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MATRIX DECOMPOSITIONS FOR TIKHONOV REGULARIZATION ∗

LOTHAR REICHEL† AND XUEBO YU†

Abstract. Tikhonov regularization is a popular method for solving linear discrete ill-posed problems with
error-contaminated data. This method replaces the given linear discrete ill-posed problem by a penalized least-
squares problem. The choice of the regularization matrix in the penalty term is important. We are concerned with
the situation when this matrix is of fairly general form. The penalized least-squares problem can be conveniently
solved with the aid of the generalized singular value decomposition, provided that the size of the problem is not too
large. However, it is impractical to use this decomposition for large-scale penalized least-squares problems. This
paper describes new matrix decompositions that are well suited for the solution of large-scale penalized least-square
problems that arise in Tikhonov regularization with a regularization matrix of general form.
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1. Introduction. We are concerned with the solution of large-scale linear least-squares
problems

(1.1) min
x∈Rn

‖Ax− b‖,

with a matrixA ∈ R
m×n that has many singular values of different orders of magnitude

close to the origin. In particular,A is severely ill-conditioned. The vectorb ∈ R
m represents

measured data and is assumed to be contaminated by an errore ∈ R
m that stems from

measurement inaccuracies. Throughout this paper,‖ · ‖ denotes the Euclidean vector norm or
the associated induced matrix norm.

We can express the data vector as

(1.2) b = b̂+ e,

whereb̂ denotes the unknown error-free vector associated withb. The linear system of equa-
tions with the unknown right-hand side,

(1.3) Ax = b̂,

is assumed to be consistent and we denote its solution of minimal Euclidean norm bŷx. We
would like to determine an accurate approximation ofx̂ by computing a suitable approximate
solution of (1.1).

Least-squares problems (1.1) with a matrix whose singular values “cluster” at zero are
commonly referred to as linear discrete ill-posed problems. They arise in image deblurring
problems as well as from the discretization of linear ill-posed problems such as Fredholm
integral equations of the first kind with a continuous kernel. Due to the ill-conditioning ofA
and the errore in b, straightforward solution of (1.1) generally does not give a meaningful
approximation of̂x.

A common approach to determine a useful approximate solution of (1.1) is to employ
Tikhonov regularization, i.e., to replace (1.1) by a penalized least-squares problem of the
form

(1.4) min
x∈Rn

{‖Ax− b‖2 + µ‖Bx‖2},
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where the matrixB ∈ R
p×n is a regularization matrix and the scalarµ ≥ 0 is a regularization

parameter. WhenB is the identity matrix, the Tikhonov minimization problem (1.4) is said
to be instandard form; otherwise it is ingeneral form. We assume thatB is such that

(1.5) N (A) ∩ N (B) = {0},

whereN (M) denotes the null space of the matrixM .
The normal equations associated with (1.4) are given by

(1.6) (A∗A+ µB∗B)x = A∗b,

whereA∗ andB∗ denote the adjoints ofA andB, respectively. It follows from (1.5) and (1.6)
that (1.4) has the unique solution

xµ = (A∗A+ µB∗B)−1A∗b

for anyµ > 0. The value ofµ determines how sensitivexµ is to the errore in b and to
round-off errors introduced during the computations and how closexµ is to x̂; see, e.g., Engl
et al. [6], Groetsch [8], and Hansen [9] for discussions on Tikhonov regularization.

We would like to determine a suitable value of the regularization parameterµ > 0 and
an approximation of the associated solutionxµ of (1.4). The determination of a suitableµ
generally requires that the Tikhonov minimization problem(1.4) be solved for severalµ-
values. For instance, the discrepancy principle, the L-curve criterion, and the generalized
cross validation method are popular approaches to determine a suitable value ofµ, and all of
them require that (1.4) be solved for several values ofµ > 0 in order to find an appropriate
value; see, e.g., [6, 9, 14, 15, 17] and the references therein for discussions on these methods
for determiningµ. The repeated solution of (1.4) for different µ-values can be expensive
when the matricesA andB are large and do not possess a structure that makes a fast solution
possible.

When the matricesA andB are of small to moderate sizes, the Tikhonov minimization
problem (1.4) is typically simplified by first computing the Generalized Singular Value De-
composition (GSVD) of the matrix pair{A,B} or a related decomposition; see [3, 4, 9].
When one of the latter decompositions is available, the minimization problem (1.4) can be
solved quite inexpensively for several differentµ-values.

In this paper, we are interested in developing solution methods that can be applied when
the matricesA andB are too large to compute the GSVD or a related decomposition of the
matrix pair{A,B}. Moreover,B is not assumed to have a particular structure that makes
the transformation of the problem (1.4) to standard form with the aid of theA-weighted gen-
eralized inverse ofB feasible; see Eld́en [5] for details on this transformation. We describe
decomposition methods for the matricesA andB that are well suited for the approximate
solution of large-scale Tikhonov minimization problems (1.4) in general form. These meth-
ods reduce a pair of large matrices{A,B} to a pair of small matrices and, thereby, reduce
the large-scale problem (1.4) to a small one. The GSVD or the decomposition described
in [3] can be applied to solve the latter for several values of the regularization parameter. The
reduction methods considered in this paper are modifications of decomposition schemes de-
scribed in [12, 20]. The decomposition discussed in [12] is a generalization of Golub–Kahan
bidiagonalization to matrix pairs. We describe a variant that allows the generation of more
general solution subspaces than those considered in [12]. Computed examples illustrate that
this extension may be beneficial. We also discuss an extension of the decomposition method
described in [20], which is based on the flexible Arnoldi process introduced by Saad [21].
This decomposition method is designed for square matricesA andB of the same size. We
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consider an extension that allowsB to be rectangular. This extension is briefly commented
on in the last computed example of [20]. The present paper discusses its implementation and
illustrates its performance in two computed examples.

This paper is organized as follows. Sections2 and3 describe the new decomposition
methods and discuss some of their properties. Numerical examples are presented in Section4,
and concluding remarks can be found in Section5.

We conclude this section with a few comments on some available methods for the so-
lution of large-scale Tikhonov minimization problems in general form. Kilmer et al. [13]
describe an inner-outer iterative method. This method is based on the partial GSVD method
described by Zha [24]. The latter method may require a fairly large number of matrix-vector
product evaluations. We therefore are interested in developing alternative methods. A reduc-
tion method that forms a solution subspace that is independent of the matrixB is proposed
in [11]. This approach is simple and works well for many problems, but as is illustrated
in [20], it may be beneficial to use a solution subspace that incorporates information from
both the matricesA andB. A generalization of the Arnoldi process that can be appliedto the
reduction of a pair of square matrices of the same sizes has been discussed by Li and Ye [16],
and applications to Tikhonov regularization are describedin [16, 18]. This reduction method
requires the matricesA andB to be square.

We will use the following notation throughout the paper:Mk,ℓ denotes a matrix of size
k×ℓ, its entries aremi,j . We use MATLAB-type notation:M:,j is thejth column andMi,: the
ith row of the matrixM = Mk,ℓ. The submatrix consisting of rowsi throughj and columns
k throughℓ is denoted byMi:j,k:ℓ. Sometimes the number of rows of a matrix is suppressed,
i.e., we writeMℓ = [m1,m2, . . . ,mℓ] for a matrix withℓ columns. Boldface letters stand
for column vectors. The range of the matrixM is denoted byR(M). The condition number
of the matrixM , denoted byκ(M), is the quotient of the largest and smallest singular values
of the matrix. Moreover,(u,v) = u∗v stands for the standard inner product between the
vectorsu andv.

2. Golub–Kahan-type decomposition methods.The application of a few steps of Go-
lub–Kahan bidiagonalization (also known as Lanczos bidiagonalization) is a popular ap-
proach to reduce a large matrix to a small bidiagonal one. Recently, Hochstenbach et al. [12]
described an extension of Golub–Kahan bidiagonalization that can be applied to reduce a pair
of large matrices{A,B} with the same number of columns to a pair of small matrices. This
extension builds up a solution subspace that is constructedby invoking matrix-vector prod-
ucts withA andA∗ in essentially the same manner as matrix-vector products withB andB∗.
Algorithm 2.1below describes a modification of the method presented in [12] that allows the
construction of more general solution subspaces. Computedexamples presented in Section4
illustrate that the method of this paper may determine approximations ofx̂ of higher quality
than the method described in [12].

We first discuss the standard Golub–Kahan method for partialbidiagonalization of one
matrix A ∈ R

m×n. An outline of the bidiagonalization process is provided inthe proof of
Proposition2.1 because related constructions are employed below. We introduce notation
that is convenient for our subsequent generalization. Detailed discussions of Golub–Kahan
bidiagonalization can be found in, e.g., [2, 7].

PROPOSITION2.1. LetA ∈ R
m×n andu1 ∈ R

m be a unit vector. Thenk ≤ min{m,n}
steps of Golub–Kahan bidiagonalization applied toA with initial vectoru1 yield the decom-
positions

AVk = Uk+1Hk+1,k,(2.1)

A∗Uk+1 = Vk+1Kk+1,k+1,(2.2)
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where the columns of the matricesUk+1 = [u1,u2, . . . ,uk+1] ∈ R
m×(k+1) and

Vk+1 = [v1,v2, . . . ,vk+1] ∈ R
n×(k+1) are orthonormal, the matrixHk+1,k ∈ R

(k+1)×k

is lower bidiagonal, and the leadingk × (k + 1) submatrix ofKk+1,k+1 ∈ R
(k+1)×(k+1)

satisfies

(2.3) Kk,k+1 = H∗
k+1,k.

The initial columnv1 of Vk+1 is determined by(2.2) with k = 0 so thatk1,1 > 0. Gener-
ically, the diagonal and subdiagonal entries ofHk+1,k can be chosen to be positive. The
decompositions(2.1) and (2.2) then are uniquely determined.

Proof. The columnsu2,v2,u3,v3, . . . , of Uk+1 andVk+1 are generated, in order, by
alternatingly using equations (2.1) and (2.2) for increasing values ofk. Thus, the columnu2

is determined by requiringu2 to be of unit length, to be orthogonal tou1, and to satisfy (2.1)
for k = 1 for a positive subdiagonal entryh2,1 of H2,1, where we note thath1,1 = k1,1.
This determines bothu2 andh2,1. The columnv2 of V2 is now defined by equation (2.2) for
k = 2. The column is uniquely determined by the requirements thatv2 be orthogonal tov1,
of unit length, and such that the last diagonal entry ofK2,2 is positive. This entry equalsh2,2.
The next vector to be evaluated isu3. Generically, the computations can be continued in
the manner indicated until the decompositions (2.1) and (2.2) have been computed for some
k ≤ min{m,n}.

In rare situations, the computations cannot be completed asdescribed because the first,
sayj, generated columnsv1,v2, . . . ,vj of Vk+1 span an invariant subspace ofA∗A. This
situation is referred to as breakdown. The computations canbe continued by letting the next
column,vj+1, be an arbitrary unit vector that is orthogonal tospan{v1,v2, . . . ,vj}. The
situation when the firstj generated columns ofUk+1 span an invariant subspace ofAA∗ can
be handled analogously and is also referred to as breakdown.In case of breakdown, suitable
entries ofHk+1,k andKk+1,k+1 are set to zero so that the decompositions (2.1) and (2.2) are
valid. These decompositions are not unique when breakdown occurs.

In applications of partial Golub–Kahan bidiagonalizationto the solution of least-squares
problems (1.1), one generally chooses the initial vectoru1 = b/‖b‖. Available descriptions
of Golub–Kahan bidiagonalization exploit thatKk,k+1 can be expressed in terms ofHk+1,k,
see (2.3), and do not explicitly use the matrixKk+1,k+1. It is convenient for our discussion
below to distinguish between the matricesHk+1,k andKk,k+1.

We now turn to a modification of Golub–Kahan bidiagonalization that allows the choice
of a fairly arbitrary columnvi+1 in addition to the columnu1. The matricesUk+1 andVk+1

generated will have orthonormal columns, similarly as in the decompositions (2.1) and (2.2),
but the structure of the matrices analogous toHk+1,k andKk+1,k+1 in (2.1) and (2.2) will be
different. We assume for notational simplicity the genericsituation that no breakdown takes
place.

Let the decompositions (2.1) and (2.2) be available fork = i− 1, i.e., we have

AVi−1 = UiHi,i−1,(2.4)

A∗Ui = ViKi,i,(2.5)

with Ki−1,i = H∗
i,i−1. Determine the columnui+1 of Uk+1 from (2.1) with k = i. This

defines the entryhi+1,i > 0 of Hi+1,i. Now let the columnvi+1 of Vk+1 be an arbitrary unit
vector such that

(2.6) vi+1 ⊥ span{v1,v2, . . . ,vi}.

We proceed to compute the columnui+2 of Uk+1 by using (2.1) with k = i+ 1. This deter-
mines the last column ofHi+2,i+1. We will show below that all entries above the diagonal in
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the columnH:,i+1 vanish. The columnvi+2 of Vi+2 is chosen to be of unit length, orthogonal
to the columns ofVi+1, and such that the relation

A∗Ui+1 = Vi+2Ki+2,i+1

holds. We then compute the columnsui+3,vi+3, . . . ,uk+1,vk+1, in order, from decompo-
sitions of the form

AVj = Uj+1Hj+1,j ,(2.7)

A∗Uj = Vj+1Kj+1,j ,(2.8)

for j = i + 2, i + 3, . . . , k. The following theorem describes the structure of the matrices
Hk+1,k andKk+1,k.

THEOREM 2.2. Let the decompositions(2.7) and (2.8) for j = k be generated as de-
scribed above and assume that no breakdown occurs. Then the columns ofUk+1 ∈ R

m×(k+1)

andVk+1 ∈ R
n×(k+1) are orthonormal, and the matrixHk+1,k ∈ R

(k+1)×k has the structure

Hk+1,k =




h1,1 O
h2,1 h2,2

h3,2
. ..
. .. hi+1,i+1 hi+1,i+2

hi+2,i+1 hi+2,i+2
. . .

hi+3,i+2
. . . hk−1,k

. . . hk,k

O hk+1,k




.

Thus, the leading principal(i + 2) × (i + 1) submatrix is lower bidiagonal and the matrix
Hk+1,k is tridiagonal. Furthermore,Kk,k = H∗

k,k.
Proof. Let the decompositions (2.4) and (2.5) be available. The matrixHi,i−1 in (2.4)

is lower bidiagonal by Proposition2.1. The next step in the Golub–Kahan bidiagonalization
method is to replaceVi−1 by Vi in (2.4) and define the matrixUi+1 by appending a suitable
columnui+1 to Ui. Append a zero row toHi,i−1 and the column[h1,i, h2,i, . . . , hi+1,i]

∗ to
the matrix so obtained. This gives a decomposition of the form (2.4) with i replaced byi+1.
The entrieshj,i are defined by

(2.9) Avi =

i+1∑

j=1

hj,iuj ,

where we choosehi+1,i > 0 so thatui+1 is a unit vector that is orthogonal tou1,u2, . . . ,ui.
It follows from (2.5) and the fact thatKi,i is upper triangular that

(2.10) A∗uj ∈ span{v1,v2, . . . ,vj}, j = 1, 2, . . . , i.

Therefore,

hj,i = u∗
jAvi = v∗

i (A
∗uj) = 0, j = 1, 2, . . . , i− 1.

The last diagonal entry ofHi+1,i is determined by (2.5), i.e., by

hi,i = u∗
iAvi = ki,i.
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Thus, we have obtained the desired decomposition

AVi = Ui+1Hi+1,i,

where the columns ofUi+1 are orthonormal andHi+1,i is lower bidiagonal.
Letvi+1 be a unit vector that satisfies (2.6). We proceed as above to determine a new unit

vectorui+2 that we append toUi+1 to determine the matrixUi+2 with orthonormal columns.
Append a zero row toHi+1,i and the column[h1,i+1, h2,i+1, . . . , hi+2,i+1]

∗ to the matrix so
obtained. Our aim is to determine a decomposition of the form(2.4) with i replaced byi+1.
Therefore, analogously to (2.9), we let

Avi+1 =

i+2∑

j=1

hj,i+1uj

and choosehi+2,i+1 > 0 so thatui+2 is a unit vector that is orthogonal to the vectors
u1,u2, . . . ,ui+1. It follows from (2.10) that

hj,i+1 = u∗
jAvi+1 = v∗

i+1(A
∗uj) = 0, j = 1, 2, . . . , i.

The remaining entry of the last column ofHi+1,i is defined byhi+1,i+1 = u∗
i+1Avi+1. Thus,

we have determined the decomposition

(2.11) AVi+1 = Ui+2Hi+2,i+1,

where the columns ofUi+2 andVi+1 are orthonormal andHi+2,i+1 is lower bidiagonal.
To proceed, letvi+2 be a unit vector that is orthogonal tospan{v1,v2, . . . ,vi+1} and

satisfies

A∗ui+1 =
i+2∑

j=1

kj,i+1vj

with ki+2,i+1 > 0. It follows from (2.11) and the structure ofHi+2,i+1 thatkj,i+1 = 0 for
j = 1, 2, . . . , i − 1. We first append two zero rows to the matrixKi and then the column
[k1,i+1, k2,i+1, . . . , ki+2,i+1]

∗ to the matrix so obtained. This defines the matrixKi+2,i+1.
By construction, it satisfies

(2.12) A∗Ui+1 = Vi+2Ki+2,i+1.

Hence, the matrixVi+2 has orthonormal columns, the last column ofKi+2,i+1 has at most
three nonvanishing entries, and the submatrixKi+1,i+1 is upper bidiagonal.

We continue to define the columnui+3 of the matrixUi+3 with the aim of obtaining a
decomposition of the form

AVi+2 = Ui+3Hi+3,i+2.

Specifically, we letui+3 be of unit length, orthogonal tou1,u2, . . . ,ui+2, and such that

Avi+2 =

i+3∑

i=1

hj,i+2uj

with hi+3,i+2 > 0. It follows from (2.12) and the structure ofKi+2,i+1 that

hj,i+2 = u∗
jAvi+2 = 0, j = 1, 2, . . . , i.
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Hence, only the last three entries of the vector[h1,i+2, h2,i+2, . . . , hi+3,i+2]
∗, which is the

last column of the matrixHi+3,i+2, may be nonvanishing.
We proceed by defining new columns of the matricesUk+1 andVk+1 in this manner until

the decompositions (2.7) and (2.8) have been determined forj = k.
Results analogous to Theorem2.2can be obtained by letting the columnui+1 of Uk+1 be

an arbitrary unit vector that is orthogonal to the precedingcolumnsu1,u2, . . . ,ui. We will
not dwell on this situation since it is of little interest forour numerical method for Tikhonov
regularization.

The special case of Theorem2.2 when both the initial columns ofUk+1 andVk+1 are
chosen to be arbitrary unit vectors is described by the following corollary. It has previously
been discussed in [19, 22].

COROLLARY 2.3. Let the initial columns of the matricesUk+1 ∈ R
m×(k+1) and

Vk+1 ∈ R
n×(k+1) be arbitrary unit vectors. Determine the remaining columnssimilarly

as in Theorem2.2and assume that no breakdown occurs. Then the matricesUk+1 andVk+1

satisfy the relations

AVk = Uk+1Hk+1,k,

A∗Uk = Vk+1Kk+1,k,

whereHk+1,k ∈ R
(k+1)×k is tridiagonal andKk,k = H∗

k,k.
Proof. The result is a consequence of Theorem2.2. Breakdown of the recursions is

discussed in [19].
We can extend Theorem2.2 to allow the inclusion of several arbitrary orthonormal

columns in the matrixVk+1.
THEOREM 2.4. Let the indicesij be ordered so that1 ≤ i1 < i2 < . . . < is ≤ k,

and letvi1 ,vi2 , . . . ,vis be arbitrary unit vectors such thatviℓ is orthogonal to all preceding
columnsv1,v2, . . . ,viℓ−1 of Vk+1 for ℓ = 1, 2, . . . , s. Introducing these columns similarly
as the columnvi+1 in Theorem2.2yields the decompositions

AVk = Uk+1Hk+1,k,

A∗Uk+1−s = Vk+1Kk+1,k+1−s,

whereUk+1 ∈ R
m×(k+1) and Vk+1 ∈ R

n×(k+1) have orthonormal columns. The ma-
trices Hk+1,k ∈ R

(k+1)×k and Kk+1,k+1−s ∈ R
(k+1)×(k+1−s) are banded and satisfy

(Hk+1−s,k)
∗ = Kk,k+1−s. Moreover,Hk+1,k is upper Hessenberg and such that

• all entries except possiblyhj+1,j andhj,j of the columnH:,j vanish forj ≤ i1,

• all entries except possiblyhj+1,j , hj,j , . . . , hj−t,j of the columnH:,j vanish for
it < j ≤ it+1, where1 ≤ t ≤ s− 1,

• all entries except possiblyhj+1,j , hj,j , . . . , hj−s,j of the columnH:,j vanish for
j > is.

Proof. Theorem2.2 shows that when introducing an arbitrary unit vectorvi1 that is
orthogonal to the preceding vectorsv1,v2, . . . ,vi1−1, the upper bandwidth of the matrix
Hk+1,k increases by one, starting at columni1 + 1. A slight modification of the proof of
Theorem2.2shows that if a new arbitrary unit vectorvi2 that is orthogonal to the preceding
vectorsv1,v2, . . . ,vi2−1 is introduced, then the upper bandwidth ofHk+1,k is increased by
one, starting at columni2 + 1. Repeating this process for all vectorsvi1 ,vi2 , . . . ,vis shows
the theorem.

The above theorem forms the basis for our generalized Golub–Kahan reduction method
for matrix pairs{A,B}. We first present an outline of this method. A detailed algorithm is
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presented in Algorithm2.1. LetA ∈ R
m×n andB ∈ R

p×n, and let the first columnu1 of the
matrixU = [u1,u2, . . . ] be an arbitrary unit vector. Define the first column of the matrix
V = [v1,v2, . . . ] by v1 = A∗u1/‖A

∗u1‖. Let the matrixUj consist of the firstj columns

of U ; similar notation is used for the matricesV andW . Further,H(A)
j+1,j denotes the leading

principal(j + 1)× j submatrix of the matrixH(A) defined below. We use the same notation
for the matricesH(B), K(A), andK(B) also defined below. Let the(1, 1)-entries ofH(A)

andK(A) be given byh(A)
1,1 = k

(A)
1,1 = ‖A∗u1‖. The index setsPA andPB keep track of

how new vectors in the solution subspaceR(V ) are generated; the integerssA andsB are
associated counters. We generate successive columns of thematricesU , V , W , H(A), H(B),
K(A), andK(B) in the manner described in the Algorithm Outline2.1.

ALGORITHM OUTLINE 2.1.
Initialization:

sA = 1; sB = 0; PA = {1}; PB = ∅; define the vectorsu1 andv1 as described
above.

Iteration:
for j = 1, 2, 3, . . . :

• Determine the new(j + 1)st andjth columnsuj+1 andwj , respectively, of
the matricesU andW by equating

AVj = Uj+1H
(A)
j+1,j ,

BVj = WjH
(B)
j,j ,

so that the matricesUj+1 and Wj have orthonormal columns,

H
(A)
j+1,j ∈ R

(j+1)×j is upper Hessenberg, andH(B)
j,j ∈ R

j×j is upper
triangular.

• Determine the new(j + 1)st columnvj+1 of the matrixV by equating one
of the following formulas that define decompositions and by carrying out the
other required computations
(i): A∗Uj+1−sB = Vj+1K

(A)
j+1,j+1−sB

; sA = sA+1; PA = PA∪{j+1};

(ii): B∗Wj+1−sA = Vj+1K
(B)
j+1,j+1−sA

; sB = sB+1; PB=PB ∪{j+1};
so that Vj+1 has orthonormal columns. Here, the matrices

K
(A)
j+1,j+1−sB

∈ R
(j+1)×(j+1−sB) and K

(B)
j+1,j+1−sA

∈ R
(j+1)×(j+1−sA)

have zero entries below the diagonal. The indicessA and sB count the
number of columns ofV that have been determined by equating (i) and (ii),
respectively. Thus,sA + sB = j. The index setsPA andPB are used in
Theorem2.5below.

endj-loop

THEOREM 2.5. LetA ∈ R
m×n, B ∈ R

p×n, and let the first columns of the matricesU
andV be defined as in the Algorithm Outline2.1. Then, assuming that no breakdown occurs,
k iteration steps described by Algorithm Outline2.1yield the decompositions

AVk = Uk+1H
(A)
k+1,k,(2.13)

BVk = WkH
(B)
k,k ,(2.14)

A∗Uk+1−sB = Vk+1K
(A)
k+1,k+1−sB

,(2.15)

B∗Wk+1−sA = Vk+1K
(B)
k+1,k+1−sA

.(2.16)
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Assume that the vectorsvi1 ,vi2 , . . . ,visB
are generated by using equation (ii). Theni1 > 1,

andH(A) has the structure described by Theorem2.4 with the indicesi1 < i2 < . . . < is
defined byPB = {ij}

s
j=1.

Let the indicesk1 < k2 < . . . < kt be defined byPA = {kj}tj=1. Thenk1 = 1, and the

matrixH(B) is upper triangular and such that the columnH(B)
:,j has at most1 + q nonzero

entriesh(B)
j,j , h

(B)
j+1,j , . . . , h

(B)
j+q,j for iq < j ≤ iq+1.

Proof. The structure ofH(A) is obtained from Theorem2.4 by replacings by sB and
by letting the vectorsvi1 ,vi2 , . . . ,vis of Theorem2.4 bevi1 ,vi2 , . . . ,visB

of the present
theorem.

The structure ofH(B) can be shown similarly as the structure ofH(A) as follows. Con-
sider the two-part iteration (2.14) and (2.16) to generate the firsti − 1 columns ofV . This
is Golub–Kahan bidiagonalization with the initial vectorv1. The matrixH(B) determined is
upper bidiagonal. Now letvi be determined by (2.15) for i = ℓ1, ℓ2, . . . , ℓsA . We apply The-
orem2.2repeatedly, similarly as in the proof of Theorem2.4, to show the structure ofH(B).

Algorithm 2.1below describes a particular implementation of the Algorithm Outline2.1,
in which a parameterρ > 0 determines whether step (i) or step (ii) should be executed to
determine a new column ofV . The value ofρ affects the solution subspaceR(V ) generated
by the algorithm. This is illustrated below. Algorithm2.1 generalizes [12, Algorithm 2.2]
by allowing step (i) to be executed a different number of times than step (ii). The algorithm
in [12] corresponds to the caseρ = 1.

The countersN(u) andN(w) in Algorithm 2.1 are indices used when generating the
next column ofV .

EXAMPLE 2.6. Letρ = 1. Thenℓ steps with Algorithm2.1generates the matrixVℓ with
range

R(Vℓ) = span{A∗b, B∗BA∗b, A∗AA∗b, (B∗B)2A∗b, A∗AB∗BA∗b,
B∗BA∗AA∗b, (A∗A)2A∗b, . . . }.

This space also is determined by the generalized Golub–Kahan reduction method described
by [12, Algorithm 2.2].

EXAMPLE 2.7. Letρ = 1/2. Then each application of step (i) is followed by two
applications of step (ii). This yields a subspace of the form

R(Vℓ) = span{A∗b, B∗BA∗b, (B∗B)2A∗b, A∗AA∗b, (B∗B)3A∗b,
B∗BA∗AA∗b, A∗AB∗BA∗b, . . . }.

The computation of the matrixVℓ in this example requires more matrix-vector product eval-
uations with the matrixB∗ than the determination of the corresponding matrixVℓ of Exam-
ple 2.6. In many applications of Tikhonov regularization,B∗ represents a discretization of a
differential operator and is sparse. Typically, the evaluation of matrix-vector products with
B∗ is cheaper than withA∗. Therefore, the computation of a solution subspace of dimensionℓ
generally is cheaper whenρ = 1/2 than whenℓ = 1. Moreover, computed examples of Sec-
tion 4 show thatρ < 1 may yield more accurate approximations of the desired solution x̂

thanρ = 1.
Algorithm 2.1 is said to break down if an entryhj+1,j , rj,j , or αj in lines10, 16, or 26

vanishes. Breakdown is very unusual in our application to Tikhonov regularization. If break-
down occurs in lines 10 or 16, then we may terminate the computations with the algorithm
and solve the available reduced problem. When breakdown takes place in line 26, we ignore
the computed vectorv and generate a new vectorv via either line 18 or line 20. Breakdown



ETNA
Kent State University 

http://etna.math.kent.edu

232 L. REICHEL AND X. YU

ALGORITHM 2.1 (Extension of Golub–Kahan-type reduction to matrix pairs{A,B}).
1. Input: matricesA ∈ R

m×n, B ∈ R
p×n, unit vectoru1 ∈ R

n,
ratioρ ≥ 0, and number of stepsℓ

2. v̂ := A∗u1; h1,1 := ‖v̂‖; v1 := v̂/h1,1;
3. N(u) := 1; N(w) := 1
4. for j = 1, 2, . . . , ℓ do
5. û := Avj newu-vector
6. for i = 1, 2, . . . , j do
7. hi,j := u∗

i û; û := û− uihi,j

8. end for
9. hj+1,j := ‖û‖

10. uj+1 := û/hj+1,j if hj+1,j = 0 : see text

11. ŵ := Bvj neww-vector
12. for i = 1, 2, . . . , j − 1 do
13. ri,j := w∗

i ŵ; ŵ := ŵ −wiri,j
14. end for
15. rj,j := ‖ŵ‖
16. wj := ŵ/rj,j if rj,j = 0 : see text

17. if N(w)/N(u) > 1/ρ
18. N(u) := N(u) + 1; v := A∗uN(u)

19. else
20. v := B∗wN(w); N(w) := N(w) + 1
21. end
22. for i = 1, 2, . . . , j do
23. v := v − (v∗

i v)vi;
24. end for
25. αj := ‖v‖;
26. vj+1 := v/αj ; newv-vector, ifhj+1,j = 0 : see text

27. end for

also could be handled in other ways. The occurrence of breakdown may affect the structure
of the matricesH(A) andH(B).

Let u1 = b/‖b‖ in Algorithm 2.1 and assume that no breakdown occurs during the
execution of the algorithm. Execution ofℓ steps of Algorithm2.1 then yields the decompo-
sitions (2.13) and (2.14) for k = ℓ. These decompositions determine the reduced Tikhonov
minimization problem

(2.17) min
x∈R(Vℓ)

{‖Ax− b‖2 + µ‖Bx‖2} = min
y∈Rℓ

{‖H
(A)
ℓ+1,ℓy − e1‖b‖ ‖

2 + µ‖H
(B)
ℓ,ℓ y‖2}.

It follows from (1.5) that

N (H
(A)
ℓ+1,ℓ) ∩ N (H

(B)
ℓ,ℓ ) = {0},

and therefore the reduced Tikhonov minimization problem onthe right-hand side of (2.17)
has a unique solutionyℓ,µ for all µ > 0. The corresponding approximate solution of (1.4) is
given byxℓ,µ = Vℓyℓ,µ. Since

(2.18) ‖Axℓ,µ − b‖ = ‖H
(A)
ℓ+1,ℓyℓ,µ − e1‖b‖ ‖,

we can evaluate the norm of the residual errorAxℓ,µ − b by computing the norm of the
residual error of the reduced problem on the right-hand sideof (2.18). This is helpful when
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determining a suitable value of the regularization parameter µ by the discrepancy principle
or L-curve criterion; see, e.g., [9] for the latter. In the computed examples of Section4, we
assume that an estimate of the norm of the errore in b is known. Thenµ can be determined
by the discrepancy principle, i.e., we chooseµ so that

‖H
(A)
ℓ+1,ℓyℓ,µ − e1‖b‖ ‖ = ‖e‖.

This value ofµ is the solution of a nonlinear equation, which can be solved conveniently by
using the GSVD of the matrix pair{H(A)

ℓ+1,ℓ, H
(B)
ℓ,ℓ }. An efficient method for computing the

GSVD is described in [4]; see also [3].

3. A decomposition method based on flexible Arnoldi reduction. Many commonly
used regularization matricesB ∈ R

p×n are rectangular with eitherp < n or p > n. The
reduction method for the matrix pairs{A,B} described in [20], which is based on the flexible
Arnoldi process due to Saad [21], requires the matrixB to be square. This section describes
a simple modification of the method in [20] that allowsB to be rectangular. Differently from
the method in [20], the method of the present paper requires the evaluation ofmatrix-vector
products withB∗. The matrixA is required to be square.

We first outline the flexible Arnoldi decomposition for a matrix pair {A,B} in the Algo-
rithmic Outline3.1. A detailed algorithm is presented below.

ALGORITHM OUTLINE 3.1.
Input: A ∈ R

n×n, B ∈ R
p×n, b ∈ R

n, ratioρ ≥ 0, and number of stepsℓ

Initialization:
h1,1 := ‖b‖; u1 := b/h1,1; v1 := u1;

Iteration:
for j = 1, 2, . . . , ℓ :

• Determine the new columnsuj+1 andwj of the matricesU andW , respec-
tively, by equating the right-hand sides and left-hand sides of the expressions

AVj = Uj+1Hj+1,j ,

BVj = WjRj,j ,

in a such a manner that the matricesUj+1 andWj have orthonormal columns,
Hj+1,j ∈ R

(j+1)×j is upper Hessenberg, andRj,j ∈ R
j×j is upper triangular.

• Determine the new columnvj+1 of the matrixV . This column should be
linearly independent of the already available columnsv1,v2, . . . ,vj . In Al-
gorithm3.1 below, we will letvj+1 be a unit vector that is orthogonal to the
columnsv1,v2, . . . ,vj . It is constructed by matrix-vector product evaluations
Avj orB∗Bvj depending on the input parameterρ.

endj-loop

The Algorithm Outline3.1generates the decompositions

AVℓ = Uℓ+1Hℓ+1,ℓ,(3.1)

BVℓ = WℓRℓ,ℓ,(3.2)

which we apply to solve the Tikhonov minimization problem (1.4). Details of the outlined
computations are described in Algorithm3.1.
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ALGORITHM 3.1 (Reduction of matrix pair{A,B}; A square, B rectangular).
1. Input:A ∈ R

n×n, B ∈ R
p×n, b ∈ R

n, ratioρ ≥ 0, and number of stepsℓ
2. h1,1 := ‖b‖; u1 := b/h1,1; v1 := u1;
3. N(u) := 1; N(w) := 1
4. for j = 1, 2, . . . , ℓ do
5. û := Avj newu-vector
6. for i = 1, 2, . . . , j do
7. hi,j := u∗

i û; û := û− uihi,j

8. end for
9. hj+1,j := ‖û‖

10. uj+1 := û/hj+1,j if hj+1,j = 0 : see text

11. ŵ := Bvj neww-vector
12. for i = 1, 2, . . . , j − 1 do
13. ri,j := w∗

i ŵ; ŵ := ŵ −wiri,j
14. end for
15. rj,j := ‖ŵ‖
16. wj := ŵ/rj,j if rj,j = 0 : see text

17. if N(w)/N(u) > 1/ρ
18. N(u) := N(u) + 1; v := uN(u)

19. else
20. v := B∗wN(w); N(w) := N(w) + 1
21. end
22. for i = 1, 2, . . . , j do
23. v := v − (v∗

i v)vi;
24. end for
25. αj := ‖v‖;
26. vj+1 := v/αj ; newv-vector
27. end for

The elementshi,j and ri,j in Algorithm 3.1 are the nontrivial entries of the matrices
Hℓ+1ℓ andRℓ,ℓ determined by the algorithm. Algorithm3.1differs from the flexible Arnoldi
reduction algorithm presented in [20, Algorithm 2.1] only insofar as line 20 in this algorithm
has been changed fromv := wN(w) to v := B∗wN(w). Most of the properties of [20,
Algorithm 2.1] carry over to Algorithm3.1. The structure of the matrixR determined by
Algorithm 3.1 is similar to the structure of the matrixH(B) computed by Algorithm2.1
of the present paper. Moreover, if the matrixA in Algorithm 3.1 is symmetric, then the
structure of the computed matrixH is similar to the structure of the matrixH(A) determined
by Algorithm 2.1. The structure ofH andR can be shown similarly to the analogous results
for the matricesH(A) andH(B) in Section2.

Assume for the moment the generic situation that no breakdown occurs during the exe-
cution of Algorithm3.1. Then the algorithm yields the decompositions (3.1) and (3.2) and
we obtain

(3.3) min
x∈R(Vℓ)

{‖Ax− b‖2 + µ‖Bx‖2} = min
y∈Rℓ

{‖Hℓ+1,ℓy − e1‖b‖ ‖
2 + µ‖Rℓ,ℓy‖

2}.

It follows from (1.5) that the reduced minimization problem on the right-hand side has
the unique solutionyℓ,µ for any µ > 0, from which we obtain the approximate solutions
xℓ,µ = Vℓyℓ,µ of (1.4). Similarly to (2.18), we have

‖Axℓ,µ − b‖ = ‖Hℓ+1,ℓyℓ,µ − e1‖b‖ ‖,
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and this allows us to determineµ with the aid of the discrepancy principle by solving a
nonlinear equation that depends on the matrix pair{Hℓ+1,ℓ, Rℓ,ℓ}. We proceed analogously
as outlined at the end of Section2.

4. Numerical examples.We present a few examples that illustrate the application of
decompositions computed by Algorithms2.1 and3.1 to Tikhonov regularization. We com-
pare with results obtained by using decompositions determined the GSVD and by [20, Algo-
rithm 2.1]. In all examples, the error vectore has normally distributed pseudorandom entries
with mean zero; cf. (1.2). The vector is scaled to correspond to a chosen noise level

δ =
‖e‖

‖b̂‖
·

We assume the noise level to be known and therefore may apply the discrepancy principle to
determine the regularization parameterµ > 0; see the discussions at the end of Sections2
and3. The methods of this paper, of course, also can be applied in conjunction with other
schemes for determining the regularization parameter suchas the L-curve criterion.

We tabulate the relative error‖xℓ,µℓ
− x̂‖/‖x̂‖, wherex̂ is the desired solution of the

unknown error-free linear system of equations (1.3). All computations are carried out in
MATLAB with about 15 significant decimal digits.

EXAMPLE 4.1. Consider the inverse Laplace transform

∫ ∞

0

exp(−st)f(t)dt =
1

s+ 1/2
, 0 ≤ s < ∞,

with solutionf(t) = exp(−t/2). This problem is discussed, e.g., by Varah [23]. We use
the functioni laplace from [10] to determine a discretizationA ∈ R

n×n of the integral
operator and a discretized scaled solutionx̂ ∈ R

n for n = 1000. The error vectore ∈ R
n

has noise levelδ = 10−1. The error-contaminated data vectorb in (1.1) is defined by (1.2).
We will use the regularization matrix

B =

[
L1

L2

]
,

where

(4.1) L1 =
1

2




1 −1 O
1 −1

. . .
. ..

O 1 −1


 ∈ R

(n−1)×n

is a bidiagonal scaled finite difference approximation of the first-derivative operator and

(4.2) L2 =
1

4




−1 2 −1 O
1 2 −1

. . .
.. .

. . .
O −1 2 −1


 ∈ R

(n−2)×n

is a tridiagonal scaled finite difference approximation of the second-derivative operator. The
matrix B damps finite differences that approximate both the first and second derivatives in
the computed approximate solution.
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We apply Algorithm2.1 with ρ = 1, ρ = 0.5, andρ = 0.1. The results are reported in
Table4.1. Whenρ = 1, the best approximation of̂x is achieved afterℓ = 20 iterations. If
insteadρ = 0.5, then the best approximation of̂x is obtained after onlyℓ = 13 iterations,
andρ = 0.1 gives the best approximation afterℓ = 29 iterations. This example illustrates
that Algorithm2.1may yield approximate solutions of higher quality and require less storage
and computational work whenρ < 1.

We do not presently have a complete understanding of howρ should be chosen. In [20],
we observed that when‖Bxℓ,µℓ

‖ is small, the computed solutionxℓ,µℓ
often is of high quality

and that choosingρ < 1 seems to be beneficial for achieving this. It is also important that the
condition number of the reduced matrix

(4.3)

[
H

(A)
ℓ+1,ℓ

H
(B)
ℓ,ℓ

]

is not very large; a very large condition number could make the accurate numerical solution
of the reduced Tikhonov minimization problem (2.17) problematic. We have found that for
linear discrete ill-posed problems, the condition number of the matrix (4.3) generally, but not
always, is reduced by decreasingρ (for fixed ℓ). Table4.2displays condition numbers of the
present example, and Figure4.1provides a graphical illustration.

We also solve the Tikhonov minimization problem of this example with the aid of the
GSVD in the following manner. First we determine the QR factorizationB = QR, where
Q ∈ R

(2n−3)×n has orthonormal columns andR ∈ R
n×n is upper triangular, and then we

compute the GSVD of the matrix pair{A,R}. Table4.1 shows this approach to yield the
least accurate approximation ofx̂. Thus, it may be appropriate to use Algorithm2.1 also
for problems that are small enough to allow the application of the GSVD. Figure4.2 shows
the desired solution̂x (black dash-dotted curve) and the approximationx13,µ13

computed by
Algorithm 2.1 with ρ = 0.5 (red solid curve). They are very close. The figure also displays
the approximate solution determined by the GSVD (blue dashed curve).

TABLE 4.1
Example4.1. Relative errors in computed approximate solutions for thenoise level10−1.

Method ρ ℓ ‖xℓ,µℓ
− x̂‖/‖x̂‖

Algorithm 2.1 1 20 3.71 · 10−2

Algorithm 2.1 0.5 13 3.16 · 10−2

Algorithm 2.1 0.1 29 3.29 · 10−2

GSVD 1.16 · 10−1

EXAMPLE 4.2. The Fredholm integral equation of the first kind,

(4.4)
∫ π/2

0

κ(σ, τ)x(σ)dσ = b(τ), 0 ≤ τ ≤ π,

with κ(σ, τ) = exp(σ cos(τ)), b(τ) = 2 sinh(τ)/τ , and solutionx(τ) = sin(τ), is dis-
cussed by Baart [1]. We use the MATLAB functionbaart from [10] to discretize (4.4) by
a Galerkin method withn = 1000 orthonormal box functions as test and trial functions. The
functionbaart produces the nonsymmetric matrixA ∈ R

n×n and the scaled discrete ap-
proximationx̂ ∈ R

n of x(τ), with which we compute the error-free right-hand sideb̂ := Ax̂.
The error vectore ∈ R

n corresponds to the noise levelδ = 1·10−2. The data vectorb in (1.1)
is obtained from (1.2).
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TABLE 4.2
Example4.1. Condition number of the matrix(4.3) as a function ofℓ andρ.

ℓ ρ condition number of the matrix (4.3)
13 1 4.66 · 101

13 0.5 3.77 · 101

13 0.1 1.73 · 101

20 1 2.18 · 102

20 0.5 1.38 · 102

20 0.1 3.59 · 102

29 1 6.93 · 102

29 0.5 5.81 · 102

29 0.1 3.90 · 102

0 20 40 60 80 100
0

200

400

600

800

1000

1200

FIG. 4.1. Example4.1. Condition number of the matrices(4.3) as a function ofℓ andρ. The vertical axis
displaysℓ and the horizontal axis the condition number. The red dots show the condition number forρ = 1, the blue
stars the condition number forρ = 0.5, and the green circles the condition number forρ = 0.1.

We seek to determine an approximation ofx̂ by using a decomposition determined by
Algorithm 3.1. The regularization matrixL2 is defined by (4.2). This approach is compared
to [20, Algorithm 2.1]. The latter algorithm requires the regularization matrix to be square.
We therefore pad the regularization matrix (4.2) with two zero rows when applied in Algo-
rithm 2.1 of [20]. An approximate solution is also computed by using the GSVDof the matrix
pair{A,L2}.

The results are listed in Table4.3. Both [20, Algorithm 2.1] and Algorithm3.1 of the
present paper withρ = 0.5 yield better approximations of̂x than the GSVD; the best approx-
imation of x̂ can be seen to be determined by Algorithm3.1with ρ = 0.5; the relative error
is 6.58 · 10−3. This approximate solution is shown in Figure4.3(red solid curve). The figure
also displayŝx (black dash-dotted curve) and the GSVD solution (blue solidcurve).

Both Algorithm3.1 of this paper and [20, Algorithm 2.1] yield approximations of̂x of
higher quality whenρ = 1/2 than whenρ = 1. We therefore do not show results forρ = 1.
We also note that Algorithm3.1 with ρ = 0.25 andρ = 0.20 gives computed approximate
solutions with relative error8.7 · 10−3 afterℓ = 58 andℓ = 79 iterations, respectively. This
relative error is smaller than the relative error of the GSVDsolution. We finally remark that
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−0.5

0
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1

FIG. 4.2. Example4.1. The red solid curve displays the computed approximate solution x13,µ13
determined

by Algorithm2.1 with ρ = 1/2, the blue dashed curve shows the solution computed via GSVD,and the black
dash-dotted curve depicts the desired solutionx̂.

the relative error forρ = 0.1 can be reduced to1.46 · 10−2 by carrying out more than27
iterations. Hence, Algorithm3.1can determine approximate solutions with a smaller relative
error than GSVD for manyρ-values smaller than or equal to0.5.

Similarly as for Example4.1, we display the condition number of the matrices

(4.5)

[
Hℓ+1,ℓ

Rℓ,ℓ

]

as a function ofℓ andρ. This matrix defines the reduced problem (3.3). Figure4.4 shows
the condition number for severalρ values and increasingℓ. The condition number is seen to
decrease asρ increases.

TABLE 4.3
Example4.2. Relative errors in computed approximate solutions for thenoise level10−3. The parameterℓ

denotes the number of steps with Algorithm3.1of this paper and with [20, Algorithm 2.1].

Method ρ ℓ ‖xℓ,µℓ
− x̂‖/‖x̂‖

Algorithm 2.1 from [20] 0.5 16 9.44 · 10−3

Algorithm 3.1 0.5 26 6.58 · 10−3

Algorithm 3.1 0.1 27 3.97 · 10−2

GSVD 2.76 · 10−2

EXAMPLE 4.3. Our last example illustrates the performance of Algorithm 3.1 when
applied to the restoration of a two-dimensional gray-scaleimage that has been contaminated
by blur and noise. The gray-scale imagerice from MATLAB’s Image Processing Toolbox
is represented by an array of256 × 256 pixels. Each pixel is stored as an8-bit unsigned
integer with a value in the interval[0, 255]. The pixels are ordered row-wise and stored in a
vector of dimensionn = 2562. Let x̂ ∈ R

n represent the blur- and noise-free image (which
is assumed not to be available). We generate an associated blurred and noise-free image,b̂,
by multiplying x̂ by a blurring matrixA ∈ R

n×n that models Gaussian blur. This matrix
is generated by the functionblur from [10] with parametersband = 9 andsigma = 2.
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FIG. 4.3.Example4.2. Approximate solutionx26,µ26
determined by Algorithm3.1of this paper withρ = 1/2

with noise level10−3 (red solid curve), approximate solution computed with GSVD(blue dashed curve), and desired
solutionx̂ (black dash-dotted curve)
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FIG. 4.4. Example4.2. Condition number of the matrices(4.5) as a function ofℓ andρ. The vertical axis
displaysℓ and the horizontal axis the condition number. The red graph shows the condition number forρ = 1, the
blue graph forρ = 1/3, the green graph forρ = 1/5, the magenta graph forρ = 1/10, and the cyan graph for
ρ = 1/20.

The parameterband controls the bandwidth of the submatrices that compriseA and the
parametersigma controls the shape of the Gaussian point spread function. The blur- and
noise-contaminated imageb ∈ R

n is obtained by adding a “noise vector”e ∈ R
n to b̂ with

noise levelδ = 10−2; cf. (1.2). Our task is to restore the imageb. The desired imagêx and
the blur- and noise-contaminated imageb are shown in Figures4.5and4.6, respectively. We
assume the blurring matrixA, the contaminated imageb ∈ R

n, and the noise levelδ to be
available.
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FIG. 4.5.Example4.3. Exact image.

FIG. 4.6.Example4.3. Blur- and noise-contaminated image.
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The peak signal-to-noise ratio (PSNR) is commonly used to measure the quality of a
restored imagex. It is defined as

PSNR(x, x̂) = 20 log10

(
255

‖x− x̂‖

)
,

where the numerator255 stems from the fact that each pixel is stored with8 bits. A larger
PSNR generally indicates that the restoration is of higher quality, but in some cases this may
not agree with visual judgment. We therefore also display the restored image.

Let the regularization matrixB be defined by

(4.6) B =

[
I ⊗ L1

L1 ⊗ I

]
,

whereL1 is given by (4.1) with n = 256. The matrixB ∈ R
130560×65536 has almost twice as

many rows as columns. Therefore, we cannot use Algorithm 3.1of [20]. This regularization
matrix also is used in [13].

Table4.4 reports results achieved with Algorithm3.1 for several values of the param-
eter ρ. For eachρ, we carry out 30 iterations and select the approximation in the 30-
dimensional solution subspace with the largest PSNR value.The restoration with the largest
PSNR value is determined by Algorithm3.1with ρ = 0.1 and is displayed by Figure4.7. We
see that the best restoration is achieved with the smallest number of iterations.

TABLE 4.4
Example4.3. PSNR-values of restorations computed by Algorithm3.1with B defined by(4.6).

Method ρ ℓ PSNR
Algorithm 3.1 1 25 28.213
Algorithm 3.1 0.5 27 28.222
Algorithm 3.1 0.2 22 28.223
Algorithm 3.1 0.1 22 28.297

This example illustrates that Algorithm3.1 with B given by (4.6) can yield quite ac-
curate restorations with only3 matrix-vector product evaluations with the matrixA. The
development of a black box algorithm requires criteria for deciding on how many iterationsℓ
to carry out and how to chooseρ. The discussion in [20] on the choice ofℓ carries over to
Algorithm 3.1.

5. Conclusion and extension.We have described extensions of the generalized Golub–
Kahan reduction method for matrix pairs described in [12] and of the reduction method based
on the generalized Arnoldi process introduced in [20]. Computed examples illustrate the
benefits of both these extensions. In particular, Examples4.1–4.2show that letting0 < ρ < 1
in Algorithm 2.1 may give a more accurate approximation ofx̂ thanρ = 1. The reduction
methods of this paper can be generalized to matrixq-tuplets withq ≥ 3 in a similar fashion
as the methods in [12, 20].

Acknowledgement. The authors would like to thank Stefan Kindermann for carefully
reading the manuscript.
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FIG. 4.7. Example4.3. Restored imagex22,µ22
obtained by Algorithm3.1with ρ = 0.1 and regularization

matrix (4.6).
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