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GAUSS-KRONROD QUADRATURE FORMULAE
— A SURVEY OF FIFTY YEARS OF RESEARCH∗

SOTIRIOS E. NOTARIS†

Abstract. Kronrod in 1964, trying to estimate economically the error of the n-point Gauss quadrature formula
for the Legendre weight function, developed a new formula by adding to the n Gauss nodes n+ 1 new ones, which
are determined, together with all weights, such that the new formula has maximum degree of exactness. It turns out
that the new nodes are zeros of a polynomial orthogonal with respect to a variable-sign weight function, considered by
Stieltjes in 1894, without though making any reference to quadrature. We survey the considerable research work that
has been emerged on this subject, during the past fifty years, after Kronrod’s original idea.
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1. Introduction. One of the most useful and widely used integration rules is the Gauss
quadrature formula for the Legendre weight function w(t) = 1 on [−1, 1],

(1.1)
∫ 1

−1
f(t)dt =

n∑
ν=1

γνf(τν) +RGn (f),

where τν = τ
(n)
ν are the zeros of the nth degree Legendre polynomial and γν = γ

(n)
ν are

the so-called Christoffel numbers. It is well known that formula (1.1) has precise degree of
exactness dGn = 2n− 1, i.e., RGn (f) = 0 for all f ∈ P2n−1, where P2n−1 denotes the space
of polynomials of degree at most 2n− 1 (cf. [81]).

The error term of the Gauss formula has been extensively studied for more than a century
and continues to be an active topic of research (cf. [81, Section 4]). Nevertheless, a simple
error estimator is the following: Let QGn =

∑n
ν=1 γνf(τν), and consider formula (1.1) with

m points, where m > n. Then we write

(1.2) |RGn (f)| ' |QGn −QGm|,

i.e., QGm plays the role of the “true” value of the integral
∫ 1

−1 f(t)dt. Although effective, a
disadvantage of this method lies in the number of function evaluations in order to obtain an
accurate assessment for RGn (f). For example, if we take m = n+ 1, then n+ 1 additional
evaluations of the function (at the zeros of the (n+ 1)st degree Legendre polynomial) raise the
degree of exactness from dGn = 2n−1 to dGn+1 = 2n+1 — a minor improvement. Furthermore,
estimating RGn (f) by means of QGn −QGn+1 could be unreliable (cf. [30, p. 199]).

Motivated probably from the latter, Kronrod introduced, in 1964 (cf. [119, 120]), what is
now called the Gauss-Kronrod quadrature formula for the Legendre weight function,

(1.3)
∫ 1

−1
f(t)dt =

n∑
ν=1

σνf(τν) +

n+1∑
µ=1

σ∗µf(τ∗µ) +RKn (f),

where τν are the Gauss nodes, while the new nodes τ∗µ = τ
∗(n)
µ and all weights σν = σ

(n)
ν ,

σ∗µ = σ
∗(n)
µ are chosen such that formula (1.3) has maximum degree of exactness (at least)
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dKn = 3n + 1. The advantage of using QKn =
∑n
ν=1 σνf(τν) +

∑n+1
µ=1 σ

∗
µf(τ∗µ) instead of

QGn+1 in (1.2) is rather obvious: With n+ 1 additional evaluations of the function (at the new
nodes τ∗µ), the degree of exactness rises from dGn = 2n − 1 to at least dKn = 3n + 1 — a
substantial improvement.

Kronrod computed the new formula for n up to 40 (cf. [120]) showing that in these cases
the τ∗µ are all in (−1, 1) and the σν , σ∗µ are all positive. For general n, clearly of paramount
importance is the behavior of the polynomial having as zeros the τ∗µ . Hence, denoting by πn
the nth degree (monic) Legendre polynomial, setting π∗n+1(t) =

∏n+1
µ=1(t− τ∗µ), and applying

a well-known result of Jacobi (cf. [105]), one can show that formula (1.3) has degree of
exactness dKn = 3n+ 1 if

(1.4)
∫ 1

−1
π∗n+1(t)tkπn(t)dt = 0, k = 0, 1, . . . , n

(cf. [82, Corollary]). Two things must be noted here. First, the polynomial π∗n+1 can be
uniquely defined by means of (1.4). Furthermore, Equation (1.4) can be viewed as an orthogo-
nality condition, i.e., the polynomial π∗n+1 is orthogonal to all polynomials of lower degree
relative to the weight function w∗(t) = πn(t) on [−1, 1]; however, as this is a variable-sign
weight function, the usual theory of orthogonal polynomials cannot be applied in this case.

Now, interestingly enough, the polynomial π∗n+1 had emerged in a different context some
70 years earlier. 1894 was the year that Stieltjes published his monumental work on continued
fractions and the moment problem. Trying to extend his major theory to the case of oscillatory
measures, in particular, dµ(t) = Pn(t)dt on [−1, 1], where Pn is the nth degree (non-monic)
Legendre polynomial, by analyzing the Legendre function of the second kind, he came up with
a polynomial that, apart from the leading coefficient, is precisely π∗n+1 (cf. [82, Section 1]).
Stieltjes reported all this to Hermite in a letter dated November 8, 1894 (which was the last
letter in a life-long correspondence with Hermite; see [3, v. 2, pp. 439–441]).

Stieltjes proceeded further conjecturing (a) that π∗n+1 has n + 1 real and simple zeros,
all contained in (−1, 1), and (b) that these zeros separate those of πn; he even presented a
numerical example for n = 4 that verified his conjectures. Furthermore, he expressed the
belief (apparently stronger in the case of reality and simplicity of zeros, and less so for the
separation property) that this is a special case of “a much more general theorem”.

In his reply, on November 10, 1894 (see [3, v. 2, pp. 441–443]), Hermite was delighted
with the new polynomial and the conjectured “beautiful properties”, and he suggested Stieltjes
to look for a differential equation that could help proving them. As Stieltjes passed away at
the end of that same year, he might have been too weak, by the time he got Hermite’s reply, in
order to further pursue this matter. Hence, his conjectures remained unanswered for 40 years,
until Szegö proved and even generalized them in 1935 (cf. [214]), without though following
Hermite’s suggestion.

The connection between Gauss-Kronrod formulae and the polynomial π∗n+1, now appro-
priately called Stieltjes polynomial, has first been pointed out by Mysovskih (cf. [153]) and
independently, in the Western literature, by Barrucand (cf. [5]).

Previous reviews on the subject can be found, chronologically, in [150, 82, 160, 60, 151].

2. Existence and nonexistence results. Let dσ be a (nonnegative) measure on the inter-
val [a, b]. If σ(t) is absolutely continuous, then dσ(t) = w(t)dt with w being a (nonnegative)
weight function on [a, b], and consider the Gauss quadrature formula associated with it,

(2.1)
∫ b

a

f(t)w(t)dt =

n∑
ν=1

γνf(τν) +RGn (f),
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where τν = τ
(n)
ν are the zeros of the nth degree (monic) orthogonal polynomial

πn(·) = πn(·;w) relative to the weight function w on [a, b]. It is well-known that the weights
γν = γ

(n)
ν are all positive, and formula (2.1) has precise degree of exactness dGn = 2n − 1

(cf. [81]).
The Gauss-Kronrod quadrature formula, extending formula (2.1), has the form

(2.2)
∫ b

a

f(t)w(t)dt =

n∑
ν=1

σνf(τν) +

n+1∑
µ=1

σ∗µf(τ∗µ) +RKn (f),

where τν are the Gauss nodes, while the new nodes τ∗µ = τ
∗(n)
µ , referred to as the Kronrod

nodes, and all weights σν = σ
(n)
ν , σ∗µ = σ

∗(n)
µ are chosen such that formula (2.2) has

maximum degree of exactness (at least) dKn = 3n+ 1.
It should be noted that for formula (2.2) to improve on the degree of exactness of formula

(2.1), i.e., dKn > 2n− 1, the number of additional nodes τ∗µ has to be at least n+ 1 (cf. [147,
Introduction, in particular, Lemma 1]).

It turns out that the nodes τ∗µ are zeros of a (monic) polynomial π∗n+1(·) = π∗n+1(·;w)
satisfying the orthogonality condition

(2.3)
∫ b

a

π∗n+1(t)tkπn(t)w(t)dt = 0, k = 0, 1, . . . , n,

i.e., π∗n+1 is orthogonal to all polynomials of lower degree relative to the variable-sign weight
function w∗(t) = πn(t)w(t) on [a, b]. We call π∗n+1 the Stieltjes polynomial relative to the
weight function w on [a, b].

The weights of formula (2.2) are given by

(2.4)
σν = γν +

‖πn‖2

π′n(τν)π∗n+1(τν)
, ν = 1, 2, . . . , n,

σ∗µ =
‖πn‖2

πn(τ∗µ)π∗′n+1(τ∗µ)
, µ = 1, 2, . . . , n+ 1,

where ‖ · ‖ is the L2-norm for the weight function w on [a, b]. Furthermore, all σ∗µ are positive
if and only if the nodes τν and τ∗µ interlace, i.e.,

τ∗n+1 < τn < τ∗n < · · · < τ∗2 < τ1 < τ∗1

(cf. [144, Theorems 1 and 2]).
Of interest are the following properties of formula (2.2):
(a) The nodes τν and τ∗µ interlace.
(b) All nodes τν , τ∗µ are contained in (a, b).
(c) All weights σν , σ∗µ are positive.
(d) All nodes τν , τ∗µ , without necessarily satisfying (a) and/or (b), are real.

Clearly, the validity of properties (a)–(d) depends on the behavior of the polynomial π∗n+1,
which is orthogonal relative to a variable-sign weight function, and therefore it does not follow
the usual theory of orthogonal polynomials. So, whatever results are known have been derived
for specific classical or nonclassical weight functions.

2.1. Classical weight functions. During the past 80 years, quite a bit has been unveiled
for the polynomials π∗n+1 and the corresponding Gauss-Kronrod formulae for the Gegenbauer
and the Jacobi weight functions.
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2.1.1. Gegenbauer weight function. In 1935 (cf. [214]), Szegö turned his interest to
Stieltjes’s conjectures (see the introduction) for the Legendre weight function. He expanded the
polynomial π∗n+1 into a Chebyshev series, and, using results from the theory of the reciprocal
power series (cf. [115]), he showed that all the expansion coefficients are negative, except for
the first one which is positive, and also that the sum of these coefficients is zero. That way
he was able to conclude properties (a) and (b) for all n ≥ 1. In 1978, Monegato, relying on
Szegö’s work, proved property (c) for all n ≥ 1 (cf. [145]).

Szegö’s analysis was not peculiar only to the Legendre weight, but it was extended to
the Gegenbauer weight function wλ(t) = (1− t2)λ−1/2 on [−1, 1], λ > −1/2. He showed
properties (a) and (b) for all n ≥ 1 when 0 < λ ≤ 2 (cf. [214, §3]); for λ = 0, i.e., the
Chebyshev weight of the first kind, see Section 2.1.3 below). Moreover, Monegato proved
property (c) for all n ≥ 1 when 0 ≤ λ ≤ 1 (cf. [145]).

Unfortunately, Szegö was unable to determine what happens for λ > 2, while, when
λ ≤ 0, already for n = 2, two of the τ∗µ are outside of (−1, 1). This gap had been left
unanswered until 1988, when Gautschi and Notaris tried to close it (cf. [90]). Their idea
was, for a given n, to compute precise intervals (λpn,Λ

p
n) of λ such that property (p) is

valid, where p = a, b, c, d. This was done by varying λ and monitoring the motion of the
nodes in formula (2.2), through the vanishing of the resultant of π(λ)

n (·) = πn(·;wλ) and
π
∗(λ)
n+1(·) = π∗n+1(·;wλ) or the discriminant of π∗(λ)n+1(·) for properties (a) or (d), respectively,

and more directly for properties (b) and (c). The project was undertaken analytically for
n = 1(1)4 and computationally for n = 5(1)20(4)40. The values of λpn,Λ

p
n, p = a, b, c, d,

are given in [90, Tables 2.1 and A.1].
Also, of interest are two nonexistence results. The first one by Monegato in 1979 (cf. [147,

Theorem 1]), who proved that the Gauss-Kronrod formula for the weight function wλ, having
properties (c) and (d), and degree of exactness [2rn + l], where r > 1 and l is an integer,
i.e., dKn can be lower than 3n+ 1, does not exist for all n ≥ 1 when λ is sufficiently large.1

The second nonexistence result was obtained by Notaris in 1991 (cf. [157, Section 2]). First,
starting from a well-known limit formula that connects the Gegenbauer and the Hermite
orthogonal polynomials (cf. [157, Equation (2.3)]), he showed that an analogous formula holds
for the corresponding Stieltjes polynomials, in particular,

(2.5) lim
λ→∞

λ(n+1)/2π
∗(λ)
n+1(λ−1/2t) = π∗Hn+1(t), n ≥ 1,

where wH(t)=e−t
2

on (−∞,∞) is the Hermite weight function and π∗Hn+1(·)=π∗n+1(·;wH).
Then, combining (2.5) with a nonexistence result of Kahaner and Monegato for the Hermite
weight function (cf. [112, Corollary]), he proved that the Gauss-Kronrod formula for the
weight function wλ and n 6= 1, 2, 4, having properties (c) and (d), does not exist if λ > λn,
where λn is a constant.

From all the results presented so far, it appears that, for n 6= 1, 2, 4, the intervals (λpn,Λ
p
n),

p = a, b, c, d, are finite. Two questions still remain open (cf. also [93]):
(i) What is limn→∞ Λpn, for p = a, b, c, d?
(ii) What about the validity of property (p), p = a, b, c, d, when −1/2 < λ < 0?

An attempt to answer these questions was made by Peherstorfer, Petras, and de la Calle Ysern.
The first two proved that property (d) cannot be true, i.e., the Gauss-Kronrod formula cannot
exist, for λ > 3 and n sufficiently large, while properties (a), (b), and (c) hold true for λ = 3
and n sufficiently large (cf. [177, Theorems 1 and 2] and [179, Theorem]). Their proof is
based on a new representation for the associated Stieltjes polynomials and the use of Bessel

1The proof contains an error, but it can be repaired (cf. [82, p. 53]).
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functions. Furthermore, fairly recently, de la Calle Ysern and Peherstorfer showed that, for
−1/2 < λ < 0 and all n ≥ 1, the zeros of π∗(λ)n+1 are real, simple, and, except for the smallest
and the largest ones, lie inside (−1, 1); hence, property (b) is false, but properties (a), (d), and
also (c) remain true (cf. [45, Theorem 2.1 and Corollary 2.2]). A key point in their proof is a
result on the coefficients of the reciprocal power series analogous to that of Kaluza (cf. [115])
used by Szegö in [214]. It should also be noted that the two zeros of π∗(λ)n+1 lying outside of
[−1, 1] approach the end of the interval as n increases (cf. [45, p. 772]), while, for λ = 0, i.e.,
for the Chebyshev weight function of the first kind, these two zeros become ±1 for all n ≥ 2
(cf. Section 2.1.3 below). Moreover, two asymptotic representations of the respective Stieltjes
polynomials, holding uniformly, the first one on the whole interval [−1, 1] and a second,
sharper one, on compact subintervals of (−1, 1), as well as an asymptotic representation of
the Stieltjes polynomials in terms of Chebyshev polynomials of the first kind are given.

In addition to the previous existence and nonexistence results, some properties of the
Gauss-Kronrod formulae for the Gegenbauer weight function wλ, 0 ≤ λ ≤ 2, have been estab-
lished by Ehrich. First, for 0 ≤ λ ≤ 1, relying on Szegö’s work in [214], he proved (cf. [54]) an
asymptotic representation for the associated Stieltjes polynomials and their derivatives, which
hold uniformly on compact subintervals of (−1, 1). This was subsequently used to derive re-
sults for the distribution of the zeros of the Stieltjes polynomials as well as for the interlacing of
the zeros of successive Stieltjes polynomials, thus proving conjectures of Monegato (cf. [147,
p. 235] and [150, Section I.5]) and Peherstorfer (cf. [175, p. 186]). Furthermore, he obtained
asymptotic representations for the weights and a precise asymptotic value for the variance
of the Gauss-Kronrod formulae in question. If QKn is the quadrature sum in (2.2), then the
variance of the Gauss-Kronrod formula is defined by VarQKn =

∑n
ν=1 σ

2
ν +

∑n+1
µ=1(σ∗µ)2. It is

a measure of the sensitivity of QKn to random errors, and in that sense it should be as small as
possible (cf. [16, Chapter 9]). On the other hand, Ehrich extended in [55], for 1 < λ ≤ 2, most
of his findings in [54], in particular, the asymptotic representation for the Stieltjes polynomials,
the distribution of their zeros, and the asymptotic representation for the weights σν of the
respective Gauss-Kronrod formulae. The latter allowed him to prove (cf. [55, Corollary 2.2])
that the weights σν corresponding to nodes in compact subintervals of (−1, 1) are positive for
n sufficiently large, thus answering, partially, a question posed earlier by Monegato (cf. [150,
p. 157]).

Finally, using Szegö’s and Kaluza’s results (cf. [214, 115]), Rabinowitz has shown
(cf. [187]) that the Gauss-Kronrod formula for the Gegenbauer weight function wλ, 0 < λ ≤ 2,
λ 6= 1, has precise degree of exactness 3n+ 1 for n even and 3n+ 2 for n odd. When λ = 0
or λ = 1, i.e., for the Chebyshev weight of the first or second kind, the degree of exactness
grows like 4n (cf. Section 2.1.3 below).

2.1.2. Jacobi weight function. With regard to the Jacobi weight function
w(α,β)(t) = (1− t)α(1 + t)β on [−1, 1], α > −1, β > −1, the first results concern the
special cases w(α,1/2) and w(−1/2,β) (the Chebyshev weights are discussed separately in
Section 2.1.3 below). For the former, the associated orthogonal polynomials are given in terms
of the respective polynomials for the weight w(α,α) (cf. [215, Theorem 4.1]). Then, setting
π
∗(α,β)
n+1 (·) = π∗n+1(·;w(α,β)), Monegato notes that

π
∗(α,1/2)
n+1 (2t2 − 1) = 2n+1π

∗(α,α)
2n+2 (t), n ≥ 1

(cf. [150, Equation (32)]). Hence, the Gauss-Kronrod formula for the weight function w(α,1/2)

can be expressed in terms of the corresponding formula for the weight w(α,α) (cf. [90, Sec-
tion 5.1]), which is of Gegenbauer type with λ = α + 1/2, and therefore one can apply
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the results of Section 2.1.1; in particular, in view of the conclusions in [177], the Gauss-
Kronrod formula cannot exist for α > 5/2, β = 1/2, and n sufficiently large. On the other
hand, for the weight function w(−1/2,β), Rabinowitz has shown that property (b) is false
for −1/2 < β < 1/2 when n is even and for 1/2 < β ≤ 3/2 when n is odd (cf. [188,
pp. 74–75]2). By symmetry (cf. [90, Equations (4.1) and (4.2)]), one can derive for the weight
functions w(1/2,β) and w(α,−1/2) results analogous to those obtained for the weights w(α,1/2)

and w(−1/2,β).
Gautschi and Notaris in [90] also considered the case of the Jacobi weight function. Using

the same methods as for the Gegenbauer weight, they delineated, for a given n, areas in the
(α, β)-plane such that each of the properties (a), (b), and (c) (and also (d) when n = 1) holds.
Their findings, explicitly for n = 1 and numerically for n = 2(1)10, are given in [90, p. 239
and Figure 4.1].

Also, a nonexistence result was obtained by Notaris (cf. [157, Section 3]). Starting from a
well-known limit formula that connects the Jacobi and the Laguerre orthogonal polynomials
(cf. [157, Equation (3.3)]), he derived an analogous formula for the corresponding Stieltjes
polynomials,

(2.6) lim
β→∞

(β/2)n+1π
∗(α,β)
n+1 (1− 2β−1t) = (−1)n+1π

∗(α)
n+1 (t), n ≥ 1,

where w(α)(t) = tαe−t on (0,∞), α > −1, is the Laguerre weight function and
π
∗(α)
n+1 (·) = π∗n+1(·;w(α)). Then, combining (2.6) with a nonexistence result of Kahaner

and Monegato for the Laguerre weight function (cf. [112, Theorem]), he proved that the
Gauss-Kronrod formula for the weight function w(α,β), α fixed, −1 < α ≤ 1, and n ≥ 23
(n > 1 when α = 0), having properties (c) and (d), does not exist if β > βα,n, where βα,n is
a constant.

All the previous results led Peherstorfer and Petras to examine the Gauss-Kronrod formula
for the Jacobi weight function more closely (cf. [178]). First of all, for 0 ≤ α, β < 5/2,
they showed that on compact subintervals of (−1, 1) the associated Stieltjes polynomials
and their derivatives are asymptotically equal to certain Jacobi polynomials. That way they
obtained asymptotic representations for the weights of the respective Gauss-Kronrod formulae
corresponding to nodes in compact subintervals of (−1, 1), and they proved that these weights
are positive for n sufficiently large. Finally, they concluded that property (d) cannot be true,
i.e., the Gauss-Kronrod formula does not exist, when min(α, β) ≥ 0 and max(α, β) > 5/2
and n is sufficiently large, which is a more precise version of what had been proved earlier by
Notaris in [157].

In 1961, Davis and Rabinowitz (cf. [41]) formulated the so-called “circle theorem” for the
Gauss and the Gauss-Lobatto quadrature formulae with respect to the Jacobi weight function.
They showed that the Gaussian weights, suitably normalized and plotted against the Gaussian
nodes, lie asymptotically for large orders on the upper half of the unit circle centered at the
origin. For a much more restricted class of Jacobi weights, Gautschi proved the circle theorem
for the Gauss-Kronrod formula (cf. [87]).

2.1.3. Chebyshev weight functions. A particular mention should be made about the four
Chebyshev weights, which are special cases of the Jacobi weight function with
|α| = |β| = 1/2, as for each one of them the corresponding Gauss-Kronrod formula has a
special form with explicitly known nodes and weights. More specifically, for α = β = −1/2,
i.e., the Chebyshev weight of the first kind, the Gauss-Kronrod formula is the 3-point Gauss

2The superscript µ+ 1/2 twice in Equation (68) and twice on line 11 should read µ− 1/2 (cf. [188, second
erratum]).



ETNA
Kent State University

http://etna.math.kent.edu

GAUSS-KRONROD QUADRATURE FORMULAE—A SURVEY 377

formula when n = 1 and the (2n+ 1)-point Gauss-Lobatto formula when n ≥ 2 for the same
weight; in the latter case, τ∗1 = 1 and τ∗n+1 = −1. For α = β = 1/2, i.e., the Chebyshev
weight of the second kind, the Gauss-Kronrod formula is the (2n+ 1)-point Gauss formula
for that weight. Finally, for α = ∓1/2, β = ±1/2, i.e., the Chebyshev weight of the third
or fourth kind, the Gauss-Kronrod formula is the (2n + 1)-point Gauss-Radau formula for
the same weight, with additional node at 1 or −1, respectively. As a result, these formulae
have elevated degree of exactness, in particular, 5 for n = 1 and 4n − 1 for n ≥ 2 when
α = β = −1/2, 4n+ 1 when α = β = 1/2, and 4n when α = ∓1/2, β = ±1/2 (cf. [153],
[144, Section 4], and [150, pp. 152–153]). Moreover, Monegato noted (cf. [144, Section 4])
that in the cases α = β = ±1/2 the idea of Kronrod can be iterated, producing a sequence of
quadrature formulae with explicitly known nodes and weights.

2.1.4. Hermite and Laguerre weight functions. Very little has been proved for the
Gauss-Kronrod formula relative to each of these two weights, probably because an early
numerical investigation for up to n = 20 led to negative results; in particular, property (d) is
true for the Hermite weight function wH only for n = 1, 2, 4 and for the Laguerre weight w(0)

only for n = 1 (although one of the nodes is negative) (cf. [195] and [144, Section 3]).
Nonetheless, Kahaner and Monegato obtained some nonexistence results (cf. [112, Theo-

rem and Corollary]). They proved that the Gauss-Kronrod formula for the weight function
w(α), −1 < α ≤ 1, having properties (c) and (d), does not exist if n ≥ 23 (n > 1 when
α = 0). Subsequently, they concluded that the corresponding formula for the Hermite weight
function wH , having properties (c) and (d), does not exist if n 6= 1, 2, 4.3 The nonexistence
result for the Laguerre weight remains true for n sufficiently large even if the degree of
exactness is lowered to [2rn+ l], where r > 1 and l is an integer (cf. [147, Theorem 2]).

2.2. Nonclassical weight functions. During the past 25 years, quite a bit of progress has
been made regarding the Stieltjes polynomials and the corresponding Gauss-Kronrod formulae
for a variety of nonclassical weights.

2.2.1. Bernstein-Szegö weight functions. These weight functions have been studied by
several authors. They are defined by

(2.7)
w(±1/2)(t) =

(1− t2)±1/2

ρ(t)
, − 1 < t < 1,

w(±1/2,∓1/2)(t) =
(1− t)±1/2(1 + t)∓1/2

ρ(t)
, − 1 < t < 1,

where ρ is an arbitrary polynomial that remains positive on [−1, 1]. The associated orthogonal
and Stieltjes polynomials are linear combinations of Chebyshev polynomials of the four
kinds, and this allows examining the validity of properties (a), (b), and (c). Furthermore, the
corresponding Gauss-Kronrod formulae have elevated degree of exactness.

Already in 1930, the weight w(1/2), with ρ(t) = 1− 4γ
(1+γ)2 t

2, −1 < γ ≤ 1, on [−1, 1],
appeared in work of Geronimus (cf. [99] and [150, Section I.2]). For this weight, property (b)
has been proved by Monegato (cf. [150, p. 146]) and properties (a) and (c), with quadrature
weights representable by semiexplicit formulae, by Gautschi and Rivlin (cf. [95]), for all
n ≥ 1. (Property (b), for n = 1, is not shown in [150, p. 146], but it can easily be verified.)
Furthermore, the degree of exactness of the quadrature formulae in question has been precisely
determined and found to grow like 4n rather than the usual 3n+ 1 (cf. [150, p. 146]).

3The nonexistence result is stated in [112, Corollary] as following: “Extended Gauss-Hermite rules with positive
weights (and real nodes) only exist for n = 1, 2, 4”. This is not quite accurate, as for n = 4 two of the σν ’s in (2.2)
relative to wH are negative.
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Monegato and Palamara Orsi, motivated by the work of Geronimus, have computed
explicitly the orthogonal and Stieltjes polynomials for the weight w(1/2) when ρ is an arbitrary
quadratic polynomial (cf. [152]). All four weights w(±1/2), w(±1/2,∓1/2), with ρ being an
arbitrary quadratic polynomial, have been considered by Gautschi and Notaris (cf. [92]). They
have computed explicitly the orthogonal and Stieltjes polynomials and have established proper-
ties (a), (b) (on the closed interval [−1, 1]), and (c), with quadrature weights representable by
semiexplicit formulae, for almost all n, with the exceptions in the case n ≤ 3 being carefully
identified. Furthermore, the degree of exactness of the quadrature formulae in question has
been precisely determined and found to grow like 4n rather than the usual 3n+ 1. At the end
of [92], the results are specialized to weight functions (2.7) in which the divisor polynomial is
linear rather than quadratic.

The general case of the weights w(±1/2), w(±1/2,∓1/2), with ρ an arbitrary polynomial
of degree l, has been treated by Notaris (cf. [156]). He computed explicitly the respective
orthogonal and Stieltjes polynomials and showed that properties (a), (b) (on the closed interval
[−1, 1]), and (c) hold for all n ≥ l + 2 if w = w(−1/2), for all n ≥ l if w = w(1/2), and
for all n ≥ l + 1 if w = w(±1/2,∓1/2); while, the corresponding degrees of exactness are
4n− l − 1, 4n− l + 1, and 4n− l. On the other hand, Peherstorfer, as part of a more general
result, proved that Kronrod’s idea can be iterated for the weight w(1/2) (cf. [173]). If N∗ ∈ N
satisfies 2N

∗−1(n + 1) ≥ 2N
∗
l + 1 − l, then he showed that the Gauss formula (2.1) with

w = w(1/2) admits N∗ Kronrod extensions, all having properties (b) and (c). Furthermore, the
Kronrod nodes of the N th extension interlace with those of the (N − 1)st Kronrod extension,
which in a way implies property (a), and the N th Kronrod extension has degree of exactness
2N [2(n+ 1)− l] + l − 3, N = 1, 2, . . . , N∗.4

2.2.2. Various weight functions. In [174], Peherstorfer extended his work in [173], by
considering weight functions of the form w(t) = (1− t2)1/2|D(eiθ)|2, t = cos θ, θ ∈ [0, π],
where D(z) is analytic, D(z) 6= 0 for |z| ≤ 1, and D takes on real values for real z. By
analyzing the asymptotic behavior of the associated functions of the second kind, and using
their connection with Stieltjes polynomials, he showed that the corresponding Gauss-Kronrod
formula has properties (a), (b), and (c) for n ≥ n0, n0 sufficiently large. Clearly, the
weight function in consideration includes as a special case the Bernstein-Szegö weight w(1/2),
examined by the author in [173], except that the constant n0 = l obtained in [173] cannot be
derived by the general approach of [174].

Moreover, in [175], Peherstorfer went a step further by considering orthogonal polynomi-
als on the unit circle and studying the asymptotic behavior of the associated functions of the sec-
ond kind, paying particular attention to the interval [−1, 1]. Subsequently, using the connection
between functions of the second kind and Stieltjes polynomials, he showed that if a weight func-
tion w on [−1, 1] satisfies

√
1− t2w(t) > 0 for −1 ≤ t ≤ 1 and

√
1− t2w(t) ∈ C2[−1, 1],

then the Stieltjes polynomial π∗n+1(·;w∗), where w∗(t) = (1 − t2)w(t), is asymptotically
equal to πn+1(·;w).5 In addition, he proved that the Gauss-Kronrod formula for the weight
function w∗ has properties (a), (b), and (c) for n sufficiently large.6 Moreover, several interlac-
ing properties were established for sufficiently large n, among which the interlacing property
for the zeros of two consecutive Stieltjes polynomials.

For the weight function γw(α)(t) = |t|γ(1 − t2)α on (−1, 1), α > −1, γ > −1,
Gautschi and Notaris have shown in [90, Subsection 5.2] that the corresponding Gauss-
Kronrod formula with n odd can be expressed in terms of the respective formula for the Jacobi

4In [173, Theorem (c)], the 4 in the subscript of the displayed inclusion relation should be replaced by 3.
5Theorem 4.1(b) in [175] is incorrect, and it has to be replaced by Corollary 12 in [176] (cf. [176, Remark 13]).
6In [175, Theorem 4.2(a)], the subscript µ extends up to n+ 1.
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weight w(α,(1+γ)/2). Hence, whatever results are known for the latter can be applied to arrive
at conclusions for the former.

Finally, numerical experiments of Caliò, Gautschi, and Marchetti in [22, Examples 5.2
and 5.3] indicate that the Gauss-Kronrod formulae for the weight functions w(t) = tα ln (1/t)
on [0, 1], α = 0,±1/2, have properties (a), (b), and (c) for all n ≥ 1, except for the weight
with α = −1/2 and n odd, for which property (b) (but not also (d)) appears to be false (π∗n+1

has exactly one negative zero). However, nothing has been proved yet.

2.3. Miscellaneous measures. We now consider the Gauss-Kronrod formula relative to
a (nonnegative) measure dσ on the interval [a, b],∫ b

a

f(t)dσ(t) =

n∑
ν=1

σνf(τν) +

n+1∑
µ=1

σ∗µf(τ∗µ) +RKn (f),

defined the same way as formula (2.2).

2.3.1. Measures with constant recurrence coefficients. Consider a (nonnegative) mea-
sure dσ with support on the interval [a, b], such that the respective (monic) orthogonal polyno-
mials πn(·) = πn(·; dσ) satisfy a three-term recurrence relation

(2.8)
πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

αn = α, βn = β for all n ≥ l,

where αn ∈ R, βn > 0, l ∈ N, and π0(t) = 1, π−1(t) = 0. Thus, the coefficients αn and
βn are constant equal, respectively, to some α ∈ R and β > 0 for all n ≥ l. Among the
many orthogonal polynomials satisfying a recurrence relation of this kind we mention the
four Chebyshev-type polynomials and their modifications discussed in Allaway’s thesis (cf. [1,
Chapter 4]) as well as the Bernstein-Szegö polynomials.

For measures satisfying (2.8), Gautschi and Notaris obtained in [94] for the respective
Stieltjes polynomials π∗n+1(·) = π∗n+1(·; dσ) the following simple and useful representation

(2.9) π∗n+1(t) = πn+1(t)− βπn−1(t) for all n ≥ 2l − 1.

A key point in the proof of (2.9) is the expansion of tkπn(t) for k = 0, 1, . . . , n in terms of
the πm’s and the study of the relations between the expansion coefficients. Subsequently, (2.9)
was used to show that the corresponding Gauss-Kronrod formula has properties (a), (b) (on
the closed interval [a, b] under an additional assumption on dσ), and (c) for all n ≥ 2l − 1,
while its degree of exactness is at least 4n− 2l + 2 if n ≥ 2l − 1. Moreover, it is proved that
the interpolatory quadrature formula based on the zeros of π∗n+1 only has positive weights and
degree of exactness 2n− 1 for all n ≥ 2l− 1, verifying that way a conjecture posed earlier by
Monegato for the Legendre weight function (cf. [150, Section II.1]).

2.3.2. Measures induced by a given orthogonal polynomial. Stieltjes polynomials
and Gauss-Kronrod formulae for a different kind of measures were investigated by No-
taris (cf. [161]). Given a positive measure dσ on the interval [a, b], a fixed n ≥ 1, and
πn(·) = πn(·; dσ), one can define the nonnegative measure dσ̂n(t) = π2

n(t)dσ(t) on [a, b].
The coefficients in the three-term recurrence relation of the respective (monic) orthogonal
polynomials π̂m,n(·) = πm(·; dσ̂n), m = 0, 1, 2, . . ., when dσ is a Chebyshev measure
of any one of the four kinds, have been obtained analytically in closed form by Gautschi
and Li (cf. [89]). In [161], Notaris gave explicit formulae for the Stieltjes polynomials
π̂∗n+1,n(·) = π∗n+1(·; dσ̂n) when dσ is any one of the four Chebyshev measures. In addition,
he showed that the corresponding Gauss-Kronrod formulae for each of these dσ̂n, based on
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the zeros of π̂n,n and π̂∗n+1,n, have properties (a), (b), and (c), with two noted exceptions:
When dσ is the Chebyshev measure of the first kind, then τ∗1,n = 1 and τ∗n+1,n = −1; and
when dσ is the Chebyshev measure of the third or fourth kind and n is even, then τ∗1,n > 1
and τ∗n+1,n < −1, respectively, although τ∗1,n and τ∗n+1,n approach 1 and −1 as n increases.
Furthermore, the precise degree of exactness of the quadrature formulae in question has been
determined, and, when dσ is the Chebyshev measure of the first kind, it was found to grow
like 4n rather than the usual 3n+ 1.

2.4. Gauss-Kronrod formulae of Chebyshev type. An n-point quadrature formula
relative to the positive measure dσ on the interval (a, b) with equal weights is called a
Chebyshev quadrature formula if all its nodes are real and the formula has degree of exactness
(at least) n. It is well known that the only Gauss formula that is also a Chebyshev formula is
the one relative to the Chebyshev measure of the first kind dσ(t) = (1− t2)−1/2dt on (−1, 1)
(see, e.g., [80, Section 4]). Notaris (cf. [158]), using the method of Geronimus (cf. [100]),
proved that there is no positive measure dσ on the interval (a, b) such that the corresponding
Gauss-Kronrod formula is also a Chebyshev formula. The same is true for measures of the
form dσ(t) = ω(t)dt, where ω is even with symmetric support, and the Gauss-Kronrod
formula is required to have equal weights only for n even. Furthermore, it was shown that the
only positive and even measure dσ on (−1, 1), for which the Gauss-Kronrod formula has all
weights equal if n = 1 and is almost of Chebyshev type∫ 1

−1
f(t)dσ(t) = w

n∑
ν=1

f(τν)+w1f(1)+w

n∑
µ=2

f(τ∗µ)+w1f(−1)+RKn (f) for all n ≥ 2,

is the Chebyshev measure of the first kind.
An extension of the results in [158] was given by Förster in [78, Corollary 2].

3. Error term. The Gauss-Kronrod formula (2.2) can be obtained by a Markov type
argument (cf. [135]): Interpolate the function f at the Gauss nodes τν and the double Stieltjes
nodes τ∗µ , integrate the derived Hermite interpolation polynomial p3n+1(·; f ; τν , τ

∗
µ , τ
∗
µ) of

degree at most 3n+ 1, and then require that in the resulting quadrature formula the weights
corresponding to the values f ′(τ∗µ) are all 0. This requirement will yield formula (2.2), under
the assumption that the Stieltjes polynomial π∗n+1 satisfies the orthogonality condition (2.3).

Integrating the interpolation error, we get, as a by-product, an expression for the error
term of formula (2.2),

(3.1) RKn (f) =
1

(3n+ 2)!

∫ b

a

πn(t)[π∗n+1(t)]2f (3n+2)(ξ(t))w(t)dt, a < ξ(t) < b,

assuming that f ∈ C3n+2[a, b]. Obviously, if formula (2.2) has degree of exactness higher
than 3n+ 1, then (3.1) has to be modified accordingly.

The convergence theory for Gauss-Kronrod formulae is particularly simple if the interval
of integration [a, b] is finite. By the well-known result of Pólya (cf. [185]) and Steklov
(cf. [212]), formula (2.2) converges,

lim
n→∞

RKn (f) = 0, f ∈ C[a, b],

i.e., the quadrature sum on the right-hand side of (2.2) converges to the integral on the left as
n→∞, precisely if

n∑
ν=1

|σν |+
n+1∑
µ=1

|σ∗µ| ≤ K for all n = 1, 2, . . . ,
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where K > 0 is a constant not depending on n (cf. [215, Theorem 15.2.1]). In fact, by the
result of Steklov (cf. [212]) and Fejér (cf. [76]), the convergence is immediate for those weight
functions w for which the σν and the σ∗µ are all positive, as in this case

n∑
ν=1

|σν |+
n+1∑
µ=1

|σ∗µ| =
n∑
ν=1

σν +

n+1∑
µ=1

σ∗µ =

∫ b

a

w(t)dt

(cf. [215, Theorem 15.2.2]). The sum of the absolute values of the quadrature weights is
known as the absolute condition number of a quadrature formula. The connection between the
convergence of a quadrature formula and its absolute condition number is reviewed for several
interpolatory formulae, among which the Gauss-Kronrod formula, by Cuomo and Galletti
(cf. [34]).

3.1. Early results. The first error estimate for the Gauss-Kronrod formula relative to
the Gegenbauer weight function wλ, 0 < λ < 1, was given by Monegato in [146, Section 3].
Applying (3.1), using a bound for |π∗(λ)n+1(t)|, which follows directly from Szegö’s work
in [214], and bounds for |π(λ)

n (t)| (cf. [215, Equations (4.7.9) and (7.33.1)]), and taking into
account that the formula has degree of exactness d = 3n+ 1 + k where k = 0 for n even and
k = 1 for n odd, he obtained

(3.2) |RKn (f)| ≤ c(λ)3n+2+k(RKn ) max
−1≤t≤1

|f (3n+2+k)(t)|,

with

c
(λ)
3n+2+k(RKn ) ≤ C(λ) 2−3nnλ

(3n+ 2 + k)!
,

where C(λ) is an explicit constant independent of n.
This bound, using again Szegö’s results in [214], was slightly improved and extended to

the case 1 < λ < 2 by Rabinowitz in [187, Section 4].
Furthermore, Rabinowitz showed in [190] that the Gauss-Kronrod formula for the Gegen-

bauer weight function wλ, 0 < λ < 1, and n ≥ 2, is nondefinite, i.e., its error term cannot be
written in the form

RKn (f) = c̄
(λ)
3n+2+k(RKn )f (3n+2+k)(ξ3n+2+k), −1 < ξ3n+2+k < 1

(cf. (3.4) below).

3.2. Peano kernel error bounds. If the error functional Rn of a quadrature formula
over the interval [a, b] satisfies Rn(p) = 0 for all p ∈ Ps−1 and f has a piecewise continuous
derivative of order s on [a, b] (or, less restrictively, f (s−1) is absolutely continuous on [a, b]),
then

(3.3) Rn(f) =

∫ b

a

Ks(t)f
(s)(t)dt,

where

Ks(t) = Rn

[
(· − t)s−1+

(s− 1)!

]
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is the s-th Peano kernel of Rn, with the plus sign on the right-hand side indicating that the
function on which it acts is to be equal to zero if the argument is negative. If Ks does not
change sign on [a, b], then

(3.4) Rn(f) = c̄s(Rn)f (s)(ξs), c̄s(Rn) =

∫ b

a

Ks(t)dt = Rn

(
ts

s!

)
, a < ξs < b,

in which case the quadrature formula is called definite, in particular, positive definite ifKs ≥ 0
and negative definite if Ks ≤ 0.

Obviously, a quadrature formula having precise degree of exactness d generates exactly
d+ 1 Peano kernels K1,K2, . . . ,Kd+1. Then, from (3.3), we derive

(3.5) |Rn(f)| ≤ cs(Rn) max
a≤t≤b

|f (s)(t)|,

where

(3.6) cs(Rn) =

∫ b

a

|Ks(t)|dt, s = 1, 2, . . . , d+ 1,

are the so-called Peano constants ofRn (cf. [81, Section 4.2]). Clearly, Monegato’s bound (3.2)
is of the type (3.5).

For the Gauss-Kronrod formula relative to the Legendre weight function (which is a
special case of the Gegenbauer weight with λ = 1/2), Brass and Förster (cf. [15, Section 5]),
using expansions of Chebyshev polynomials of the first kind, obtained an estimate of the
form (3.5) with

c
(1/2)
3n+2+k(RKn ) ≤ C̄(1/2) 2−3n

(3n+ 2 + k)!
,

where C̄(1/2) is an explicit constant independent of n, thus improving Monegato’s bound by a
factor of O(n−1/2).

A further improvement in the case of the Gauss-Kronrod formula for the Legendre weight
was made by Ehrich in [51], who, using results of Szegö in [214] and Rabinowitz in [187],
obtained both upper and lower bounds for c(1/2)3n+2+k(RKn ), n ≥ 4,

C
(1/2)
1

2−3nn−11/2

(3n+ 2 + k)!
≤ c(1/2)3n+2+k(RKn ) ≤ C(1/2)

2

2−3nn−1/2

(3n+ 2 + k)!
,

where C(1/2)
1 and C(1/2)

2 are explicit constants independent of n. The latter estimate raises
the question of the precise order of c(1/2)3n+2+k(RKn ). This was answered by Ehrich in [57], who
computed the error of the quadrature formula in question at the Chebyshev polynomials of the
first kind and then used it to show that

c
(1/2)
3n+2+k(RKn ) ∼ 2−3nn−5/2

(3n+ 2 + k)!
,

where an ∼ bn if limn→∞(|an|/|bn|) = C, C > 0 a constant.
Ehrich extended his investigations to the Gauss-Kronrod formula for the Gegenbauer

weight function wλ, 0 < λ < 1 (cf. [51, Section 3] and [49, Section 3]). Using results from
[15, 187, 214], he obtained

C
(λ)
1

2−3nn−(3+λ+1/λ)

(3n+ 2 + k)!
≤ c(λ)3n+2+k(RKn ) ≤ C(λ)

2

2−3nn−λ

(3n+ 2 + k)!
,
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where the lower bound holds for n ≥ 5 and C(λ)
1 and C(λ)

2 are explicit constants independent
of n.

Error constants (3.6) of lower order are studied in [49, Section 2]. In the case of the
Gauss-Kronrod formula for the Legendre weight, Ehrich derived upper and lower bounds for
c
(1/2)
3n+2+k−s(R

K
n ), where s = s(n) < 3n+ 2 +k is chosen such that limn→∞

3n+2+k−s
n = A,

A > 0; for constant s, see [49, Section 2] and [57, Theorem 2]. His investigations were
extended to the Gauss-Kronrod formula for the Gegenbauer weight in [51, Section 3].

Finally, a Peano stopping functional for the Gauss-Kronrod formula relative to the Legen-
dre weight function is given by Ehrich (cf. [58]). For definitions and descriptions of Peano
stopping functionals and stopping functionals in general, including those for Gauss-Kronrod
formulae and Patterson extensions, see [77] and [61], respectively.

3.3. Error bounds for analytic functions. There are two approaches for estimating the
error term RKn (f) in (2.2) when f is a holomorphic function, either by contour integration
techniques or by Hilbert space methods, although the results are often comparable or even
identical.

3.3.1. Bounds based on contour integration. Let f be an analytic function in a simply
connected region containing a closed contour C in its interior which surrounds the interval
[−1, 1]. For the error term of the Gauss-Kronrod formula for the Legendre weight function,
Ehrich in [52], using the results in [51], obtained
(3.7)

|RKn (f)| ≤
{

17

10
√

3n− 3(2 + k)
+

4
√

2√
(6n+ 3 + k)(6n+ 5 + 2k)

}
L(C) maxz∈C |f(z)|
π23n+2+kδ3n+3+k

,

where δ > 0 is a lower bound for the distance of any point on C to any point in [−1, 1]. The
bound (3.7) takes on a special form when C is a circle or an ellipse centered at the origin.
In addition, the behavior of RKn for Chebyshev polynomials of the first or second kind is
analyzed.

Moreover, Bello Hernández, de la Calle Ysern, Guadalupe Hernández, and López Lago-
masino studied in [11], for general measures, among which the so-called regular, Blumenthal-
Nevai, and Szegö classes of measures, the asymptotic behavior of the Stieltjes polynomials
outside of the support of the measure. This allowed them to estimate the rate of convergence
of Gauss-Kronrod formulae based on interpolating rational functions with prescribed poles,
referred to as rational Gauss-Kronrod formulae, when f is an analytic function in a neighbor-
hood of the support of the measure. All this was further generalized in [10]; special cases of
the measures studied in [10] are those considered in [156, 173].

3.3.2. Bounds based on Hilbert space norms. The idea of using Hilbert space tech-
niques to estimate the error functional Rn(f) of a quadrature formula can be traced back to
Davis in 1953 (cf. [40]). The particular method presented here was introduced by Hämmerlin
(cf. [102]) to estimate the error of the Gauss formula for the Legendre weight function. If f is
a holomorphic function in the disk Cr = {z ∈ C : |z| < r}, r > 1, then it can be written in
the form f(z) =

∑∞
k=0 akz

k, z ∈ Cr. Define

|f |r = sup
{
|ak|rk : k ∈ N0 and RKn (tk) 6= 0

}
,

which is a seminorm in the space Xr = {f : f holomorphic in Cr and |f |r < ∞}. Then
the error term RKn (f) in (2.2) is a continuous, and therefore bounded, linear functional in
(Xr, | · |r), and its norm is given by

(3.8) ‖RKn ‖ =

∞∑
k=0

|RKn (tk)|
rk

·
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The norm leads to bounds for the error functional itself; if f ∈ XR, then

(3.9) |RKn (f)| ≤ inf
1<r≤R

(‖RKn ‖|f |r),

while another bound can be derived if |f |r is estimated by max|z|=r |f(z)| (cf. [163, Sec-
tion 2]).

For the error term of the Gauss-Kronrod formula for the Legendre weight function, Notaris
(cf. [159]), using (3.8) and following a process similar to that of Hämmerlin, obtained

|RKn (f)| ≤ (n!)2(3n+ 2 + k − in)!

2n−2(2n)!(3n+ 2 + k)!

× inf
1<r≤R

{[
r

(r − 1)3n+3+k−in
+ (−1)in

r

(r + 1)3n+3+k−in

]
|f |r

}
,

where in = in(n) is a constant that has been computed and tabulated for 2 ≤ n ≤ 30. (When
n = 1, the Gauss-Kronrod formula for the Legendre weight is the 3-point Gauss formula for
the same weight.) These bounds can be extended to n > 30, after the computation of the
constants in.

If, for ε ∈ {−1, 1}, εRKn (tk) ≥ 0 or ε(−1)kRKn (tk) ≥ 0 for all k ≥ 0, then ‖RKn ‖ can
be computed explicitly by means of specific formulae in terms of πn(·;w) and π∗n+1(·;w).
This was done in [162] by Notaris when w is one of the Bernstein-Szegö weight functions (2.7)
with ρ(t) = 1 − 4γ

(1+γ)2 t
2, −1 < γ ≤ 0, on [−1, 1]. If τ = r −

√
r2 − 1, then he obtained,

e.g., for the weight w(1/2),

‖RK(1/2)
n ‖ =

2π(1 + γ)2rτ4n+2(τ2 − γ)
√
r2 − 1

(1− γτ2)[1− τ4n+4 − 2γτ2(1− τ4n) + γ2τ4(1− τ4n−4)]
, n ≥ 2,

and similar results for the remaining Bernstein-Szegö weights. As ‖RKn ‖ is explicitly com-
puted, the bounds (3.9) are optimal and cannot be further improved. Moreover, it is shown that
the Gauss-Kronrod formulae for the aforementioned Bernstein-Szegö weights with 0 < γ < 1
are nondefinite for almost all n (cf. [162, Proposition 3.4]).

3.4. Error bounds for functions of low-order continuity and for nonsmooth func-
tions. For both classes of functions, the existing error bounds are either of Peano type or
derived by Peano’s Theorem.

3.4.1. Bounds for functions of low-order continuity. Let s ∈ N be fixed with increas-
ing n, and thus independent of it. For the Gauss-Kronrod formula relative to the Legendre
weight function, the precise asymptotic limit of the low-order Peano constants c(1/2)s (RKn )
in (3.5) was given by Ehrich in [56],

lim
n→∞

(2n+ 1)sc(1/2)s (RKn ) = πsB

(
1

2
s+ 1,

1

2

)∫ 1

0

|Bs(x)|dx,

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt = Γ(x)Γ(y)/Γ(x+ y) is the Beta function and Bs is

the sth Bernoulli polynomial.

3.4.2. Bounds for nonsmooth functions. If f is not necessarily differentiable but only
of bounded variation, then, instead of (3.5), one can study, for the error functional Rn(f) of a
quadrature formula over the interval [a, b], estimates of the form

(3.10) |Rn(f)| ≤ ρV (Rn)Var(f),
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where

ρV (Rn) = sup
a≤t≤b

|K1(t)|,

with K1 being the first Peano kernel of Rn and Var(f) is the total variation of f on [a, b].
For the Gauss-Kronrod formula (2.2) relative to the Legendre weight function, the precise
asymptotic limit of ρV (RKn ) in (3.10) was given by Ehrich in [53],

lim
n→∞

(2n+ 1)ρV (RKn ) =
π

2
.

3.5. Comparison of Gauss-Kronrod formulae with other quadrature formulae. Sev-
eral comparisons have been made, mainly, between the Gauss-Kronrod and the Gauss formulae
for the Legendre weight function, all based on Peano constants (cf. Section 3.2, in particular,
Equations (3.5)–(3.6)).

As mentioned in the introduction, |QGn − QKn | is used as an error estimator for QGn ,
and this goes under the assumption that QKn gives a better approximation than QGn . Brass
and Förster have shown in [15, Section 5] that this is true for functions that are arbitrarily
differentiable, in particular,

c
(1/2)
2n (RKn )

c
(1/2)
2n (RGn )

≤ C 4
√
n

(
16

25
√

5

)n
= C 4
√
n

(
1

3.493 . . .

)n
,

where C is a constant independent of n. However, the superiority of QKn over QGn depends on
the degree of smoothness of f ; for every fixed s ∈ N independent of n and f ∈ Cs[−1, 1],
Ehrich proved in [56, Corollary 1] that

lim
n→∞

c
(1/2)
s (RKn )

c
(1/2)
s (RGn )

= 2−s.

Now, although one would believe that the superiority of QKn over QGn would diminish for less
smooth functions, Ehrich has shown in [53, Corollary 1.8] that

lim
n→∞

ρV (RKn )

ρV (RGn )
=

1

2
,

i.e., QKn continues to be twice as good as QGn for functions of bounded variation.
On the other hand, as the Gauss-Kronrod formula is used in packages of automatic

integration (cf. [199, 154, 184, 220]), it is important to know if there are any (2n+ 1)-point
quadrature formulae better than the Gauss-Kronrod formula, and, in particular, how the
(2n+ 1)-point Gauss formula compares to the Gauss-Kronrod formula. Ehrich has shown in
[51, Corollary] that, for n ≥ 1, c(1/2)3n+2+k(RG2n+1) ≤ c(1/2)3n+2+k(RKn ), while, for n ≥ 15,

c
(1/2)
3n+2+k(RG2n+1)

c
(1/2)
3n+2+k(RKn )

≤ 3−n+1.

Asymptotically, we have

lim
n→∞

n

√√√√c
(1/2)
3n+2+k(RG2n+1)

c
(1/2)
3n+2+k(RKn )

=

√
66

77
=

1

4.2013 . . .
,
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i.e., the (2n+ 1)-point Gauss formula is substantially better than the Gauss-Kronrod formula.
Comparisons based on lower error constants are studied in [49, Section 2]. The advantage of
the (2n+ 1)-point Gauss formula essentially disappears for functions of low-order continuity
or of bounded variation; Ehrich proved that, for fixed s ∈ N independent of n,

lim
n→∞

c
(1/2)
s (RG2n+1)

c
(1/2)
s (RKn )

= 1, lim
n→∞

ρV (RG2n+1)

ρV (RKn )
= 1

(cf. [56, Corollary 2] and [60, Corollary 3.12]). Furthermore, it was also shown that among all
quadrature formulae using the nGaussian nodes (zeros of the nth degree Legendre polynomial)
and n+1 additional nodes which interlace with the Gaussian nodes, the Gauss-Kronrod formula
is asymptotically optimal in the class of functions of bounded variation (i.e., with respect
to ρV ) (cf. [53, Corollary 1.7] and [60, Theorem 3.8]).

Finally, if the nesting of nodes in the Gauss-Kronrod formula a la Patterson (cf. [166] and
Section 5) is of importance, as is the case in routines of automatic integration packages [154]
and [184], then the only other known quadrature formula enjoying this nesting property is the
(2n + 1)-point Clenshaw-Curtis formula (cf. [30]). Although the nodes and weights of the
latter are given explicitly, and therefore they can easily be computed, the Clenshaw-Curtis
formula error functional RCC2n+1 behaves significantly worse than that of the Gauss-Kronrod
formula for infinitely differentiable functions, in particular,

lim
n→∞

n

√√√√ c
(1/2)
2n+1(RKn )

c2n+1(RCC2n+1)
≤ 16

25
√

5

(cf. [60, pp. 69–70]; for a comparison of the error behavior and the performance between the
Gauss formula and the Clenshaw-Curtis formula, see [218, 216, 47]).

4. Computational methods. Since their presentation in 1964, several methods have
been developed for the computation of Gauss-Kronrod formulae.

4.1. Separate computation of nodes and weights. Naturally, the first one who com-
puted the Gauss-Kronrod formula (1.3) was Kronrod himself (cf. [120]). He first calculated
the polynomial π∗n+1 in power form by means of (1.4), i.e., by constructing and solving a
linear system. The zeros τ∗µ of π∗n+1 were found by a rootfinding procedure, while the weights
σν , σ∗µ were computed from a linear system expressing the exactness of formula (1.3) for the
first 2n+ 1 monomials. (Of course, symmetry was utilized throughout the whole process.)
Kronrod noticed that his method suffers from severe loss of accuracy, and he therefore had to
use extended precision up to 65 digits in order to produce results correct to 16 decimal digits
for n ≤ 40.

Patterson tried to alleviate the loss of accuracy by expanding π∗n+1 in terms of Legendre
polynomials (cf. [166]), and that way he obtained a stable algorithm. The stability was further
enhanced, and the method became even simpler, by expansion of π∗n+1 in terms of Chebyshev
polynomials. This was demonstrated by Piessens and Branders (cf. [183]), although the idea
existed in the work of Szegö (cf. [214], of which Piessens and Branders were apparently
unaware), as it was pointed out by Monegato (cf. [146]). Szegö’s algorithm is somewhat
simpler, and it can even be applied to the case of the Gauss-Kronrod formula (2.2) for the
Gegenbauer weight function.

It should be noted that the computation of the polynomial π∗n+1(·;w) by expansion in
terms of the orthogonal polynomials πm(·;w), m = 0, 1, . . . , n + 1, can be applied to any
weight function w. One has to use (2.3) and replace tk by πk(t), whence, by orthogonality,
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one obtains a lower triangular system of equations with a unique solution. The coefficients
of the system can be computed effectively by Gauss-Christoffel quadrature relative to the
weight function w, using [(3n+ 3)/2] points (cf. [22, Section 4]); for another method, see [24]
and [27].

An alternative iterative method was presented by Monegato in [151, pp. 178–179]. By
first using the Clenshaw summation algorithm, one can compute efficiently the values of
π∗n+1(t), π∗′n+1(t), and π∗′′n+1(t), which are then used in a third-order iterative method, such as
the Laguerre algorithm, in order to compute the zeros of π∗n+1. The weights in Monegato’s
method, as well as in those of Patterson and of Piessens and Branders, can always be computed
by means of formulae (2.4). The method has complexity O(n2), and it can be generalized to
the case of the Gauss-Kronrod formula (2.2) for the Gegenbauer weight function.

Also, a fixed point iterative method was given by Ehrich (cf. [50]). The method emanates
from (1.4) with k = n, by setting π∗n+1(t)/(t − τ∗µ) in place of tn and then solving for τ∗µ .
The procedure is locally convergent of order two, and the involved arithmetical operations
depend quadratically on the number of nodes. Furthermore, a posteriori error estimates are
provided. As before, the weights can be computed by means of formulae (2.4). Ehrich
compares his method with the hitherto known methods, and he shows that the method can be
used to construct the Patterson sequence of quadrature formulae (cf. Section 5 below).

A quite different but rather natural approach is the one that generalizes the well-known
Golub and Welsch algorithm (cf. [101]). It is known that the computation of the Gauss-
Christoffel quadrature formula can be reduced to the solution of an eigenvalue problem for an
n× n symmetric tridiagonal matrix known as the Jacobi matrix. The first attempt to extend
the Golub and Welsch algorithm to quadratures with fixed nodes, which contain among others
the Gauss-Kronrod formula, was made by Kautsky and Elhay (cf. [117] and [67]). Their idea
was to extend the concept of Jacobi matrices to weight functions that change sign within the
interval of orthogonality, in which case only a few orthogonal polynomials may exist. That
way, Kautsky and Elhay compute the nodes while for the weights they use their own methods
and software for generating interpolatory quadrature formulae (cf. [116] and [68]).

4.2. Simultaneous computation of nodes and weights. In all methods of Section 4.1,
the Gauss-Kronrod formula was computed piecemeal: First the underlying Stieltjes polynomial,
then the nodes, and finally the weights. A more preferred method would be to compute nodes
and weights simultaneously, by first constructing a nonlinear system expressing the exactness
of formula (2.2) for some set of basis functions in P3n+1, and then solving the system by
Newton’s method. This idea was first investigated by Caliò, Gautschi, and Marchetti (cf. [22]),
who also analyzed the condition of the underlying problem, i.e., the stability of the method.
Although the latter performs quite well for the Gauss-Kronrod formula relative to the Legendre
and logarithmic weight functions, it appears that it runs into severe ill-conditioning when it is
applied to the case of repeated Kronrod extension (cf. [91]).

Another method for computing simultaneously the nodes and weights of the Gauss-
Kronrod formula was obtained by a generalization of the Golub and Welsch algorithm. Al-
though, as mentioned in Section 4.1, this was first initiated by Kautsky and Elhay, a true
advancement in this direction was made by Laurie (cf. [127] and also [83, 151]). He showed
that if the Gauss-Kronrod formula exists with real distinct nodes and positive weights, then
we can associate with it a (2n + 1) × (2n + 1) symmetric tridiagonal matrix, analogous
to the Jacobi matrix, thus appropriately called Jacobi-Kronrod matrix. Laurie proved that
the leading and trailing n× n principal submatrices of the Jacobi-Kronrod matrix have the
same eigenvalues. That way, the computation of the nodes and weights of the Gauss-Kronrod
formula is reduced to an inverse eigenvalue problem, which is efficiently solved through a
five-term recurrence relation of certain mixed moments.
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An improvement of Laurie’s algorithm was given by Calvetti, Golub, Gragg, and Reichel
(cf. [29]; see also [129]). Their algorithm avoided to compute explicitly the Jacobi-Kronrod
matrix, whose entries might be sensitive to round-off errors. This algorithm as well as that of
Laurie can be implemented in O(n2) arithmetic operations, while it can efficiently be applied
on parallel computers.

Furthermore, Laurie’s algorithm was modified by Ammar, Calvetti, and Reichel (cf. [2])
in order to cover cases of Gauss-Kronrod formulae with complex conjugate nodes and weights
or with real nodes and positive and negative weights. This modified algorithm has two versions
requiring either O(n2) or O(n3) arithmetic operations. The faster version computes the nodes
and weights with sufficient accuracy for most problems; the slower version, on the other hand,
is used to provide higher accuracy in certain difficult problems.

4.3. Numerical tables and computer programs. There are a number of places where
the nodes and weights of Gauss-Kronrod formulae are tabulated; detailed information are
given in [82, Sections 4.2 and 4.3]. For the Legendre weight function, nodes and weights can
be found in Kronrod’s original paper (cf. [120]), and also in the work of Patterson (cf. [166],
on microfiche) and of Piessens (cf. [182]). The most accurate results of all though are tabulated
in [184].

For logarithmic type weight functions w(t) = ta ln (1/t) on [0, 1], a = 0,±1/2, nodes
and weights for the respective Gauss-Kronrod formulae are given by Caliò, Gautschi, and
Marchetti (cf. [22], in the supplement section of the issue) and also Caliò and Marchetti
(cf. [24]).

Computer programs in Fortran for generating the Gauss-Kronrod formula for the Legendre
weight function are given by Squire (cf. [211, p. 279]) and by Piessens and Branders (cf. [183],
in the appendix and the supplement section of the issue). For the Gegenbauer weight function
wλ, 0 ≤ λ ≤ 2, λ 6= 1, Dagnino and Fiorentino implemented the algorithm of Szegö as
described by Monegato in [146] (see [39], although the Fortran code is given in [38]). For
general weight functions, a Fortran program is given by Caliò and Marchetti (see [24], although
again the Fortran code is given in [23]).

Furthermore, routines implementing Laurie’s algorithm, described in the previous sub-
section, have been included in the MATLAB suite OPQ, which is a companion piece of [85].
Also, Gauss-Kronrod routines have been included in modern numerical software libraries such
as IMSL (cf. [199]), NAG (cf. [154]), QUADPACK (cf. [184]), and Mathematica (cf. [220]).

5. Applications. There are several places where Kronrod’s idea or the Gauss-Kronrod
formulae have been applied. Typing “Gauss-Kronrod” on Google Scholar produces about
2,120 results, and going through them shows that Gauss-Kronrod formulae are widely used in
all those scientific areas where the computation of integrals is required.

Kronrod’s motivation originated from the need to estimate accurately the error of the Gauss
formula, using the Gauss-Kronrod formula as a substitute for the exact value of the integral.
This was utilized in the development of automatic integration schemes (cf. [33, 168, 182, 184];
see also [13], while an interesting interpretation of Kronrod’s idea is actually given by Laurie
in [124]). Also, Kronrod’s idea has been used in adaptive integration schemes (see, e.g., [79]
or [107]).

Kronrod’s idea has been applied repeatedly by Patterson (cf. [166, 168]; it has already been
mentioned in Sections 2.1.3 and 2.2.1 that Kronrod’s idea can be iterated for the Chebyshev
weight of the first and second kind and for the Bernstein-Szegö weight w(1/2)). Starting from
the 3-point Gauss formula for the Legendre weight function and constructing the 7-point Gauss-
Kronrod formula, he added 8 new points deriving a 15-point formula, then 16 more points
for a 31-point formula, and he continued that way up to a 255-point formula. Interestingly
enough, it was found numerically that in each quadrature formula in this sequence, the new
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nodes interlace with the old ones, all nodes are contained in (−1, 1), and all weights are
positive (these properties correspond to properties (a), (b), and (c) of Section 2). However,
none of this has been proved theoretically; in fact, numerical results indicate that the Kronrod-
Patterson sequence of quadrature formulae cannot exist, with real nodes and positive weights,
for whatever initial n-point Gauss formula one starts with (cf. [151, p. 187]). Nonetheless, an
algorithm for generating these formulae has been presented by Patterson (cf. [169, 170]; for a
short description of it, see [151, pp. 187–189]). It is not as elegant and efficient as those of
the previous section, yet it is quite general allowing the extension of any n-point interpolatory
formula to a new (n+m)-point one.

An improvement of Patterson’s algorithm is given by Krogh and Van Snyder (cf. [118]);
their method reduces the number of weights necessary to represent Patterson’s quadrature
formulae as well as the amount of storage necessary for storing function values, while it
produces slightly smaller error when the integrand has singular behavior at the end of the
interval.

A generalization of Patterson’s method for the purpose of computing a multidimensional
integral over the infinite integration region was given by Genz and Keister (cf. [96]). Also, a
generalization of Patterson’s algorithm, which circumvents the use of the three-term recurrence
relation and works instead directly with the moments of the underlying distribution, is presented
by Mehrotra and Papp (cf. [136]).

The Kronrod-Patterson sequence of quadrature formulae has been used for the evaluation
of improper integrals that arise in the solution of weakly singular integral equations. In
one case, these formulae are employed together with the ε-algorithm in order to accelerate
the sequence of approximants (cf. [75]), and in another, in collaboration with appropriate
polynomial transformations for alleviating the singularity (cf. [74]).

Rabinowitz, Elhay, and Kautsky start with the Gauss-Kronrod formula (2.2) for the weight
function w and add m ≥ n+ 2 new nodes, obtaining, in an optimal way, the so-called “first
Patterson extension” of the Gauss-Kronrod formula, which is said to be minimal if m = n+ 2
and nonminimal ifm > n+2. They give some experimental results and make some conjectures
for the minimal and nonminimal quadrature formulae when w is the Gegenbauer or the Jacobi
weight functions (cf. [191]). For further investigations when w is the Laguerre and the Hermite
weight functions, see [69, 70].

The Kronrod-Patterson quadrature formulae belong to the category of the so-called “nested
quadrature rules” and are used, among other things, in adaptive quadrature schemes. Laurie,
trying to improve on the amount of storage used, coined the term “stratified nested quadrature
rules”. A nested sequence of quadrature rules is called stratified if it has the property that

Qk+1 = ckQk + (1− ck)Q̄k,

where Qk is the nested rule at stage k and Q̄k is the rule involving the new points only; hence,
the function values used for Qk need not to be stored for the computation of Qk+1, but all
that is needed instead is the value of Qk (cf. [125]). Ehrich in [62] applied and generalized
Laurie’s ideas in constructing stratified extensions of the Gauss formula for the Laguerre and
the Hermite weight functions with higher degree of exactness (see also Section 7 below).

In Laurie’s stratified nested rules, implicit constraints are imposed on the nodes in order
to achieve the relationships between the weights, and this in turn implies a constraint on the
maximum achievable degree of exactness. To overcome this, Patterson, assisted by the work
in [118], proposed (cf. [172]) the so-called “hybrid quadrature rules”, which combine the
properties of Laurie’s stratified nested rules and of Kronrod-Patterson formulae.

As odd as it might look like, another idea for obtaining a sequence of nested quadrature
formulae is by contraction (cf. [82, pp. 50–51]). Here, one starts with a base formula,
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containing a sufficiently large number of nodes, and successively removes subsets of nodes,
obtaining a sequence of quadrature formulae containing each time fewer and fewer nodes.
The resulting sequence is then turned the other way around, obtaining that way a sequence of
nested quadrature formulae. A number of authors have applied this technique (see [167, 192]
and also [192, Appendix A]). The work in [192] has found an application in Bayesian analysis
(cf. [46]).

Motivated by the nonexistence of Gauss-Kronrod formulae with real nodes and positive
weights for several of the classical weight functions, a number of authors tried to relax some
of the conditions necessary for maximum degree of exactness. Begumisa and Robinson in [6],
writing the Stieltjes polynomial in the form π∗n+1(t) =

∑n+1
µ=0 aµπµ(t), an+1 = 1, require

that the latter satisfies∫ b

a

π∗n+1(t)tkπn(t)w(t)dt = 0, k = 0, 1, . . . , n− r,

rather than (2.3). That way, they determine the coefficients an, an−1, . . . , ar, while the
remaining coefficients a0, . . . , ar−1 are chosen such that the polynomial π∗n+1 has n+ 1 real
and distinct zeros in (a, b). Furthermore, as the resulting Gauss-Kronrod formula has degree
of exactness 3n − r + 1, an attempt was made to keep r as small as possible. Although
their procedure is rather complicated, it was nonetheless successful in obtaining a nonoptimal
Kronrod extension of the Gauss formula for the Hermite weight function, but less so for the
Laguerre and the Gegenbauer weight functions.

Now, Patterson in [171] showed that the Begumisa and Robinson extension can alterna-
tively be derived by appending r arbitrary nodes, τn+1, . . . , τn+r, to the n Gaussian ones,
thus starting with a total of n + r fixed nodes, and obtaining the n − r + 1 new nodes,
τ∗1 , . . . , τ

∗
n−r+1, such that∫ b

a

[
πn(t)

n+r∏
ν=n+1

(t− τν)

]
π∗n−r+1(t)tkw(t)dt = 0, k = 0, 1, . . . , n− r,

where π∗n−r+1(t) =
∏n−r+1
µ=1 (t− τ∗µ). So, while Begumisa and Robinson adjusted the trailing

coefficients of the Stieltjes polynomial, Patterson varied the r appended nodes. The benefit
of his approach is that the new nodes can be computed with little effort by means of the
general algorithm in [169, 170]. Patterson proceeded a step further, by showing that one can
actually induce optimal extensibility, i.e., extensibility with the maximum attainable degree
of exactness, if one or more nodes of the starting Gauss formula are replaced by judiciously
chosen ones. There is some little extra work incurred, one integrand evaluation for each
replaced node, but the new method is applied successfully in the extension of the Gauss
formula for the Hermite and the Laguerre weight functions.

Kahaner, Wadvogel, and Fullerton, motivated by the nonexistence of the Gauss-Kronrod
formula for the Laguerre weight function with positive nodes and weights, investigated the
possibility of adding to the n Gauss nodes n + q new ones, where q > 1 (cf. [113, 114]).
They present a method for computing the new nodes and weights, and they report results
for n = 1(1)10 and various values of q. In a number of cases, the Kronrod extension was
successful with nonnegative nodes and positive weights.

In certain integrals, the functions to be integrated happen to have poles outside of the
interval of integration. In this case, it would be more natural to use a quadrature formula which
is exact for a mixture of polynomials and rational functions having the same, or at least the
more important, poles (those closest to the interval of integration). The implementation of this
idea for Gauss-Kronrod formulae, appropriately called rational Gauss-Kronrod quadrature
formulae, is given in [88, 84], while their error is studied in [11, 10, 42].
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In Wilf-type quadrature formulae, the nodes and weights are computed by requiring that
the average error be as small as possible over the family of the monomials (cf. [219]). Kronrod
and Patterson extensions of Wilf-type formulae of a mixed rational-polynomial type were
developed by Engels, Ley-Knieper, and Schwelm (cf. [73, 72]).

Extended product quadrature formulae, even subinterpolatory ones, i.e., having degree
of exactness lower than that of interpolatory quadrature formulae, are studied by Dagnino
in [36]; see also [37]. The degree of exactness is sacrificed and severe conditions are applied
in the function and the kernel of the underlying integral such that the quadrature formulae in
question converge and are stable. For the computation of product quadrature formulae and
their Kronrod extension, see [165]. On the other hand, Gauss-Kronrod product quadrature
formulae are studied by Ehrich in [59]. He considers quadrature formulae of the form

(5.1)
∫ 1

−1
k(t)f(t)dt =

n∑
ν=1

σν(k)f(τν) +

n+1∑
µ=1

σ∗µ(k)f(τ∗µ) +Rn(k; f),

where k ∈ L1, not necessarily of one sign, f is a (bounded) Riemann integrable function,
τν are the zeros of the nth degree Legendre polynomial Pn, and τ∗µ are the zeros of the
corresponding Stieltjes polynomial, i.e., formula (5.1) is based on the nodes of the original
Gauss-Kronrod formula (1.3). Ehrich proved that, if k ∈ Lp for some p > 1, then the
quadrature sum on the right-hand side of (5.1) converges to the integral on the left for all
Riemann integrable functions f . Furthermore, under the same condition,

lim
n→∞

(
n∑
ν=1

|σν(k)|f(τν) +

n+1∑
µ=1

|σ∗µ(k)|f(τ∗µ)

)
=

∫ 1

−1
|k(t)|f(t)dt,

for all f ∈ C[−1, 1]. Similar results are shown for product quadrature formulae based on
the τ∗µ only. These results are then used for obtaining uniform convergence of the approximate
solutions of weakly singular integral equations of the second kind.

Kronrod’s idea has been applied to various types of integrals. In one case, to Cauchy
principal value integrals (cf. [188]), where the stability of the underlying algorithm is examined
in [189]; see also [164]. And in another case, to the evaluation of the Bromwich integral,
which arises in the inversion of the Laplace transform (cf. [181]).

Complex Stieltjes polynomials π∗n+1(z;wλ) for the Gegenbauer weight function wλ,
on the semicircle Γ = {z ∈ C : z = eiθ, 0 ≤ θ ≤ π}, were studied by Caliò and Marchetti
(cf. [25]). In particular, for λ = 0 or 1, they showed that all zeros of π∗n+1(z) are simple
and located in the interior of the upper unit half disk, based on which they constructed the
respective Gauss-Kronrod formulae. These formulae are subsequently used (cf. [26]) for the
evaluation of certain Cauchy principal value integrals. For Gauss-Kronrod quadrature formulae
on the unit circle, see [193].

For a derivation of the Gauss-Kronrod formula by means of a formula relating the
quadrature weights to their approximations using the trapezoidal rule, see [194].

Since Padé approximants can be viewed as formal Gaussian quadrature (cf. [17]), Brezin-
ski in [19] extended Kronrod’s procedure to Padé approximation in order to obtain estimates
of the error. Subsequently, a new interpretation was given in [20] (see also [21]), which led to
new procedures for estimating the error. Brezinski’s procedure has been extended to vector
Padé approximants by Belantari (cf. [7]).

Gauss-Kronrod formulae are also used for computing Fourier coefficients in orthogonal
expansions (cf. [82, p. 61]).
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Moreover, Stieltjes polynomials and Gauss-Kronrod formulae have found an application
in constructing space-localized bases for the wavelet space of band-limited functions on the
sphere (cf. [121]).

Gauss-Kronrod formulae as well as the Kronrod extension of the Gauss-Radau and the
Gauss-Lobatto quadrature formulae (cf. the following section) were utilized for the develop-
ment of Runge-Kutta methods (cf. [221, 222, 223, 224, 225]). On the other hand, although
numerical integration methods are frequently used in finite element and projection methods,
Gauss-Kronrod formulae have not got much attention. However, Bellen applied them in the
so-called “extended collocation-least squares method” (cf. [8]). Also, Rashidinia and Mah-
moodi (cf. [196]) used them, together with a collocation method based on quintic B-splines,
for the numerical solution of Fredholm and Volterra integral equations. Finally, Sinsbeck
and Nowak succeeded to reproduce the Gauss-Kronrod formula by means of an optimized
stochastic collocation method (cf. [201]).

Finally, Kronrod’s idea has been applied to cubature methods (cf. [12, 31, 32, 71, 96, 97,
98, 123, 133, 134, 155, 180, 217]).

6. Kronrod extensions of other than the Gauss formulae. Several authors have worked
on the Kronrod extension of the Gauss-Radau, Gauss-Lobatto, and, particularly, Gauss-Turán
and Chakalov-Popoviciu quadrature formulae; for definitions and descriptions on each of these
formulae, see [81, Sections 2.1–2.2].

The Kronrod extension of the Gauss-Radau quadrature formula for the weight function w
on the interval [a, b] and additional node at a (respectively b) requires that the Gauss formula
for the weight function (t − a)w(t) (respectively (b − t)w(t)) admits a Kronrod extension,
i.e., the Stieltjes polynomial π∗n+1(·; (t− a)w(t)) (respectively π∗n+1(·; (b− t)w(t))) has real
and distinct zeros, all in (a, b), and different from the zeros of πn(·; (t− a)w(t)) (respectively
πn(·; (b − t)w(t))) (cf. [82, Example 2.2]). The Kronrod extension of the (n + 1)-point
Gauss-Radau formula for the Legendre weight function is studied by Baratella in [4], where
nodes and weights are given for n = 2(2)16. Also, the Kronrod extension of the Gauss-Radau
formula for the Gegenbauer weight function wλ is studied by Sismondi in [202], where the
quadrature formulae are given for the case λ = 1, i.e., the Chebyshev weight of the second
kind, and n = 1, 2, 4, 8, and 16.

In a like manner, the Kronrod extension of the Gauss-Lobatto quadrature formula for the
weight function w on the interval [a, b] assumes that the Gauss formula for the weight function
(t− a)(b− t)w(t) allows a Kronrod extension (cf. [82, Example 2.3]). That way, one can use
existence and nonexistence results stated previously for the Gauss-Kronrod formulae in order
to derive results for the Kronrod extension of the Gauss-Lobatto formula. In particular, the
Kronrod extension of the (n + 2)-point Gauss-Lobatto formula for the Gegenbauer weight
function wλ has properties (a) and (b) for all n ≥ 1 when −1/2 < λ ≤ 1 (cf. [214, §3]),
and if in addition λ 6= 0, then the precise degree of exactness is 3n + 3 for n even and
3n + 4 for n odd, while an error bound of type (3.2) is also given (cf. [187]). Furthermore,
the Kronrod extension is not possible for λ > 2 and n sufficiently large, while properties
(a) and (b) hold true for λ = 2 and n sufficiently large (cf. [177, Theorems 1 and 2]). For
the positivity of the weights, partial results are derived, when −1/2 < λ ≤ 0, by Monegato
(cf. [145]) and, when 0 < λ ≤ 1, by Ehrich (cf. [55, Section 2]). In the same sense, the
Kronrod extension of the Gauss-Lobatto formula for the Bernstein-Szegö weight function
w(−1/2), with ρ(t) = 1− 4γ

(1+γ)2 t
2, −1 < γ < 1, on [−1, 1], has properties (a), (b), and (c)

for all n ≥ 1 (cf. [95, p. 753]).
Laurie, generalizing the method of Baratella (cf. [4]), and using the software package OPQ

of Gautschi (cf. [85]), showed how to calculate the Kronrod extension of the Gauss-Radau
and the Gauss-Lobatto formulae (cf. [128]). On the other hand, the improvement of Laurie’s
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algorithm given by Calvetti, Golub, Gragg, and Reichel for the Gauss-Kronrod formula can
be applied to the Kronrod extension of the Gauss-Radau and the Gauss-Lobatto formulae
(cf. [29]). The same is the case with the Dagnino and Fiorentino implementation of Szegö’s
algorithm in [39].

The Kronrod extension of the Gauss-Radau and the Gauss-Lobatto quadrature formulae
with double end points for each of the four Chebyshev weight functions was studied by Li
in [132], where the underlying Stieltjes polynomials are explicitly or computationally obtained,
and the interlacing and inclusion of the nodes in (−1, 1) as well as the positivity of the weights
(corresponding to properties (a), (b), and (c) of Section 2) are examined.

The Kronrod extension of the Gauss-Turán quadrature formulae has been investigated by
several authors for a variety of weight functions. Bellen and Guerra worked on the case of the
Legendre weight (cf. [9]). Li, on the other hand, considered the case of the Chebyshev weight
of the first kind (cf. [130]), deriving the respective Stieltjes polynomials and, in a few special
cases, the weights. Li’s work has been generalized by Shi (cf. [200]). An interesting approach
in constructing the Kronrod extension of the Gauss-Turán formula is presented by Cvetković
and Spalević in [35].

The work of Li and Shi was taken a step further by Milovanović and Spalević in [139].
They studied the Kronrod extension of the Gauss-Turán formulae, including the underlying
Stieltjes polynomials, for the generalized Chebyshev weight functions

w1(t) = (1− t2)−1/2, w2(s; t) = (1− t2)1/2+s, − 1 < t < 1,

w3(s; t) = (1− t)−1/2(1 + t)1/2+s, w4(s; t) = (1− t)1/2+s(1 + t)−1/2, − 1 < t < 1,

where s ∈ N0. Furthermore, they obtained L1 estimates for the remainder term by contour
integration techniques on confocal ellipses.

In [141], Milovanović, Spalević, and Galjak took the results of [139] a step further by
considering the Chakalov-Popoviciu quadrature formula; the latter is a generalization of the
Gauss-Turán formula in the sense that each node in the quadrature sum occurs with its own
multiplicity. The Kronrod extension of the Chakalov-Popoviciu formula for some cases of the
generalized Chebyshev and the Gori-Micchelli weight functions were derived. Furthermore,
effective L1 estimates for the remainder term of the Gauss-Turán-Kronrod formula for the
Gori-Micchelli weight function were obtained by contour integration techniques on confocal
ellipses. These estimates were further improved in [142]7.

In [143], Milovanović, Spalević, and Pranić derived effective L∞ error bounds for the
remainder term of the Gauss-Turán-Kronrod formula for the generalized Chebyshev weight
functions, by investigating the location on elliptic contours where the modulus of the underlying
kernel attains its maximum value. Moreover, following Kronrod’s idea (cf. the introduction),
by using the modulus of the difference between the quadrature sums of the Gauss-Turán
formula and its Kronrod extension, new error estimates were derived for the Gauss-Turán
formula, which were compared with L1 error bounds obtained for that formula in [138].

Fairly recently, Milovanović and Spalević (cf. [140]) extended the work of Bojanov and
Petrova (cf. [14]) for computing Fourier coefficients in orthogonal expansions. They examined
the existence and, wherever possible, they determined real Kronrod extensions of Gaussian
quadrature formulae with multiple nodes, in particular, for generalized Chebyshev and Gori-
Micchelli weight functions, appropriate for the computation of Fourier coefficients. Moreover,
Spalević and Cvetković (cf. [210]), trying to estimate effectively the error of Gaussian quadra-
ture formulae by using their extensions with multiple nodes, obtained (optimal) Kronrod

7In [142, pp. 224–225], a mistake is corrected in the proof of Proposition 2.1 in [141].
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extensions with multiple nodes for Gaussian quadrature formulae relative to generalized
Chebyshev and Gori-Micchelli weight functions.

In [204], Smith considered the quadrature formula

(6.1)
∫ 1

−1
f(t)w(t)dt =

r∑
ν=1

γr,νf(τr,ν) +

n−r−1∑
k=0

(γ0,kf
(k)(−1) + γn,kf

(k)(1)) +Rr,n(f),

where the Gaussian nodes τr,ν and all weights γr,ν , γ0,k, and γn,k were determined so that
the formula has maximum degree of exactness 2n− 1. It was proved that this formula, which
includes as special cases the Gauss and the Gauss-Lobatto formulae, has all weights positive
except for γn,k whose signs depend on the parity of k. Subsequently, in [205], the Kronrod
extension of formula (6.1) was defined, and it was shown that its weights satisfy formulae
analogous to those obtained by Monegato for the original Gauss-Kronrod formula (cf. [144]).
Furthermore, motivated by the work of Gautschi and Notaris (cf. [90]), Smith, when w is
the Gegenbauer weight function wλ, computed intervals of λ in which each of the properties
(a)–(d) of Section 2 is true (cf. [206]). Going a step further, Smith and Hunter investigated
(cf. [207]) the feasibility of the “first Patterson extension” (cf. [191]) of the Kronrod extension
of formula (6.1) when w is the Gegenbauer weight function.

7. Quadrature formulae inspired by Kronrod’s idea. As already mentioned, Kron-
rod’s motivation came originally from his desire to estimate accurately the error of the Gauss
formula. However, Gauss-Kronrod formulae fail to satisfy properties (a)–(d), i.e., do not exist
with real and distinct nodes in the interval of integration and positive weights, for several of
the classical weight functions; notable examples are the Hermite and the Laguerre weights, but
the list also includes the Gegenbauer and the Jacobi weights for values of λ and (α, β) above
specific constants and regions, respectively, depending on n (cf. Section 2.1). The nonexistence
of Gauss-Kronrod formulae inspired Laurie to develop the so-called anti-Gaussian quadrature
formula, which led to the averaged Gaussian quadrature formula (cf. [126]). The latter is a
special case of a stratified nested quadrature rule (cf. [125]) and enjoys nice properties: It
always exists with real nodes, at most two of which are outside of the interval of integration,
and all its weights are positive. Furthermore, the formula can easily be constructed.

As mentioned previously, Laurie’s ideas were generalized by Ehrich (cf. [62]) in an attempt
to construct optimal, i.e., having the highest possible degree of exactness, anti-Gaussian and
averaged Gaussian formulae for the Laguerre and the Hermite weight functions. Further work
for generalized Hermite and Gegenbauer weight functions was done by Hascelik in [103, 104].

In [208], Spalević proposed a simple numerical method for constructing (optimal) gener-
alized averaged Gaussian formulae, while, when the underlying weight function is the Jacobi
weight, necessary and sufficient conditions on the parameters α and β are provided such that
all nodes of the quadrature formulae are in [−1, 1]. Proceeding further, Spalević investigated,
in [209], conditions under which the degree of exactness of (optimal) generalized averaged
Gaussian formulae can reach as high as 3n+1, in which case these formulae form a satisfactory
alternative to Gauss-Kronrod formulae for estimating the error of the Gauss formula.

Calvetti and Reichel made a modification on Laurie’s anti-Gaussian formula, which that
way was transformed into a symmetric Gauss-Lobatto formula (cf. [28]).

On the other hand, the generalized averaged extensions of Gauss-Turán formulae are
studied in [35].

Moreover, the generalized averaged Gaussian formulae have already found an application
in the approximation of matrix functions and matrix functionals (cf. [197, 198, 48]).

8. Stieltjes polynomials. From what was mentioned in the previous sections, it became
clear that Stieltjes polynomials are strongly connected to Gauss-Kronrod formulae, as the zeros
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of the former are the so-called Kronrod nodes. Hence, many authors have studied Stieltjes
polynomials in order to prove certain properties of Gauss-Kronrod formulae. However, there is
also a number of authors who were attracted by the intriguing nature of Stieltjes polynomials
and the challenging mathematical problems they pose.

First of all, as already mentioned, the Stieltjes polynomial π∗n+1 in (2.3) is orthogonal to all
polynomials of lower degree relative to the variable-sign weight function w∗(t) = πn(t)w(t)
on [a, b], hence, the usual theory of orthogonal polynomials cannot be applied in this case. An
attempt to develop a general theory for polynomials orthogonal relative to a weight function
which changes sign on its support interval was made by Struble as well as by Monegato
(see [213, 148] and the references therein). All results obtained, however, relate to specific
weight functions.

Monegato, relying on an inequality that dominates Szegö’s work (cf. [214] and [149,
Equation 9]), derived in [149] bounds for the Gegenbauer polynomial π(λ)

n as well as the
derivatives of π(λ)

n and the corresponding Stieltjes polynomial π∗(λ)n+1 .
Peherstorfer, in view of the close relation between Stieltjes polynomials and functions

of the second kind, discussed in [176] known and new facts on the asymptotic behavior of
Stieltjes polynomials and their close connection with the asymptotic behavior of the boundary
values of functions of the second kind on [−1, 1].

Brezinski defined a functional of the form

c(tk) =

∫ 1

−1
tkw(t)dt, k = 0, 1, 2, . . . ,

where w is an even weight function w(t) = w(−t), and derived some properties for the class
of orthogonal and the corresponding class of Stieltjes polynomials relative to this functional
(cf. [18]).

As already mentioned in Section 3.3.1, the asymptotic behavior of Stieltjes polynomials
relative to general measures, including the so-called regular, Blumenthal-Nevai, and Szegö
classes of measures, was studied outside of the support of the measure by Bello Hernández, de
la Calle Ysern, Guadalupe Hernández, and López Lagomasino in [11] and in a more general
form in [10].

Jung and Sakai in [108, 110], for the Gegenbauer weight function wλ, 0 < λ < 1,
obtained several estimates and asymptotic properties for the first and second derivatives of
π
∗(λ)
n+1 and π(λ)

n π
∗(λ)
n+1 . These estimates play an important role in the so-called Hermite-Fejér

interpolation based on the zeros of π∗(λ)n+1 or π(λ)
n π

∗(λ)
n+1 .

Finally, zeros of Stieltjes polynomials were used as nodes in interpolation processes, either
alone or in collaboration with the Gauss nodes. First, Li proved that Lagrange interpolation
based on the zeros of πnπ∗n+1 relative to the Chebyshev weight function of the first, third,
or fourth kind converges in the mean (cf. [131]). Moreover, Ehrich and Mastroianni proved
bounds for the Stieltjes polynomial π∗n+1 relative to the Legendre weight function as well
as lower bounds for the distances between consecutive zeros of π∗n+1 and πnπ∗n+1 (cf. [64]).
Then, applying these results, they showed that Lagrange interpolation based either on the
zeros of π∗n+1 or on those of πnπ∗n+1 in the uniform or the weighted Lp norm have Lebesgue
constants of optimal order, i.e., O(log n) in the uniform norm; thus, Stieltjes polynomials
have the property of improving the interpolation process based on the zeros of πn only, which
is known to have Lebesgue constants of order O(n1/2). Further, convergence results in the
weighted Lp norm are given in [66]. In [63], Ehrich and Mastroianni extended the results
in [64] to the Gegenbauer weight function wλ, 0 ≤ λ ≤ 1. They first proved bounds in the
uniform norm for the Stieltjes polynomial π∗(λ)n+1 as well as lower bounds for the distances
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between consecutive zeros of π∗(λ)n+1 and π(λ)
n π

∗(λ)
n+1 , which were subsequently used in Lagrange

interpolation based either on the zeros of π∗(λ)n+1 or on those of π(λ)
n π

∗(λ)
n+1 ; in the second case,

the process does not have optimal Lebesgue constants when 1/2 < λ ≤ 1. Convergence
results in the weighted Lp norm with a generalized Jacobi weight were also obtained. On
the other hand, Jung, in [109], studied convergence in the uniform norm of Hermite-Fejér
interpolation for the Gegenbauer weight function wλ, 0 ≤ λ ≤ 1, based on the zeros of π∗(λ)n+1

or on those of π(λ)
n π

∗(λ)
n+1 ; he showed that, except for the second case when 1/2 < λ ≤ 1, the

process has optimal Lebesgue constants. Furthermore, convergence results, when 0 ≤ λ ≤ 1,
for Hermite-Fejér interpolation and Hermite interpolation in the weighted Lp norm were also
given. High-order Hermite-Fejér interpolation based either on the zeros of π∗(λ)n+1 or on those
of π(λ)

n π
∗(λ)
n+1 , when 0 < λ < 1, has been studied by Jung and Sakai (cf. [111]).

Moreover, Marcinkiewicz inequalities based on the zeros of the Stieltjes polynomials
π
∗(λ)
n+1 or on those of π(λ)

n π
∗(λ)
n+1 relative to the Gegenbauer weight function wλ, 0 < λ < 1, are

studied by Ehrich and Mastroianni in [65].
Polynomials orthogonal on a circular arc, together with the associated functions of the

second kind and the corresponding Stieltjes polynomials, have been studied by Milovanović
and Rajković (cf. [137]).

Stieltjes-type polynomials have been considered in two instances. Prévost (cf. [186])
studied them with respect to a linear functional; these polynomials are important for the
estimation of the error in Padé approximation. On the other hand, de la Calle Ysern, López
Lagomasino, and Reichel (cf. [44]) defined Stieltjes-type polynomials on the unit circle; the
nodes of these polynomials were used for the development of Szegö-Kronrod quadrature
formulae, which are useful for the integration of periodic functions with known periodicity.
An extension of the results in [44] can be found in [43], while Szegö-Kronrod quadrature is
briefly mentioned in [106].

9. Historical notes. The subject of the present survey started with Kronrod in 1964, who
developed, at least up to a point, the underlying theory of the quadrature formulae that bear his
name, and he produced extensive numerical tables for the nodes and weights of these formulae
(cf. [119, 120]).

As already mentioned, the Gauss-Kronrod formulae are closely connected with work that
Stieltjes did some 70 years earlier. The n+ 1 new nodes that Kronrod added to the n Gauss
nodes in order to construct his quadrature formula are zeros of a polynomial considered and
named after Stieltjes, who used it in his study of continued fractions and the moment problem.
As in all of Kronrod’s exposition there is no mention of Stieltjes’s work, it is safe to assume
that the former was unaware of the work of the latter.

Now, fairly recently, Gautschi (cf. [86]) discovered that in the same year that Stieltjes
presented his polynomials, Skutsch (cf. [203]) pointed out the possibility of obtaining a new
quadrature formula, by inserting n + 1 new nodes into the n-point Gauss formula for the
Legendre weight function and choosing them and all quadrature weights in such a way that
the resulting (2n+ 1)-point formula has degree of exactness 3n+ 1 for n even and 3n+ 2
for n odd. He even noted that for improving the degree of exactness of the n-point Gauss
formula, one cannot add fewer than n + 1 points (cf. [203, p. 81]), a result proved later by
Monegato (cf. [147, Lemma 1]). Skutsch also gave a numerical example, implementing the
7-point extension of the 3-point Gauss formula and comparing it with the 3-point and the
7-point Gauss formulae. Did Stieltjes know about Skutsch’s paper? As his letter to Hermite
(cf. [3, v. 2, pp. 439–441]) contains no reference to quadrature, most likely, he was unaware of
Skutsch’s work.
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So, both Skutsch and Kronrod had the same idea, although the former did not pursue it
further, while the latter did and received credit for it.

All this brings us to the natural question: Who was Kronrod? An answer to that was given
only recently, when Gautschi discovered and edited the exposition Remembering A.S. Kronrod
by Landis and Yaglom (cf. [122]). Alexander Semenovich “Sasha” Kronrod was born in 1921
and, by education, was a mathematician. He studied at Moscow State University, from where
he received his Doctoral Degree. He started as a pure mathematician, having made important
contributions to the theory of functions of two or more variables; in particular, he introduced
the concept of a monotone function in two variables. Later on, though, his interests shifted to
computational mathematics and computer science; he conceived and implemented, together
with N. I. Bessonov, the idea of a universal program-controlled digital computer, and he was
also interested in what is now called artificial intelligence (in those days known as heuristic
programming). All this reflects one of Kronrod’s leading principles: An idea is nothing, its
implementation everything; and it was for this reason that he generously gave away ideas
that he had, being convinced that the ownership of an idea actually belongs to the one who
implemented it. He also believed that a mathematician solving the mathematical aspect of a
physical problem should understand the significance of the problem, realize how the results
obtained are going to be used, work out the algorithm for the problem’s solution, write the
program implementing the algorithm, and run it. Besides pure and computational mathematics
and computer science, he also made contributions to economics, in particular, price formation.
He was a great teacher, respected and appreciated by his students. The last part of his life was
devoted to helping the terminally ill, by developing a medicine for cancer patients. He died of
a stroke in 1986.
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