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AN EFFICIENT DEFLATION TECHNIQUE FOR THE COMMUNICATION-
AVOIDING CONJUGATE GRADIENT METHOD ∗

ERIN CARSON†, NICHOLAS KNIGHT†, AND JAMES DEMMEL†‡

Abstract. By fusing s loop iterations,communication-avoidingformulations of Krylov subspace methods
can asymptotically reduce sequential and parallel communication costs by a factor ofO(s). Although a num-
ber of communication-avoiding Krylov methods have been developed, there remains a serious lack of available
communication-avoiding preconditioners to accompany these methods. This has stimulated active research in discov-
ering which preconditioners can be made compatible with communication-avoiding Krylov methods and developing
communication-avoiding methods which incorporate these preconditioners. In this paper we demonstrate, for the
first time, that deflation preconditioning can be applied in communication-avoiding formulations of Lanczos-based
Krylov methods such as the conjugate gradient method while maintaining anO(s) reduction in communication
costs. We derive a deflated version of a communication-avoiding conjugate gradient method, which is mathemati-
cally equivalent to the deflated conjugate gradient method ofSaad et al. [SIAM J. Sci. Comput., 21 (2000), pp.1909–
1926]. Numerical experiments on a model problem demonstrate that the communication-avoiding formulations can
converge at comparable rates to the classical formulations, even for large values ofs. Performance modeling illus-
trates thatO(s) speedups are possible when performance is communication bound. These results motivate deflation
as a promising preconditioner for communication-avoiding Krylov subspace methods in practice.
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1. Introduction. Krylov subspace methods (KSMs) are a class of iterative algorithms
commonly used to solve the linear systemAx = b whenA is large and sparse. In each
iterationm, updates to the next solutionxm+1 and residualrm+1 consist of one or more
sparse matrix-vector multiplications (SpMVs) and vector-vector operations in each iteration.
On modern computers, these operations arecommunication-bound: the movement of data
rather than the computation is the limiting factor in performance. Recent efforts have focused
oncommunication-avoidingKSMs (CA-KSMs), which reorder the computations in classical
KSMs to performO(s) computation steps of the algorithm for each communication step; see,
e.g., [6, 10, 12, 14, 16, 20, 26, 27, 49, 51]. This formulation allows anO(s) reduction in the
total communication costs per iteration, which can translate into significant speedups [36].

In addition to speed per iteration, the performance of iterative methods also depends on
the total number of iterations required for convergence. For the conjugate gradient method
(CG), the KSM of choice for solving symmetric positive definite (SPD) systems, it is well-
known that the rate of convergence in exact arithmetic can bebounded in terms of the eigen-
value distribution. Although these bounds are not always tight and additional complications
arise in finite precision computations (see, e.g., [34]), nonetheless, preconditioning tech-
niques, wherein the system’s eigenvalue distribution is altered to improve the convergence
bounds, have been employed successfully in practice; for a survey of approaches, see [44].
Unfortunately, except for simple examples like (block) Jacobi, polynomial, and sparse ap-
proximate inverse preconditioners, the ability to exploittemporal locality across KSM iter-
ations is diminished by preconditioning, and the relative benefits of a CA-KSM, compared
to its classical counterpart, decline; see, e.g., [27]. Avoiding communication in a general
preconditioned method seems to necessitate significant modifications to the algorithm.
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This has stimulated an active area of research in designing practical preconditioners for
CA-KSMs with much recent progress. To this end, we propose deflation, which can be
viewed as a type of preconditioning with a singular preconditioner, as a feasible technique
for improving convergence in CA-KSMs. We derive a communication-avoiding deflated CG
(CA-D-CG), based on the deflated CG formulation (which we refer to as ‘D-CG’) in [45].
Our analysis shows that the additional costs of CA-D-CG overCA-CG are of lower-order,
which means that, as in (non-deflated) CA-CG, we still expecta possibleO(s) speedup pers
steps over the classical implementation. This motivates deflation as a promising precondi-
tioner for CA-KSMs in practice. We give a numerical example and performance modeling
results which demonstrate that choosing the number of deflation vectors as well as the block-
ing factors result in complex, machine-dependent tradeoffs between the convergence rate
and the time per iteration.

2. Related work. Deflation and augmentation techniques have been applied to improve
convergence in many KSMs since the mid 1980s; for a survey, see [46, Chapter 9]. Many ap-
proaches in the literature can be viewed as instances of moregeneral deflation/augmentation
frameworks [21, 25]. Connections have also been drawn between deflation and multilevel
preconditioners; see, e.g., [48] and the references therein.

In this work, we consider the case of CG, the first KSM that was modified to perform
deflation [17, 39]. We note that the potential for eigenvalue deflation was also known to
Rutishauser before such methods gained popularity in the literature [18]. In this work, we
study the D-CG formulation as given in [45].

CG is convenient since it allows us to concretely demonstrate our algorithmic reorganiza-
tion while sidestepping technical issues involving breakdown, i.e., where KSM iterates may
not exist in exact arithmetic. However, we see no obstacles beyond breakdown for extending
our approach to other KSMs that deflate in a similar manner.

Many authors have reformulated KSMs to reduce communication costs. Our approach
is most closely related to the CA-KSMs developed by Hoemmen et al. [27, 36], which
in turn are based ons-step KSMs proposed in the 1980s; see [27] for a historical per-
spective on avoiding communication in KSMs. Works that consider CG in particular in-
clude [6, 10, 11, 27, 49, 51]. The derivation of the CA-D-CG algorithm here most closely
follows [6].

As mentioned in Section1, there has been much recent work in the development of prac-
tical preconditioners for CA-KSMs. Grigori et al. developed a CA-ILU(0) preconditioner
for CA-GMRES [24]. For structured problems, their method exploits a novel mesh order-
ing to obtain triangular factors that can be applied with less communication. There is also
recent work in developing a new “underlapping” technique incommunication-avoiding do-
main decomposition preconditioners for CA-KSMs [5]. For the case of preconditioners with
both sparse and low-rank components (e.g., hierarchical semiseparable matrices), applying
the low-rank components dominates the communication costs. Techniques in [27, 30] block
together several applications of the low-rank components in order to amortize communication
costs over several KSM iterations. We also note that there has been recent work in developing
a high-performance deflated “pipelined” conjugate gradient method [22].

Previous work has developed efficient deflation techniques for CA-KSMs in order to
recover information lost after restarting the Arnoldi process. Wakam and Erhel [41] ex-
tended a special case of CA-GMRES [27, 36] with an adaptive augmentation approach. Both
their algorithm and ours aim to reduce the frequency of global collectives incurred by de-
flation/augmentation compared to previous approaches. However, our applications differ: in
our case we apply deflation as a more general preconditioningtechnique for Lanczos-based
methods. We note that the algorithm presented in [41] restricts the constructed Krylov bases
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to Newton polynomials. It may be beneficial to extend their approach to the more general
family of polynomials which we consider here.

2.1. The communication-avoiding conjugate gradient method. We briefly review the
communication-avoiding conjugate gradient method (CA-CG) for solvingAx = b, whereA
is SPD and given any vectorx0 interpreted as an initial approximation tox.

For reference, the classical CG method is shown in Algorithm2.1. Within the iteration
loop, communication occurs in the SpMVApm required by lines3 and5 as well as in the
inner products in lines3 and6.

ALGORITHM 2.1. Conjugate Gradient Method (CG).

Require: Approximate solutionx0 toAx = b
1: r0 = b−Ax0, p0 = r0
2: for m = 0, 1, . . . until convergencedo
3: αm = (rTmrm)/(pTmApm)
4: xm+1 = xm + αmpm
5: rm+1 = rm − αmApm
6: βm+1 = (rTm+1rm+1)/(r

T
mrm)

7: pm+1 = rm+1 + βm+1pm
8: end for
9: return xm+1

In CA-CG, iterations are split into an inner loop over0 ≤ j < s and an outer loop overk,
whose range depends on the number of steps until convergence. We index the iterationm in
CG as the iterationm = sk+j in CA-CG. By induction on lines4, 5, and7 of Algorithm 2.1,

psk+j , rsk+j , xsk+j − xsk ∈ Ks+1(A, psk) +Ks(A, rsk),

for 0 ≤ j ≤ s, whereKi(A, v) denotes thei-th Krylov subspace ofA with respect tov, i.e.,

Ki(A, v) = span{v,Av,A2v, . . . , Ai−1v}.

Therefore, we let length-(2s + 1) vectorsx′

k,j , r
′

k,j , andp′k,j denote the coordinates for
xsk+j − xsk, rsk+j , andpsk+j , respectively, in the columns of

(2.1) Vk = [Pk, Rk] = [ρ0(A)psk, . . . , ρs(A)psk, ρ0(A)rsk, . . . , ρs−1(A)rsk],

whereρi is a polynomial of degreei. That is, we have

(2.2) xsk+j − xsk = Vkx
′

k,j , rsk+j = Vkr
′

k,j , and psk+j = Vkp
′

k,j ,

for 0 ≤ j ≤ s. For brevity, we will refer toVk as a basis, although the columns ofVk need
not be linearly independent, e.g., fork = 0, Ks(A, r0) ⊆ Ks+1(A, p0) sincep0 = r0.

We assume that the polynomials in (2.1) can be computed via a three-term recurrence in
terms of the parametersγi, θi, andσi, as

ρ0(A) = 1, ρ1(A) = (A− θ0I)ρ0(A)/γ0, and

ρi+1(A) = ((A− θiI)ρi(A)− σiρi−1(A))/γi,(2.3)

for 1 ≤ i < s. This three-term recurrence covers a large class of polynomials including
classical orthogonal polynomials. The monomial, Newton, and Chebyshev bases are common
choices for generating Krylov bases; see, e.g., [43]. To simplify notation, we assume the basis
parameters remain the same throughout the iteration.
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The basisVk is generated at the beginning of each outer loop using the currentrsk and
psk vectors. AssumingA is sufficiently sparse, theseO(s)-dimensional bases can be com-
puted after only readingA (sequential case) or exchanging vector entries with neighbors (par-
allel case)O(1) times, using the communication-avoiding ‘matrix powers kernel’ described
in [16, 27, 36].

Substituting each polynomialρi on the right-hand side of (2.1) by its recursive definition
given in (2.3), rearranging terms, and postmultiplying byp′k,j , we obtain

(2.4) AV kp
′

k,j = VkBkp
′

k,j ,

whereV k = [P k, 0, Rk, 0], andP k andRk arePk andRk, respectively, with the last columns
omitted, and

Bk =

[[

Ck,s+1 0s+1,1

]

[

Ck,s 0s,1
]

]

,

with

Ck,j+1 =



















θ0 σ1

γ0 θ1
. . .

γ1
. . . σj−1

. . . θj−1

γj−1



















.

Then by (2.2) and (2.4), the multiplicationApsk+j in the standard basis becomesBkp
′

k,j

in the basisVk. Recall thatBk andp′k,j are both of dimensionO(s), which means that they
either fit in fast memory (in the sequential case) or are localto each processor (in the parallel
case), and thus the computationBkp

′

k,j does not require data movement.
In each outer loop of Algorithm2.2below, we compute theO(s)-by-O(s) Gram matrix

Gk = V T
k Vk. Then by (2.2) and (2.4), the inner products in lines3 and6 of Algorithm 2.1

can be written as

rTsk+jrsk+j = r′Tk,jGkr
′

k,j for 0 ≤ j ≤ s, and

pTsk+jApsk+j = p′Tk,jGkBkp
′

k,j for 0 ≤ j < s.

Thus, afterGk has been computed in the outer loop, the inner products can becomputed
without additional communication. Although many details are omitted, this gives the general
idea behind avoiding data movement in Lanczos-based KSMs. The resulting CA-CG method
is shown below in Algorithm2.2.

ALGORITHM 2.2. Communication-Avoiding Conjugate Gradient (CA-CG).

Require: Approximate solutionx0 toAx = b
1: r0 = b−Ax0, p0 = r0
2: for k = 0, 1, . . . until convergencedo
3: ComputePk, Rk, letVk = [Pk, Rk]; assembleBk.
4: Gk = V T

k Vk

5: p′Tk,0 = [1, 0T2s], r
′T
k,0 = [0Ts+1, 1, 0

T
s−1], x

′

k,0 = 02s+1

6: for j = 0, . . . , s− 1 do
7: αsk+j = (r′Tk,jGkr

′

k,j)/(p
′T
k,jGkBkp

′

k,j)
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8: x′

k,j+1 = x′

k,j + αsk+jp
′

k,j

9: r′k,j+1 = r′k,j − αsk+jBkp
′

k,j

10: βsk+j+1 = (r′Tk,j+1Gkr
′

k,j+1)/(r
′T
k,jGkr

′

k,j)
11: p′k,j+1 = r′k,j+1 + βsk+j+1p

′

k,j

12: end for
13: xsk+s = Vkx

′

k,s + xsk, rsk+s = Vkr
′

k,s, psk+s = Vkp
′

k,s

14: end for
15: return xsk+s

2.2. Deflated conjugate gradient method.Our CA-D-CG is based on D-CG by Saad
et al. [45], shown in Algorithm2.3 for reference. (As mentioned above, this was not the first
appearance of deflated CG in the literature.)

We now summarize the motivation for the use of eigenvalue deflation in the CG method
as presented in [45]. It is well-known (see, e.g., [23]) that in exact arithmetic, afterm itera-
tions of CG, the error is (loosely) bounded by

‖x− xm‖A ≤ 2‖x− x0‖A
(

√

κ(A)− 1
√

κ(A) + 1

)m

,

with κ(A) = λn/λ1, whereλ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the SPD matrixA.
The authors of [45] prove that for some set of linearly independent vectors
W = [w1, w2, . . . , wc], D-CG applied toAx = b is mathematically equivalent to CG applied
to the positive semidefinite systemHTAHx̃ = HT b,whereH = I−W (WTAW )−1(AW )T

is theA-orthogonal projection ontoW⊥A and x = Hx̃. When the columns ofW are
exact eigenvectors associated withλ1, . . . , λc, the effectivecondition number (see [19]) is
κeff(H

TAH) = λn/λc+1. When the columns ofW are approximate eigenvectors associated
with λ1, . . . , λc, one can expect thatκeff(H

TAH) ≈ λn/λc+1. Thus ifλc+1 > λ1, defla-
tion decreases the effective condition number of the system, thus theoretically improving the
bounds on the (exact arithmetic) convergence rate.

We note that it is well-known that in reality, the convergence of the conjugate gradient
method is much more accurately described by considering thespacing between eigenvalues
of the matrixA, and even these more descriptive bounds do not hold in finite precision [32].
However, the reduction of the effective condition number described above nonetheless re-
mains the motivation behind deflation and in practice can lead to an improved convergence
rate in many cases. We also note that there has been recent work in developing tighter bounds
on the rate of convergence in the deflated conjugate gradientmethod; see, e.g., [29].

For consistency, we assume we have an initial guessx0 such thatr0 = b − Ax0 ⊥ W .
To satisfy this initial requirement, one can choosex0 = x−1 + W (WTAW )−1WT r−1,
wherex−1 is arbitrary andr−1 = b − Ax−1. Note that the selection of the subspaceW
is out of the scope of this paper. This topic is covered extensively in the literature; see,
e.g., [1, 3, 9, 15, 37, 38, 47, 52].

ALGORITHM 2.3. Deflated Conjugate Gradient (D-CG).

Require: Approximate solutionx−1 to Ax = b with residualr−1 = b − Ax−1; n-by-c
matrixW of rankc

1: Compute and factorizeWTAW
2: x0 = x−1 +W (WTAW )−1WT r−1, r0 = b−Ax0

3: µ = (WTAW )−1WTAr0, p0 = r0 −Wµ
4: for m = 0, 1, . . . until convergencedo
5: αm = (rTmrm)/(pTmApm)
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6: xm+1 = xm + αmpm
7: rm+1 = rm − αmApm
8: βm+1 = (rTm+1rm+1)/(r

T
mrm)

9: SolveWTAWµm+1 = WTArm+1 for µm+1

10: pm+1 = rm+1 + βm+1pm −Wµm+1

11: end for
12: return xm+1

3. Deflated communication-avoiding conjugate gradient method. We now derive
CA-D-CG based on D-CG (Algorithm2.3). As before, we denote the iterationm in Al-
gorithm2.3with m = sk + j to distinguish inner and outer loop iterations. By induction on
lines6, 7, and10of Algorithm 2.3, we can write

psk+j , rsk+j ∈ Ks+1(A, psk) +Ks(A, rsk) +Ks−1(A,W ),(3.1)

xsk+j − xsk ∈ Ks(A, psk) +Ks−1(A, rsk) +Ks−2(A,W ),(3.2)

for 0 ≤ j ≤ s. Deflation also requires the productArsk+j+1 in the computation ofµsk+j+1

in line 9. Again, by induction, we can write

(3.3) Arsk+j+1 ∈ Ks+2(A, psk) +Ks+1(A, rsk) +Ks(A,W ).

As before, we define matricesPk andRk whose columns span the Krylov subspaces
Ks+2(A, psk) andKs+1(A, rsk), respectively. For deflation, we now also require a basisW
for Ks(A,W ). Note that, assumingW does not change throughout the iteration,W needs
only be computed once. For the deflated method, we now define then-by-(2s+3+cs) matrix

Vk = [Pk, Rk,W]

= [ρ0(A)psk, . . . , ρs+1(A)psk, ρ0(A)rsk, . . . , ρs(A)rsk, ρ0(A)W, . . . , ρs−1(A)W ],

whereρi is defined as in (2.1). By (3.2), (3.1), and (3.3), we can then write,0 ≤ j ≤ s,
psk+j = Vkp

′

k,j , rsk+j = Vkr
′

k,j , andxsk+j − xsk = Vkx
′

k,j , i.e., the length-(2s + 3 + cs)
vectorsp′k,j , r

′

k,j , andx′

k,j are coordinates forpsk+j , rsk+j , andxsk+j − xsk, respectively,
in terms of the columns ofVk.

As in CA-CG, we can write a recurrence for computing multiplications withA, that is,
for 0 ≤ j < s,

Apsk+j = AVkp
′

k,j= VkBkp
′

k,j and Arsk+j+1 = AVkr
′

k,j+1= VkBkr
′

k,j+1,

where, for the deflated method, we now define block diagonal matrix

Bk =







[

Ck,s+2 0s+2,1

]

[

Ck,s+1 0s+1,1

]

[

Ck,s ⊗ Ic 0cs,1
]






.

Thus, a multiplication byBk in the basisVk is equivalent to a multiplication byA in the
standard basis.

Assuming the sameW is used throughout the iterations,WTAW can be precomputed
and factorized offline. The smallc-by-c factors ofWTAW are assumed to fit in local/fast
memory. If we compute the(2s+ 3 + cs)-by-(2s+ 3 + cs) matrixGk = V T

k Vk and extract
thec-by-(2s + 3 + cs) submatrixZk = WTVk, then we can form the right-hand side in the
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solve forµsk+j+1 in line 9 of Algorithm 2.3 by WTArsk+j+1 = ZkBkr
′

k,j+1, replacing a
global reduction with a small, local operation. Note that the formulas for computingαsk+j

andβsk+j+1 in Algorithm 2.3remain the same as in Algorithm2.1. Thus, usingGk, we can
compute these inner products in CA-D-CG using the same formulas as in CA-CG (lines7
and10of Algorithm 2.2).

Similarly, the formulas for the updatesxsk+j+1 andrsk+j+1 are the same for D-CG and
CG, so the formulas forx′

k,j+1 andr′k,j+1 in CA-D-CG remain the same as those in CA-CG
(lines8 and9). The formula forpsk+j+1 in D-CG can be written as

Vkp
′

k,j+1 = Vkr
′

k,j+1 + βsk+j+1Vkp
′

k,j − Vk[0
T
2s+3, µ

T
k,j+1, 0

T
c(s−1)]

T ,

for 0 ≤ j ≤ s− 1. Thus, in CA-D-CG,p′k,j+1 is updated by

p′k,j+1 = r′k,j+1 + βsk+j+1p
′

k,j − [0T2s+3, µ
T
k,j+1, 0

T
c(s−1)]

T .

The resulting CA-D-CG method is shown in Algorithm3.1.

ALGORITHM 3.1. Deflated Communication-Avoiding Conjugate Gradient (CA-D-CG).

Require: Approximate solutionx−1 to Ax = b with residualr−1 = b − Ax−1; n-by-c
matrixW of rankc

1: Compute and factorizeWTAW
2: ComputeW
3: x0 = x−1 +W (WTAW )−1WT r−1, r0 = b−Ax0

4: µ = (WTAW )−1WTAr0, p0 = r0 −Wµ
5: for k = 0, 1, . . . until convergencedo
6: ComputePk, Rk, letVk = [Pk, Rk,W]; assembleBk.
7: Gk = V T

k Vk; extractZk = WTVk

8: p′Tsk = [1, 0T2s+2+cs], r
′T
sk = [0Ts+2, 1, 0

T
s+cs], x

′

sk = 02s+3+cs

9: for j = 0, . . . , s− 1 do
10: αsk+j = (r′Tk,jGkr

′

k,j)/(p
′T
k,jGkBkp

′

k,j)
11: x′

k,j+1 = x′

k,j + αk,jp
′

k,j

12: r′k,j+1 = r′k,j − αk,jBkp
′

k,j

13: βsk+j+1 = (r′Tk,j+1Gkr
′

k,j+1)/(r
′T
k,jGkr

′

k,j)

14: SolveWTAWµk,j+1 = ZkBkr
′

k,j+1 for µk,j+1

15: p′k,j+1 = r′k,j+1 + βsk+j+1p
′

k,j − [0T2s+3, µ
T
k,j+1, 0

T
c(s−1)]

T

16: end for
17: xsk+s = Vkx

′

k,s + xsk, rsk+s = Vkr
′

k,s, psk+s = Vkp
′

k,s

18: end for
19: return xsk+s

3.1. Algorithmic extensions. We assume in our derivation that the matrix of the defla-
tion vectorsW is constant through the iterations. We could, however, extend CA-D-CG to
allow for updating ofWk in (some or all) outer loop iterationsk; see, e.g., [1, 3, 33, 42, 47] for
example applications. (Additional considerations arise when changing the operator during the
iterations due to the loss of orthogonality properties [2, Chapter 12]; see also [40].) Updating
Wk in the outer loopk requires recomputingWk, a basis forKs(A,Wk). This computation
could potentially be fused with the computation ofPk andRk such that no extra latency cost
is incurred. The quantityWT

k AWk can be recovered from the computation ofGk, so no ad-
ditional communication is required. A factorization of thec-by-c matrixWT

k AWk can also
be performed locally. Note the number of deflation vectorsc could be allowed to vary over
outer loop iterations as well. This extension is consideredfuture work.
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4. Numerical experiments. For the numerical experiments, our goal is to show that
CA-D-CG is competitive with D-CG in terms of the convergencerate. While the approaches
are equivalent in exact arithmetic, there is no reason to expect that the CA-D-CG iterates
will exactly equal the D-CG iterates in finite precision, given the different sets of floating-
point operations performed. There are many open questions about CA-KSMs’ finite precision
behavior, some of which we hope to address in future work. Butin lieu of theoretical results,
we will rely on our practical experience that CA-KSMs’ iterates deviate from their classical
counterparts as thes-step Krylov bases become ill-conditioned (increasingly with s), and
this effect can be diminished by picking different polynomial bases [6, 27, 43]. To focus on
this potential instability that grows withs, we chose a test problem for which the classical
methods are relatively insensitive to rounding errors. Thus, our experiments do not address
the possibility that the deviation between the D-CG and CA-D-CG iterates is much larger
when the convergence of the classical methods is highly perturbed by rounding errors.

We test the stability of our reformulation on a similar modelproblem to the one con-
sidered in [45] using codes written in a combination of MATLAB and C with linear al-
gebra routines from Intel’s Math Kernel Library. We generate a discrete 2D Laplacian by
gallery(’poisson’,512) in MATLAB, so A is an SPD matrix of ordern = 5122.
We pick the right-hand sideb equal toA times the vector with entries alln−1/2. Our de-
flation vectors are the eigenvectors corresponding to the eigenvalues of smallest magnitude
computed using MATLAB’seigs. Note that the study in [45] used (known) exact eigenval-
ues; this difference does not significantly affect the results for this test.

In Figures4.1–4.3, we compare convergence for the model problem using D-CG andCA-
D-CG with the monomial, Newton, and Chebyshev polynomial basis, respectively, each for a
few representatives values. We report the 2-norm of the true residual computed byb−Axm

rather than the recursively updated residualrm and normalize by the 2-norm of the starting
residualr0 = b (i.e., the starting guessx0 is the vector of zeros). We declare convergence
after a reduction by a factor of108 in the normalized residual 2-norm. The solid curves
correspond to D-CG, and circles correspond to CA-D-CG. We deflate with c ∈ {0, 4, 8}
eigenvectors, plotted in black, red, and blue, respectively (when c = 0, D-CG is just CG
and CA-D-CG is just CA-CG). Based on the formulas above, thissuggests that the condition
numberκ(A) ≈ 1.07 · 105 in the undeflated case (c = 0) should improve to≈ 2.13 · 104 in
the casec = 4 and to≈ 1.25 · 104 whenc = 8.

We implemented the Newton basis by choosing parameters in (2.3) asσi = 0, γi = 1,
andθi is thei-th element in a set of Leja-ordered points on the real line segment[λc+1, λn];
see, e.g., [43]. We implemented the Chebyshev basis by setting the basis parameters in (2.3)
asγi = |λn − λc+1| /2 (exceptγ0, which is not divided by2), θi = λc+1 + |λn − λc+1| /2,
andσi = |λn − λc+1| /8. These recurrence coefficients are based on the bounding ellipse
of the spectrum ofA, which is, in the present case of a symmetric matrixA, an interval on
the real line; see, e.g., [28]. In practice, only a few Ritz values (estimates for the eigenvalues
of A) need to be computed up front to sufficiently determine the parameters for the Newton
or Chebyshev polynomials. One can also incorporate information about new Ritz values ob-
tained as a byproduct of the iterations to improve the basis conditioning; see [43] for practical
details and experiments.

Note thatλc+1 is used as the smallest eigenvalue in selecting the Newton and Chebyshev
parameters above. This is because if the columns ofW are the exact eigenvectors ofA corre-
sponding to the eigenvaluesλ1, . . . , λc, then usingλ1 as a basis parameter in the computation
of the basisW can cause cancellation and can thus produce a rank-deficientbasis. Although
this cancellation does not occur in the computation of the basesPk andRk, we used the same
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FIG. 4.1. Monomial basis tests. Top:s = 4 (left), s = 8 (right), bottom: s = 16. Plots show the2-norm
of the true residualb − Axm for tests withc = 0 (black),c = 4 (red), andc = 8 (blue) for both D-CG(−) and
CA-D-CG(◦) using monomial bases of sizes. Note that the y-axis in the bottom plot differs.

basis parameters chosen forW (i.e., usingλc+1) to computePk andRk for simplicity with
no ill effects.

For the monomial basis (Figure4.1), convergence is nearly identical fors = 4, but
we begin to see a delay in the convergence of CA-D-CG fors = 8 (top-left) and a failure
to converge bys = 16. For the Newton basis (Figure4.2), the two methods have similar
convergence behavior pasts = 16; only arounds = 100 (bottom-right) we begin to notice
a significant delay in convergence for CA-D-CG. The situation is similar for the Chebyshev
basis (Figure4.3); only the bottom-right figure now depicts the cases = 220. These results
clearly demonstrate that the basis choice plays an important role for the convergence of CA-
D-CG, at least on this well-behaved model problem. In the next section, we will introduce a
coarse performance model to ask about the practical benefitsof values as large ass = 220.

5. Performance modeling. In this section, we give a qualitative description of the per-
formance tradeoffs between the four KSMs mentioned above—CG, CA-CG, and their de-
flated counterparts—on massively parallel machines. For CA-CG and CA-D-CG, we esti-
mate the time fors inner loop iterations and then divide bys to estimate the time per it-
eration. Note that this ignores relative rates of convergence treated in Section4. We were
motivated to develop CA-D-CG based on the high relative costof interprocessor communi-
cation on large-scale parallel computers. In addition to parallel implementations, CA-KSMs
can avoid communication on sequential machines, namely data movement within the memory
hierarchy. Indeed, the parallel and sequential approachesnaturally compose hierarchically as
has been exploited in previous high-performance CA-KSM implementations [36], and we
suggest the same for a future CA-D-CG implementation. However, in this section, we will
restrict ourselves to a parallel model which ignores sequential communication costs to illus-
trate the changes in parallel communication costs. We do notclaim that this model’s predicted
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FIG. 4.2. Newton basis tests. Top:s = 4 (left), s = 8 (right), bottom:s = 16 (left) s = 100 (right). Plots
show the2-norm of the true residualb− Axm for tests withc = 0 (black),c = 4 (red), andc = 8 (blue) for both
D-CG (−) and CA-D-CG(◦) using Newton bases of sizes.
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FIG. 4.3. Chebyshev basis tests. Top:s = 4 (left), s = 8 (right), bottom: s = 16 (left), s = 220 (right).
Plots show the2-norm of the true residualb− Axm for tests withc = 0 (black),c = 4 (red), andc = 8 (blue) for
both D-CG(−) and CA-D-CG(◦) using Chebyshev bases of sizes.



ETNA
Kent State University 

http://etna.math.kent.edu

DEFLATION FOR COMMUNICATION AVOIDING CG 135

speedups are always attainable on real hardware. However, we believe that such models can
help to detect the feasibility of a communication-avoidingapproach relative to a classical
approach as well as to efficiently explore and prune the (machine-specific) parameter tuning
space for an optimized implementation.

5.1. Machine model.We model parallel computation as a fully connected network of p
homogeneous processors that perform local computations and exchange point-to-point mes-
sages. Each processor executes asynchronously and can sendor receive at most one message
at a time. Passing ann-word message takesα+βn seconds on both the sending and receiving
processors, which cannot perform computation during this time. The constantα represents
a latency cost incurred by every message, whileβ represents a bandwidth cost linear in the
message size. There is no notion of distance on the network, and we assume the network
has unbounded buffer capacity. While this simple model’s assumptions are not all realistic,
similar models are widely used to analyze communication costs on distributed-memory ma-
chines; see, e.g., [8]. One could refine this model to obtain, e.g., the LogP model [13], which
distinguishes between network latency, software overhead, and network injection bandwidth
(blurred between ourα andβ terms), allows overlap of communication and computation, and
introduces constraints on the message size and the network congestion. We quantify the com-
putation time in terms of the floating-point operations (flops) performed: a processor can only
operate on data residing in its local memory (of unbounded capacity), and each flop takesγ
seconds. If a processor performsF flops and sends/receivesS messages containing a total of
W words, then we model its runtime asγF +αS+βW . This is a poor cost model for certain
programs like the one where thep processors relay a value from processor1 to processorp:
each processor sends/receives at most2 words, but the actual runtime grows linearly inp. To
count correctly in such situations, one can consider the runtime along critical paths, e.g., in a
program activity graph [54]. For our algorithms here, we will only consider certain balanced
parallelizations where one processor is always the slowest, so we can simply countF, S,W
for that processor to bound the total runtime.

Our assumptions that each processor has unbounded local memory and can execute each
flop at the peak rate1/γ may be unrealistic when the neglected sequential costs are nontriv-
ial. However, when considering largep and small local problems and when performance is
dominated by interprocessor communication, we expect thatthe sequential costs would not
significantly increase our models’ estimated costs.

We consider two parallel machine models, which we call ‘Exa’and ‘Grid.’ We use
γ = 1 · 10−13 seconds per (double precision) flop in both cases based on predictions for a
‘node’ of an exascale machine [7, 50]. This flop rate corresponds to a node with a 1024-
core processor and its own memory hierarchy with 256 GB of capacity at the last level.
However, as discussed above, we ignore this intranode structure. For Exa, the interconnect
has parametersα = 4 · 10−7 seconds per message andβ = 3.7 · 10−11 seconds per word
(4-byte double precision value). For the second machine, Grid, we replace this interconnect
by the Internet (via Ethernet) using the parametersα = 10−1 andβ = 2.5 · 10−8 given
in [35]. In contrast to their predecessors, our models allow an arbitrary number of processors
in order to illustrate the asymptotic scaling behavior—we donot claim that every machine
configuration modeled is physically realizable.

5.2. Experiments. We assume the same model problem (5-point 2D stencil) and defla-
tion vectors as in the numerical experiments. However, since we are not modeling conver-
gence here, the actual (nonzero) values do not influence the performance model. We assume
the

√
n-by-

√
n mesh is partitioned across a

√
p-by-

√
p grid of processors, so that each pro-

cessor owns a contiguous
√

n/p-by-
√

n/p subsquare, and we assume these fractions are
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integers. This layout minimizes communication within a factor of
√
2 (for this particular

stencil, a diamond layout would be asymptotically optimal [4, Chapter 4.8]). We summarize
theS,W,F costs for the four algorithms in AppendixA. To simplify the analysis, we re-
stricts ∈ {1, . . . ,

√

n/p} for the CA-KSMs, which means that the sparse computations only
require communication with the (logical) nearest neighbors. The communication-avoiding
approach is correct for anys, but the latency cost rises sharply when each processor needs
information from a larger neighborhood. We also simplify byusing the same blocking param-
eters for the sparse and dense computations. In general, one can compute thes-step Krylov
bases in smaller blocks and then compute a (larger) Gram matrix, or vice versa, i.e., con-
structing the Gram matrix blockwise as thes-step bases are computed. In practice, we have
observed significant speedups from the Gram matrix construction alone (with no blocking of
the SpMV operations) [53], and we suggest tuning the block sizes independently. Alsoto
simplify the analysis, we ignore the preprocessing costs ofcomputing the deflation matrixW
(not the algorithmic costs) and computing and factorizingWTAW, assuming that they can
be amortized over many iterations. In practice, these costsmay not be negligible especially
if the number of iterations is small.

We first consider weak scaling in Figure5.1. We fixn/p = 46 and vary the grid parame-
terp ∈ {4x : x ∈ {2, . . . , 14}}. The black curves correspond to the runtime of a single itera-
tion of the classical KSMs: CG (no markers), D-CG withc = 4 (square markers), and D-CG
with c = 8 (asterisk markers); the logarithmic dependence onp, due to the collective com-
munications, is evident. The red curves allow us to vary the parameters ∈ {1, . . . ,

√

n/p},
wheres = 1 corresponds to the classical KSMs ands > 1 corresponds to their deflated coun-
terparts (markers mean the same as for the black curves). Forcomparison with the classical
methods, we compute the runtime of one CA-KSM outer loop (with s inner-loop iterations)
and then divide bys. On both Exa and Grid, it was beneficial to picks > 1 for every problem
although the optimals varies as illustrated in Figure5.3. The best speedups, i.e., the ratio
of the runtime withs = 1 to the best runtime withs ≥ 1, were about 55, 38, and 28 for
c = 0, 4, and 8, respectively, on Exa, while the corresponding best speedups on Grid were
about 116, 174, and 173.

We now consider strong scaling, presented in Figure5.2. The curves represent the same
algorithms as in the previous figure, except that now we use different problems for the two
machines (we use the same range ofp as before). Note that the red and black curves coincide
for some points on the left of both plots. As the local problemsize decreases, so does the
range ofs values over which the CA-KSMs optimize. For Exa, we fixn = 415, so for the
largestp, for instance, the processors’ subsquares are2-by-2 ands ∈ {1, 2}; for Grid, we
fix n = 422. While all tested KSMs scale when the local problem is large, the CA-KSMs are
able to exploit more parallelism than the classical KSMs on both machines. In both cases, the
CA-KSM runtime eventually begins to increase, too. The bestspeedups on Exa were about
49, 42, and 31 forc = 0, 4, and 8, respectively, while the corresponding best speedups on
Grid were about 1152, 872, and 673.

Lastly, in Figure5.3, we demonstrate the benefits of increasing the parameters for a
fixed problem and a varying numberc ∈ {0, . . . , 50} of deflation vectors. The casec = 0
indicates the non-deflated KSMs and is depicted separately.We plot the CA-KSMs’ speedups
relative to the classical KSMs, i.e., the points along the lines = 1. For both machines, we fix
p = 49, but to illustrate the tradeoffs on both, we pickn = 414 for Exa andn = 420 for Grid.
In both cases, we see decreased relative benefits of avoidingcommunication asc increases
as the network bandwidth becomes saturated by the larger reductions. For Exa, for smallc it
is beneficial to increases to the maximum

√

n/p we consider; for Grid, however, it is never
beneficial to increases to its maximum for anyc.
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FIG. 5.1. Modeled weak scaling for a model problem on Exa (left) and Grid (right). Black curves correspond
to the runtime of a single iteration of the classical KSMs: CG(no markers), D-CG withc = 4 (square markers), and
D-CG withc = 8 (asterisk markers). Red curves correspond to the runtime ofa single iteration of the CA-KSMs:
CA-CG (no markers), CA-D-CG withc = 4 (square markers), and CA-D-CG withc = 8 (asterisk markers) using
the optimal value ofs ∈ {1, . . . ,

√

n/p} for each point.
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FIG. 5.2.Modeled strong scaling for a model problem on Exa (left) and Grid (right). Black curves correspond
to the runtime of a single iteration of the classical KSMs: CG(no markers), D-CG withc = 4 (square markers), and
D-CG withc = 8 (asterisk markers). Red curves correspond to the runtime ofa single iteration of the CA-KSMs:
CA-CG (no markers), CA-D-CG withc = 4 (square markers), and CA-D-CG withc = 8 (asterisk markers) using
the optimal value ofs ∈ {1, . . . ,

√

n/p} for each point.

6. Future work and conclusions. In this work, we have demonstrated that deflation
can be performed in a communication-avoiding way and is thussuitable for the use as a
preconditioner for CA-KSMs. We derived CA-D-CG, which is equivalent to D-CG in exact
arithmetic but can be implemented such that parallel latency is reduced by a factor ofO(s)
over a fixed number of iterations. Performance modeling shows predicted speedups of CA-D-
CG over D-CG for a number ofn/p ratios on two model architectures fors values constrained
to s ≤

√

n/p. We performed numerical experiments for a model problem to illustrate the
benefits of deflation for the convergence rate. Our results also demonstrate that by using
better conditioned bases of Newton and Chebyshev polynomials, s can be made very large
before the convergence behavior of CA-D-CG deviates significantly from D-CG. However,
for more difficult problems to be studied in future work, we expect the practical range ofs to
be more restricted.

We also point out that, as in the classical case, our CA-D-CG method is mathematically
equivalent to applying CA-CG (Algorithm2.2) to the transformed systemHTAHx̃ = HT b.
If we were to instead perform deflation in this way, communication-avoiding techniques re-
lated to blocking covers for linear relaxation [30, 31] and other ideas from those works could
be applied in the Krylov basis computation.
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FIG. 5.3.Modeled speedup per iteration for the model problem versuss andc on Exa (left) and Grid (right).

The communication-avoiding reorganization applied here can also be applied to many
other deflated KSMs including adaptive deflation approaches(see, e.g., [1, 3, 33, 42, 47]),
where the matrixW is allowed to change. Our future work will address these applications, as
well as a distributed-memory implementation to evaluate the performance of our approaches
on real parallel machines.
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Appendix A: Complexity analysis. We can identify the elements of the vector iterates
with vertices on a

√
n-by-

√
n 2D mesh. As explained above, each processor is assigned a

√

n/p-by-
√

n/p subsquare. The matrixA for the model problem is a stencil with constant
coefficients and can be represented inO(1) words. In the case of variable coefficients, we
would partitionA in a overlapping block rowwise fashion as explained in [35]. The number of
flops, words moved, and messages required fors steps of CG, CA-CG, D-CG, and CA-D-CG
are as follows:

FlopsCG = s(19n/p+ 2 log2 p)

WordsCG = s(4
√

n/p+ 4 log2 p)

MessCG = s(4 log2 p+ 4)

FlopsCA-CG = 18(n/p)s+ s(20s+ 3(2s+ 1)(4s+ 1) + 10) + 12s3

+ 2(n/p)(4s+ 1) + (n/p)(4s+ 3) + 36
√

n/ps2

+ ((2s+ 1)(2s+ 2)(2(n/p) + log2 p− 1))/2

WordsCA-CG = 8
√

n/ps+ 4s2 + log2 p(2s+ 1)(2s+ 2)

MessCA-CG = 2 log2 p+ 8

FlopsD-CG = s(30(n/p) + 2 log2 p+ c(2(n/p) + log2 p− 1) + 2c2 + (n/p)(2c− 1))

WordsD-CG = s((4 + 2c) log2 p+ 8
√

n/p)

MessD-CG = s(6 log2 p+ 8)
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FlopsCA-D-CG = 12(s+ 1)3 + 2(n/p)(4s+ 2cs+ 5) + (n/p)(4s+ 2cs+ 7)

+ 36
√

n/p(s+ 1)2 + 18(n/p)(s+ 1) + s(24s+ c(4s+ 2cs+ 5)

+ 4(2s+ cs+ 3)(4s+ 2cs+ 5) + 12cs+ 2c2 + 36)

+ (2s+ 3)(s+ cs+ 2)(2(n/p) + log2 p− 1)

WordsCA-D-CG = 4(s+ 1)2 + 8
√

n/p(s+ 1) + 2 log2 p(2s+ 3)(s+ cs+ 2)

MessCA-D-CG = 2 log2 p+ 8

For the CA-KSMs, we exploit neither the symmetry ofGk nor the nonzero structure
of Bk and the length-O(s) coefficient vectors.

For D-CG, we note that one can computeAW offline (in line 1) and avoid the SpMV
Arm+1 in line 9. While this may improve some constant factors by up to2, it does not
avoid the global reduction in the subsequent application of(AW )T , which our performance
modeling suggests is often the dominant cost.

We note that thelog2 p terms in the computation and bandwidth costs can often be re-
duced by exploiting efficient collectives based on recursive halving/doubling approaches;
see [8] for a survey. These approaches require that the number of words in the collective
is at leastp, which was not always true in our experiments, hence our use of simpler tree-
based collectives.
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