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FAST SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH
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Abstract. A fast method for solving boundary integral equations with the generalized Neumann kernel and the

adjoint generalized Neumann kernel is presented. The complexity of the developed method is O((m + 1)n lnn)
for the integral equation with the generalized Neumann kernel and O((m+ 1)n) for the integral equation with the

adjoint generalized Neumann kernel, where m+ 1 is the multiplicity of the multiply connected domain and n is the

number of nodes in the discretization of each boundary component. Numerical results illustrate that the method gives

accurate results even for domains of very high connectivity, domains with piecewise smooth boundaries, domains

with close-to-touching boundaries, and domains of real world problems.
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1. Introduction. Let G be an (m + 1)-multiply connected domain in the extended

complex plane C ∪ {∞}. Let G have the boundary

Γ := ∂G =

m
⋃

j=0

Γj ,

where Γ0,Γ1, . . . ,Γm are closed Jordan curves. The orientation of Γ is such that G is always

on the left of Γ. The domain G can be bounded or unbounded. For the case when G is bounded,

we assume that α is a given point in G and Γ0 encloses all the other curves Γ1, . . . ,Γm. If G
is unbounded, then ∞ ∈ G. For m = 0, the domain G is simply connected; see Figure 1.1.
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Γm
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G
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FIG. 1.1. The bounded (left) and unbounded (right) multiply connected domain G of connectivity m+ 1.

Consider the following classical boundary value problem for analytic functions:

The Riemann-Hilbert problem. Let A be a Hölder continuous complex-valued function

on Γ with A 6= 0 and γ be a Hölder continuous real-valued function on Γ. Find a function f
analytic in G, with f(∞) = 0 for unbounded G, and continuous on the closure G such that

the boundary values of f satisfy on Γ:

(1.1) Re[Af ] = γ on Γ.
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When A = 1, problem (1.1) is also known as the modified Dirichlet problem [11, 27, 30]

and the Schwarz problem [9, 11].

The solvability of the Riemann-Hilbert problem (1.1) depends upon the index (winding

number in other terminology) of the function A [11, 50]. The index κj of the function A on

the curve Γj is defined as the change of the argument of A along the curve Γj divided by 2π,

i.e.,

κj :=
1

2π
∆argA|Γj

, j = 0, 1, . . . ,m.

The index κ of the function A on the whole boundary Γ is the sum of the indexes κj , i.e.,

κ =
∑m

j=0 κj .

In this paper, we assume that the function A(η) is defined for η ∈ Γ by

(1.2) A(η) =

{

ei(
π
2
−θ(η)) (η − α), if G is bounded,

ei(
π
2
−θ(η)), if G is unbounded,

where θ is a piecewise constant real-valued function defined on Γ, i.e.,

(1.3) θ(η) = θj , for η ∈ Γj ,

and θj are given real constants for j = 0, 1, . . . ,m. For simplicity, the piecewise constant

function θ(η) defined on Γ by (1.3) will be denoted by

(1.4) θ(η) = (θ0, θ1, θ2, . . . , θm).

This notation will be used for any piecewise constant function defined on Γ.

The index of the function A in (1.2) is given for bounded G by

κ0 = 1, κ1 = · · · = κm = 0, κ = 1,

and for unbounded G by

κ0 = κ1 = · · · = κm = 0, κ = 0.

Thus, the Riemann-Hilbert problem (1.1) with A in (1.2) is not necessary solvable [11, 33, 50,

53, 54]. However, a unique piecewise constant real-valued function h(η) = (h0, h1, . . . , hm)
exists such that the following Riemann-Hilbert problem

(1.5) Re[Af ] = γ + h on Γ

is uniquely solvable [31, 32, 35, 36]. The unknown function h is part of the solution of

problem (1.5) and should be calculated alongside the function f . In the next section, we shall

review a method for solving the Riemann-Hilbert problem (1.5). The method is based on a

boundary integral equation with the generalized Neumann kernel.

The function θ(η) in (1.2) gives us the flexibility to reformulate several problems in applied

mathematics as problem (1.5) with the function A in (1.2). For example, the three classical

boundary value problems: the Dirichlet problem, the Neumann problem, and the mixed

Dirichlet-Neumann problem can be reduced to (1.5) [2, 3, 9, 11, 16, 17, 27, 28, 30, 41, 42].

More importantly, the problem of computing the conformal mapping onto Koebe’s thirty-nine

canonical slit domains (see Figures 1–39 in [21]) has been rephrased into this form [31, 32, 35,

36]. The same holds for the computation of the conformal mapping onto the canonical domain

obtained by removing several slits from a strip; see [54, p. 128]. Furthermore, the problem

of computing the potential flow past multiple aerofoils can also be reduced to (1.5) [34]; see

also [7, 8]. Several other tasks in mathematical physics can be formulated as a Riemann-Hilbert

problem (1.5); see, e.g., [45]. Table 1.1 demonstrates how to choose the function θ(η) in each

of these cases.
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TABLE 1.1

The choices of the function θ(η) = (θ0, θ1, θ2, . . . , θm) for different problems.

θ(η) Applications

θj = π/2,
for j = 0, 1, . . . ,m

• the Dirichlet problem (see [42])

• the Neumann problem (see [42])

• the conformal mapping onto the canonical domains in

Figures 1, 2, and 3 in Koebe [21] (see [31, 32, 43])

θj ∈ {0, π/2},
for j = 0, 1, . . . ,m

• the mixed Dirichlet-Neumann problem [2, 3, 41]

• the conformal mapping onto the canonical domains in

Figures 8 and 9 in Koebe [21] (see [35])

θj = 0,
for j = 0, 1, . . . ,m

• the conformal mapping onto the canonical domains in

Figures 4, 5, 14, 15, 16, 20, 21, 26, 27, 28, 29, 34, 35,

and 36 in Koebe [21] (see [31, 32, 36, 43])

• the conformal mapping onto a strip with a parallel slits

(see [39])

• the external potential flow problem (see [34])

θ0 = π/2,

θj ∈ {0, π/2},
for j = 1, . . . ,m

• the conformal mapping onto the canonical domains in

Figure 7 in Koebe [21] (see [35])

θ0 = 0,

θj ∈ {0, π/2},
for j = 1, . . . ,m

• the conformal mapping onto the canonical domains

in Figures 17, 18, 19, 22, 24, 30, 31, 32, and 33 in

Koebe [21] (see [36])

θ0 = π/2,

θ1 = π/2,

θj ∈ {0, π/2},
for j = 2, . . . ,m

• the conformal mapping onto the canonical domains in

Figure 6 in Koebe [21] (see [35])

θ0 = 0, θ1 = 0,

θj ∈ {0, π/2},
for j = 2, . . . ,m

• the conformal mapping onto the canonical domains in

Figures 37, 38, and 39 in Koebe [21] (see [36])

θ0 = π/2, θ1 = 0,

θj ∈ {0, π/2},
for j = 2, . . . ,m

• the conformal mapping onto the canonical domains in

Figures 23 and 25 in Koebe [21] (see [36])

θj ∈ [0, π/2],
for j = 0, 1, . . . ,m

• the conformal mapping onto the canonical domains in

Figures 10, 11, 12, and 13 in Koebe [21] (see [36])

2. The generalized Neumann kernel. For j = 0, 1, . . . ,m, the curve Γj is parametrized

by a 2π-periodic twice continuously differentiable complex function ηj(t) with non-vanishing

first derivative η̇j(t) 6= 0, for t ∈ Jj := [0, 2π]. (A dot always denotes the derivative with

respect to the parameter t.) The total parameter domain J is the disjoint union of the m+ 1
intervals J0, J1, . . . , Jm,

J =

m
⊔

j=0

Jj =

m
⋃

j=0

{(t, j) : t ∈ Jj} ,
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i.e., the elements of J are order pairs (t, j), where j is an auxiliary index indicating which

of the intervals contains the point t [24, p. 394]. We define a parametrization of the whole

boundary Γ as the complex function η defined on J by

(2.1) η(t, j) = ηj(t), t ∈ Jj , j = 0, 1, . . . ,m.

In this paper, we assume that for a given t the auxiliary index j is known, so we replace the

pair (t, j) on the left-hand side of (2.1) by t. Thus, the function η in (2.1) is written as

η(t) =























η0(t), t ∈ J0,

η1(t), t ∈ J1,
...

ηm(t), t ∈ Jm.

In view of the smoothness of the parametrization η(t) of the boundary Γ, any real-valued

or complex-valued function φ(η), Hölder continuous on the boundary Γ, can be interpreted

via φ̂(t) := φ(η(t)) as a 2π-periodic Hölder continuous function of the parameter t on J and

vice versa. Henceforth, in this paper, we shall not distinguish between φ(t) and φ(η(t)).
The generalized Neumann kernel formed with A and η is defined on J ×J by [29, 52, 53]

N(s, t) :=
1

π
Im

(

A(s)

A(t)

η̇(t)

η(t)− η(s)

)

.

Another kernel which is always defined together with N(s, t) is the kernel M(s, t) defined

on J × J by

M(s, t) :=
1

π
Re

(

A(s)

A(t)

η̇(t)

η(t)− η(s)

)

.

LEMMA 2.1 ([53]).

(a) The kernel N is continuous with

N(t, t) =
1

π

(

1

2
Im

η̈(t)

η̇(t)
− Im

Ȧ(t)

A(t)

)

.

(b) When s, t ∈ Jj are in the same parameter interval Jj , then

(2.2) M(s, t) = − 1

2π
cot

s− t

2
+M1(s, t)

with a continuous kernel M1, which takes the values on the diagonal

M1(t, t) =
1

π

(

1

2
Re

η̈(t)

η̇(t)
− Re

Ȧ(t)

A(t)

)

.

Let H be the space of all real-valued Hölder continuous functions on the boundary Γ.

On H we define the following operators:

Nµ(s) :=

∫

J

N(s, t)µ(t)dt, s ∈ J,

Mµ(s) :=

∫

J

M(s, t)µ(t)dt, s ∈ J.
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In view of the previous lemma, the integral operator N is a compact operator, and the

operator M is a singular operator. Both operators N and M are bounded on the space H and

map H into itself. For more details, see [33, 52, 53].

The adjoint operator N∗ is defined by

N∗µ(s) :=

∫

J

N∗(s, t)µ(t)dt, s ∈ J,

where N∗(s, t) = N(t, s). We also define an integral operator J by

Jµ(s) :=

∫

J

δ(s, t)µ(t)dt, s ∈ J,

where the kernel δ(s, t) is given for s ∈ Jk and t ∈ Jj by

δ(s, t) =

{

1
2π , k = j,

0, k 6= j,

for k, j = 0, 1, . . . ,m. Hence,

Jµ(s) =

(

1

2π

∫

J0

µ(t)dt,
1

2π

∫

J1

µ(t)dt, . . . ,
1

2π

∫

Jm

µ(t)dt

)

,

i.e., the function Jµ(s) is piecewise constant.

To solve the Riemann-Hilbert problem (1.5), it suffices to find the boundary values of its

unique solution f on the boundary Γ. Then the values of f(z), for z ∈ G, can be computed by

the Cauchy integral formula.

Let µ = Im[Af ]. The boundary values of the function f are given by

Af = γ + h+ iµ,

where only the function γ is known and the functions h and µ are unknowns. The unknown

functions h and µ are uniquely determined by the known γ. Both functions µ and h can be

determined by solving an integral equation with the generalized Neumann kernel as described

in the following theorem from [31, 32, 35].

THEOREM 2.2. For any γ ∈ H , there exists a unique function µ ∈ H and a unique

piecewise constant real-valued function h = (h0, h1, . . . , hm) such that

A(η)f(η) = γ(η) + h(η) + iµ(η), η ∈ Γ,

are the boundary values of the unique solution of the Riemann-Hilbert problem (1.5). The

function µ is the unique solution of the integral equation

(2.3) (I−N)µ = −Mγ ,

and the function h is given by

(2.4) h = [Mµ− (I−N)γ]/2.

It is clear that the unique solution µ of (2.3) yields the unknown piecewise constant

function h in (1.5) and the boundary values of the unique solution f(z) of the Riemann-Hilbert

problem (1.5). The values of the function f(z) for interior points z ∈ G can be computed
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by the Cauchy integral formula. Hence, the integral equation (2.3) can be used to solve the

problems listed in Table 1.1.

The main objective of this paper is to develop a fast numerical method for solving the

boundary integral equation with the generalized Neumann kernel (2.3) and computing the

piecewise constant function h given by (2.4). We shall also develop a fast numerical method

for solving the boundary integral equation with the adjoint generalized Neumann kernel

(2.5) (I+N∗ + J)µ = γ ,

where γ ∈ H . Similar to equation (2.3), the boundary integral equation (2.5) can be used to

compute the conformal mapping onto Koebe’s thirty-nine canonical slit domains [43, 55, 56]

and to solve the potential flow problem [34, 45].

As for the Riemann-Hilbert problem, the solvability of integral equations with the opera-

tors N and N∗ depends on the function A. For A given by (1.2), the integral equations (2.3)

and (2.5) are uniquely solvable. For more details, see [29, 33, 52, 53].

THEOREM 2.3 ([42]). Suppose that θ is a constant function and the function A is given

by (1.2).

(a) If λ is an eigenvalue of I−N, then λ ∈ (0, 2].
(b) If λ is an eigenvalue of I+N∗ + J, then λ ∈ (0, 2).
Since the operator N and its adjoint N∗ are compact, the eigenvalues of I−N and I+N∗

are clustered at 1 [23, p. 292]. It follows from [42] that if λ is an eigenvalue of I+N∗ + J,

then λ is also an eigenvalue of I+N∗. Hence, the eigenvalues of the operator I+N∗ + J
are also clustered at 1. As stated in Theorem 2.3, the eigenvalues of I−N and I+N∗ + J
are real for constant functions θ. For non-constant θ, numerical evidence shows that the

operators I−N and I+N∗ + J have complex eigenvalues and these eigenvalues are in the

closed disk centred at 1 with radius 1; see [39, 40] and the numerical results below.

For bounded or unbounded multiply connected domains of connectivity m+1, discretizing

the boundary integral equations (2.3) and (2.5) by the Nyström method with the trapezoidal

rule yields dense and nonsymmetric (m + 1)n × (m + 1)n linear systems, where n is the

number of nodes in the discretization of each boundary component. If the boundaries are of

class Cq+2 and the function γ is of class Cq, then the rate of convergence of the Nyström

method with the trapezoidal rule is O(1/nq). For analytic boundaries and analytic function γ,

the Nyström method with the trapezoidal rule converges exponentially [22]. For domains with

corners, accurate results are obtained if we use the trapezoidal rule with a graded mesh [22, 23].

The condition number of the obtained linear systems is bounded independently of n [23,

39, 42]. Thus, if the generalized minimal residual (GMRES) method [49] is used to solve

these systems, the number of iterations required for a certain accuracy is expected to be

bounded independently of n. Hence, the computational complexity of the GMRES method is

determined by the amount of work required for computing matrix-vector products. An elegant

method for a fast and efficient computation of matrix-vector products is the Fast Multipole

Method (FMM) developed by Rokhlin [48] and Greengard and Rokhlin [15]. For more details,

see [1] and [23, §14.4]. See also [12, 14, 18, 19, 25, 46, 48] for examples of integral equations

which have been solved by the FMM.

Recently, a fast method for solving the (m+ 1)n× (m+ 1)n linear systems resulting

from the discretization of (2.3) has been presented in [39], where the linear system is solved

by the GMRES method. Each iteration of the GMRES method requires a matrix-vector

product, which can be computed using the FMM in O((m + 1)n) operations. However,

the discretization of the singular operator M in (2.3) and (2.4) requires O((m + 1)n lnn)
operations. Discretizing the operator M in [39] requires computing the derivatives γ̇ and µ̇,
where the derivative of the known function γ can be computed analytically and the derivative

of the unknown function µ should be computed numerically.
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This paper presents a new method for the fast computation of Mγ in (2.3) and Mµ
in (2.4). We assume that the functions γ and µ are only Hölder continuous without any further

differentiability requirement. Thus, the stability issue of the numerical differentiation of the

function µ is avoided. We shall rewrite the discretizing matrix of the operator M as a sum of

two matrices. The multiplication of the first matrix by a vector can be computed by the FMM in

O((m+1)n) operations. The second matrix is a block of m+1 circulant matrices. Hence, the

multiplication of the second matrix by a vector can be done by the FFT in O((m+ 1)n lnn)
operations. Thus, as in [39], the discretized linear system is solved by a combination of

the GMRES method and the FMM in O((m + 1)n) operations. Consequently, the unique

solution µ of the integral equation (2.3) and h in (2.4) are computed in O((m + 1)n lnn)
operations. In addition to the fast method for solving the integral equation (2.3), this paper also

gives a new method for the fast solution of the integral equation with the adjoint generalized

Neumann kernel (2.5) in O((m + 1)n) operations. Based on the discussed methods, two

MATLAB functions will be presented in this paper:

1. fbie: a function for fast solution of the integral equation with the generalized

Neumann kernel (2.3) and fast computation of the piecewise constant function h
in (2.4).

2. fbiead: a function for fast solution of the integral equation with the adjoint gener-

alized Neumann kernel (2.5).

The solutions of the integral equations (2.3) and (2.5) yield the boundary values of the

conformal mapping and the solutions of the boundary value problems. Computing the interior

values requires computing the Cauchy integral formula. For the convenience of the reader, we

present a MATLAB function fcau for the fast computation of the Cauchy integral formula.

The MATLAB functions, fbie, fbiead, and fcau, will be useful for calculating the

conformal mapping and solving potential flow problems for domains of high connectivity.

In this paper, the performance of the presented method will be tested on five numerical

examples, which include various types of multiply connected domains. Recently, the method

proposed in this paper has been used in [38] for fast computation of conformal mappings onto

circular domains, in [45] for fast computation of potential flows in multiply connected coastal

domains, and in [37] for fast computation of conformal mappings between simply connected

domains. The numerical results in this paper together with those in [37, 38, 45] verify that

the presented method can be used for a wide range of problems involving multiply connected

domains.

3. The MATLAB function zfmm2dpart. Let n be a given even positive integer. For

k = 0, 1, . . . ,m, we define in each interval Jk the n equidistant nodes

sk,p = (p− 1)
2π

n
∈ Jk, p = 1, 2, . . . , n.

The total number of nodes sk,p in the total parameter domain J is (m+ 1)n. We denote these

(m+ 1)n nodes by ti, i = 1, 2, . . . , (m+ 1)n, i.e.,

(3.1) tkn+p = sk,p ∈ J, k = 0, 1, . . . ,m, p = 1, 2, . . . , n.

We define the (m+ 1)n× 1 vector t by

t = (t1, t2, . . . , t(m+1)n)
T ,

where T denotes transposition. For any function γ(t) defined on J , we define γ(t) as the

(m+1)n×1 vector obtained by componentwise evaluation of the function γ(t) at the points ti,
i = 1, 2, . . . , (m+ 1)n.
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As in MATLAB code, for any two vectors x and y, we define x.∗y as the componentwise

vector product of x and y. If yj 6= 0 for all j = 1, 2 . . . , (m + 1)n, we define x./y as the

componentwise vector division of x by y. For simplicity, we denote x. ∗ y by xy and x./y
by x

y
.

Let γ ∈ H be a given function. Then, in the notation of Section 2, the function γ can be

written as

γ(t) =























γ0(t), t ∈ J0,

γ1(t), t ∈ J1,
...

γm(t), t ∈ Jm,

with 2π-periodic Hölder continuous real functions γ0, γ1, . . . , γm. Thus, by the trapezoidal

rule, we obtain

(3.2)

∫

J

γ(t)dt =

m
∑

k=0

∫

Jk

γk(t)dt ≈
2π

n

m
∑

k=0

n
∑

p=1

γk(sk,p) =
2π

n

(m+1)n
∑

j=1

γ(tj).

In this paper, we use the function zfmm2dpart in the MATLAB toolbox FMMLIB2D

developed by Greengard and Gimbutas [13] to compute complex-valued sums of the form

(3.3)

(m+1)n
∑

j=1
j 6=i

1

η(ti)− η(tj)
xj , i = 1, 2, . . . , (m+ 1)n,

where xj are real or complex numbers. Let x be the (m+ 1)n× 1 vector

x = (x1, x2, . . . , x(m+1)n)
T

and E be the (m+ 1)n× (m+ 1)n matrix with elements

(3.4) (E)ij :=







0, i = j,
1

η(ti)− η(tj)
, i 6= j, i, j = 1, 2, . . . , (m+ 1)n.

Then equation (3.3) can be written as a matrix-vector product Ex. Let a be the 2× (m+ 1)n
real vector

a =

[

Re η(t)T

Im η(t)T

]

.

The matrix-vector product Ex can be computed in O((m+1)n) operations using the MATLAB

function zfmm2dpart by

(3.5) Ex = zfmm2dpart(iprec,(m+1)n,a,xT ,1),

where the tolerance of the FMM is 0.5× 10−3 for iprec = 1, 0.5× 10−6 for iprec = 2,

0.5× 10−9 for iprec = 3, 0.5× 10−12 for iprec = 4, and 0.5× 10−15 for iprec = 5.

Similarly, the MATLAB function zfmm2dpart can be used to compute complex-valued

sums of the form

(3.6)

(m+1)n
∑

j=1

1

zi − η(tj)
xj , i = 1, 2, . . . , n̂,
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where xj are real or complex constants and zi are n̂ given points in G with a given positive

integer n̂. Let F be the n̂× (m+ 1)n matrix with elements

(3.7) (F )ij :=
1

zi − η(tj)
, i = 1, 2, . . . , n̂, j = 1, 2, . . . , (m+ 1)n.

Let x be the (m+1)n× 1 vector x = (x1, x2, . . . , x(m+1)n)
T , z be the n̂× 1 complex vector

z = (z1, z2, . . . , zn̂), and d be the 2× (m+ 1)n real vector

d =

[

Re z
Im z

]

.

Then equation (3.6) can be written as a matrix-vector product Fx. This product can be

computed using the MATLAB function zfmm2dpart in O((m+ 1)n+ n̂) operations by

(3.8) Fx = zfmm2dpart(iprec,(m+1)n,a,xT ,0,0,0, n̂,d,1,0,0).

4. Solving the integral equation with the generalized Neumann kernel.

4.1. The integral equation. We use singularity subtraction to rewrite the operators N
and M to make them more suitable for using the FMM. Such a procedure is useful for solving

the integral equation (2.3) for domains with corners; see [4, 22, 23, 39, 44, 47]. It is also

useful for solving the integral equation (2.3) for domains with close-to-touching boundaries;

see Examples 8.1 and 8.2 below.

It is known that the constant function is an eigenfunction of the generalized Neumann

kernel N corresponding to the eigenvalue λ = −1 and an eigenfunction of the singular

kernel M corresponding to the eigenvalue λ = 0 [31, 42], i.e.,
∫

J

N(s, t)dt = −1,

∫

J

M(s, t)dt = 0.

Thus, the integral equation (2.3) can be written as

(4.1) 2µ(s)−
∫

J

N(s, t)[µ(t)− µ(s)]dt = −φ(s),

where

(4.2) φ(s) =

∫

J

M(s, t)[γ(t)− γ(s)]dt.

The integral equation (4.1) is valid even if the boundary Γ is piecewise smooth; see [44].

4.2. The Nyström method. Discretizing the integral in (4.1) by the trapezoidal rule (3.2)

and substituting s = ti, we obtain the linear system

2µ(ti)−
2π

n

(m+1)n
∑

j=1

N(ti, tj)[µ(tj)− µ(ti)] = −φ(ti), i = 1, 2, . . . , (m+ 1)n.

Since N(s, t) is continuous, the term under the summation sign is zero when j = i. Thus,

using the notation x = µ(t) and y = φ(t), the linear system can be written as

(4.3)









2 +

(m+1)n
∑

j=1
j 6=i

2π

n
N(ti, tj)









xi −
(m+1)n
∑

j=1
j 6=i

2π

n
N(ti, tj)xj = −yi,
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for i = 1, 2, . . . , (m+ 1)n. Let B be the (m+ 1)n× (m+ 1)n matrix with elements

(4.4) (B)ij =











0, if i = j,

2π

n
N(ti, tj), if i 6= j, i, j = 1, 2, . . . , (m+ 1)n.

Then the (m+ 1)n× (m+ 1)n linear system (4.3) can be written as

(4.5) (2I + diag(B1)−B)x = −y.

4.3. Computing the vector y. In this subsection, we present a method for computing

the values of the function φ(t) defined by (4.2) at the points ti, for i = 1, 2, . . . , (m + 1)n.

The method can be used for all Hölder continuous functions γ without any differentiability

requirement. Thus, the method presented here improves the method in [39], where the

function γ was assumed to be continuously differentiable.

We rewrite the index i for i = 1, 2, . . . , (m+ 1)n as

i = kn+ p,

where k = 0, 1, . . . ,m and p = 1, 2, . . . , n. Hence, by definition of the points ti, we need to

compute the values

(4.6) yi = φ(ti) = φ(tkn+p) = φk(sk,p).

By (4.2), we have

φk(sk,p) =

∫

J

M(s, t)[γ(t)− γk(skp)]dt =

m
∑

l=0

∫

Jl

M(sk,p, t)[γl(t)− γk(sk,p)]dt,

which, in view of (2.2), implies that

φk(sk,p) =

∫

Jk

−1

2π
cot

sk,p − t

2
[γk(t)− γk(sk,p)]dt

+

∫

Jk

M1(sk,p, t)[γk(t)− γk(sk,p)]dt

+

m
∑

l=0
l 6=k

∫

Jl

M(sk,p, t)[γl(t)− γk(sk,p)]dt.

(4.7)

The integral with the cotangent kernel in (4.7) can be discretized by Wittich’s method [51].

The kernel M1 is continuous and the kernel M is continuous for l 6= k. Thus, the integrals

with kernels M1 and M in (4.7) are discretized by the trapezoidal rule. Hence, we obtain

φk(skp) =

n
∑

q=1

[−(K)pq] [γk(skq)− γk(skp)]

+

n
∑

q=1

2π

n
M1(skp, skq)[γk(skq)− γk(skp)]

+

m
∑

l=0
l 6=k

n
∑

q=1

2π

n
M(skp, slq)[γl(slq)− γk(skp)],

(4.8)
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where the elements (K)pq of Wittich’s matrix are given by

(K)pq =







0, if p− q even,

2
n
cot (p−q)π

n
, if p− q odd, p, q = 1, 2, . . . , n.

Since (K)pq = 0 whenever q = p and M1(s, t) is continuous, the term under the first two

summation signs in (4.8) is zero for q = p. By (2.2), we have for p 6= q,

2π

n
M1(skp, skq) =

1

n
cot

skp − skq
2

+
2π

n
M(skp, skq) =

1

n
cot

(p− q)π

n
+
2π

n
M(skp, skq).

Hence, we obtain for p 6= q that

−(K)pq +
2π

n
M1(skp, skq) = −(K)pq +

1

n
cot

(p− q)π

n
+

2π

n
M(skp, skq)

= (−1)p−q 1

n
cot

(p− q)π

n
+

2π

n
M(skp, skq).

Let L be the n× n matrix whose elements are given by

(L)pq =











0, if p = q,

(−1)p−q 1

n
cot

(p− q)π

n
, if p 6= q, p, q = 1, 2, . . . , n.

Thus we have

(4.9) −(K)pq +
2π

n
M1(skp, skq) = (L)pq +

2π

n
M(skp, skq), p 6= q.

In view of (4.9), equation (4.8) can be written as

φk(skp) =

n
∑

q=1

(L)pq[γk(skq)− γk(skp)]

+

n
∑

q=1
q 6=p

2π

n
M(skp, skq)[γk(skq)− γk(skp)]

+

m
∑

l=0
l 6=k

n
∑

q=1

2π

n
M(skp, slq)[γl(slq)− γk(skp)].

(4.10)

Let D be the (m+ 1)n× (m+ 1)n matrix with elements

(D)ij =











0, if i = j,

2π

n
M(ti, tj), if i 6= j, i, j = 1, 2, . . . , (m+ 1)n,

and L̂ be the (m+ 1)n× (m+ 1)n matrix

L̂ =











L O · · · O
O L · · · O
...

...
. . .

...

O O · · · L











.
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Then, in view of (3.1), equation (4.10) reads as

φ(ti) =

(m+1)n
∑

j=1

(L̂)ij [γ(tj)− γ(ti)] +

(m+1)n
∑

j=1

(D)ij [γ(tj)− γ(ti)],

i = 1, 2, . . . , (m+ 1)n.

(4.11)

Hence, it follows from (4.6) and (4.11) that the (m+1)n×1 vector y = φ(t) can be expressed

in matrix form as

y = Dγ(t)− diag(D1)γ(t) + L̂γ(t)− diag(L̂1)γ(t).

For the matrix-vector product L̂γ(t), we have

L̂γ(t) =











L O · · · O
O L · · · O
...

...
. . .

...

O O · · · L











γ(t) =











Lγ(s1)
Lγ(s2)

...

Lγ(sm)











.

The matrix L is circulant since it has the structure

L =



















b1 bn · · · b3 b2

b2 b1
. . . b4 b3

...
. . .

. . .
. . .

...

bn−1 bn−2
. . . b1 bn

bn bn−1 · · · b2 b1



















,

where b1 = 0 and

bi = (−1)i−1 1

n
cot

(i− 1)π

n
, for i = 2, 3, . . . , n.

Thus, the matrix-vector product Lγ(sk) can be computed in O(n lnn) operations using the

FFT. Employing the MATLAB functions fft for the forward FFT and ifft for the inverse

FFT, the vector Lγ(sk) is computed by [6, p. 92]

(4.12) Lγ(sk) = ifft (fft(b). ∗ fft(γ(sk))) .
Hence, the matrix-vector product L̂γ(t) can be evaluated in O((m+ 1)n lnn) operations.

Since the fft of a constant function is zero, in view of (4.12), we have

L̂1 = 0.

Thus, the vector y can be written as

(4.13) y = Dγ(t)− diag(D1)γ(t) + L̂γ(t).

For the matrix-vector product Dγ(t), we have for i = 1, 2, . . . , (m+ 1)n,

(m+1)n
∑

j=1

(D)ijγ(tj) =

(m+1)n
∑

j=1
j 6=i

2

n
Re

[

A(ti)

A(tj)

η̇(tj)

η(tj)− η(ti)

]

γ(tj)

= − 2

n
Re









A(ti)

n̂
∑

j=1
j 6=i

1

η(ti)− η(tj)

η̇(tj)

A(tj)
γ(tj)









.
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Hence, the matrix-vector product Dγ(t) can be expressed in terms of the matrix E as

(4.14) Dγ(t) = − 2

n
Re

[

A(t)

(

E

(

η̇(t)

A(t)
γ(t)

))]

.

It is clear from (4.14) that computing Dγ(t) requires one multiplication of the matrix E by

a vector, which can be computed as in (3.5) by the FMM in O((m + 1)n) operations. The

matrix-vector product D1 can also be evaluated in O((m+ 1)n) operations.

Hence, the vector y on the right-hand side of the linear system (4.5) can be computed

through (4.13) in O((m+ 1)n lnn) operations.

4.4. Multiplication by the coefficient matrix 2I + diag(B1)−B. For multiplying

the matrix B by the vector x, we have for i = 1, 2, . . . , (m+ 1)n,

(m+1)n
∑

j=1

(B)ijxj =

(m+1)n
∑

j=1
j 6=i

2

n
Im

[

A(ti)

A(tj)

η̇(tj)

η(tj)− η(ti)

]

xj

= − 2

n
Im









A(ti)

(m+1)n
∑

j=1
j 6=i

1

η(ti)− η(tj)

η̇(tj)

A(tj)
xj









.

Hence, the matrix-vector product Bx can be written in terms of the matrix E as

(4.15) Bx = − 2

n
Im

[

A(t)

(

E

(

η̇(t)

A(t)
x

))]

.

It is clear from (4.15) that multiplying the matrix B by the vector x requires one multipli-

cation of the matrix E by a vector, which can be computed in O((m+ 1)n) operations. The

matrix-vector product B1 can be also computed in O((m+ 1)n) operations. The multiplica-

tion of the diagonal matrix 2I + diag(B1) by the vector x requires O((m+ 1)n) operations.

Thus, the multiplication of the coefficient matrix of the linear system (4.5), 2I+diag(B1)−B,

by the vector x involves O((m+ 1)n) operations.

4.5. The MATLAB function fbie. We use the MATLAB function gmres to solve the

linear system (4.5), which can be used with the matrix-vector product function fB(x) defined

by

(4.16) fB(x) = (2I + diag(B1)−B)x.

Based on (4.15) and (3.5), the values of the function fB(x) can be computed by the MATLAB

function zfmm2dpart. The linear system (4.5) can then be solved using gmres by

(4.17) x = gmres(@(x)fB(x),−y,restart,tol,maxit),

which restarts every restart inner iterations, where tol is the tolerance of the method and

maxit is the maximum number of outer iterations. With x, we obtain an approximation to

the solution µ of the integral equation (2.3) at the points t by µ(t) = x.

In view of (4.5) and (4.13), the discretization matrices of the operators I−N and M are

(2I+diag(B1)−B) and D−diag(D1)+ L̂, respectively. In view of (2.4), the (m+1)n×1
vector h(t), which components are the values of h(t) at the points t, can be approximated by

(4.18) h(t) =
1

2

(

[D − diag(D1) + L̂]µ(t)− [2 + diag(B1)−B]γ(t)
)

.
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Computing the vector h(t) in [39, Eq. (62)] required computing µ̇(t), i.e., the derivative

of the solution of the integral equation (2.3) at the points t. Thus, the method presented

in (4.18) improves that in [39, Eq. (62)] since no differentiability of the function µ is required

in (4.18).

Solving the linear system requires one application of the function fB(x) in (4.16) for

each iteration of the GMRES method. Thus, each iteration of the GMRES method requires

O(m + 1)n operations. Due to the clustering of the eigenvalues of the coefficient matrix

of the linear system (see Theorem 2.3(a) and the note below Theorem 2.3), the GMRES

iteration usually converges after a few steps. Even for a domain of connectivity 201 with

complex geometry and close-to-touching boundaries (see Figure 8.15 below), the GMRES

method required only 65 iterations to converge with accuracy 10−12; see Figure 8.17 below.

Thus, for sufficiently large n, the number of operation required by the GMRES method

is less than the number of operations required for computing the right-hand side y, which

is O((m + 1)n lnn) operations. Hence, solving the linear system (4.5) by (4.17) requires

O((m+1)n lnn) operations. Similarly, computing the vector h(t) requires O((m+1)n lnn)
operations.

A MATLAB function fbie for the fast solution of the integral equation (2.3) and the fast

computation of the function h in (2.4) using the method presented in this section is shown in

Figure 4.1.

5. Solving the integral equation with the adjoint generalized Neumann kernel.

5.1. The integral equation. The integral equation (2.5) will be rewritten by applying

singularity subtraction into a more suitable form for using the FMM. As for the integral

equation (2.3), the singularity subtraction is useful for solving the integral equation (2.5) for

domains with corners and for domains with close-to-touching boundaries. We have [53]

N∗(s, t) = −Ñ(s, t) = − 1

π
Im

(

Ã(s)

Ã(t)

η̇(t)

η(t)− η(s)

)

= − 1

π
Im

(

η̇(t)

η(t)− η(s)

)

+
1

π
Im

(

Ã(t)− Ã(s)

η(t)− η(s)

η̇(t)

Ã(t)

)

,

where Ã(t) = η̇(t)/A(t). Hence,

(5.1) N∗(s, t) = −Nk(s, t) +Ng(s, t),

where

(5.2) Nk(s, t) =
1

π
Im

(

η̇(t)

η(t)− η(s)

)

is the well-known Neumann kernel and

Ng(s, t) =
1

π
Im

(

Ã(t)− Ã(s)

η(t)− η(s)

η̇(t)

Ã(t)

)

=
1

π
Im

(

A(s)η̇(t)−A(t)η̇(s)

A(s)(η(t)− η(s))

)

.

The kernel Ng(s, t) is continuous with

(5.3) Ng(t, t) =
1

π
Im

(

η̈(t)

η̇(t)
− Ȧ(t)

A(t)

)

.
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function [mu,h]=fbie(et,etp,A,gam,n,iprec,restart,gmrestol,maxit)

%The function

% [mu,h]=fbie(et,etp,A,gam,n,iprec,restart,gmrestol,maxit)

%return the unique solution mu of the integral equation

% (I-N)mu=-Mgam

%and the function

% h=[(I-N)gam-Mmu]/2,

%where et is the parameterization of the boundary, etp=et’,

%A=exp(-i\thet)(et-alp) for bounded G and by A=exp(-i\thet)

%for unbounded G, gam is a given function, n is the number of

%nodes in each boundary component, iprec is the FMM precision

%flag, restart is the maximum number of the GMRES inner

%iterations, gmrestol is the tolerance of the GMRES method,

%and maxit is the maximum number of the GMRES outer

%iterations

a = [real(et.’) ; imag(et.’)];

m = length(et)/n-1;

b1 = [etp./A].’;

[Ub1] = zfmm2dpart(iprec,(m+1)*n,a,b1,1);

Eone = (Ub1.pot).’;

b(1,1) = 0;

for k=2:n

b(k,1) = (-1)^(k+1)*(1/n)*cot(pi*(k-1)/n);

end

mu = gmres(@(x)fB(x),-fC(gam),restart,gmrestol,maxit);

h = (fC(mu)-fB(gam))./2;

%%

function hx = fB (x)

bx2 = [x.*etp./A].’;

[Ubx2]= zfmm2dpart(iprec,(m+1)*n,a,bx2,1);

Ex = (Ubx2.pot).’;

hx = 2.*x-(2/n).*imag(A.*Eone).*x+(2/n).*imag(A.*Ex);

end

function hx = fC (x)

bx = [x.*etp./A].’;

[Ubx] = zfmm2dpart(iprec,(m+1)*n,a,bx,1);

Ex = (Ubx.pot).’;

for k=1:m+1

hLx(1+(k-1)*n:k*n,1) = ...

ifft(fft(b).*fft(x(1+(k-1)*n:k*n,1)));

end

hx = -(2/n).*real(A.*Ex)+(2/n).*real(A.*Eone).*x+hLx;

end

end

FIG. 4.1. The MATLAB function fbie.

The constant function is an eigenfunction of the Neumann kernel Nk corresponding to

the eigenvalue λ = 1 for bounded G and to the eigenvalue λ = −1 for unbounded G [42, 44];

see also [20]. Hence,

∫

J

Nk(s, t)dt = c ,
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where the constant c is defined by

c =

{

1, if G is bounded,

−1, if G is unbounded.

Thus,

∫

J

N∗(s, t)dt = −c+ r(s),

where

r(s) =

∫

J

Ng(s, t)dt.

Hence, the integral equation (2.5) can be written as

(5.4) [1− c+ r(s)]µ(s) +

∫

J

N∗(s, t)[µ(t)− µ(s)]dt+

∫

J

δ(s, t)µ(t)dt = γ(s).

The integral equation (5.4) is valid even if the boundary Γ is piecewise smooth; see [44].

5.2. The Nyström method. By discretizing the integral in (5.4) by the trapezoidal

rule (3.2) and substituting s = ti, we obtain the linear system

[1− c+ r(ti)]µ(ti) +
2π

n

(m+1)n
∑

j=1

N(tj , ti)[µ(tj)− µ(ti)]

+
2π

n

(m+1)n
∑

j=1

δ(tj , ti)µ(tj) = γ(ti),

(5.5)

for i = 1, 2, . . . , (m+ 1)n. Since N(s, t) is continuous, the term under the summation sign is

zero for j = i. Thus, the linear system (5.5) can be written as









1− c+ r(ti)−
(m+1)n
∑

j=1
j 6=i

2π

n
N(tj , ti)









µ(ti) +

(m+1)n
∑

j=1
j 6=i

2π

n
N(tj , ti)µ(tj)

+
2π

n

(m+1)n
∑

j=1

δ(tj , ti)µ(tj) = γ(ti),

(5.6)

for i = 1, 2, . . . , (m+ 1)n. Let P be the n× n matrix with elements

(P )pq =
1

n
, p, q = 1, 2, . . . , n,

P̂ be the (m+ 1)n× (m+ 1)n matrix

P̂ =











P O · · · O
O P · · · O
...

...
. . .

...

O O · · · P











,



ETNA
Kent State University

http://etna.math.kent.edu

FAST SOLUTION OF BOUNDARY INTEGRAL EQUATIONS 205

and e be the (m+ 1)n× 1 vector with elements

(5.7) ei = 1− c+ r(ti)−
(m+1)n
∑

j=1
j 6=i

2π

n
N(tj , ti), i = 1, 2, . . . , (m+ 1)n.

Let x = µ(t) and B be the matrix defined by (4.4). Then the (m + 1)n × (m + 1)n linear

system (5.6) reads as

(5.8) (diag(e) +BT + P̂ )x = γ(t).

5.3. Computing the vector e. By approximating the values of the function r at the

points ti, i.e.,

r(ti) =

∫

J

Ng(ti, t)dt, i = 0, 1, . . . , (m+ 1)n,

by the trapezoidal rule (3.2), we obtain

(5.9) r(ti) =
2π

n

(m+1)n
∑

j=1

Ng(ti, tj) =
2π

n

(m+1)n
∑

j=1
j 6=i

Ng(ti, tj) +
2π

n
Ng(ti, ti).

By (5.1), we have

(5.10)
2π

n

(m+1)n
∑

j=1
j 6=i

Ng(ti, tj) =
2π

n

(m+1)n
∑

j=1
j 6=i

Nk(ti, tj) +
2π

n

(m+1)n
∑

j=1
j 6=i

N(tj , ti).

Thus, it follows from (5.7), (5.9), and (5.10) that

(5.11) ei = 1− c+
2π

n

(m+1)n
∑

j=1
j 6=i

Nk(ti, tj) +
2π

n
Ng(ti, ti), i = 0, 1, . . . , (m+ 1)n.

For i = 0, 1, . . . , (m+ 1)n, by (5.3) and (5.2), we have

2π

n
Ng(ti, ti) =

2

n
Im

(

η̈(ti)

η̇(ti)
− Ȧ(ti)

A(ti)

)

and

2π

n

(m+1)n
∑

j=1
j 6=i

Nk(ti, tj) =
2

n

(m+1)n
∑

j=1
j 6=i

Im

(

η̇(tj)

η(tj)− η(ti)

)

= − 2

n
Im









(m+1)n
∑

j=1
j 6=i

1

η(ti)− η(tj)
η̇(tj)









.

Hence, in view of (3.4) and (5.11), the vector e can be written as

e = 1− c− 2

n
Im [Eη̇(t)] +

2

n
Im

[

η̈(t)

η̇(t)
− Ȧ(t)

A(t)

]

.

Thus, computing the vector e requires one multiplication of the matrix E by a vector, which

can be done in O((m+ 1)n) operations.
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5.4. Multiplication by the coefficient matrix diag(e) + B
T + P̂ . For multiplying

the matrix BT by the vector x, we have, for i = 1, 2, . . . , (m+ 1)n, that

(m+1)n
∑

j=1

(BT )ijxj =

(m+1)n
∑

j=1

(B)jixj =

(m+1)n
∑

j=1
j 6=i

2

n
Im

[

A(tj)

A(ti)

η̇(ti)

η(ti)− η(tj)

]

xj

=
2

n
Im









η̇(ti)

A(ti)

(m+1)n
∑

j=1
j 6=i

1

η(ti)− η(tj)
A(tj)xj









.

Hence, the matrix-vector product BTx can be written in terms of the matrix E as

(5.12) BTx =
2

n
Im

[

η̇(t)

A(t)
(E (A(t)x))

]

.

Thus, multiplying the matrix BT by the vector x requires one multiplication of the matrix E
by a vector, which can be computed in O((m+ 1)n) operations.

For the matrix-vector product P̂x, we rewrite the vector x as

x =











x0

x1

...

xm











,

where each of the vectors xj , j = 0, 1, . . . ,m, is an n × 1 vector. Then the matrix-vector

product P̂x can be computed by

P̂x =











Px0

Px1

...

Pxm











=













1
n

∑n
p=1 (x0)p

1
n

∑n
p=1 (x1)p

...
1
n

∑n
p=1 (xm)p













.

Thus, the multiplication of the matrix P̂ by the vector x can be computed in O((m + 1)n)
operations. The multiplication of the diagonal matrix diag(e) by the vector x can also be

computed in O((m + 1)n) operations. Hence, the multiplication of the coefficient matrix

diag(e)+BT + P̂ of the linear system (5.8) by the vector x requires O((m+1)n) operations.

5.5. The MATLAB function fbiead . The linear system (5.8) will be solved using the

MATLAB function gmres with the matrix-vector product function

(5.13) gB(x) = (diag(e) +BT + P̂ )x.

Based on (5.12) and (3.5), the values of the function gB(x) can be computed using the

MATLAB function zfmm2dpart. The linear system (5.8) can then be solved using gmres

by

(5.14) x = gmres(@(x)gB(x), γ(t),restart,tol,maxit).

With x, we obtain an approximation to the solution µ of the integral equation (2.5) at the

points t by µ(t) = x.
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In contrast to the integral equation with the generalized Neumann kernel (2.3), the right-

hand side of the integral equation with the adjoint generalized Neumann kernel (2.5) is given

explicitly. Since computing the values of the function gB(x) in (5.13) requires O((m+ 1)n)
operations, each iteration of the GMRES method requires O((m+1)n) operations. In view of

Theorem 2.3(b) and the note below Theorem 2.3, the eigenvalues of the coefficient matrix of

the linear system cluster around 1. Thus, GMRES usually converges after only a small number

of iterations especially for domains with well-separated boundaries. Hence, solving the linear

system (5.8) by (5.14) requires O((m+ 1)n) operations. For domains with close-to-touching

boundaries, the constant in the expression O((m+ 1)n) can be large.

A MATLAB function fbiead for the fast solution of the integral equation (2.5) using

the method presented in this section is shown in Figure 5.1.

function mu=fbiead(et,etp,etpp,A,Ap,gam,n,c,iprec,...

restart,gmrestol,maxit)

%The function

% mu=fbiead(et,etp,etpp,A,Ap,gam,n,c,iprec,...

restart,gmrestol,maxit)

%returns the unique solution mu of the integral equation

% (I+N*+J)mu=gam

%where et is the parameterization of the boundary,

%etp=et’, etpp=et’’, A=exp(-i\thet)(et-alp) for

%bounded G and A=exp(-i\thet) for unbounded G,

%gam is a given function, n is the number of nodes

%in each boundary component, c=1 for bounded G and

%c=-1 for unbounded G, iprec is the FMM precision flag,

%restart is the maximum number of the GMRES

%inner iterations, gmrestol is the tolerance of the

%GMRES method, and maxit is the maximum number of

%GMRES outer iterations

a = [real(et.’) ; imag(et.’)];

m = length(et)/n-1;

[Uetp] = zfmm2dpart(iprec,(m+1)*n,a,etp.’,1);

Eetp = (Uetp.pot).’;

e = 1-c-(2/n).*imag(Eetp)+(2/n).*imag(etpp./etp-Ap./A);

mu = gmres(@(x)gB(x),gam,restart,gmrestol,maxit);

%%

function hx = gB (x)

for k=1:m+1

hPx(1+(k-1)*n:k*n,1) = (1/n)*sum(x(1+(k-1)*n:k*n,1));

end

[UAx] = zfmm2dpart(iprec,(m+1)*n,a,[A.*x].’,1);

EAx = (UAx.pot).’;

Btx = (2/n).*imag((etp./A).*EAx);

hx = e.*x+Btx+hPx;

end

end

FIG. 5.1. The MATLAB function fbiead.

6. Computing the Cauchy integral formula. The solutions of the boundary integral

equations (2.3) and (2.5) provide us with the values of the conformal mapping and the solution

of the boundary value problem on the boundary Γ. Computing these functions at interior
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points z ∈ G requires the Cauchy integral formula

(6.1a) f(z) =
1

2πi

∫

Γ

f(η)

η − z
dη, z ∈ G,

for bounded G and

(6.1b) f(z) = f(∞) +
1

2πi

∫

Γ

f(η)

η − z
dη, z ∈ G,

for unbounded G, where f is an analytic function on G with known boundary values on Γ.

The integral in (6.1) can be approximated by the trapezoidal rule (3.2). However, the integrand

in (6.1) becomes nearly singular for points z ∈ G which are close to the boundary Γ. In this

section, we review an accurate and fast numerical method for computing the Cauchy integral

formulas (6.1a) and (6.1b) proposed in [5, 18, 39].

Suppose that f(z) is analytic in a domain Ĝ containing G∪Γ. Thus, the integrand in (6.1),

i.e.,

f(η)

η − z

has a pole at η = z ∈ Ĝ. For z ∈ G, we have

1

2πi

∫

Γ

1

η − z
dη = 1

for bounded G and

1

2πi

∫

Γ

1

η − z
dη = 0

for unbounded G. Thus, the Cauchy integral formula (6.1) can then be written for z ∈ G as

(6.2a)
1

2πi

∫

Γ

f(η)− f(z)

η − z
dη = 0

for bounded G and

(6.2b) f(z) = f(∞) +
1

2πi

∫

Γ

f(η)− f(z)

η − z
dη

for unbounded G. Thus, η = z is not a pole of the integrand in the new formula (6.2) since

f(η)− z

η − z

is an analytic function of η ∈ Ĝ. Hence, accurate results can be obtained if the trapezoidal

rule is used to discretize the integral in (6.2); see [5] for more details.

By discretizing the integral in (6.2) using the trapezoidal rule (3.2), we obtain for z ∈ G,

2π

n

1

2πi

(m+1)n
∑

j=1

f(η(tj))− f(z)

η(tj)− z
η̇(tj) ≈ 0
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for bounded G and

f(z) ≈ f(∞) +
2π

n

1

2πi

(m+1)n
∑

j=1

f(η(tj))− f(z)

η(tj)− z
η̇(tj)

for unbounded G. Consequently, the values of the function f(z) for z ∈ G are given by

f(z) ≈

(m+1)n
∑

j=1

f(η(tj))η̇(tj)

η(tj)− z

(m+1)n
∑

j=1

η̇(tj)

η(tj)− z

for bounded G and

f(z) ≈
f(∞) +

1

ni

(m+1)n
∑

j=1

f(η(tj))η̇(tj)

η(tj)− z

1 +
1

ni

(m+1)n
∑

j=1

η̇(tj)

η(tj)− z

for unbounded G.

For a given positive integer n̂, let z1, z2, . . . , zn̂ be given points in G and z be the n̂× 1
complex vector z = (z1, z2, . . . , zn̂). Then the values f(zi), for i = 1, 2, . . . , n̂, can be

computed from

(6.3a) f(zi) ≈

(m+1)n
∑

j=1

1

zi − η(tj)
f(η(tj))η̇(tj)

(m+1)n
∑

j=1

1

zi − η(tj)
η̇(tj)

for bounded G and

(6.3b) f(zi) ≈
f(∞)− 1

ni

(m+1)n
∑

j=1

1

zi − η(tj)
f(η(tj))η̇(tj)

1− 1

ni

(m+1)n
∑

j=1

1

zi − η(tj)
η̇(tj)

for unbounded G. Using the matrix F defined by (3.7), the summations in (6.3) can be written

as a matrix-vector product

(6.4a) f(z) ≈ F [f(η(t))η̇(t)]

F [η̇(t)]

for bounded G and

(6.4b) f(z) ≈
f(∞)− 1

ni
F [f(η(t))η̇(t)]

1− 1

ni
F [η̇(t)]
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function fz = fcau (et,etp,f,z,n,finf)

%The function

% fz = fcau (et,etp,f,z,n,finf)

%returns the values of the analytic function f computed

%using the Cauchy integral formula at interior vector of

%points z, where et is the parameterization of the boundary,

%etp=et’, finf is the values of f at infinity for

%unbounded G, n is the number of nodes in each boundary component.

vz = [real(z) ; imag(z)]; % target

nz = length(z); % ntarget

a = [real(et.’) ; imag(et.’)]; % source

tn = length(et); % nsource=(m+1)n

iprec = 4; %- FMM precision flag

bf = [f.*etp].’;

[Uf] = zfmm2dpart(iprec,tn,a,bf,0,0,0,nz,vz,1,0,0);

b1 = [etp].’;

[U1] = zfmm2dpart(iprec,tn,a,b1,0,0,0,nz,vz,1,0,0);

if( nargin == 4 )

fz = (Uf.pottarg)./(U1.pottarg);

end

if( nargin == 6 )

fz= (finf-(Uf.pottarg)./(n*i))./(1-(U1.pottarg)./(n*i));

end

end

FIG. 6.1. The MATLAB function fcau.

for unbounded G. Thus, computing the vector f(z) in (6.4) requires two multiplications of the

matrix F by a vector, which can be done as in (3.8) by the FMM with operations of the order

of O((m+ 1)n+ n̂).
A MATLAB function fcau for the fast computation of f(z) using the above described

method is presented in Figure 6.1.

7. Domains with piecewise smooth boundary. Suppose that γ(t) is smooth in each

interval Jj except at pj ≥ 1 points

cj,k = (k − 1)
2π

pj
∈ Jj , k = 1, 2, . . . , pj , j = 0, 1, . . . ,m.

Suppose that ω(t) is the bijective, strictly monotonically increasing and infinitely differentiable

function defined by [22]

ω(t) = 2π
[v(t)]p

[v(t)]p + [v(2π − t)]p
,

where

v(t) =

(

1

p
− 1

2

)(

π − t

π

)3

+
1

p

t− π

π
+

1

2
, t ∈ [0, 2π].

The grading parameter p is an integer such that p ≥ 2.

We define a function δj(t),

δj(t) : [0, 2π] → [0, 2π],
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by

δj(t) =
1

pj
ω(pj (t− cj,k)) + cj,k, t ∈ [cj,k, cj,k+1] ,

for k = 1, 2, . . . , pj and j = 0, 1, . . . ,m. Then the function δj satisfies

δ̇j (cj,k) = 0, k = 1, 2, . . . , pj ,

δ̇j(t) 6= 0, for all t ∈ Jj − {cj,1, cj,2, . . . , cj,pj
}.

Thus, to compute the integral
∫

j
γ(t)dt, we introduce the substitution t = δ(τ) to obtain

∫

J

γ(t)dt =

∫

J

γ(δ(τ))δ̇(τ)dτ =

∫

J

γ̂(τ)dτ ,

where

γ̂(τ) = γ(δ(τ))δ̇(τ).

The function γ̂ is smooth on J and satisfies γ̂(0) = γ̂(2π) = 0. Hence, applying the

trapezoidal rule (3.2) to the transformed integral yields

(7.1)

∫

J

γ(t)dt ≈ 2π

n

m
∑

k=0

n
∑

p=1

γ̂(sk,p) =
2π

n

(m+1)n
∑

j=1

γ̂(tj) =
2π

n

(m+1)n
∑

j=1

γ(δ(tj))δ̇(tj).

Now, suppose that each boundary component Γj contains pj corner points located at ηj(cj,k),
k = 1, 2, . . . , pj , j = 0, 1, . . . ,m. Then the integral equations (4.1) and (5.4) can be solved

accurately by discretizing the integrals in (4.1) and (5.4) by the trapezoidal rule (7.1); see [22,

44, 55] for more details.

An equivalent method for the discretization of (4.1) and (5.4) is to choose a piecewise

smooth parametrization ζj(t) of the boundary component Γj and then defining a parametriza-

tion ηj(t) of Γj by

ηj(t) = ζj(δj(t)), j = 0, 1, . . . ,m.

The integrals in (4.1) and (5.4) can then be discretized accurately by the trapezoidal rule (3.2).

See [10, 55] for more details.

8. Numerical examples. To test the performance of the functions fbie and fbiead,

five numerical examples are presented. In the first and second example, we consider a bounded

circular domain of connectivity 5 with variable distance ε between the boundaries. In the

first example, we study the accuracy of the functions fbie and fbiead for domains whose

boundaries are very close to each other. In the second example, we test the performance of the

functions fbie and fbiead by computing the conformal mapping from bounded domains

with close-to-touching boundaries onto the unit disc with circular slits and the unit disc with

both circular and radial slits. In the third example, we present an application of the function

fbie to solve the Dirichlet boundary value problem in a bounded multiply connected domain

of very high connectivity. In the fourth and fifth example, we consider an unbounded domain

appearing in a real world problem. The domain has a high connectivity and its boundaries

have a complex geometry and are very close to each other. The function fbie is used in the

fourth example to compute the complex potential of the uniform flow past islands and in the
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ε

ε

ε

ε

ε

ε

ε

ε

FIG. 8.1. The domain of Examples 8.1 and 8.2.

fifth example to compute the conformal mapping from the domain onto the unbounded circular

domain.

EXAMPLE 8.1. We consider a bounded multiply connected domain G of connectiv-

ity 5 (m = 4). The boundary of G consists of 5 circles with a variable distance ε between

them; see Figure 8.1. The external circle is the unit circle. The internal four circles have the

same radius

2− ε(2 + 2
√
2)

2 + 2
√
2

and the centres

±
(

2− ε

2 + 2
√
2

)

± i

(

2− ε

2 + 2
√
2

)

.

In this example, we study the effect of (a) the distance ε, (b) the function θ, and (c) the

singularity subtraction in (4.1) and (5.4) on the accuracy of the functions fbie and fbiead.

We choose the function γ in (2.3) such that the exact solution µ of the integral equa-

tion (2.3) is known. We assume that α = 0 ∈ G and f(z) is defined by

(8.1) f(z) = sin z +
1

z − 2
.

The function f(z) is an analytic function in G. For this function f , we assume that γ is given

by

(8.2) γ(η) = Re[A(η)f(η)],

where A is defined by (1.2). Concerning θ in (1.4), we test two cases. In the first case, we

consider the constant function

θ(η) = π/2, for all η ∈ Γ,

i.e., θ has the same value on all boundary components. In the second case, we consider the

non-constant function

θ(η) = (π/2, 0, π/2, 0, π/2).

Then the exact solution of the integral equation (2.3) is [31, 53]

µ(η) = Im[A(η)f(η)], η ∈ Γ,
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for f given by (8.1). The approximate solution obtained using the function fbie is denoted

by µn.

We also consider the numerical solution of the uniquely solvable integral equation with

the adjoint generalized Neumann kernel (2.5) with γ given by (8.2). We do not have the exact

solution of (2.5) available for such a function γ. However, its unique solution φ satisfies [42]

Jφ = Jγ.

Let φn be the approximation obtained using the function fbiead. Then,

∫

J

[φn(t)− γ(t)]dt ≈ 2π

n

(m+1)n
∑

j=1

[φn(tj)− γ(tj)] ≈ 0.

We define the error in φn by

En =

∣

∣

∣

∣

∣

∣

2π

n

(m+1)n
∑

j=1

[φn(tj)− γ(tj)]

∣

∣

∣

∣

∣

∣

.

The approximate solutions µn and φn are computed with iprec = 4, restart = 25,

gmrestol = 10−12, and maxit = 40. The numerical results are displayed in Figures 8.2–

8.10. The maximum error norm ‖µ − µn‖∞ for the function fbie and the error En for

the function fbiead versus the number of nodes n in the discretization of each boundary

component are displayed in Figures 8.2(a,e) for constant θ and in Figures 8.2(b,f) for non-

constant θ for ε = 0.5, 0.1, 0.001. To show the effect of the singularity subtraction in (4.1)

and (5.4) on the accuracy of the functions fbie and fbiead, we present the maximum

error norm ‖µ − µn‖∞ and the error En obtained by solving the integral equations (2.3)

and (2.5) using the same method used in the functions fbie and fbiead but without

singularity subtraction for the constant function θ in Figures 8.2(c,g) and for non-constant θ
in Figures 8.2(d,h). The maximum error norm ‖µ − µn‖∞ for fbie and the error En for

fbiead versus the separation distance ε are displayed in Figure 8.3 (left) for constant θ
and in Figure 8.3 (right) for non-constant θ. The number of GMRES iterations are shown

in Figures 8.4 and 8.5. The number of GMRES iterations depends on the eigenvalues of the

coefficient matrices of the linear systems, which are plotted in Figures 8.6 and 8.8 for the

functions fbie and fbiead, respectively, for ε = 0.5, 0.1, 0.001 and n = 1024 (the size

of the matrices is 5120 × 5120). For ε = 0.001 and n = 4094 (the size of the matrices is

20480 × 20480), the eigenvalues are displayed in Figures 8.7 and 8.9. It is clear that the

eigenvalues are strongly clustered around 1 for ε = 0.5, i.e., the boundaries are well-separated.

The eigenvalues are real for constant θ and, in general, complex for non-constant θ. The

eigenvalues are in the closed disk centred at 1 with radius 1. However, for very small ε, we

need to use a sufficiently large n to ensure that the eigenvalues are in the closed disk; see

Figures 8.6(e,f), 8.7, 8.8(e,f), and 8.9. The condition number of the coefficient matrices of

the linear systems for the functions fbie and fbiead is presented in Figure 8.10 (left). The

condition number is computed using the MATLAB condition number estimation function

condest.
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We conclude the following observations from Figures 8.2–8.10:

1. For the integral equation with the generalized Neumann kernel (2.3), the singularity

subtraction in (4.1) improves the accuracy of the approximate solutions only for the

case when θ is a constant function. Thus, the accuracy of fbie is affected by θ
being constant or not. We get accurate results for constant functions θ even for very

small distance ε when n is sufficiently large. For a non-constant function θ, we get

accurate results for moderately small ε, but then the accuracy is getting worse as the

distance ε becomes very small.

2. For the integral equation with the adjoint generalized Neumann kernel (2.3), the

singularity subtraction in (5.4) improves the accuracy of the approximate solution for

both cases of θ. The function fbiead gives accurate results even for very small ε
when n is sufficiently large for both cases of θ.

3. The eigenvalues of the coefficient matrices of the linear systems for both functions

fbie and fbiead are strongly clustered around 1 for well-separated boundaries.

For sufficiently large n, the eigenvalues are in the interval (0, 2] for constant θ and in

the closed disk centred at 1 with radius 1 for non-constant θ.

4. For both functions fbie and fbiead, the condition number of the coefficient

matrices of the linear systems does not depend on θ being constant or not. The

condition number increases as ε decreases.

5. For both functions fbie and fbiead, the number of GMRES iterations does not

depend on θ being constant or not. For well-separated boundaries, only a few GMRES

iterations are required for convergence. The number of GMRES iterations increases

as ε decreases.

The above conclusions are confirmed by further numerical examples (not reported in this

paper).

EXAMPLE 8.2. In this example, we present an application of the functions fbie and

fbiead to compute the conformal mappings from the bounded multiply connected domain G
of Example 8.1 (see Figure 8.1) onto the disc with circular slits and the disc with both circular

and radial slits. This example shows that these functions can be used to compute the conformal

mapping even for close-to-touching boundaries. For the function fbie, we use the methods

presented in [32, 35], which are based on the integral equation with the generalized Neumann

kernel (2.3). For the function fbiead, we use the method presented in [43, 55, 56], which is

based on the integral equation with the adjoint generalized Neumann kernel (2.5). For both

functions fbie and fbiead, we set iprec = 4, restart = 25, gmrestol = 10−12,

and maxit = 40. For the disc with circular slits, the function θ is a constant function,

where θ(η) = (π/2, π/2, π/2, π/2, π/2). For the disc with both circular and radial slits,

the function θ is not constant, and its values are π/2 on the external boundary, π/2 on the

boundaries which is mapped to circular slits, and 0 on the boundaries which is mapped to

radial slits. In this example, we assume that θ(η) = (π/2, 0, π/2, 0, π/2).

The original domains G for the separation distances ε = 10−1, 10−2, 10−3, 10−4 are

displayed in Figure 8.11. The images of the original domains obtained with fbie for

n = 4096 are displayed in the second row of Figure 8.11 for constant θ and in the fourth row

of Figure 8.11 for non-constant θ. The images of the original domains obtained with fbiead

for n = 4096 are displayed in the third row of Figure 8.11 for constant θ and in the fifth row

of Figure 8.11 for non-constant θ.

As explained in Example 8.1, the function fbie gives accurate results for the case of a

constant function θ. For the non-constant case, we get accurate results for ε = 10−1, 10−2.

For ε = 10−3 the radial slits goes outside of the unit disc, and for ε = 10−4 the obtained figure

is incorrect; see the third and fourth figures in the fourth row in Figure 8.11. The function
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FIG. 8.2. The maximum error norm ‖µ − µn‖∞ and the error En versus the number of nodes n for

ε = 0.5, 0.1, 0.001. The figures in the left column are obtained with the constant function θ, and the figures in the

right column are obtained with the non-constant function θ using: (a,b) fbie, (c,d) the integral equation (2.3)

without singularity subtraction, (e,d) fbiead, (g,h) the integral equation (2.5) without singularity subtraction.

fbiead gives accurate results for both the constant and non-constant case of θ. However, on

the one hand, the methods presented in [32, 35] are based on solving the integral equation (2.3)

and then computing the function h by (2.4) to obtain the boundary values of the mapping
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FIG. 8.3. The maximum error norm ‖µ− µn‖∞ and the error En as a function of the separation distance ε.

The figures in the left column are obtained with the constant function θ and the figures in the right column are obtained

with the non-constant function θ using: (a,b) fbie, (c,d) the integral equation (2.3) without singularity subtraction,

(e,d) fbiead, (g,h) the integral equation (2.5) without singularity subtraction.

function and the parameters of the canonical domain. Thus, the complexity of the method

based on the integral equation with the generalized Neumann kernel (2.3) is O((m+1)n lnn);
see [39]. On the other hand, for the method presented in [43, 55, 56], we need to solve

m+ 1 integral equations to obtain the parameters of the canonical domain and one integral

equation to obtain the derivative of the boundary correspondence function. The complexity of

solving these m+ 2 integral equations using the function fbiead is O((m+ 2)(m+ 1)n).
To obtain the derivative of the boundary correspondence function, we need to use the FFT
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FIG. 8.4. The total number of GMRES iterations versus the number of nodes in the discretization of each

boundary component n for ε = 0.5, 0.1, 0.001. The figures in the left column are obtained with the constant

function θ and the figures in the right column are obtained with the non-constant function θ using: (a,b) fbie,

(c,d) fbiead.
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FIG. 8.5. The total number of GMRES iterations as a function of the separation distance ε. The figures in

the left column are obtained with the constant function θ and the figures in the right column are obtained with the

non-constant function θ for: (a,b) fbie, (c,d) fbiead.
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FIG. 8.6. The eigenvalues of the coefficient matrices of the linear systems for the function fbie obtained with

n = 1024 for constant θ (left) and non-constant θ (right) for: (a,b) ε = 0.5, (c,d) ε = 0.1; (e,f) ε = 0.001.
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FIG. 8.7. The eigenvalues of the coefficient matrices of the linear systems for the function fbie obtained with

n = 4096 for constant θ (left) and non-constant θ (right) for ε = 0.001.
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FIG. 8.8. The eigenvalues of the coefficient matrices of the linear systems for the function fbiead obtained

with n = 1024 for constant θ (left) and non-constant θ (right) for: (a,b) ε = 0.5, (c,d) ε = 0.1, (e,f) ε = 0.001.
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FIG. 8.9. The eigenvalues of the coefficient matrices of the linear systems for the function fbiead obtained

with n = 4096 for constant θ (left) and non-constant θ (right) for ε = 0.001.
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FIG. 8.10. The condition number of the coefficient matrices of the linear systems as a function of the separation

distance ε obtained with n = 1024.

for each boundary component Jj , j = 0, 1, . . . ,m, to compute the boundary values of the

mapping function. The complexity of computing the boundary correspondence function from

its derivative is O((m+ 1)n lnn). Thus, the complexity of the method based on the integral

equation with the adjoint generalized Neumann kernel (2.5) is O((m+ 1)(m+ 2 + lnn)n).
Thus, as Figure 8.12 indicates, the total number of GMRES iterations as well as the CPU time

of the method based on the integral equation with the adjoint generalized Neumann kernel (2.5)

is much larger than the number of GMRES iterations and the CPU time of the method based

on the integral equation with the generalized Neumann kernel (2.3).

EXAMPLE 8.3. We consider a bounded multiply connected domain G of connectivity

1089 (m = 1088); see Figure 8.13. The boundary consists of 544 circles and 545 squares

including the external boundary. We assume that α = 0 ∈ G. We consider an application of

the function fbie to solve the Laplace equation with Dirichlet boundary condition, which

requires determining a real function u such that

∇2u = 0, in G,(8.3a)

u = γ, on Γ,(8.3b)

where γ is a given continuous function on Γ.

The Dirichlet problem (8.3) has a unique solution u [11, 30]. The function u is the real

part of a function F (z) which is analytic in the domain G but is not necessary single-valued.

However, the function F (z) can be written as

F (z) = g(z)−
m
∑

j=1

aj log(z − zj) ,

where g is a single-valued analytic function in G, each zj is a given point inside Γj for

j = 1, 2, . . . ,m, and a1, a2, . . . , am are unknown real constants. The constants aj are chosen

to ensure that g(z) is single-valued. These constants are uniquely determined by γ. In

particular, if γ is the real part of a single-valued analytic function in G, then aj = 0 for all j.

For more details, see [11, 27, 30, 42].

Since we are interested only in computing the real part u(z) = ReF (z), we may assume

that c = g(α) is real. Hence, the function f(z) defined by

f(z) =
g(z)− c

z − α
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FIG. 8.11. First row: the domains G for the separation distances ε = 10−1, 10−2, 10−3, 10−4. Second row:

the images of G obtained with fbie for the constant function θ. Third row: the images of G obtained with fbiead

for the constant function θ. Fourth row: the images of G obtained with fbie for the non-constant function θ. Fifth

row: the images of G obtained with fbiead for the non-constant function θ.

is analytic in G. Thus, F (z) can be written as

(8.4) F (z) = (z − α)f(z) + c−
m
∑

j=1

aj log(z − zj).

Since Re[F ] = γ on the boundary Γ, it follows from (8.4) that the function f is the unique

solution of the Riemann-Hilbert problem

(8.5) Re[A(η)f(η)] = γ(η)− c+

m
∑

j=1

aj log |η − zj |, η ∈ Γ,

where the function A is given by (1.2) with θj = π
2 , for all j = 0, 1, . . . ,m. The unknown
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FIG. 8.12. The total number of GMRES iterations and the total CPU time as a function of the separation

distance ε obtained with n = 4096.

m+ 1 real constants c, a1, . . . , am on the right-hand side of (8.5) are chosen to ensure that

the Riemann-Hilbert problem (8.5) is solvable.

The boundary integral equation (2.3) has been used in [42] to compute the analytic

function f(z) as well as the constants c, a1, . . . , am and hence the functions g(z) and F (z).
The unique solution u is then given by u = ReF . For more details, we refer the reader to [42].

Here we chose γ in (8.3b) such that the unique solution u of the Dirichlet problem (8.3) is

the real part of

F (z) = sin z +
2

z − 2
, z ∈ G.

Since F (z) is a single-valued analytic function in G, it follows that aj = 0 for all j. Thus,

F (z) = g(z) = (z − α)f(z) + c ,

where α = 0 and c = g(α) = F (α) = −1. The function

f(z) =
1

z

(

sin z +
2

z − 2
+ 1

)

is the unique solution of the Riemann-Hilbert problem (1.5) with

(8.6) γ(η) = Re
[

sin η + (η − 2)−1
]

, η ∈ Γ,

and

(8.7) h(η) = −c = 1, η ∈ Γ.

For the function γ in (8.6), we use fbie to solve the integral equation (2.3) and to

compute h in (2.4). For such γ, the exact solution of the integral equation (2.3) is

µ(η) = Im[A(η)f(η(η))] = Im
[

sin η + (η − 2)−1
]

, η ∈ Γ,

and the exact value of h in (2.4) is given by (8.7).

Suppose that µn and hn are the approximate solutions obtained using fbie. The values

of the maximum error norms ‖µ− µn‖∞ and ‖h− hn‖∞ versus the total number of nodes

are displayed in Figure 8.14. Figure 8.14 also exhibits the total CPU time (in seconds) and

the number of GMRES iterations required to obtain the approximate solutions µn, hn using

fbie versus the total number of nodes. Finally, Figure 8.14 displays the relative residual
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FIG. 8.13. The domain of Example 8.3.
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FIG. 8.14. Numerical results for Example 8.3.

versus the number of iterations of GMRES obtained with n = 8192 (the total number of

nodes is 8921088). The numerical results are obtained with iprec = 4, restart = 10,

gmrestol = 10−12, and maxit = 10. For the piecewise smooth boundaries, we use the

method describe in Section 7 with grading parameter p = 3.

EXAMPLE 8.4. In this example, we present an application of the described method to a

real world problem. We consider the unbounded domain G of connectivity 210 (i.e., m = 209),

exterior to an artificial archipelago located in the waters of the Arabian Gulf, 4 kilometres

off the coast of Dubai, and known as “The World Islands”. An aerial image of “The World

Islands” is shown in Figure 8.15 (left). The boundaries of the islands extracted from the aerial
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FIG. 8.15. The domain for Examples 8.4 and 8.5. An aerial photograph of “The World Islands” (left) and the

boundaries of the islands extracted from the image (right).

image are displayed in Figure 8.15 (right). The boundaries are parameterized by trigonometric

interpolating polynomials. It is clear from Figure 8.15 (right) that the boundaries are very

close to each other, but they do not touch each other.

In this example, we use the integral equation with the generalized Neumann kernel to find

solutions for a steady irrotational uniform flow past the islands in Figure 8.15. Suppose that

F (z) is the complex potential of the flow where z ∈ G ∪ Γ. We assume that the flow speed at

infinity is U and makes an angle ν with the positive real axis. We also assume that χj is the

circulation of the fluid along each boundary component Γj for j = 0, 1, . . . ,m− 1. Then the

complex potential F (z) can be written as (see [27, p. 158] and [34])

F (z) = Ue−iνz +

m
∑

j=0

χj

2πi
log(z − zj) + f(z) + c ,

where f(z) is a single-valued analytic function in G with f(∞) = 0, c is a complex constant,

and zj denotes an arbitrary given points inside Γj . The constant c has no effect on the velocity

field, so we assume that c = 0. Hence,

(8.8) i2f(z) = −F (z) + Ue−iνz +

m
∑

j=0

χj

2πi
log(z − zj), z ∈ G ∪ Γ.

The complex potential F (z) must satisfy the boundary condition that ImF (z) is constant

on each boundary component Γj so that the boundaries are streamlines (see [26, p. 180],

[27, p. 158] and [8]), i.e.,

(8.9) Im[F (η)] = cj , η ∈ Γj , j = 0, 1, . . . ,m,

with real constants c0, c1, . . . , cm. We assume that the function A is given by (1.2) with θj = 0
for all j = 0, 1, . . . ,m, i.e., A(η) = i for all η ∈ Γ. Then, by taking the imaginary part on

both sides of (8.8) and using (8.9), we conclude that f(z) is a solution of the Riemann-Hilbert

problem (1.5) with

(8.10) h = (−c0,−c1, . . . ,−cm)

and

γ(η) = U Im[e−iνη]−
m
∑

j=0

χj

2π
log |z − zj |.
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FIG. 8.16. The streamlines for uniform flow past the 210 islands for U = 1 and ν = 0. The circulation

around the islands filled with red colour is −1, the circulation around the islands filled with blue colour is +1, and

the circulation around the rest of the islands is 0.

We use the function fbie to obtain an approximate solution µn to the integral equa-

tion (2.3) and an approximation hn to the function h. Then approximations to the boundary

values of the function f are given by fn = (γ + hn + iµn)/A. The values of the approx-

imate function fn(z) for z ∈ G are calculated by the Cauchy integral formula. Hence, an

approximation of the complex potential F (z) is given by

Fn(z) = Ue−iνz +

m
∑

j=0

χj

2πi
log(z − zj) + fn(z), z ∈ G ∪ Γ.

If one is interested in computing the values of the constants cj in (8.9), then, in view of (8.10),

we can compute these from the approximate function hn.

Figure 8.16 displays the streamlines for uniform flow past the 210 islands. In the function

fbie, we choose the parameters iprec = 4, restart = 25, gmrestol = 10−12,

maxit = 10. We use n = 8192 nodes in the discretization of each boundary component,

so the total number of nodes is 1720320. The total number of GMRES iterations versus n
is displayed in Figure 8.17. For n = 8192, the GMRES method converges after around 65
iterations, which is acceptable for such complicated domains. For such cases, a possible way to

reduce the number of iterations is to use preconditioning techniques, which are not considered

in this paper; see, e.g., [1, 6, 12, 19, 25].

EXAMPLE 8.5. In this example, we compute the conformal mapping from the unbounded

multiply connected domain G of Example 8.4 (see Figure 8.15) onto the unbounded multiply

connected circular domain, i.e., a domain all of whose boundaries are circles.

Recently, a fast numerical implementation of Koebe’s iterative method for computing the

conformal mapping onto circular domains has been presented in [38]. The method is based on

the integral equation with the generalized Neumann kernel (2.3) and can be used to compute

the conformal mapping, its derivative, and its inverse. The integral equation was solved in [38]

by the MATLAB function fbie presented in this paper. Thus, the numerical results presented
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FIG. 8.17. The total number of GMRES iterations versus n.

in [38] provide extra numerical verification of the function fbie. For more details, we refer

the reader to [38].

In this example, as an application of the function fbie, we use the method presented

in [38] to compute the conformal mapping from the unbounded multiply connected domain G
in Figure 8.15 onto the multiply connected circular domain. This example shows that the func-

tion fbie can be used to compute conformal mappings even for domains with complex and

close-to-touching boundaries. The numerical results obtained with n = 16384, iprec = 4,

restart = 25, gmrestol = 10−12, and maxit = 10 are displayed in Figure 8.18.

9. Conclusions. In this paper, two new numerical methods for a fast computation of the

solutions of the boundary integral equations with the generalized Neumann kernel and the

adjoint generalized Neumann kernel are presented. The methods are based on discretizing the

integral equations using the Nyström method with the trapezoidal rule and then solving the

obtained linear systems using the GMRES method combined with the FMM. The complexity

of the presented methods is O((m+ 1)n lnn) for the integral equations with the generalized

Neumann kernel and O((m + 1)n) for the integral equations with the adjoint generalized

Neumann kernel. The described methods are fast, accurate, and can be used for domains with

close-to-touching boundaries, domains of very high connectivity, domains with piecewise

smooth boundaries, and domains appearing in real world problems.

Furthermore, two MATLAB functions fbie and fbiead are presented for a fast com-

putation of the solutions of the integral equations with the generalized Neumann kernel and

the adjoint generalized Neumann kernel, respectively. The functions fbie and fbiead have

been validated on five numerical examples for various types of multiply connected domains.

As listed in Table 1.1, the integral equations with these kernels have applications to several

problems in applied mathematics. Thus, the functions fbie and fbiead will be useful for

researchers interested in such problems. These functions can also be used for solving several

other tasks related to fluid dynamics and conformal mappings. So far, the function fbie

has been used in [38] to develop a fast method for computing the conformal mapping onto

circular domains, in [45] to develop a fast computational method for potential flows in multiply

connected coastal domains, and in [37] to develop a fast method for computing the conformal

mapping between simply connected domains. The numerical results presented in [37, 38, 45]

provide extra verifications of the usefulness of the function fbie.
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FIG. 8.18. The original domain G (above) and its circular image (below). The figures show orthogonal polar

grids drawn in the circular domain (below) and their pre-images in the original domain G (above). The pre-images

have been computed by the inverse of the conformal mapping.
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