many preconditioners are
based on an Incomplete Cholesky decomposition. In this method, a lower-triangular
matrix L is constructed such that A ≈ LLT , and where the factor L is sparse. In
that case: M := LLT and systems Mz = r can be readily solved by two triangular
sweeps.

A good solution method should have a limited number of operations per node, and this
number should not increase too fast with mesh refinement. In addition, it should be possible to
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exploit modern computer architectures in order to obtain a high flop rate. Suppose that one
has to solve a Poisson equation on a rectangular mesh with constant mesh size h = 1/(n+ 1).
In that case, one can show that SOR takes O(n3) operations, whereas preconditioned CG,
in which the diagonal of the preconditioner is modified according to Gustafsson [10], the
computational complexity is O(n5/2).

The so-called Repeated Red-Black (RRB) method, described in [3] combines a reordering
of the rows and columns of the matrix with an Incomplete Cholesky decomposition. This
method has two important advantages:

1. For the test case with uniform mesh mentioned above, an upper bound of the compu-
tational complexity is given by (cf. [12], eq. (1.8)):

κ(M−1A) ≤
√

5(
√

5− 1)`−1

1 + (−1)`
(

3−
√
5

2

)`−1 ≈ 1.8 · 1.23`,

where ` is the number of consecutive red-black levels. Hence the number of iterations
is expected to increase only mildly with mesh refinement.

2. The reordering strategy based on repeated red-black guarantees that large parts of the
preconditioner can be built in parallel, and large parts of the triangular sweeps can be
performed in parallel as well.

In this paper we provide an efficient implementation, that is, an implementation of the
RRB-method that can fully exploit the parallelism of modern architectures, such as GPUs. Key
to this is a new reordering strategy such that all global memory operations can be performed
in a coalesced manner.

The remaining sections are organized as follows. In Section 2 the RRB-solver and its
aspects are presented. In Section 3 it is explained which techniques can be used to obtain
an efficient parallel implementation of the RRB-solver on both multi-core CPU and GPU
systems. In Section 4 the experimental setup and the test problem are discussed. In Section 5
several performance results are presented, as well as a detailed throughput analysis and a speed
comparison between the RRB-solver and algebraic Multigrid. In Section 6 the conclusions
can be found.

2. The RRB-solver. The RRB-solver is a PCG-type solver where the RRB-method
serves as the preconditioner M . RRB stands for ‘Repeated Red-Black’ (or ‘Recursive Red-
Black’) and refers to how the nodes in a 2D grid are colored and numbered. The RRB-method
found its origin in the late eighties where multigrid V-cycles with intermediate skew meshes
were investigated. Since then the method has been further investigated by Axelsson and
Eijkhout [2] and Brand and Heinemann [3, 4]. They showed that the RRB-method can be used
as a preconditioner in Krylov methods leading to a method with nearly optimal scaling. In
[6, 12] additional information can be found as well as derivations for upper bounds for the
condition number κ.

In order to show how the RRB-method can be parallelized, the RRB-method is described
in this section. First we discuss RRB-numbering, then we present the RRB-factorization
algorithm and, finally, we explain how the RRB-method can be used as a preconditioner.

2.1. The RRB numbering procedure. Let

G =
{

(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
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be the set of all nodes in an Nx × Ny grid. If (1, 1) is chosen to be a black node, then a
standard red-black ordering is given by:

R[1] =
{

(i, j) ∈ G |mod(i+ j, 2) = 1
}
,

B[1] = G \R[1],

where R[1] denotes the set of first level red nodes and B[1] denotes the set of first level black
nodes. Next, a standard red-black ordering is reapplied to the B[1]-nodes as follows:

R[2] =
{

(i, j) ∈ B[1] |mod(j, 2) = 0
}
,

B[2] = B[1] \R[2]

= G \ (R[1] ∪R[2]).

The second level black nodes, i.e., the B[2]-nodes, are thus the nodes in G that neither belong
to the sets R[1] nor R[2]. Generally,

R[k] =



{
(i, j) ∈ G \

(
∪k−1p=1R

[p]
) ∣∣ mod

(
i+ j, 2

k+1
2
)

= 2
k−1
2

}
, k odd;

{
(i, j) ∈ G \

(
∪k−1p=1R

[p]
) ∣∣ mod

(
j, 2

k
2
)

= 0

}
, k even.

The maximum number of levels that the Nx ×Ny-grid allows for is given by

(2.1) `max = 2dlog2(max{Nx, Ny})e+ 1.

EXAMPLE 2.1. In this example the RRB-numbering procedure is applied to a matrix
A ∈ R64×64 resulting from an 8 × 8 grid of unknowns. For this matrix A the maximum
number of levels is `max = 2dlog2(8)e + 1 = 7 according to equation (2.1). The effect of
the RRB-numbering on the ordering can be seen in Figure 2.1. For readability the black
nodes are represented by gray squares and the red nodes by white squares. The effect of the
RRB-numbering on the sparsity pattern of the matrix A ∈ R64×64 belonging to the 8× 8 grid
of unknowns is shown in Figure 2.2 for the first four levels.

2.2. The RRB-factorization algorithm. The RRB-method factorizes the matrix A into

(2.2) A = LDLT +R,

where L is a lower triangular matrix with unitary diagonal entries, D a diagonal matrix, and R
a matrix that contains adjustments resulting from lumping procedures. A detailed description
of the RRB-method can be found in [9]. Starting from a 9-point stencil, the factorization (2.2)
is performed as follows:

1. Renumber the points and equations corresponding to a red-black ordering; first
number all red points. The coefficient matrix then has a 2 by 2 block structure, in
which the upper-left block A11 gives the interaction between the red points only.

2. The nonzero off-diagonal elements of block A11 are first added to the main diagonal
and then put to zero (lumping). The modified matrix obtained in this way can be
represented by a 5-point stencil.

3. In the modified system of linear equations all red points can be eliminated, which
gives again a system of linear equations given by a 9-point stencil. This system of
equations has only half the number of unknowns as in Step 1.

4. Go to Step 1, and repeat until only 1 node remains.
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FIG. 2.1. RRB-numbering for an 8× 8 grid.
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(a) RRB-1. (b) RRB-2.

(c) RRB-3. (d) RRB-4.

FIG. 2.2. Effect of RRB-numbering on the sparsity pattern of A. Here (a) shows the pattern after one level of
red-black ordering, (b) shows the pattern after applying two levels of red-black ordering, etc.

2.2.1. Full RRB versus RRB-`. By reapplying RRB-iterations over and over again, after
a certain number of iterations only a single node remains. This is called full RRB. However,
it is not needed to go all the way down. After each level of red-black numbering, lumping
and elimination of the red nodes in the respective level, one can stop at level ` ≤ `max. For
the remaining black nodes B[`], which have a 9-point dependency structure, a full Cholesky
decomposition

(2.3) M` = L`D`L
T
`

is computed. This is called `-step RRB, denoted by RRB-`. Obviously, by stopping earlier the
factorization (2.2) becomes more exact. However, the disadvantage is that constructing the
Cholesky factor L takes more effort and L has more fill-in. Therefore, this should be done
only when the size of the remaining system of equations becomes so small that the costs of a
direct solver are not much larger than the costs of the rest of the incomplete factorization.

2.2.2. Starting with a 5-point stencil. In case the RRB-method is applied to a matrix A
given by a 5-point stencil, e.g., the 2D Poisson problem, then the elimination of R[1] is exact
and accordingly R = 0 for the first level.

2.2.3. Algorithm. Pseudo code for the RRB-method is provided in Algorithm 1.
EXAMPLE 2.2. In this example the RRB-method is applied to a matrix A ∈ R64×64

resulting from an 8 × 8 grid, see Figure 2.3. The figure shows the effects of consecutive
red-black orderings, lumping, and elimination of red nodes on the dependency structure and
sparsity pattern of L+D + LT .
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Algorithm 1 The RRB-method starting with a 9-point stencil.
1. Choose the number of levels ` ≤ `max

2. Set k = 0
3. While (k ≤ `) do
4. Apply red-black ordering: R[k]/B[k]

5. Apply lumping procedure to R[k]-nodes
6. Eliminate R[k]-nodes using 5-point stencils for R[k]-nodes
7. k = k + 1
8. End while
9. Make Cholesky decomposition for remaining 9-point stencil: M` = L`D`L

T
`

5-point G

(a) Original.

5-point R[1] B[1]

(b) Red-black.

9-point R[1] B[1]

(c) Elimination.

9-point R[2] B[2]

(d) Red-black.

skew 5-point R[2] B[2]

(e) Lumping.

9-point stencil B[2]

(f) Elimination.

FIG. 2.3. Effects of the RRB-method for A ∈ A64×64 with ` = 2 on the dependency structure and the sparsity
pattern of L+D + LT . For the remaining B[2]-nodes a full Cholesky decomposition is computed.

2.3. The RRB-method used as a preconditioner in PCG. The matrix A is factorized
as A = LDLT +R. As preconditioner for the PCG-algorithm the matrix

M = LDLT ≈ A
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is taken. The smaller the numbers in R in absolute value are, the better M resembles A.
The combination of the PCG-algorithm and the RRB-method as preconditioner is called the
RRB-solver.

As remarked earlier, starting from a 5-point stencil, e.g., the 2D Poisson problem, the
elimination of R[1]-nodes is exact. Hence, in this case PCG can be applied to the resulting 1st
Schur complement S1 instead of the entire matrix A. This is beneficial for the total amount
of computational work. Since S1 consists of only the B[1]-nodes, the number of flops for
computing the vector updates and inner products in the PCG-algorithm is reduced by a factor
two. The number of flops in the matrix-vector product q = S1p remains the same as the
matrix-vector product with A, because the matrix S1 is now given by a 9-point stencil instead
of by a 5-point stencil.

2.4. Spectral condition number of RRB-l. The convergence rate of PCG depends on
the spectrum of matrix M−1A. Since the preconditioner M is an approximation of the system
matrix A, the condition number of M−1A is smaller than that of A. This gives a sharper upper
bound of the error (1.2) and therefore most likely a faster convergence.

In [3], [6], and [12] the RRB-` preconditioner is investigated in detail for the Poisson
problem with Dirichlet boundary conditions on a 2D uniform grid with n× n unknowns and
where n is of the form n = 2`−1. Different upper bounds can be found in the aforementioned
literature. Notay [12] gives an upper bound:

κ(M−1A) ≤
√

5(
√

5− 1)`−1

1 + (−1)`
(

3−
√
5

2

)`−1 ≈ 1.8 · 1.23`.

Since the mesh spacing h = 1/(n+ 1) and ` = log2(1/n) ≈ log2 h
−1, alternatively,

κ(M−1A) ≤ 1.8h−0.306.

2.5. Application of the preconditioner. At each iteration of the PCG-algorithm, the
system Mz = r needs to be solved for z. The preconditioning matrix M is factorized as
M = LDLT . Therefore, Mz = r can be solved efficiently in three steps as follows. Set
y := LT z and x := DLT z = Dy, then:

1. solve x from Lx = r using forward substitution;
2. compute y = D−1x;
3. solve z from LT z = y using backward substitution.

Each of the three steps is computationally cheap.

2.5.1. Algorithm. For memory efficiency a single vector z is used instead of the three
vectors x, y, and z. Moreover, if ` ≤ `max then at the final level ` a full Cholesky decomposi-
tion (2.3) is made for the remaining level of black nodes B[`]. Pseudo code is provided below,
see Algorithm 2.

EXAMPLE 2.3. For a matrix A ∈ R64×64 resulting from an 8× 8 grid of unknowns the
forward substitution steps are visualized in Figure 2.4 and Figure 2.5.

As indicated by Algorithm 2, both the forward and backward substitution are performed
level-wise in two phases. First, the z-values at B[k]-nodes are updated using the skew 5-
point stencils (×) at the R[k]-nodes, see Figure 2.4. Second, the z-values at B[k+1]-nodes
are updated using the straight 5-point stencils (+) at the R[k+1]-nodes, see Figure 2.5. The
backward substitution is done level-wise in the same manner, yet in the reverse order.
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Algorithm 2 Application of the RRB preconditioner.
1. Given number of levels ` ≤ `max

2. Set k = 2
3. While (k ≤ `) do % forward subs.
4. Update z-values at B[k]-nodes using R[k]-nodes % skew 5-point (×)
5. If (k + 1 == `) then
6. break
7. End if
8. Update z-values at B[k+1]-nodes using R[k+1]-nodes % 5-point (+)
9. k = k + 2

10. End while
11. Update x-values at B[1]-nodes % diagonal scaling
12. Solve L`D`L

T
` x` = z` and update x-values in level ` % final level exact

13. Set k = `
14. While (k ≥ 2) do % backward subs.
15. Update z-values at R[k]-nodes using Bk]-nodes % 5-point (+)
16. If (k − 1 == 2) then
17. break
18. End if
19. Update z-values at R[k−1]-nodes using B[k−1]-nodes % skew 5-point (×)
20. k = k − 2
21. End while

R[2] B[2]

×-dependency

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

FIG. 2.4. Forward substitution phase 1: skew 5-point stencils (×).

3. Parallel implementation of the RRB-solver. To obtain a parallel implementation
of the RRB-solver, all operations of the CG-algorithm, i.e., the inner products, the vector
updates, and the matrix-vector q = S1p, where S1 is the first Schur complement, can
readily be parallelized on shared memory machines [11]. Secondly, the construction of the
preconditioner, i.e., M = LDLT , can be performed level-wise in parallel on shared memory
machines. From Algorithm 1 it can be seen that per level each of the operations lumping,
elimination, and substitution can be performed fully in parallel. Finally, the application of the
preconditioner, i.e., solving Mz = r for z, can be performed level-wise in parallel on shared
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R[3] B[3]

+-dependency

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

FIG. 2.5. Forward substitution phase 2: straight 5-point stencils (+).

memory machines as well. This can be seen from Algorithm 2 as well as from Figure 2.5, both
indicate that at each level the gray nodes can be updated fully in parallel. Figure 3.1 illustrates
this even more clearly. The gray areas indicate the blocks where fill-in has been lumped, and
where the computations can be done fully in parallel.

FIG. 3.1. Sparsity pattern of L+D + LT . The gray areas indicate parallel blocks.

As forward and backward substitution are inherently sequential, it is not possible to
compute the different levels (the gray blocks) in parallel as well. Fortunately, however, as the
number of unknowns decreases fast, namely by a factor 2 per level, so does the amount of
work. All together, it can be concluded that the RRB-solver can be parallelized very well on
shared memory machines.

3.1. A key idea to maximize bandwidth. In this section we discuss how to actually
implement the RRB-solver on modern parallel architectures such as the GPU. The RRB-solver
consists of BLAS-1 and BLAS-2 routines and is therefore a bandwidth-bound, a data intensive
algorithm, i.e., the ratio

r =
Number of memory operations

Number of floating point operations

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

FINE-GRAIN PARALLEL RRB-SOLVER 385

is large. For already relatively small problem sizes, the amount of data is such that the problem
does not fit in the (fast) cache of most modern computers anymore. Hence throughout the
RRB-algorithm most data is read from and written to the global memory over and over again. A
main concern thus is how to achieve high global memory bandwidth throughout the algorithm.

This is certainly not trivial for the RRB-solver because of the repeated red-black orderings,
which can be seen from Figure 2.1. A naïve storage of the data implies that all the data required
for the vector-updates, inner products, and the matrix-vector product would be read and written
with a stride of two. This follows from the fact that in case of the RRB-solver the underlying
PCG-algorithm operates on the B[1]-nodes only. Even worse, during application of the
preconditioner step, i.e., solving Mz = r for z, the data would be accessed with increasing
stride: 2, 4, 8, 16, . . .. It is well-known that reading data from and writing data to the global
memory with a stride leads to poor performance. Even though the amount of work decreases
fast for each next level, at the first few levels already too much bandwidth would get wasted
and the RRB-solver would suffer from poor performance.

Therefore, to guarantee maximal bandwidth throughout the algorithm, for the first few
(the finest) levels a different storage scheme is proposed, see Figure 3.2. This storage scheme
is called the r1/r2/b1/b2-storage scheme [8].

b2 r1 b2 r1

r2 b1 r2 b1

b2 r1

r2

Level 0

=⇒

Level 1

r2 b1

b2

Level 2

r1

FIG. 3.2. Restorage of data in four groups: r1-, b1-, r2- and b2-nodes. The b1- and b2-nodes together form the
intermediate levels with skew meshes (×). The b2-nodes form the next coarser level (+).

Comparison of Figure 2.1 and Figure 3.2 shows: the R[1]-nodes are divided into r1- and
r2-nodes and the B[1]-nodes are divided into b1- and b2-nodes. Hence the b1- and b2-nodes
are the nodes to which the majority of the PCG-algorithm is applied to. The first important
observation is now that, by storing theB[1] nodes into these two new arrays of b1- and b2-nodes,
the data can always be accessed in a coalesced manner, without a stride.

The second important observation is that the b2-nodes form the next coarser grid, and that,
on this coarser grid, the r1/r2/b1/b2-storage scheme can be reapplied. In general, the odd
levels k are stored into b[k]1 - and b[k]2 -nodes, and the even levels k are stored into the b[k]2 -nodes.
Given the problem size, the layout of storage schemes can be determined a priori.

It is thus very beneficial for performance to store the data used by the RRB-solver as
much as possible in the r1/r2/b1/b2-storage scheme, i.e., the 5 vectors in the PCG-algorithm
(r,x, z,p,q) and the 5 + 9 vectors that describe the system matrix S1 and the preconditioner
matrixM , respectively. Actually, the matrixM and the vector z occurring in the preconditioner
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step Mz = r are stored in a recursive r1/r2/b1/b2-storage scheme. Although the proposed
scheme is basically a renumbering and reordering of the grid points, for performance it is
needed to use multiple physical arrays to ensure that all data describing M and z can be
accessed in a coalesced manner. This is at most just 1 + 1/4 + 1/16 + . . . = 4/3 times as
expensive as the naive storage. The r1/r2/b1/b2-storage scheme can be used virtually for
free during the preconditioner step Mz = r. This can be seen from Figure 2.5: in case of
application of the preconditioner, the updated z-values at level k are directly written into the
r1/r2/b1/b2-arrays of level k + 1 in case of forward substitution and vice versa in case of
backward substitution. Hence, by using the r1/r2/b1/b2-storage scheme, maximal bandwidth
can be obtained for all routines in the PCG-algorithm.

4. Implementation and experimental setup.

4.1. Hardware. All experiments are performed on a system having a Xeon E5-1620
processor, 32 GB of memory and a GeForce Titan X graphics card. The OS is Linux Debian
8.8 (64-bit) with kernel 4.9.23. The RRB-solver is implemented in C++ with OpenMP for
parallelization as well as in CUDA C. The code is compiled with GCC version 4.9.2 and
NVVC 7.5.17. All experiments are performed in double-precision.

4.2. Test problem. Similar to [3], [6], and [12], as a test problem the 2D Poisson problem
with Dirichlet boundary conditions on a 2D uniform grid is taken:

−∆u = f(x, y) on Ω = (0, 1)× (0, 1),
u(x, y) = 0 on ∂Ω,

having n × n unknowns, and where n is of the form n = 2` − 1. The right-hand side f is
computed such that u(x, y) = x(x− 1)y(y − 1) exp(xy).

4.3. Condition number and number of PCG-iterations. The condition number κ of
the preconditioned system (1.3) is given by

κ := κ(M−1A) =
λmax(M−1A)

λmin(M−1A)
,

where λmax and λmin are the largest and smallest eigenvalues, respectively. Since for the
RRB-preconditioner λmin ≈ 1, we have [3]:

κ ≈ λmax(M−1A).

The required number of PCG-iterations depends on:
(i) the termination criterion, i.e., the demanded accuracy given by a parameter tol;

(ii) the choice of the initial guess x0;
(iii) the number of RRB-levels ` (accuracy of preconditioner);

In our experiments we have used the termination criterion:

‖ri‖M−1/‖r0‖M−1 ≤ tol,

with tol := 10−6. As initial guess we have taken x0 = 0. The number of RRB-levels ` is
varied in the experiments.

4.4. Four implementations. Four implementations of the RRB-solver are used:
• S1: Sequential solver in C++, uses naïve storage scheme for all ` levels;
• S2: Sequential solver in C++, uses r1/r2/b1/b2-storage scheme for the first 2g levels;

calls S1 for the remaining `− 2g levels;
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• S3: Parallel solver in C++/OpenMP, uses r1/r2/b1/b2-storage scheme for the first
2g levels; calls S1 for the remaining `− 2g levels;
• S4: Parallel solver in CUDA C, uses r1/r2/b1/b2-storage scheme for the first 2g

levels; calls S1 for the remaining `− 2g levels.
For all solvers the desired level ` can be set and for the solvers S2, S3, and S4 the desired
number of r1/r2/b1/b2-grids g can be set as well. S1 is a complete sequential implementation
of the RRB-solver. The solvers S2, S3, and S4 only take care of the first 2g levels and rely on
solver S1 for the remaining levels. If ` ≥ `max then ` := `max and the final grid consists of
just 1 node; if ` < `max then a complete Cholesky decomposition is made for the remaining
9-point stencil. On the coarsest grid solver S1 takes care of the remaining problem, see Line 12
in Algorithm 2. This is done exactly with a sequential band solver.

5. Results.

5.1. Condition numbers and number of PCG-iterations. In Figure 5.1 the condition
number κ is shown for different numbers of RRB-levels ` and different problem sizes. In

`

κ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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FIG. 5.1. Condition number κ versus number of RRB-levels ` for various problem sizes.

Figure 5.2 the corresponding number of PCG-iterations is shown. The maximal number of
RRB-levels `max depends on the problem size, see Equation (2.1). The figures show that:

1. The larger `, the larger κ and the larger the required number of PCG-iterations. This
makes perfect sense as the accuracy of the preconditioner M decreases with the
number of RRB-levels `; beyond a certain level the accuracy of the preconditioner
M is hardly effected anymore, hence the horizontal slope in the figures;

2. For the 2D Poisson test problem, the RRB-solver scales very well: both the condition
number κ and the required number of PCG-iterations hardly increase with mesh
refinement. Going from h = 1

128 to h = 1
2048 only gives a doubling of iterations.

The RRB-solver is thus very efficient in itself: low condition numbers, low numbers of
PCG-iterations, and very good scaling behaviour.

5.2. Timings and speedup. The results in this section are all for the test problem with a
fixed problem size of 2047× 2047 unknowns. In Figure 5.3 the computation time is shown
for the four implementations S1 to S4, for three numbers of RRB-levels `, and for different
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FIG. 5.2. Number of PCG-iterations versus number of RRB-levels ` for various problem sizes.

numbers of r1/r2/b1/b2-grids. As an example: S2-2 means solver S2 with g = 2. In
Figure 5.4 the corresponding speedups are shown with respect to solver S1. The figures show:

S1 S2–1 S2–2 S2–3 S3–1 S3–2 S3–3 S4–1 S4–2 S4–3
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u
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[s
] ` = 8 ` = 10 ` = 12

FIG. 5.3. Solution time of RRB-solver for the four implementations and different number of RRB-levels `.

1. Introduction of the r1/r2/b1/b2-storage scheme instead of the naïve storage scheme
gives already a speedup factor 2.1 (with ` = 12 and g = 3);

2. Computation with 4 cores of the Xeon E5-1620 via OpenMP on top of introduction of
the r1/r2/b1/b2-storage scheme gives a speedup factor 4.9 (with ` = 12 and g = 3);

3. Computation with all cores of the Titan X via CUDA on top of introduction of the
r1/r2/b1/b2-storage scheme gives a speedup factor 35.1 (with ` = 12 and g = 3).

In Figure 5.5 and Figure 5.6 more timings are shown for solver S4. In Figure 5.5 the time
is shown to compute the factorization (2.2) for various g and various `. In Figure 5.6 the time
to solve the linear system (1.3) is shown. The figures show:

1. The higher the number of r1/r2/b1/b2-grids g the faster the factorization; however,
above g = 3 and/or ` = 13 the time reduction is negligible;

2. The higher the number of r1/r2/b1/b2-grids g the faster the solution; however, above
g = 3 the time reduction is negligible; moreover, there is an ‘optimal’ number of
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FIG. 5.4. Speedup relative to S1 for different number of RRB-levels `.
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FIG. 5.5. Factorization time of solver S4.

RRB-levels `: first the solution time decreases until a certain number of RRB-levels
(` = 8 for g = 0 or ` = 12 for g = 4) due to the fact that the remainder of the
Cholesky factor is smaller; thereafter the solution time goes up again due to the fact
that the number of iterations increases.

5.3. Throughput, flop rate, and time breakdown. All results in this section are for the
test problem having 2047× 2047 unknowns. In Table 5.1 the time breakdown of solver S4 is
shown. The table lists the different kernels in the PCG-algorithm and their corresponding time
and performance. We observe that:

1. The solver is well-balanced in time; all kernels contribute equally, in the same order,
to the overall computation time;

2. The throughput rates are really good: the theoretical peak of the Titan X is 313 GiB/s.
We observe that the throughput rates of all kernels are very good (above 80% of the
theoretical peak). The solver and matvec kernels operate even close to and a bit
beyond the theoretical peak, respectively.

The data transfers from and to the device (the vectors x and b) are performed rather slowly
(only 2.6 GiB/s) and therefore take 30.4% of the time. Most likely, this is caused by the rather
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FIG. 5.6. Solution time of solver S4.

old motherboard with low PCI-express transfer rates in our test system; an upgrade of the
motherboard would most likely lead to a significant reduction in time.

TABLE 5.1
Time breakdown of solver S4 for g = 4 and ` = 12. ∗Total time for 19 iterations. ∗∗GPU part only; CPU part

is accumulated in rest.

Kernel Time∗ % GiB/s GFlops/s
(ms)

memcpy (3×) 38.7 30.4 2.6 −
axpy (3×) 11.0 8.7 246.1 30.9
dotp (2×) 4.9 3.9 246.3 31.0
matvec 18.3 14.4 325.0 36.4
solver∗∗ 29.8 23.4 299.1 24.5
rest 24.4 19.2 − −
Total 127.1 100.0

memcpy

axpy

dotp

matvec

solver

rest

30.4%

8.7%

3.9%

14.4%

23.4%

19.2%

Finally, in Table 5.2 the time breakdown is shown for the forward substitution part of the
solver kernel.

TABLE 5.2
Time breakdown of S4’s forward substitution (= part of solver) for g = 5 and ` = 12. ∗Levels 9 to 12 and

the remainder are performed by S1 (on the CPU).

Grid RRB-levels cx× cy Time %
(µs)

1 1 + 2 1024× 1024 258 37.3
2 3 + 4 512× 512 172 24.9
3 5 + 6 256× 256 38 5.5
4 7 + 8 128× 128 13 1.9

rest 9− 12 and rem∗ 211 30.5
Total 692 100.0

1

2

3

4

rest

37.3%

24.9% 5.5%
1.9%

30.5%
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We observe that:

1. The first two grids 1 and 2 (the first four RRB-levels) take the most computation
time (37.3% and 24.9%, respectively). Since the solver kernel runs close to the
theoretical peak of the device (see Table 5.1) one cannot gain much speed anymore;

2. The last two grids 3 and 4 only take a fraction of the time (5.5% and 1.9% respec-
tively); this shows that the typical Multigrid issue of idle cores on coarser levels does
not really have an impact in our solver;

3. The levels 9 to 12 and the remainder are performed by solver S1 on the CPU which
takes 30.5% of the overall time. Although this is relative much due to a rather old
CPU, it does not really matter, since the finest levels take an equal amount of time;
see the observation in item 1.

5.4. Comparison with multigrid. In this section we compare the RRB-solver with
the default algebraic Multigrid (AMG) solver from the PARALUTION [13] library, a high-
performance C++ library that offers various sparse iterative solvers and preconditioners for
multicore CPU and GPU devices. A comparison with Multigrid is chosen, because Multigrid-
type solvers are known to be very efficient as well for the type of problems considered in this
paper. It was shown that, throughout, the performance of the RRB-solver is near-optimal,
therefore, the only remaining two options to gain speed are when the required number of
iterations in the PCG-algorithm can be reduced, or by using a different type of solver. From
our experience, most (if not all) other PCG-type solvers will perform (much) worse because
they typically require significantly more iterations until convergence. Therefore, we confine
ourselves to a comparison with the Multigrid method. It is also important to note that FFT-
solvers cannot be used directly as the system matrix A does not have constant diagonals.

Although for structured, rectangular grids, such as our 2D Poisson-type problem, geomet-
ric Multigrid (GMG) seems to be the better alternative, its application within PARALUTION
comes with several additional requirements, making it rather complicated to use. For GMG
it is required that all operations are defined beforehand, such as explicit definition of the
restriction/prolongation operations and smoother for each level, and the coarse grid solver. A
major advantage of AMG over GMG is that it can be used as a black-box solver, as there is no
need to explicitly define all operations. Similarly, the RRB-solver can be used as a black-box
solver, and we show here that it can outperform AMG as a black-box solver for Poisson-type
problems.

The default AMG solver in PARALUTION uses smoothed aggregation interpolation, a
fixed-point iteration solver, and two-color Gauss-Seidel as a smoother. As of today, a GPU
implementation is missing for the construction of AMG, and the construction is therefore
performed on the host (CPU). The solution steps however are performed on the GPU. PARA-
LUTION’s AMG solver also supports the diagonal (DIA) storage format, which is the most
efficient format to use in our application. The AMG solver is compared with our S4-4 solver,
with ` = 12 fixed. Both solvers were tested on the same hardware, see Section 4.1.

Again the 2D Poisson test problem, see Section 4.2, is solved for different problem sizes
and tol = 10−6. In Table 5.3 the results are listed. The setup time is the total time taken by
the solver to initialize all memory (on both CPU and GPU) and to setup/construct the solver.
From the table the following can be observed:

1. Setting up the S4-4 solver on the CPU is 7 times faster than setting up the AMG
solver; setting up the S4-4 solver on the GPU is even 10 times faster than setting up
the default AMG solver;

2. The S4-4 solver outperforms the default AMG solver by a factor 7 for the solve step;
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TABLE 5.3
Solver comparison: PARALUTION’s default AMG solver versus the S4-4 solver.

AMG S4-4, ` = 12

Problem Setup [s] Solve [s] Setup [s] Solve [s]
size h−1 #Iter CPU GPU #Iter CPU GPU GPU

64 7 0.075 0.085 13 0.005 0.012 0.007
128 8 0.105 0.128 16 0.007 0.028 0.010
256 9 0.121 0.162 19 0.026 0.042 0.010
512 10 0.317 0.241 20 0.076 0.073 0.018

1024 13 1.157 0.498 20 0.308 0.145 0.042
2048 16 4.511 1.084 19 0.725 0.426 0.142

3. The number of iterations taken by S4-4 (with ` = 12) is nearly as low as the number
of iterations taken by AMG. This shows that the RRB-solver scales nearly as good as
Multigrid;

4. For larger problem sizes (h−1 > 256) and fixed ` = 12 the number of RRB-iterations
does not increase.

Although AMG could be tuned to perform better, and GMG may provide even better perfor-
mance than AMG (in particular for construction of the solver), our comparison study already
clearly demonstrates that the GPU RRB-solver is really fast, and that it can challenge or, for
specific type of problems, even outperform existing Multigrid-type solvers from acknowledged
high-performance computing libraries.

6. Conclusions. This paper addressed an efficient implementation of the RRB-solver.
The RRB-solver is a PCG-type solver based on the RRB-method for the incomplete factoriza-
tion of the preconditioner. Literature and a comparison study by us shows that the RRB-method
is very efficient in itself and that it scales very well with mesh refinement, nearly as good as
Multigrid. Besides being very efficient in itself, this paper demonstrates that the RRB-method
also allows for an efficient parallelization. A clever storage scheme is key in the efficient
parallelization. Using the so-called r1/r2/b1/b2-storage scheme both the construction and
the application of the preconditioner are efficiently parallelized on both multi-core CPU using
C++/OpenMP and the GPU using CUDA C. The r1/r2/b1/b2-storage format can be used in
different solvers as well to obtain an efficient implementation on the GPU, e.g., (geometric)
Multigrid may benefit from this. Performance studies on the 2D Poisson test problem showed
that the performance of the RRB-solver is very good overall: no wasted throughput, no bottle-
neck, and a well-balanced algorithm in terms of time spent per routine in the PCG-algorithm.
On the GPU the RRB-solver reaches a throughput close to the theoretical peak of the device
and a speedup factor of more than 30 compared to a sequential implementation on the CPU. A
comparison with algebraic Multigrid from a recognized high-performance computing library
showed that the RRB-solver can outperform it by a factor 7 to 10, which again demonstrates
that the RRB-solver can be implemented very efficiently on the GPU.
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