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TENSOR FORMULATION OF 3-D MIMETIC FINITE DIFFERENCES
AND APPLICATIONS TO ELLIPTIC PROBLEMS∗

J. BLANCO†, O. ROJAS†‖, C. CHACÓN‡, J. M. GUEVARA-JORDAN§, AND J. CASTILLO¶

Abstract. The mimetic discretization of a boundary value problem (BVP) seeks to reproduce the same underlying
properties that are satisfied by the continuous solution. In particular, the Castillo-Grone mimetic finite difference
gradient and divergence fulfill a discrete version of the integration-by-parts theorem on 1-D staggered grids. For
the approximation to this integral principle, a boundary flux operator is introduced that also intervenes with the
discretization of the given BVP. In this work, we present a tensor formulation of these three mimetic operators
on three-dimensional rectangular grids. These operators are used in the formulation of new mimetic schemes for
second-order elliptic equations under general Robin boundary conditions. We formally discuss the consistency of
these numerical schemes in the case of second-order discretizations and also bound the eigenvalue spectrum of the
corresponding linear system. This analysis guarantees the non-singularity of the associated system matrix for a wide
range of model parameters and proves the convergence of the proposed mimetic discretizations. In addition, we easily
construct fourth-order accurate mimetic operators and extend these discretizations to rectangular grids with a local
refinement in any direction. Both of these numerical capabilities are inherited from the original tensor formulation. As
a numerical assessment, we solve a boundary-layer test problem with increasing difficulty as a sensitivity parameter is
gradually adjusted. Results on uniform grids show optimal convergence rates while the solutions computed after a
smooth grid clustering exhibit a significant gain in accuracy for the same number of grid cells.
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1. Introduction. Mimetic finite difference (MFD) approximations to differential vec-
tor operators along with compatible inner products satisfy a discrete analog of the Gauss
divergence theorem. On nodal grids, an important MFD family comprises the summation-
by-part (SBP) difference operators, whose development and initial applications were focused
on the conservative discretization of wave propagation problems [22, 23, 24, 30]. The SBP
discretization with suitable boundary treatments mimics the energy dissipation properties
of the continuous wave model, and therefore numerical methods are provably stable. This
attractive property has encouraged researchers to apply SBP on more general wave propagation
problems with complex geometries by considering structured curvilinear grids [2, 10, 21]. By
construction, SBP discretization operators are less accurate with respect to differentiation at the
boundary nodes than for the interior mesh points. On staggered grids, we find two established
MFD discretization methods. The first staggered MFD family is based on the discrete support
operators (SO), the Divergence D, and the Gradient G that preserve the conservative property
of negative adjointness satisfied by the continuous counterparts [18]. The SO method has
been extensively applied to diffusion and hyperbolic problems even on non-uniform meshes
[11, 15, 17, 19]. The operators that were reformulated in [15] on polygonal meshes provide
second-order accuracy on the whole discretization grid, but in several of the previous SO
applications, a first-order approximation of the boundary fluxes is performed. The second
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staggered family presents discrete MFD D and G operators that exhibit second-, fourth-, and
even sixth-order accuracy for all grid locations including boundaries. These conservative
operators are introduced in [5], and later Castillo and Grone presented an original algebraic
construction ofD andG in [4]. Recently, this methodology has been improved in [26] by using
linear constrained optimization to enforce the mimetic conditions, and new 1-D operators with
eighth-order accuracy and higher have been obtained. For a numerical treatment of Neumann
and Robin boundary conditions, the authors in [7] developed a new operator B to approximate
the boundary fluxes with the same accuracy as for the interior grid using the discrete Green
identity as a construction basis. This Castillo-Grone MFD set of D, G, and B operators are
used in several applications for 2-D diffusion and wave propagation problems as we detail
below, however, its formulation and use on 3-D meshes is still under development. This paper
contributes to this field.

The sound evolution of SO and Castillo-Grone MFD during the last decades has led
to a mature status among the numerical methods for partial differential equations. In fact,
three new survey books have been published recently, cf. [6, 8, 20], and [6] is fully dedicated
to 1-D and 2-D Castillo-Grone operators. These textbooks provide a complete and updated
review of construction methodologies, application areas, and related approaches up to the year
2014. Tensor formulations of higher-dimensional mimetic operators are discussed in [6, 20]
for rectangular or logically rectangular grids. In a two-dimensional context, some authors
have developed second-order mimetic schemes for elliptic problems [13, 14] based on the
1-D discretization proposed in [7], but none of them explicitly mention the use of tensor
constructions. A tensor-based mimetic scheme for solving transient Maxwell equations under
Dirichlet conditions is introduced in [25] on 2-D rectangular meshes. Recently, this formulation
has been used in [27] as a basis for the object-oriented mimetic toolkit, which is an ongoing
software project with current applications to 2-D Poisson equations. An initial formulation of
three-dimensional mimetic schemes for elliptic problems based on Castillo-Grone operators
without an explicit tensor formulation has been reported in [1]. However, the numerical results
for several tests there are reduced to the case of 2-D logically rectangular grids. Similarly,
these MFD operators have been expressed in a 3-D tensor-like notation in [28] for the modeling
of acoustic wave propagation, but the numerical implementations are limited to 2-D Cartesian
meshes. To the best of our knowledge, a complete 3-D tensor formulation of Castillo-Grone
mimetic operators accompanied by satisfactory numerical testing has not yet been reported in
the literature.

Tensor-based extensions of finite difference (FD) operators to higher spatial dimensions
from their standard 1-D formulas is a well-known technique [9, 29]. Nonetheless, a similar
application to the Castillo-Grone MFD operators has not been fully achieved in three dimen-
sions as we have mentioned above. The main goal of this article is to provide a consistent
3-D formulation of these operators starting from the second-order mimetic discretizations
described in [7, 14], which are unique on 1-D and 2-D equidistributed grids. These new tensor
formulations can be easily used to construct 3-D versions of fourth- or higher-order accurate
discretizations based on the 1-D operators given in [4, 5] with similar accuracy. Next, we apply
these new mimetic operators to the discretization of a special family of elliptic problems. The
convergence of our new schemes is formally studied and later observed for various numerical
experiments. It is well known that high-order mimetic operators are not unique, and their
performance is parameter dependent, but here we only use some particular cases to test our
implementations.

The content of this article has been divided into seven sections. The first section is this
introduction with our review of related works. In Section 2 we present a new tensor mimetic
discretization of the continuous three-dimensional gradient and divergence by using Kronecker
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products of the 1-D operators described in [7, 14]. Next, we use these tensor formulations in
Section 3 to obtain a novel second-order accurate mimetic discretization of a 3-D family of
elliptic equations and develop a consistency analysis of this discretization. Section 4 presents
a simple eigenvalue analysis to justify the solvability and stability of this discretization. In
Section 5, we discuss the straightforward generalization of mimetic operators to fourth-order
accuracy and grids with variable spacing. In Section 6, we apply the new mimetic scheme to a
synthetic test problem with an adjustable boundary layer and evaluate the results in terms of
numerical convergence. Finally, we discuss the conclusions from this work in Section 7.

2. Tensor formulation of mimetic D, G, and B. In a multidimensional domain Ω, a
generalized version of the Gauss divergence theorem can be written for differentiable fields v
and u as

(2.1)
∫

Ω

∇.vu dV +

∫
Ω

∇u.v dV =

∫
∂Ω

u(n̂.v) dS,

where n̂ represents the continuous outer normal vector to the domain’s boundary surface ∂Ω.
According to [4, 7], a FD method for a boundary value problem (BVP) is called mimetic if the
discretizations of the continuous gradient∇, the divergence∇., and the boundary flux ∂

∂n̂ is
performed by discrete operators G, D, and BG, respectively, such that all together satisfy the
following approximation to (2.1)

(2.2) 〈D~v, ~u〉Q + 〈G~u,~v〉P = 〈B~v, ~u〉.

Here, 〈., .〉Q and 〈., .〉P denote weighted inner products defined by square and positive definite
matrices Q and P . Notice that the role of B is well suited for BVPs where v = ∇u, but in
general contexts, this operator incorporates the projection of v on the outer normal vector at
discrete boundary elements. The matrix structure of the operators G, D, and B, depend on a
particular discretization of the domain Ω and the grid distribution of the vector evaluations ~v
and ~u of the continuous fields v and u, respectively.

2.1. 1-D operators and local truncation errors. In the 1-D case, the authors in [4, 5, 7,
14] define a uniform partition of the interval Ω = [0, 1] given by the (N + 1) nodes xi = ih
(0 ≤ i ≤ N ), for h = 1

N , in addition to the cell centers xi+1/2 = xi+xi+1

2 . The grid location
of the components of the vectors ~v and ~u are

~v = (v(x0), v(x1), · · · , v(xN )))T ∈ RN+1,

~u = (u(x0), u(x1/2), · · · , u(xN−1/2), u(xN ))T ∈ RN+2.

The matrices G and D collect a set of staggered differentiation stencils such that G~u
is a vector of approximations to du

dx at all grid nodes, while D~v estimates dv
dx at every cell

center. To make the dimensions consistent in the leftmost vector inner product in (2.2),
the row vector [0, ..., 0] ∈ RN+1 is considered as the first and last rows of the matrix D.
Thus, the operator D belongs to the matrix space R(N+2)×(N+1) whose non-zero entries
at the inner rows correspond to the central stencil for the staggered FD stencil h−1[−1, 1].
This second-order FD stencil also represents the non-zero elements of the inner rows of
the operator G with the matrix dimension (N + 1) × (N + 2). Now, the first row in G
is simply the lateral stencil h−1[− 8

3 , 3,−
1
3 ] that keeps the second-order accuracy for the

differentiation process. An approximation to du
dx at xN can be obtained by the application

of this latter stencil after reversing the order and changing the sign of each coefficient. This
last backward FD formula defines the last row in G. For these choices of the G and D
operators, the weights Q and P are diagonal matrices whose coefficients correspond to the
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rectangle and Newton-Cotes 3
8 -quadrature rules, respectively. That is, Q = hdiag(1, ..., 1),

and P = hdiag( 3
8 ,

9
8 , 1, ..., 1,

9
8 ,

3
8 ). The boundary operator B is derived from (2.2) and given

by

(2.3) B = QD +GTP.

Thus,B corresponds to the following (N+2)×(N+1) matrix in this second-order formulation

(2.4) B = [−e1; b0;−b0; 0, ..., 0;−bN ; bN ; eN ].

In this equation, the non-zero rows of B are the canonical vectors e1 and eN , and the special
rows are b0 = ( 1

8 ,−
1
8 , 0, ..., 0) and bN = (0, ..., 0, 1

8 ,−
1
8 ). The first and last rows of B

incorporate the outward normal vector at both boundaries and permit the approximation of ∂u∂n
at these locations similarly by the first and last components of the vectorBG~u. The availability
of separate operators G and D leads to a natural approximation to the Laplacian operator by
DG. However, the mimetic discretization of the Laplacian of the field u is actually given at
the cell centers by the interior components of (BG + DG)~u. For clarity, below we list the
whole set of FD stencils comprised into this approximation vector along with the associated
local truncation errors

(BG+DG)~u

=



8
3h

− 3
h

1
3h

0 0 0 · · ·
8

3h2 − 1
3h

1
2h

− 4
h2

4
3h2 − 1

6h
0 0 0 · · ·

1
3h

1
h2 − 1

2h
1
6h

− 2
h2

1
h2 0 0 · · ·

0 0 1
h2 − 2

h2
1
h2 0 · · ·

. . .
. . .

. . .
· · · 0 1

h2
1
6h

− 2
h2

1
h2 − 1

2h
1
3h

· · · 0 0 4
3h2 − 1

6h
1
2h

− 4
h2

8
3h2 − 1

3h

· · · 0 0 − 1
3h

− 3
h

8
3h


~u

(2.5)

(2.6) =



u
′
(x0) +O(h2)

u
′′
(x 1

2
) + h(

u
′′′

(x 1
2
)

6
−

u
′′
(x 1

2
)

8
) +O(h2)

u
′′
(x 3

2
) + h

u
′′
(x 3

2
)

8
+O(h2)

u
′′
(x 5

2
) + h2

uiv(x 5
2
)

12
+O(h4)

...

u
′′
(xN− 3

2
) + h

u
′′
(x

N− 3
2
)

8
+O(h2)

u
′′
(xN− 1

2
) + h(

u
′′′

(x
N− 1

2
)

6
−

u
′′
(x

N− 1
2
)

8
) +O(h2)

u
′
(xN ) +O(h2)



.

The lateral approximations to u′(x0) and u′(xN ) and the central stencil for u′′i
2

with

i = 5, 7, ..., N − 5
2 correspond to standard second-order Taylor formulas. On the other hand,

the one-sided stencils for u′′(x 1
2
), u′′(x 3

2
), u′′(xN− 3

2
), and u′′(xN− 1

2
) result from adding

the special contribution of the non-zero interior entries of BG~u to the standard Laplacian
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approximation DG at those grid centers. This process reduces the accuracy to first order,
but it is necessary to enforce the conservation property (2.2) for the discrete solutions for
second-order differential equations. Previous mimetic applications of this kind have discussed
this nominal accuracy deficiency in the discretization of boundary value problems [7] and two-
dimensional elliptic equations [14] but at the same time have shown consistent second-order
convergence in numerical tests. First-order local truncation errors are only present at a few
near-boundary grid layers, and this does not degrade the global convergence. In this work,
we also provide a set of 3-D numerical experiments where the mimetic solutions show global
second-order convergence. The local truncation errors given by equation (2.6) are the basis of
the consistency analysis of our 3-D mimetic numerical scheme stated in Section 3.

2.2. Extension to 3-D rectangular grids. Generalizations of the above mimetic gra-
dient, divergence, and boundary flux operators to 3-D rectangular meshes can be achieved
by a subsequent application of these 1-D operators along each grid coordinate in a natural
order. This process leads to an elegant formulation of 3-D mimetic operators as the tensor
product of their 1-D counterparts. With no loss of generality, we consider the unit cube
Ω = [0, 1] × [0, 1] × [0, 1] as the discretization domain. Again, we define N equal-sized
cells in the x direction, where the grid nodes xi and cell centers xi+ 1

2
are now collected into

vectors Xn and Xc, respectively. In addition, we introduce the vector Xb = (x0, xN ) that
only contains boundary nodes, and these grid edges joined with the cell centers form the vector
Xcb = (x0, x 1

2
, ..., xN− 1

2
, xN ). Let us denote by G1D

x and D1D
x the discrete 1-D gradient

and divergence operators that perform a mimetic differentiation along an x gridline. Note
that G1D

x represents a linear operator that maps values of a function u evaluated at Xcb to
approximations of ∂u∂x at Xn. Similarly, D1D

x linearly maps evaluations of a function v at the
nodes Xn to approximations of ∂v∂x at the mid-cell points Xc.

To proceed with the staggered gridding of Ω, we next consider uniform partitions of
M cells along the y direction and L cells in the z direction as well as coordinate-dependent
grid vectors Yn, Yc, Yb, Ycb, Zn, Zc, Zb, and Zcb, and finally a pair of 1-D gradient and
divergence operators on each of these coordinate lines, i.e., G1D

y , D1D
y , G1D

z , and D1D
z . The

grid locations of a given scalar field f and a vector field v = (v1, v2, v3) are presented in
the second column of Table 2.1. The operator × denotes the Cartesian product used in set
theory, and its application to this context renders tuples of grid sites. Evaluations of u, v1,
v2, and v3 are orderly arranged into vectors ~u, ~v1, ~v2, and ~v3, respectively, in such a way
that the index associated to the x coordinate increases at first, followed by the index of the
y coordinate, and then the z-index. That is, the discrete values follow a lexicographical or
natural ordering of these computational vectors. Note that this 3-D grid distribution of the
u-values results from the tensor product of the three 1-D distributions along each coordinate
axis for the same field and incorporates the four grid corners of each grid plane at a constant
value z. This simple fact brings a tremendous regularity into the grid geometry that highly
simplifies the construction of the discrete 3-D gradient operator as we describe below. This
corner-aided grid formulation has not been explored in previous mimetic applications. The
conventional mimetic u gridding omits corner nodes as well as all boundary values of u at
the bottom and top grid planes with the heights z = 0 and z = 1, respectively. In Table 2.1,
the set of u-grid points in the conventional formulation is given in the last column, which
excludes a total of 4(N + M + L + 2) corner and boundary points. On dense grids, this
extra amount of evaluations is negligible compared to the total number of nodes for u which
is O[(N + 2) ∗ (M + 2) ∗ (L + 2)]. Away from these exceptions, the grid cells for both
formulations are the same. Figures 2.1 and 2.2 illustrate the generalization of such cells from
1-D to 2-D and then to 3-D dimensions in the case of either an interior cell or a boundary
cell. The components of the vector field v are distributed in a staggered way along the grid.
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TABLE 2.1
Staggered grid distribution of the discrete fields ~u,~v1, ~v2, and ~v3.

Field Corner-aided Conventional
~u Xcb × Ycb × Zcb [Xcb × Ycb −Xb × Yb]× Zc ∪Xc × Yc × Zb
~v1 Xn × Yc × Zc Xn × Yc × Zc
~v2 Xc × Yn × Zc Xc × Yn × Zc
~v3 Xc × Yc × Zn Xc × Yc × Zn

FIG. 2.1. Interior staggered cells of the discrete u and v in 1-D, 2-D, and 3-D grids.

FIG. 2.2. Boundary staggered cells of the discrete u and v in 1-D, 2-D, and 3-D grids.

Each of these components takes a separate location coincident with the central point of a cell
side. Figures 2.1 and 2.2 also depict this grid arrangement for the v components as the grid
dimension increases. The grid distribution of the values for v1,v2, and v3 in our formulation
replicate the one used in the traditional mimetic framework as shown in Table 2.1.

The staggered grid distribution of the discrete field ~u leads to a straightforward formulation
of the 3-D mimetic gradient G3D in terms of three block components

(2.7) G3D =

IL+2 ⊗ IM+2 ⊗G1D
x

IL+2 ⊗G1D
y ⊗ IN+2

G1D
z ⊗ IM+2 ⊗ IN+2

 .
Here, I represents the identity matrix with the dimension corresponding to its integer subindex.
The operator ⊗ corresponds to the matrix Kronecker product, and we follow the most-right
priority ordering when defining the block components of G3D. The product in the first
block, IL+2 ⊗ IM+2 ⊗G1D

x ~u, yields an approximation to the first component ∂u/∂x of the
continuous gradient at the center point of every cell face with a constant x grid coordinate. Due
to the inclusion of boundary corner evaluations of u in our formulation, IL+2⊗ IM+2⊗G1D

x ~u
also produces approximations to this gradient component at the eight boundaries of the grid
cube. This feature is not offered by the conventional mimetic formulation, and Table 2.2
compares the image of both discrete first-component gradient operators. Similar observations
can be made for the two remaining block components of G3D designed to approximate
∂u
∂y and ∂u

∂z on the corresponding cell faces. Table 2.2 also shows the grid image of these
approximations. The availability of all discrete gradient components at the grid boundaries
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TABLE 2.2
Grid image of mimetic gradient and divergence approximations.

Operator Corner-aided Conventional
IL+2 ⊗ IM+2 ⊗G1D

x ~u Xn × Ycb × Zcb Xn × Yc × Zc
IL+2 ⊗G1D

y ⊗ IN+2~u Xcb × Yn × Zcb Xc × Yn × Zc
G1D
z ⊗ IM+2 ⊗ IN+2~u Xcb × Ycb × Zn Xc × Yc × Zn

D3D~v Xc × Yc × Zc Xc × Yc × Zc

might allow a precise approximation of the generalized fluxes K∇u for a material-dependent
full tensor K even though the staggered location of the individual components demands
certain interpolations. This kind of boundary conditions is common in diffusion problems on
heterogeneous media where similar interpolations must be required to discretize ∇.(K∇u) at
the interior grid points.

We next define a new discrete vector ~v that subsequently collects all values of ~v1 followed
by ~v2 and finally ~v3, keeping the natural ordering already imposed on those vectors. Thus,
~v = (~v1, ~v2, ~v3)T . The mimetic approximation to∇.v can be computed at the central points
of every grid cells by the product D3D~v, where the 3-D divergence operator D3D also follows
a block-componentwise structure

(2.8) D3D =
[
ĬL+2 ⊗ ĬM+2 ⊗D1D

x ĬL+2 ⊗D1D
y ⊗ ĬN+2 D1D

z ⊗ ĬM+2 ⊗ ĬN+2

]
.

Above, a matrix Ĭ is derived from an identity matrix after adding zeros to the first and last
rows as well as to the first and last columns. For instance,

ĬN+2 =

 0
0 IN 0

0


in case of the x coordinate. Table 2.2 shows that the grid locations of D3D~v are similar to
those defined in the conventional formulation. These locations coincide with the interior grid
sites of the scalar function u shown in Figures 2.1 and 2.2.

The mimetic approximation to the continuous boundary flux ∇u.n̂, where n̂ represents
the outward normal vector at the boundary grid faces, can be computed by B3DG3D~u for
B3D given by

(2.9) B3D =
[
ĬL+2 ⊗ ĬM+2 ⊗B1D

x ĬL+2 ⊗B1D
y ⊗ ĬN+2 B1D

z ⊗ ĬM+2 ⊗ ĬN+2

]
.

Again, our rectangular gridding leads to a compact definition of the three-dimensional B
operator as the tensor product of the individual one-dimensional versions.

3. A mimetic scheme for elliptic problems. The mimetic operators presented in the
previous sections can be used to formulate a three-dimensional, second-order, mimetic scheme
for elliptic equations. In this process, we consider a general second-order elliptic equation of
the form

(3.1) −∇ · (k(x, y, z)∇u) + ω(x, y, z)u = F (x, y, z) (x, y, z) ∈ Ω

under a Robin boundary condition

(3.2) au+ γ(k(x, y, z)∇u) · n̂ = f(x, y, z) (x, y, z) ∈ ∂Ω.

In these equations, k, ω, F , a, γ, and f are given functions, and u is the unknown function.
We assume that γ, k, and ω are bounded from below by a positive constant. In this paper, we
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also consider the situations when k is a scalar function or a diagonal spatially variable tensor.
A complete anisotropic formulation for these diffusion-type equations is outside the scope of
this paper, and it is a topic of current research; see [6] (and the additional references therein)
for a possible formulation in that direction in a two-dimensional context. Let us assume that
the domain Ω is a Cartesian parallelepiped with n̂ as the normal unitary exterior vector at its
boundary ∂Ω. The combination of equations (3.1) and (3.2) is a well-posed problem whose
solution will be approximated by the mimetic scheme proposed in this section.

A formal mimetic discretization of the above elliptic problem can be accomplished by a
direct substitution of the continuous differential operators by their three-dimensional mimetic
approximations. In the case of equation (3.1), the corresponding mimetic discretization obeys

(3.3) (−D3DKG3D +W )~u = ~F .

In this equation, ~u is the mimetic approximation to the function u at the grid sites given in
Table 2.1, ~F is the projection of the function F at the block centers, K is a diagonal matrix
representing the values of the function k at the blocks faces, and W is also a diagonal matrix
whose entries are the values of the function ω at the block centers. In a similar way, the
mimetic discretizations of the boundary condition (3.2) is given by

(3.4) (A+ ΓKB3DG3D)~u = ~f.

In this relation, A and Γ are diagonal matrices with the values of a and γ at the exterior faces
of the boundary blocks. At the same boundary locations, the evaluations of f are collected
into the vector ~f . Similar to the 1-D mimetic setting, the discrete operator B3DG3D allows an
approximation of the directional derivative at the boundary faces. The discretizations (3.3)
and (3.4) can be combined by the superposition principle into a single equation

(3.5) (−D3DKG3D +W + ~A+ ΓKB3DG3D)~u = ~F + ~f,

which represents the full three-dimensional mimetic scheme associated to the elliptic prob-
lem (3.1) and (3.2). Equation (3.5) is very neat, correct, and has the intrinsic computational
advantage of avoiding an explicit enumeration of the discrete values of u along the 3-D grid.
The grid locations of the unknown u automatically follow a lexicographic order resulting
from the tensor product formulation, which greatly simplifies the coding of the linear sys-
tem (3.5). However, an explicit description of the equations defined by (3.5) is important
for a consistency analysis. In the light of the 1-D mimetic approximations given by (2.5),
one may expect unconventional formulas for the 3D Laplacian in the case of (3.5), which are
different from the standard seven-point FD stencil. Actually, the only non-standard Laplacian
formulas are those defined at the center points of the boundary grid blocks as well as similar
approximations designed at its adjacent block(s). In other words, equations associated to
grid blocks that are two blocks away from the boundary reduce to the standard seven-point
Laplacian stencil. By taking this into account, the minimum grid size that allows describing all
the possible stencils is a 5× 5× 5 grid. By symmetry, the new mimetic scheme only presents
six non-standard stencils, which are shown in Figure 3.1. In these stencil graphs, the grid point
(i, j, k) corresponds to a block center and therefore does not intervene in the discretization of
the boundary conditions (3.2). The stencils in Figure 3.1 are topologically singular because all
of them contain at least one branch with a node on the boundary ∂Ω. Given that we have used
integer tuples to identify the stencil’s center points, any boundary node will have a half integer
among its indices. Here, we refer to a branch as singular, if it has four nodes, one of which is a
boundary node, and the other nodes correspond to block centers. Since the general equations
in (3.5) are quite involved, we assume below that k, γ, and a are constant and equal to one and
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FIG. 3.1. Non-standard mimetic stencils for a Laplacian discretization with four-node singular branches.

the grid is uniform with a common grid step h. These simplifications allow us to present the
unconventional discrete equations in (3.5) with a minimum of notation while keeping their
non-standard features.

The display a) in Figure 3.1 shows a mimetic Laplacian stencil with only one singular
branch and corresponds to the following formula

− 1

3h
~u(i,j− 3

2 ,k) −
(

1

h2
− 1

2h

)
~u(i,j−1,k) +

(
6

h2
− 1

6h
+ ω(i,j,k)

)
~u(i,j,k)

− 1

h2

(
~u(i+1,j,k) + ~u(i,j+1,k) + ~u(i,j,k+1) + ~u(i−1,j,k) + ~u(i,j,k−1)

)
= ~F(i,j,k) + ~f(i,j,k).

(3.6)

This stencil represents a typical center node of a grid block that is one block away from a
boundary face in only one direction. The stencil in display b) of the same figure shows two
singular branches and follows the equation

− 1

3h

(
~u(i,j− 3

2 ,k) + ~u(i,j,k− 3
2 )

)
−
(

1

h2
− 1

2h

)(
~u(i,j,k−1) + ~u(i,j−1,k)

)
+

(
6

h2
− 1

3h
+ ω(i,j,k)

)
~u(i,j,k)

− 1

h2

(
~u(i+1,j,k) + ~u(i,j+1,k) + ~u(i,j,k+1) + ~u(i−1,j,k)

)
= ~F(i,j,k) + ~f(i,j,k).

(3.7)

This type of Laplacian discretization is associated to a center node whose block is simulta-
neously one block away from only two adjacent grid boundary faces. Display c) depicts the
less standard of these six mimetic stencils with three singular branches with the corresponding
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formula

− 1

3h

(
~u(i,j− 3

2 ,k) + ~u(i− 3
2 ,j,k) + ~u(i,j,k− 3

2 )

)
−
(

1

h2
− 1

2h

)(
~u(i,j,k−1) + +~u(i,j−1,k) + ~u(i−1,j,k)

)
+

(
6

h2
− 1

2h
+ ω(i,j,k)

)
~u(i,j,k) −

1

h2

(
~u(i+1,j,k) + ~u(i,j+1,k) + ~u(i,j,k+1)

)
= ~F(i,j,k) + ~f(i,j,k).

(3.8)

This type of stencils arise at the center node of a grid block displaced by one block from three
adjacent grid boundary faces. These blocks are the ones located close to the eight corners of
the grid parallelepiped. Notice that all these 3-D stencils in (3.6), (3.7), and (3.8) result from
a cross combination of the standard centered FD h−2[1,−2, 1] and the 1-D mimetic stencil
placed on the third row of (2.5) with a first-order truncation error as given by (2.6). Thus, the
accuracy of the Laplacian approximations in (3.6), (3.7), and (3.8) is only of first order, but it
could improve to second order in the case of harmonic functions.

Each of the next three stencils in Figure 3.1 (panels d), e), and f)), represent a non-standard
Laplacian discretization at the center of a boundary block, i.e., a grid block with at least one
face on the boundary ∂Ω. The stencil in graph d) has one singular branch and corresponds to
the approximating equation

− 1

3h
~u(i−3/2,j,k) −

(
1

h2
− 1

2h

)
~u(i−1,j,k) +

(
10

h2
− 7

6h
+ ω(i,j,k)

)
u(i,j,k)+

− 1

h2
~u(i+1,j,k) −

(
4

3h2
− 1

6h

)(
~u(i,j+1,k) + ~u(i,j,k+1)

)
−
(

8

3h2
− 1

3h

)(
~u(i,j−1/2,k) + ~u(i,j,k−1/2)

)
= ~F(i,j,k) + ~f(i,j,k).

(3.9)

This stencil is applied at the center of a grid block with exactly two boundary faces, which
explains the two short branches in its configuration. The stencil in display e) shows two
singular branches and satisfies the discrete equation

− 1

3h

(
~u(i−3/2,j,k) + ~u(i,j−3/2,k)

)
−
(

1

h2
− 1

2h

)(
~u(i,j−1,k) + ~u(i−1,j,k)

)
+

(
8

h2
− 5

6h
+ ω(i,j,k)

)
~u(i,j,k) −

1

h2

(
~u(i+1,j,k) + ~u(i,j+1,k)

)
−
(

4

3h2
− 1

6h

)
~u(i,j,k+1) −

(
8

3h2
− 1

3h

)
~u(i,j,k−1/2) = ~F(i,j,k) + ~f(i,j,k).

(3.10)

This stencil corresponds to a grid block with only one face on the grid boundary. The node
on that boundary face belongs to the short branch depicted in the stencil graph, and the other
branches are singular with the terminal nodes on the boundary faces. The three boundary faces
reached by this stencil are orthogonal and assemble a corner of the grid parallelepiped. Finally,
the stencil in display f) is also associated to the boundary blocks with just one face on ∂Ω, but
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it has only one singular branch. This stencil is given by

− 1

3h
~u(i,j−3/2,k) −

(
1

h2
− 1

2h

)
~u(i,j−1,k)

+

(
8

h2
− 2

3h
+ ω(i,j,k)

)
~u(i,j,k) −

1

h2

(
~u(i−1,j,k) + ~u(i+1,j,k) + ~u(i,j+1,k)

)
−
(

4

3h2
− 1

6h

)
~u(i,j,k+1) −

(
8

3h2
− 1

3h

)
~u(i,j,k−1/2) = ~F(i,j,k) + ~f(i,j,k).

(3.11)

The configuration of the above 3-D stencils in (3.9), (3.10), and (3.11) combine the central
FD h−2[1,−2, 1] and both first-order 1-D mimetic stencils given by the second and third
rows of (2.5). As a result, the local truncation error of these 3-D Laplacian approximations is
formally O(h). All other stencils in the new mimetic scheme have seven points which exhibit
second-order truncation errors at the grid interior. Since the new scheme is developed on an
equidistributed Cartesian grid, the equations discretizing the boundary conditions are identical
to those described in one-dimensional mimetic schemes and yields second-order truncation
errors; see [7] and [14].

The above consistency analysis reveals that the mimetic discrete Laplacian approximations
are of first order in the vicinity of the grid boundaries. However, this low nominal convergence
is just the result of our simplified convergence analysis, but the global empirical convergence
might be higher for several numerical tests and is mainly dominated by the interior second-
order accuracy. Computational experiments discussed later give evidence that the new mimetic
scheme actually yields optimal second-order convergence rates.

4. Eigenvalue estimation and stability considerations. An application of the discrete
integration by parts formula (2.2) extended to our 3-D formulation shows that any eigenvalue
associated to the system matrix in (3.5) is real and positive. Let us denote this matrix by Φ,
which for positive and constant parameters κ, ω, a, and γ can be written as

(4.1) Φ = −D3DG3D + Λ + ΓB3DG3D.

The matrix Λ is diagonal with entries following the same lexicographical order as the discrete
field ~u, and it is defined by

Λss =

{
ω
κ at any cell center,
a
κ at any boundary point.

In the following and for the sake of clarity of notation, we omit the dimension superscript
in the mimetic differentiation and quadrature operators in (4.1) and the 3-D generalization
of (2.2).

PROPOSITION 4.1. The eigenvalues of the matrix Φ in (4.1) are real and positive.
Proof. In the case of a non-zero complex vector ~u, where ~v = G~u, the 3-D analog of (2.2)

satisfies the identity

(4.2) ~u∗QDG~u+G~u∗PG~u = ~u∗BG~u .

Here, we focus on second-order discretizations, where Q = hI . Thus, (4.2) is equivalent to

~u∗(−DG+BG)~u = ~v∗P~v,

where the right-hand side is always non-negative given that the diagonal weight matrix P is
positive definite. Next, we suppose that the vector ~u corresponds to an eigenvector of the
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matrix Φ with the associated eigenvalue λ. The Rayleigh quotient for this pair results in

λ =
~u∗Φ~u

~u∗~u
=
~u∗(−DG+BG+ Λ)~u

~u∗~u
=
~v∗P~v + ~u∗Λ~u

‖u‖22
·

Thus, λ is real and positive given that the matrix Λ is also diagonal with entries larger than
zero.

Proposition 4.1 proves the non-singularity of the system matrix Φ for the case of general
Robin boundary conditions (3.2) coupled to the elliptic model problem (3.1). Actually, the
above proof easily extends to the case of positive and spatially variable coefficients κ, ω, a,
and γ. Moreover, in the particular case of Dirichlet boundary conditions, a simple application
of Gershgorin’s theorem [9] renders lower bounds for the eigenvalues of the matrix Φ. In the
following result, we consider the same additional constraints of κ = a = γ = 1 imposed on
the simplified versions of the mimetic Laplacian stencils (3.6)–(3.11).

PROPOSITION 4.2. Any eigenvalue λ of the matrix Φ in (4.1) satisfies

ω ≤ λ ≤ ω +O(h−2).

Proof. The proof is a simple application of Gershgorin circles. We first consider an
interior stencil of the system (3.5) that corresponds to the standard seven-point FD Laplacian
approximation that is far enough away from the boundary contribution of the mimetic B
in (2.9),

−h−2

(
~u(i+1,j,k) + ~u(i−1,j,k) + ~u(i,j−1,k) + ~u(i,j+1,k)

+ ~u(i,j,k−1) + ~u(i,j,k+1) − 6~u(i,j,k)

)
+ ω~u(i,j,k) = ~F(i,j,k) + ~f(i,j,k),

where the magnitude of the off-diagonal entries add up to∑
s6=t

|Φst| = 6h−2

and the diagonal entry corresponds to

Φss =
∑
s 6=t

|Φst|+ ω.

Thus, according to the Gershgorin circles,

ω ≤ λ ≤ 12

h2
+ ω.

We next consider the unconventional stencil in equation (3.6). In this case,∑
s6=t

|Φst| =
1

3h
+

5

h2
+
∣∣∣ 1

h2
− 1

2h

∣∣∣
and

Φss =
∑
s6=t

|Φst|+
(

1

h2
− 1

2h

)
−
∣∣∣ 1

h2
− 1

2h

∣∣∣+ ω.
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FIG. 4.1. Minimum and maximum scaled eigenvalues and condition number of matrix Φ.

After an appropriate spatial scaling of the original elliptic problem, it is always the case that
0 < h < 1. In this interval, we have that (h−2 − h−1/2) > 0, and the Gershgorin circles for
the stencil (3.6) leads to the estimate

ω ≤ λ ≤ 11

h2
+

1

6h
+ 12h−2 +

∣∣∣ 1

h2
− 1

2h

∣∣∣+ ω.

Notice that the strict inequalities hold for the above eigenvalue bounds because the Dirichlet
boundary data actually add to the right-hand side vector in the system (3.5). The Gershgorin
bounds for the remaining equations of this system are obtained in a similar way.

Proposition 4.2 reinforces the fact that the matrix Φ is invertible as the minimum eigen-
value remains bounded from below by ω > 0 independent of how h → 0 under any grid
refinement. In this sense, the mimetic scheme is stable and must converge to the exact solution
of the given problem (3.1) and (3.2). On the other hand, if the Gershgorin upper bound is tight,
then the maximum eigenvalue may grow as O(h−2), and we also expect a similar increase
of the condition number of the matrix Φ. This is the case for standard FD schemes with a
symmetric discretization matrix for this type of elliptic problems. Now, a similar application
of Gershgorin’s theorem to our scheme matrix in (3.5) under Neumann or Robin boundary
conditions does not lead to simple bounds for the eigenvalues. Thus, we empirically extend
this eigenvalue analysis to Robin conditions by using MATLAB built-in functions and plot the
smallest and the largest eigenvalue of the matrix Φ in Figure 4.1 as well as the L2 condition
number as the number of grid cells N increases. These results correspond to parameter values
κ = a = γ = 1 and also ω = 1 with Robin-type boundary conditions. We scale the extreme
eigenvalues λMIN and λMAX by the parameters ω and N2, respectively, in order to make a
correspondence to the above theoretical bounds for the Dirichlet problems. Notice the perfect
scaling followed by both eigenvalues in these experiments. In addition, Figure 4.1 displays
the L2 condition number of Φ weighted by the ratio λMAX/λMIN even though this matrix is
far from symmetric, and we have denoted this new term by cond∗2(Φ). Note that cond∗2(Φ) is
directly proportional to N2, so one may expect a linear increase of the number of iterations
required to solve the system (3.5) by a standard iterative solver for sparse matrices.

We end this section with a brief comment on the properties of the system matrix Φ under a
more general parametrization of the BVP (3.1)–(3.2). This matrix is non-symmetric for Robin
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boundary conditions γ 6= 0 because of the mimetic lateral approximation of the fluxes by the
operator B3DG3D. It may become indefinite according to the sign variation of the parameters
κ and w in the problem domain. Thus, the implementation of the mimetic scheme (3.5)
requires specialized iterative solvers for non-symmetric and indefinite matrices. The authors in
[16] present a 2-D discretization of the Poisson equation based on the mimetic divergence and
gradient operators. This study carefully explores the application of the Generalized Minimal
Residual (GMRES) and the BiConjugate Gradient (BiCGstab) methods to these problems, and
recommends using the latter method with an incomplete LU preconditioning. Even though
the FD discretizations in [16] omit the contribution of the operator B3DG3D for Laplacian
approximations, we here consider BiCGstab as one choice for solving the system.

5. Higher-order operators and locally refined grids. Two advantages offered by the
tensor formulation of the 3-D gradient and divergence operators in equations (2.7) and
(2.8) is the effortless construction of higher-order accurate counterparts as well as their
extension to more general rectangular grids with a local refinement in any coordinate direction.
In [5] and [4], Castillo and collaborators propose a three-parametric fourth-order family
for each G1D and D1D operator along with consistently accurate quadratures
P = hdiag( 407

1152 ,
473
384 ,

343
384 ,

1177
1152 , 1, ...) and Q = hdiag( 649

576 ,
143
192 ,

75
64 ,

551
576 , 1, ...). Using a par-

ticular choice of G1D and D1D in combination with P and Q in the mimetic identity (2.3)
yields the corresponding 1-D boundary operator. A direct substitution of these 1-D operators
into the tensor formulae (2.7), (2.8), and (2.9) lead to 3-D fourth-order accurate operators and
allows us to build a new higher-order formulation of the mimetic scheme (3.5). In the next
section, we use the following fourth-order discretizations of G1D and D1D to solve some test
problems numerically:

G1D =
1

h



− 1152
407

10063
3256

2483
9768 − 3309

3256
2099
3256 − 697

4884 0 · · ·
0 − 11

12
17
24

3
8 − 5

24
1
24 0 · · ·

0 1
24 − 9

8
9
8 − 1

24 0 0 · · ·
. . . . . . . . . . . .

· · · 0 0 1
24 − 9

8
9
8 − 1

24 0
· · · 0 − 1

24
5
24 − 3

8 − 17
24

11
12 0

· · · 0 697
4884 − 2099

3256
3309
3256 − 2483

9768 − 10063
3256

1152
407


,

D1D =
1

h


− 4751

5192
909
1298

6091
15576 − 1165

5192
129
2596 − 25

15576 0 · · ·
1
24 − 9

8
9
8 − 1

24 0 0 0 · · ·
. . . . . . . . . . . .

· · · 0 0 0 1
24 − 9

8
9
8 − 1

24
· · · 0 25

15576 − 129
2596

1165
5192 − 6091

15576 − 909
1298

4751
5192

 .
The second feature of the 3-D tensor formulation is an easy inclusion of locally refined

rectangular grids. In [3], uniform G1D, D1D, P , and Q operators are adapted to 1-D re-
fined meshes by using the standard mapping technique. The authors consider that a given
arbitrary-spaced 1-D grid smoothly transforms to the uniform staggered mesh defined above
in Section 2.1. The Jacobian of the transformation of the nodal grid is given by the diagonal
matrix JD, while the Jacobian of the complementary mesh comprising centers and boundary
points is given by a different diagonal matrix JG, both of them are readily defined as

JD = D1D(x0, x1, ..., xN )T , JG = G1D(x0, x1/2, ..., xN−1/2, xN )T .

Thus, the mimetic operators on a 1-D non-uniform grid can be expressed as

D̄1D = (J−1
D )D1D, Ḡ1D = (J−1

G )G1D, Q̄ = JDQ, P̄ = JGP.
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In [3], the authors also show that the 1-D operator B remains unchanged under any smooth
coordinate mapping by employing a simple substitution of these non-uniform operators
into (2.3). Therefore, the 3-D operators defined by the equations (2.7) and (2.8) can easily
accommodate a variable grid stepping in any coordinate direction by replacing the uniform
G1D and D1D operators by their non-uniform versions Ḡ1D and D̄1D as long as the 3-D grid
remains rectangular. In the numerical experiments given below, we also exploit this virtue
of our 3-D tensor operators to gain accuracy with almost the same computational cost as
uniformly-spaced simulations.

Finally, we would like to note that a simplified boundary operator B3D can be defined
by using B = [−e1, 0, ..., 0, eN ] as the 1-D operator in equation (2.9) instead of the mimetic
version given by (2.4). This simpler B3D can also couple Neumann or Robin boundary
conditions to the scheme in (3.5) but leads to a more conventional FD elliptic scheme with a
local truncation errors only depending on the nominal construction accuracy of the G3D and
D3D differentiators.

6. Numerical tests. To assess the accuracy and experimental convergence of the pro-
posed mimetic discretizations in (2.9), we use the following diffusion test problem with a
diagonal variable tensor κI:

−∇.(κ∇u) + wu = F (x, y, z) (x, y, z) ∈ (0, 1)× (0, 1)× (0, 1),

au+ γ(κ∇u)n̂ = f(x, y, z) (x, y, z) ∈ ∂Ω,

where

F = −ex+y+zm
{

(m− 1)(xm−2 + ym−2 + zm−2) + xm−1 + ym−1 + zm−1
}

+ xm + ym + zm,

κ = ex+y+z, a = γ = w = 1.

The exact solution is available and corresponds to

u = xm + ym + zm.

The difficulty in this numerical test increases with the degree m of the polynomial solution
as the boundary layers become harder to be resolved in the vicinity of the domain corners
(with the exception of the origin point). First, we perform second-order simulations for m = 5,
6, 8, and 10 using square grids with an increasing number of cells N = 10, 20, 40, 50, and
60 along each coordinate direction. On the same grids, we also compute numerical solutions
using the fourth-order mimetic operators detailed in the previous section. Finally, we use
the common grid clustering T (ε) = arctan(ε)

arctan(1) along each physical coordinate x, y, and z of
the unit cube, where ε follows a uniform discretization of the computational interval [0, 1].
Thus, the grid spacing reduces away from the point (0, 0, 0) to allow for a better resolution
of the steep gradients of the solution at the other corners. In this set of non-uniform tests,
our choice for the accuracy was of second order. A similar arctan mesh adaptation was used
in [3] to efficiently solve 1-D elliptic problems in the presence of boundary layers, and we
here apply it to our 3-D tests. As the numerical results below show, this grid clustering allow
reaching a higher accuracy than for the simulations on uniform grids with the same cell density.
However, we want to note that our selection of this arctan adaptation has not been guided by
any optimal or automatic strategy of grid refinement, and our goal is simply to exercise the
easy adaptability of our mimetic tensor formulation to orthogonal locally refined grids.

All numerical experiments were carried out with MATLAB R2102 on an Intel i7-4600U
with 8 GB RAM. To solve the linear systems given by (3.5), we use the built-in implementation
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(a) (b)

(c)

FIG. 6.1. L∞ misfits for the 2nd- and 4th-order numerical solutions.

of the Quasi-Minimal Residual Method qmr.m with SSOR preconditioning, whose successful
performance in solving difficult elliptic equations after FD discretizations has been recently
reported [12]. In all our experiments, qmr converges with a relative tolerance of 10−4

in less than a thousand iterations. In addition, we follow [16] and apply the MATLAB
implementation of the BiConjugate Gradient method to these experiments, but it converges
slower than qmr.m on our dense grids, and the computation of the ILU preconditioner also
increases the computational demand.

Figure 6.1 depicts the L∞ relative errors of the solutions for the second-order approxima-
tion that use a constant grid step (panel a) and locally refined grids (panel b) in addition to the
similar misfits given by the fourth-order simulations on uniform grids (panel c). In all cases, a
perfect second-order convergence is also displayed as reference. One can see that the solution
accuracy effectively decays as m grows in response to the problem difficulty. For a given num-
ber of grid cells, the errors are larger in the case of uniform second-order discretizations, while
the fourth-order solutions give the most accurate approximations. A complementary accuracy
information is given in Table 6.1, where we list the L∞ errors for each computed solution
in the case of m = 10. Relative to the misfits of the uniform second-order simulations, the
error present in the second-order non-uniform solution corresponds to 31%, while the uniform
fourth-order misfits is only 13% for the available coarsest grid 10× 10× 10. Similar relative
comparisons when using 60× 60× 60 grid cells, indicate that the former accuracy advantage
stay in 32%, while the latter ratio drops significantly to 0.02%. The accuracy gain offered
by any of these numerical devices, grid clustering or fourth-order discretizations, can be also
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FIG. 6.2. Computing times for the 2nd- and 4th-order numerical solutions.

TABLE 6.1
Relative L∞ errors of numerical solutions in the case of m = 10.

Grid size 2nd-order (uniform) 2nd-order (refined) 4th-order (uniform)
10× 10× 10 0.752379 0.232773 0.09797807
20× 20× 20 0.187049 0.058873 0.00390037
30× 30× 30 0.082925 0.026355 0.00044975
40× 40× 40 0.046690 0.014881 0.00007690
50× 50× 50 0.029914 0.009546 0.00001322
60× 60× 60 0.020789 0.006640 0.00000426

assessed from the information in Table 6.1 and actually leads to a reduction of the computing
time as shown by Figure 6.2. The elapsed times in this figure only count the construction
and the qmr solution of the linear system (3.5) for each experiment where m = 10. If we set
the L∞-accuracy target to 2%, then we need to perform second-order simulations either on a
60× 60× 60 uniform grid or on a 40× 40× 40 locally refined grid, while the fourth-order
scheme exceeds this tolerance on a 20 × 20 × 20 uniform grid. The computation times of
these simulations were 40.4, 7.13, and 1.28 seconds, respectively, as depicted in Figure 6.2.
This figure clearly illustrates the benefits of these aforementioned numerical enhancements on
the grids with 30× 30× 30 cells and more. Note that higher precision is accompanied by a
slight increase of computing times that remain in the same order of magnitude as the CPU
time spent by the second-order uniform simulations. These advantages are better realized by
the fourth-order scheme on rectangular grids.

Table 6.2 reports the least-square regression slopes to the error data, and the results on the
uniform grids show the excellent agreement with respect to the nominal convergence rates for
different degrees m. In addition, the second-order solutions on the locally refined grids present
the typical convergence deficiency associated to variable spacing, but it is well compensated
by its higher accuracy with respect to the results on uniform meshes.

7. Conclusions. In this work, we first construct second-order accurate mimetic gradient
G, divergence D, and boundary B operators on 3-D rectangular meshes by using tensor
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TABLE 6.2
L∞ convergence rates of the 2nd- and 4th-order numerical solutions.

m 2nd-order (uniform) 2nd-order (refined) 4th-order (uniform)
5 2.005 1.944 4.365
6 2.006 1.939 4.590
8 2.005 1.974 5.253

10 2.003 1.985 5.618

products of 1-D operators defined along each grid coordinate. The mimetic Laplacian ap-
proximation is embedded into the matrix operator BG + DG, which here is used for the
discretization of certain families of elliptic differential equations with Robin boundary con-
ditions. Then, we carry out a full consistency analysis that leads to standard second-order
Taylor truncation errors at the interior grid points but also reveals that non-standard mimetic
stencils are formally first-order accurate near the boundaries. Linear systems arising from such
discretizations lead to non-symmetric matrices with positive eigenvalues under a wide range
of model parameters, and therefore the numerical stability and convergence are guaranteed.
Next, the flexibility of the tensor formulation is demonstrated by an easy construction of 3-D
fourth-order accurate operators starting from their 1-D counterparts. We also reformulate all
proposed 3-D mimetic operators to include variable spacing along any coordinate direction but
where the grids remain orthogonal. Finally, we assess the impact of both numerical features,
fourth-order accuracy and local grid refinement, on the performance of mimetic discretiza-
tions by solving an elliptic problem with a parametrized boundary layer. This parameter is
used to gradually increase the problem difficulty. On uniform grids, global experimental
convergence rates are consistent with the nominal discretization as the grid spacing reduces,
and the accuracy slightly degrades as the problem becomes harder. Thus, the accuracy of
fourth-order uniform simulations rapidly exceeds the precision for second-order results with a
slight increase of computing times. On the other hand, local grid refinements allow an efficient
resolution of the exact steep gradients, and the resulting errors are approximately one third of
those achieved on uniform equally dense grids.
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