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ANY FINITE CONVERGENCE CURVE IS POSSIBLE IN THE INITIAL
ITERATIONS OF RESTARTED FOM∗

MARCEL SCHWEITZER†

Abstract. We investigate the possible convergence behavior of the restarted full orthogonalization method (FOM)
for non-Hermitian linear systems Ax = b . For the GMRES method, it is known that any nonincreasing sequence
of residual norms is possible, independent of the eigenvalues of A ∈ Cn×n. For FOM, however, there has not yet
been any literature describing similar results. This paper complements the results for (restarted) GMRES by showing
that any finite sequence of residual norms is possible in the first n iterations of restarted FOM, where by finite we
mean that we only consider the case that all FOM iterates are defined, and thus no “infinite” residual norms occur. We
discuss the relation of our results to known results on restarted GMRES and give a new result concerning the possible
convergence behavior of restarted GMRES for iteration counts exceeding the matrix dimension n. In addition, we give
a conjecture on an implication of our result with respect to the convergence of the restarted Arnoldi approximation for
g(A)b , the action of a matrix function on a vector.

Key words. linear systems, restarted Krylov subspace methods, full orthogonalization method, restarted Arnoldi
method for matrix functions, GMRES method

AMS subject classifications. 65F10, 65F50, 65F60

1. Introduction. For solving a linear system

(1.1) Ax = b

with a large, sparse, non-Hermitian matrix A ∈ Cn×n and a vector b ∈ Cn one often uses a
Krylov subspace method. One possible choice is the full orthogonalization method (FOM);
see, e.g., [16, 17, 19]. Given an initial guess x0, one computes the residual r0 = b −Ax0 and
then generates the Arnoldi decomposition

(1.2) AVj = VjHj + hj+1,jvj+1e
H
j ,

where the columns of Vj = [v1, . . . , vj ] ∈ Cn×j form an orthonormal basis of the jth Krylov
subspace Kj(A, r0) = span{r0, Ar0, . . . , Aj−1r0}, the matrix Hj ∈ Cj×j is unreduced
upper Hessenberg and ej ∈ Cj denotes the jth canonical unit vector. The jth FOM iterate for
the linear system (1.1) is then given by

(1.3) xj = x0 + ‖r0‖2VjH−1j e1,

provided that Hj is nonsingular, and can be characterized by the variational condition

b −Axj ⊥ Kj(A, r0).

Note that the decomposition (1.2) is unique up to scaling of the columns of Vj by scalars of
modulus one (and scaling of the corresponding entries of Hj ; see, e.g., [20, Chapter 5, Theo-
rem 1.3]). Therefore, if the subdiagonal entries of Hj are prescribed to be real and positive (as
it is always the case when (1.2) is computed by the Arnoldi process), the decomposition is
unique.
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For larger values of j, the computational cost of constructing the orthonormal basis
v1, . . . , vj as well as the cost of computing H−1j e1 grows. In addition, all basis vectors
vi, i = 1, . . . , j need to be stored to evaluate (1.3). For Hermitian A, these problems do not
occur because short recurrences for the basis vectors can be used (which also translate into
short recurrences for the iterates xj), leading to the conjugate gradient method (CG) [15] when
A is positive definite. In the non-Hermitian case, a typical remedy is restarting. After a fixed
(small) number m of iterations (the restart length), one computes a first approximation

x (1)
m = x0 + ‖r0‖2V (1)

m

(
H(1)
m

)−1
e1

and then uses the fact that the error d (1)
m = x ∗ − x

(1)
m , where x ∗ is the exact solution of (1.1),

satisfies the residual equation

(1.4) Ad (1)
m = r (1)

m , where r (1)
m = b −Ax (1)

m ,

so that d (1)
m can be approximated by another m iterations of FOM for the linear system (1.4)

without needing to store the quantities V (1)
m , H

(1)
m from the first m iterations. The resulting

approximation d̃
(1)
m is then used as an additive correction to the iterate x

(1)
m , i.e.,

x (2)
m = x (1)

m + d̃ (1)
m .

This approach can be continued until the resulting iterate x
(k)
m fulfills a prescribed stopping

criterion (e.g., a residual norm below some given tolerance). In the following we refer to the
resulting iterative method as restarted FOM with restart length m, or, as a shorthand, FOM(m).
An iteration of FOM(m) refers to advancing from iterate x

(k)
j−1 to x

(k)
j (an operation which

involves one matrix-vector multiplication with A), while a cycle of FOM(m) refers to the m
iterations necessary to advance from x

(k−1)
m to x

(k)
m .

While FOM(m) is simple to understand and implement, it is not at all clear whether the
iterates x (k)

m will converge to x ∗ for k → ∞, even when all iterates are defined (i.e., when
H

(k)
m is nonsingular for all k). In this paper we show that the residual norms produced by

restarted FOM can attain any finite values in the first n iterations, for a matrix A with any
prescribed nonzero eigenvalues, showing that a convergence analysis for restarted FOM based
exclusively on spectral information is not possible in general. This result is similar to results
from [2, 7–9, 13, 21] for (restarted) GMRES, but there are also some differences: Due to the
minimizing property of GMRES (see, e.g., [18]) the GMRES convergence curve is always
nonincreasing. The results in [7,13] only consider full GMRES (without restarts) while in [21]
only the residual norms at the end of each restart cycle are prescribed, instead of the residual
norms after each individual iteration.

The remainder of this paper is organized as follows. In Section 2, we present our main
result and its constructive proof. A discussion of the relation and differences of our result
to those on (restarted) GMRES is presented in Section 3. In Section 4 we briefly discuss
the approximation of g(A)b—the action of a matrix function on a vector—by the restarted
Arnoldi method and give a conjecture on the arbitrary convergence behavior of this method,
motivated by our results on FOM(m). Concluding remarks are given in Section 5.

2. Any finite convergence curve is possible in the first n iterations of FOM(m). For
the sake of simplicity, we only consider the case of constant restart length m across all restart
cycles, keeping in mind that all results below generalize in a straightforward manner to the
case of varying restart lengths. We conveniently number the residuals corresponding to iterates
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from different restart cycles consecutively, i.e., r1, . . . , rm are the residuals of the iterates
from the first restart cycle, rm+1, . . . , r2m are the residuals of the iterates from the second
restart cycle and so on.

THEOREM 2.1. Let m,n, q ∈ N with m ≤ n − 1 and q ≤ n; let f1, . . . , fq ∈ R+
0 be

given with f1, . . . , fq−1 > 0 and fq ≥ 0; and let µ1, . . . , µn ∈ C \ {0}, not necessarily
pairwise distinct. Then there exists a matrix A ∈ Cn×n with spec(A) = {µ1, . . . µn} (where
spec(A) denotes the set of all eigenvalues ofA) and vectors b,x0 ∈ Cn such that the residuals
r1, . . . , rq generated by q iterations of FOM(m) for Ax = b with initial guess x0 satisfy

‖rj‖2 = fj for j = 1, . . . , q.

For ease of presentation, we will first assume q = n and fn > 0 in the following. Afterwards,
we briefly comment on the modifications necessary in the general case. The proof of Theo-
rem 2.1 is constructive in nature and based on investigating properties of matrices of the form

(2.1) A(d , s) =


d1 0 · · · 0 sn
s1 d2 0 · · · 0

0 s2
. . . . . .

...
...

. . . . . . dn−1 0
0 · · · 0 sn−1 dn


defined by two vectors d , s ∈ Cn. Before proceeding, we explain why it is reasonable to
investigate these kinds of matrices in our setting. First, notice that we want to be able to
prescribe up to 2n values (the n eigenvalues of A and up to n residual norms). Thus, assuming
that the initial residual r0 is fixed (which will be the case in our construction), we should
have at least 2n degrees of freedom when choosing the matrix A. The matrix A(d , s) exactly
fulfills this minimal requirement. The other important property is that the structure of A is
chosen such that unrestarted FOM and FOM(m) for any restart length behave exactly the same
in the first n− 1 iterations when the initial residual is a canonical unit vector, so that we do
not have to take the restart length into account and can perform most of the analysis as if we
were dealing with unrestarted FOM. This is proven in Lemma 2.4.

We begin our analysis by proving the following proposition, which characterizes the result
of j iterations of FOM for the matrix A(d , s) when started with a (multiple of a) canonical
unit vector.

PROPOSITION 2.2. Let A(d , s) ∈ Cn×n be of the form (2.1), let j ≤ n− 1, ξ0 ∈ C with
|ξ0| = 1, let c > 0 and let ei denote the ith canonical unit vector. Let x0, b ∈ Cn be given
such that the residual r0 = b −Ax0 satisfies r0 = ξ0cei. Then the basis Vj+1 generated by j
iterations of FOM for A(d , s) and b with initial guess x0 is given by

Vj+1 = [ξ0ei, ξ1ei+1, . . . , ξjei+j ]

(where, like everywhere in the following, for ease of notation, the indices are to be understood
cyclically, i.e., en+1 := e1, en+2 := e2, . . . ), with

ξ` =
si+`−1ξ`−1
|si+`−1|

, ` = 1, . . . , j.



ETNA
Kent State University

http://etna.math.kent.edu

136 M. SCHWEITZER

The corresponding upper Hessenberg matrix is given by

Hj =


di 0 · · · 0 0
|si| di+1 0 · · · 0

0 |si+1|
. . .

. . .
...

...
. . .

. . . di+j−2 0
0 · · · 0 |si+j−2| di+j−1

 , hj+1,j = |si+j−1|.

Proof. The result follows by direct verification of the Arnoldi relation (1.2).
Of course, it is also possible to state the result of Proposition 2.2 by just using ζei, with an
arbitrary complex scalar ζ, as initial residual. We distinguish between the complex scalar ξ0
of modulus one and the real, positive scalar c in Proposition 2.2 mainly for ease of notation
and a clearer presentation. It allows us to give an easy explicit recursion for the values
ξ`, ` = 1, . . . , j, appearing in the Arnoldi basis and to relate the value c to the residual norms
to be prescribed later on (one directly sees that in Proposition 2.2 we have ‖r0‖2 = c).

The following result is now easily provable by using Proposition 2.2.
PROPOSITION 2.3. Let the assumptions of Proposition 2.2 hold. Then the residual

generated by j ≤ n− 1 iterations of FOM is given by

rj = (−1)jξjc
|si · si+1 · · · si+j−1|
di · di+1 · · · di+j−1

ei+j .

In particular,

‖rj‖2 =

∣∣∣∣ si+j−1di+j−1

∣∣∣∣ · ‖rj−1‖2.
Proof. The FOM residual satisfies rj = −hj+1,j‖r0‖2

(
eHj H

−1
j e1

)
vj+1; see [17]. In

our setting we have

‖r0‖2 = c, hj+1,j = |si+j |, vj+1 = ξjei+j ,

and

eHj H
−1
j e1 =

|si+1| · · · |si+j−1|
di+1 · · · di+j

due to the simple, bidiagonal structure of Hj .
Proposition 2.2 and 2.3 now allow to relate the behavior of FOM(m) for A(d , s) to the

behavior of unrestarted FOM.
LEMMA 2.4. Let the assumptions of Proposition 2.2 hold and let m ≤ n− 1. Then the

residuals produced by the first n− 1 iterations of FOM(m) and unrestarted FOM coincide.
Proof. For simplicity, we only consider the situation after one restart, the result for an

arbitrary number of restarts follows analogously. Let 1 ≤ j ≤ m be such that m+ j ≤ n− 1.
According to Proposition 2.3, the residual norm after m+ j iterations of unrestarted FOM is
given by

(2.2) rm+j = (−1)m+jξm+jc
|si · si+1 · · · si+m+j−1|
di · di+1 · · · di+m+j−1

ei+m+j .
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In the same way, after the first cycle of FOM(m), the residual—and thus the right hand side
for the second cycle—is given by

(2.3) rm = (−1)mξmc
|si · si+1 · · · si+m−1|
di · di+1 · · · di+m−1

ei+m.

The result of Proposition 2.3 for j iterations of FOM with initial residual (2.3) yields exactly
the same result as (2.2).

We are now in a position to prove our main result. We first note that it would also be
possible to derive Theorem 2.1 by exploiting known results for the convergence of GMRES
together with the relationship between FOM residual norms and GMRES residual norms
(cf. also the discussion in Section 3), but we prefer to give a constructive proof of our result,
as it gives additional insight into the behavior of the method which will be useful for further
considerations in the remaining sections of this paper.

Assume that a sequence f1, . . . , fm of positive scalars is given. Based on Proposition 2.3,
we can derive conditions on d and s , such that FOM(m) for A(d , s) and b = e1 with initial
guess x0 = 0 produces the residual norms f1, . . . , fm. Setting f0 = ‖r0‖2 = 1, the conditions

(2.4) sj =
fj
fj−1

dj , j = 1, . . . ,m

guarantee that the desired residual norm sequence is obtained. Therefore, for any fixed nonzero
choice of d1, . . . , dm, there exist coefficients s1, . . . , sm such that the firstm iterations of FOM
produce the desired residual norms f1, . . . , fm. The freedom in the choice of the coefficient
vector d can be used to prescribe the eigenvalues of A(d , s). Before describing this in detail,
we consider the situation after restarting the method.

After m iterations of FOM started with x0 = 0 for A(d , s) and e1, the residual rm =
e1 −Axm is, according to Proposition 2.3, given by

rm = (−1)mξm
|s1 · s2 · · · sm|
d1 · d2 · · · dm

em+1.

Therefore, the situation after restarting the method with new initial guess xm is covered by
Proposition 2.3 as well, where

c =

∣∣∣∣ s1 · · · sm−1d1 · · · dm−1

∣∣∣∣ = fm,

cf. also the proof of Lemma 2.4. It is immediately clear that choosing the next values in d and
s (analogously to (2.4)) as

sj =
fj
fj−1

dj , j = m+ 1, . . . ,min{2m,n}

produces the residual norms fm+1, . . . , fmin{2m,n} in the next cycle of FOM(m) (or in the
first n−m iterations of this cycle if 2m > n). This construction can be continued for a total
of n iterations, until all values in s are fixed.

We now describe how to prescribe the eigenvalues of A(d , s) by choosing the coefficients
in d accordingly. The characteristic polynomial of A(d , s) is given by

(2.5) χA(d ,s)(λ) = (λ− d1) · · · (λ− dn)− s1 · · · sn.
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To eliminate the dependency of the characteristic polynomial on s , we note that multiply-
ing all equations in (2.4) (and its counterparts in later restart cycles) yields

(2.6) s1 · · · sn = fn · d1 · · · dn.

Therefore, we may rewrite the characteristic polynomial of a matrix A(d , s) generating the
prescribed residual norm sequence f1, . . . , fn as

(2.7) χA(d ,s)(λ) = (λ− d1) · · · (λ− dn)− fn · d1 · · · dn.

Prescribing the eigenvalues of A(d , s) therefore means choosing the values d1, . . . , dn
such that the zeros of (2.7) are µ1, . . . , µn. This can be done as follows. Writing

(λ− µ1) · · · (λ− µn) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β0,

we choose the components di of d as the n roots of the polynomial

(2.8) λn + βn−1λ
n−1 + · · ·β1λ+ β̃0 with β̃0 =

β0
1 + (−1)n+1fn

,

assuming for the moment that fn 6= (−1)n, so that β̃0 is defined. Then, (−1)nd1 · · · dn = β̃0
and we have

χA(d ,s)(λ) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β̃0 − fn · d1 · · · dn

= λn + βn−1λ
n−1 + · · ·+ β1λ+ β̃0 + (−1)n+1fnβ̃0

= λn + βn−1λ
n−1 + · · ·+ β1λ+ β0

(
1

1 + (−1)n+1fn
+

(−1)n+1fn
1 + (−1)n+1fn

)
= λn + βn−1λ

n−1 + · · ·+ β1λ+ β0,

showing that A(d , s) has the desired eigenvalues. In addition, the above construction implies
that di 6= 0, i = 1, . . . , n, so that all Hessenberg matrices H(k)

j are nonsingular and all FOM
iterates are defined. This proves Theorem 2.1 for the case q = n and fn > 0, fn 6= (−1)n. We
conclude the proof by commenting on how the special cases excluded so far can be handled.

The case fn = (−1)n can be handled as follows: As a first step, replace the sequence
f1, . . . , fn by the new sequence

(2.9) f̃1 =
f1
2
, f̃2 =

f2
2
, . . . , f̃n =

fn
2
.

With fn = (−1)n replaced by f̃n, the value β̃0 in (2.8) is guaranteed to exist and one can
construct the matrix A(d , s) as described in the previous part of the proof. When solving the
system A(d , s)x = e1, with the matrix A(d , s) constructed for the modified sequence (2.9),
the generated residual norms are

‖rj‖2 = f̃j =
fj
2
.

Thus, the residual norm sequence f1, . . . , fn can be generated with this matrix by using the
right-hand side b = 2e1 instead (implying ‖r0‖2 = 2, as x0 = 0).

For q < n and fq > 0 we can use exactly the same construction, setting the “unused”
coefficients sq+1, . . . , sn to arbitrary values in such a way that (2.6) still holds (with fn
replaced by fq).
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If fq = 0, then sq = 0 and the characteristic polynomial (2.5) of A(d , s) simplifies to

χA(d ,s)(λ) = (λ− d1) · · · (λ− dn),

such that the eigenvalues of A(d , s) are just the entries of d , again allowing to freely prescribe
them. The remaining entries sq+1, . . . , sn can be chosen arbitrarily (e.g., all equal to zero),
as FOM(m) terminates after the qth iteration in this case. This concludes the proof of
Theorem 2.1.

REMARK 2.5. According to Theorem 2.1, we can prescribe the residual norms produced
by FOM(m) for (at most) n iterations. While not being able to prescribe residual norms in
further iterations, we do indeed have full information on the convergence behavior of FOM(m)
in later iterations when considering the matrices A(d , s) from (2.1), b = e1 and x0 = 0.
For the sake of simplicity, we again only consider the case that the first n residual norms are
prescribed, and that fn 6= 0. Proposition 2.3 also applies to the situation in which there have
been more than n iterations, as the residual is still a multiple of a canonical unit vector then.
Therefore, the residual norm for iteration j (possibly larger than n) fulfills

‖rj‖2 =
fj mod n

fj−1 mod n
‖rj−1‖2

i.e., the ratios between consecutive residuals are repeated cyclically. This information about
later iterations is in contrast to the approach of [8, 21] for restarted GMRES, where nothing
is known about the behavior of the method after n iterations. An interesting interpretation
of the behavior of FOM(m) for iteration numbers exceeding n is that it behaves exactly as
unrestarted FOM applied to the (infinite) bidiagonal matrix

d1 0 · · · · · · · · · · · · · · · · · ·

s1 d2
. . .

0 s2
. . . . . .

...
. . . . . . dn−1

. . .
...

. . . sn−1 dn
. . .

...
. . . sn d1

. . .
...

. . . s1 d2
. . .

...
. . . . . . . . .



,

which results from “gluing together” copies of A(d , s) with the entries sn moved from the
upper right corner of A(d , s) to the subdiagonal entry “connecting” two copies of A(d , s).

In light of Lemma 2.4—the relation between FOM(m) and unrestarted FOM for the
matricesA(d , s)—the result of Theorem 2.1 also holds for unrestarted FOM (with the obvious
difference that ‖rn‖2 must be zero due to the finite termination property of FOM).

COROLLARY 2.6. Let n ∈ N, 1 ≤ q ≤ n, f1, . . . , fq−1 ∈ R+, fq = 0 and let
µ1, . . . , µn ∈ C \ {0}, not necessarily pairwise distinct. Then there exist a matrix A ∈ Cn×n
with spec(A) = {µ1, . . . µn} and vectors b,x0 ∈ Cn such that the residuals rj generated by
j iterations of FOM for Ax = b with initial guess x0 satisfy

‖rj‖2 = fj for j = 1, . . . , q.
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3. Relation and differences to results on (restarted) GMRES. In this section, we
briefly comment on the relation of Theorem 2.1 to similar results concerning the convergence
of (restarted) GMRES from [2, 7, 8, 13, 21]. In [7, 13] it is shown that arbitrary (nonincreasing)
residual norm sequences can be prescribed for unrestarted GMRES, for a matrix with any
desired eigenvalues. In [9], the authors extend these results also to the case of breakdown in
the underlying Arnoldi process.

There exists a well-known relation between the residual norms generated by FOM and
those generated by GMRES. Precisely, provided that the jth FOM iterate for Ax = b is
defined, it holds

(3.1) ‖rFj ‖2 =
‖rGj ‖2√

1− (‖rGj ‖2/‖rGj−1‖2)2
,

where rFj and rGj denote the residual of the jth FOM and GMRES iterate, respectively; see,
e.g., [4–6]. Using this relation, Corollary 2.6 can be derived as a corollary of the results
from [7, 9, 13] for GMRES as follows: Given values fF1 , . . . , f

F
q to be prescribed as FOM

residual norms, define the quantities

(3.2) fGj :=
fFj√

1 + (fFj /f
G
j−1)

2
with fG0 = 1.

Now construct a matrix A (with any desired eigenvalues) and a vector b which generate the
sequence fG1 , . . . , f

G
q of GMRES residual norms using the techniques from [7, 9, 13]. Then,

by (3.1), A and b will generate the sequence fF1 , . . . , f
F
q of FOM residual norms.

In [2], the authors give a complete parameterization of all matrices with prescribed
eigenvalues and corresponding right-hand sides which exhibit a certain (unrestarted) GMRES
convergence curve. Obviously, the matrices A(d , s) from (2.1) thus must belong to this
parameterized class of matrices, corresponding to eigenvalues µ1, . . . µn and GMRES residual
norms (3.2). This gives rise to another alternative proof of our main result, first showing
that A(d , s) belongs to this class of matrices and then using the result of Lemma 2.4 to
conclude that the convergence curve of restarted FOM is the same as that of unrestarted FOM.
Again, this approach would not have given the information on iterations exceeding n given in
Remark 2.5.

In much the same way, the result on restarted GMRES from [21] can be transferred to a
result on restarted FOM. In [21], the authors construct linear systems for which the residual
norm at the end of the first k ≤ n

m cycles of restarted GMRES can be prescribed. Again
using (3.2), one can easily construct systems for which the residual norms at the end of the
first b nmc cycles of restarted FOM can be prescribed. Our construction, however, allows for
prescribing the residual norms in all iterations of restarted FOM, not just at the end of each
cycle. Therefore, Theorem 2.1 cannot be derived from the results of [21].

In fact, using (3.1), one can use our construction for generating matrices with arbitrary
nonzero spectrum which produce a prescribed, decreasing convergence curve of restarted
GMRES in the first n iterations (the case of stagnation needs to be handled separately, as
it corresponds to a FOM iterate not being defined, see, e.g., [4], a case we do not consider
here). In the work [8]—which was published as a preprint simultaneously to this paper—
another construction for prescribing the residual norms in the first n iterations of restarted
GMRES is presented, which also deals with stagnation. In addition, in [8], it is investigated
which convergence curves cannot be exhibited by restarted GMRES (so-called inadmissible
convergence curves), as it is no longer true that any nonincreasing convergence curve is
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possible as soon as stagnation is allowed. Therefore, considering the behavior of restarted
GMRES (or restarted FOM, although the connection is not pointed out in [8]), the approach
from [8] gives more general results than what we presented here. However, our construction
gives rise to a further result on restarted GMRES, cf. Theorem 3.1, which cannot be derived
from the results of [8], and thus complements the analysis presented in [8].

Due to the direct relation between the residual norms generated by FOM and GMRES,
Remark 2.5 also applies (in a modified form) to restarted GMRES. We can use this to answer
an open question raised in the conclusions section of [21]. There, the authors ask whether
it is possible to give convergence estimates based on spectral information for later cycles of
restarted GMRES, i.e., for k > n

m . By using our construction, and in particular the statement of
Remark 2.5, we can construct a matrix A for which the ratio ‖rG` ‖2/‖rG0 ‖2 can be arbitrarily
close to one, for any ` ∈ N and with any prescribed eigenvalues. Therefore, it is impossible
to use spectral information alone to give bounds for the residual norms generated by either
FOM(m) or GMRES(m) in “later” restart cycles. We end this section by stating the precise
result for GMRES(m) in the following theorem (a corresponding result for FOM(m) directly
follows from Remark 2.5).

THEOREM 3.1. Let n,m, ` ∈ N, m ≤ n− 1, let µ1, . . . , µn ∈ C \ {0}, not necessarily
distinct, and let 0 ≤ δ < 1. Then there exist a matrix A ∈ Cn×n with spec(A) = {µ1, . . . µn}
and vectors x0, b ∈ Cn such that the residual rG` = b −AxG` generated by ` (with ` possibly
larger than n) iterations of GMRES(m) for Ax = b with initial guess x0 satisfies

‖rG` ‖2/‖rG0 ‖2 ≥ δ.

Proof. By Theorem 2.1 there exist a matrix A ∈ Cn×n with spec(A) = {µ1, . . . , µn}
and vectors b,x0 ∈ Cn such that the residuals rFj , j = 1, . . . , n, produced by the first n
iterations of FOM(m) fulfill

(3.3) ‖rFj ‖2 = ρj with ρ =
δ1/`

(1− δ2/`)1/2
for j = 1, . . . , n.

By Remark 2.5, we then have that (3.3) also holds for j > n. We can rephrase this as

(3.4) ‖rFj−1‖2 =
1

ρ
‖rFj ‖2 for all j ∈ N.

By relation (3.1), two consecutive residual norms generated by GMRES(m) for A, b and x0
fulfill

‖rGj ‖2
‖rGj−1‖2

=
‖rFj ‖2

‖rGj−1‖2
√

1 + (‖rFj ‖2/‖rGj−1‖2)2

=
‖rFj ‖2√

‖rGj−1‖22 + ‖rFj ‖22
=

‖rFj ‖2√
‖rF

j−1‖22
1+(‖rF

j−1‖2/‖rG
j−2‖2)2

+ ‖rFj ‖22

≥
‖rFj ‖2√

‖rFj−1‖22 + ‖rFj ‖22
.(3.5)

Inserting (3.4) into the right hand side of (3.5), we find

(3.6)
‖rGj ‖2
‖rGj−1‖2

≥
‖rFj ‖2√

‖rFj ‖22 + 1
ρ2 ‖r

F
j ‖22

=
1√

1 + 1
ρ2

.
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By repeated application of (3.6) for all j ≤ `, we find

(3.7) ‖rG` ‖2/‖rG0 ‖2 =
(
‖rG` ‖2/‖rG`−1‖2

)
· · ·
(
‖rG1 ‖2/‖rG0 ‖2

)
≥ 1

(1 + 1
ρ2 )

`/2
.

The result follows from (3.7) by noting that (1 + 1
ρ2 )

`/2 = 1
δ .

4. Approximating g(A)b by the restarted Arnoldi method. Restarted FOM is rarely
used in practice (although there exist situations where it is considered useful, e.g., when
solving families of shifted linear systems; see [19]) as restarted GMRES is typically the
method of choice for non-Hermitian linear systems. However, the (restarted) Arnoldi method
for approximating g(A)b , the action of a matrix function on a vector (see, e.g., [1, 10, 11]) can
be interpreted as implicitly performing (restarted) FOM for families of shifted linear systems
if the function g has an integral representation involving a resolvent function. This is, e.g., the
case for Stieltjes functions [3, 14] defined by the Riemann–Stieltjes integral

g(z) =

∫ ∞
0

1

z + t
dα(t),

where α is a monotonically increasing, nonnegative function. Examples of Stieltjes functions
include g(z) = z−σ for σ ∈ (0, 1] or g(z) = log(1 + z)/z. One can show that the restarted
Arnoldi approximation (after k cycles with restart length m) for g(A)b is given as

(4.1) g (k)
m =

∫ ∞
0

x (k)
m (t) dα(t),

when g is a Stieltjes function, where x
(k)
m (t) denotes the iterate obtained from k cycles of

FOM(m) for the shifted linear system

(4.2) (A+ tI)x (t) = b

with initial guess x0(t) = 0; see [10, 12]. In [12], a convergence analysis of the restarted
Arnoldi method for A Hermitian positive definite and g a Stieltjes function is given. There it is
proved that the method always converges to g(A)b , independent of the restart length m and
that the asymptotic convergence factor of the method depends on the condition number, the
ratio of the largest and smallest eigenvalues, of A.

Motivated by the result of Theorem 2.1, we conjecture that for non-normal A it is not
possible to analyze the behavior of the restarted Arnoldi method based solely on spectral
information.

CONJECTURE 4.1. Let g be a Stieltjes function, m,n ∈ N with m ≤ n − 1 and let
µ1, . . . , µn ∈ C \ R−0 , not necessarily distinct. Then there exist a matrix A ∈ Cn×n and a
vector b ∈ Cn such that spec(A) = {µ1, . . . , µn} and the iterates of the restarted Arnoldi
method with restart length m do not converge to g(A)b .

Intuitively, the statement of Conjecture 4.1 is plausible in light of the analysis presented
for FOM(m) in Section 2 and the characterization (4.1) of the restarted Arnoldi approximations
g
(k)
m . It is easily possible to construct the matrix A in such a way that the (implicitly generated)

FOM(m) iterates x
(k)
m (t) for t in some interval [t1, t2] diverge (by prescribing increasing

residual norms), and one would surely expect the corresponding Arnoldi approximation g
(k)
m

for g(A)b to inherit this behavior and diverge in this case as well. We give a small numerical
example which illustrates this (a similar example was presented in [12]). We construct a
matrix A(d , s) ∈ C6×6 with spec(A(d , s)) = {1, 2, . . . , 6} such that the residual norms
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FIG. 4.1. Convergence curve for approximating A(d , s)−1/2e1, where A(d , s) ∈ C6×6 with
spec(A(d , s)) = {1, 2, . . . , 6} is constructed such that the FOM(m) residual norms increase by a factor of
two from one iteration to the next. The restart length is chosen as m = 5.

produced by restarted FOM increase by a factor of two from one cycle to the next. The
resulting convergence curve when approximating A−1/2e1 by the restarted Arnoldi method
with restart length m = 5 is depicted in Figure 4.1. The observed behavior can be explained
as follows: As the factor by which the residual norm increases depends continuously on the
values in d , there exists an interval [0, t0] such that the residual norms for the shifted linear
systems

(A(d , s) + tI)x (t) = b, t ∈ [0, t0]

are also increasing. One can expect FOM(m) to converge for those linear systems correspond-
ing to large values of t, as those are close to trivial. The error norm is therefore decreasing
initially, until the FOM iterates for the underlying (implicitly solved) linear systems with large
t all have converged. From this moment on, the divergence of the FOM iterates for the systems
corresponding to small shifts becomes visible and the error norm begins to increase. Thus, the
convergence curve shown in Figure 4.1 is in complete agreement with what one would expect
motivated by our theory.

The difficulty in proving Conjecture 4.1 in the setting of this paper is the following: We
only made statements about FOM residual norms, but not about the actual error vectors. When
approximating g(A)b , it immediately follows from (4.1) that

g(A)b − g (k)
m =

∫ ∞
0

d (k)
m (t) dα(t),

where d
(k)
m (t) = x ∗(t)− x

(k)
m (t) are the errors of the FOM(m) iterates for the systems (4.2).

Surely, if ‖r (k)
m (t)‖2 →∞ as k →∞ for t ∈ [t1, t2], it follows ‖d (k)

m (t)‖2 →∞ as k →∞.
However, this does not imply that∥∥∥∥∫ t2

t1

d (k)
m (t) dα(t)

∥∥∥∥
2

→∞ as k →∞,
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as we do not have any information about the entries of d (k)
m (t), and their integral might be

zero despite all vectors being nonzero (and of possibly very large norm). Therefore, one
needs additional information on the entries of the error vectors, or some completely different
approach, for proving the conjecture.

5. Conclusions. We have shown that (and how) it is possible to construct a matrix
A ∈ Cn×n with arbitrary nonzero eigenvalues and vectors b,x0 ∈ Cn such that the norms of
the first n residuals of FOM(m) for Ax = b with initial guess x0 attain any desired (finite)
values, indicating that convergence analysis of FOM(m) based solely on spectral information
is not possible for non-normalA. In addition, we have pointed out the connection of our results
to results on (restarted) GMRES and addressed the open question whether a convergence
analysis based on spectral information is possible for restarted GMRES in “later iterations”
(exceeding the matrix dimension). While not being able to freely prescribe residual norms for
later iterations, our construction gives full information on these norms and allows us to find
matrices having any prescribed nonzero eigenvalues for which the reduction of the residual
norm is arbitrarily small throughout any number of iterations (exceeding n), so that also in this
setting no (nontrivial) convergence estimates can be given based on spectral information. We
also briefly commented on extending our result to the approximation of g(A)b , the action of a
Stieltjes matrix function on a vector. Intuition and numerical evidence suggest that a similar
result, presented as a conjecture, also holds in this case.
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