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CONDITIONAL SPACE-TIME STABILITY OF COLLOCATION RUNGE–KUT TA
FOR PARABOLIC EVOLUTION EQUATIONS ∗
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Abstract. We formulate collocation Runge–Kutta time-stepping schemes applied to linear parabolic evolution
equations as space-time Petrov–Galerkin discretizations,and investigate their a priori stability for the parabolic
space-time norms, that is the operator norm of the discrete solution mapping. The focus is on A-stable Gauß–
Legendre and L-stable right-Radau nodes, addressing in particular the implicit midpoint rule, the backward Euler,
and the three stage Radau5 time-stepping schemes. Collocation on Lobatto nodes is analyzed as a by-product. We
find through explicit estimates that the operator norm is controlled in terms of the parabolic CFL number together
with a measure of self-duality of the spatial discretization. Numerical observations motivate and illustrate the results.
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1. Introduction.

1.1. Introduction and model problem. The aim of this paper is to identify condi-
tions on the discretization parameters under which collocation Runge–Kutta time-stepping
schemes for linear parabolic evolution equations are a priori stable as space-time Petrov–
Galerkin methods. Space-time stability is of central interest, for instance, in space-time si-
multaneous solution and preconditioning of the parabolic evolution equation, in the analysis
of semilinear parabolic evolution equations, and in residual based a posteriori error estima-
tion. To clarify this statement, we begin by introducing thenecessary notation and the linear
parabolic evolution equation that we are going to study.

Let V be a real separable Hilbert space continuously and densely embedded in another,
V →֒ H. The Hilbert spaceH is identified with its dual space via the Riesz isomorphism,
which results in the Gelfand tripleV →֒ H ∼= H ′ →֒ V ′. An example will be provided by
Sobolev spaces or closed subspaces thereof. ByV ′ we will denote the dual ofV that collects
all bounded linear functionals onV . We write ‖ · ‖V for the norm inV , etc. The scalar
product onH, as well as the duality pairing betweenV andV ′, will be denoted by(·, ·). Let
A : V → V ′ be a bounded linear operator satisfying the coercivity condition

(Aχ, χ) ≥ α2‖χ‖2V − γ2‖χ‖2H , ∀χ ∈ V,(1.1)

for some fixedα > 0 andγ ≥ 0. Let J = (0, T ) be a nonempty bounded interval. Consider
the spaces

X := H1(J ;V ′) ∩ L2(J ;V ) and Y := H × L2(J ;V ),

equipped with the norms given by

‖w‖2X := ‖∂tw‖2L2(J;V ′) + ‖w‖2L2(J;V ) + ‖w(T )‖2H , w ∈ X,(1.2)

‖v‖2Y := ‖v0‖2H + ‖v1‖2L2(J;V ), v = (v0, v1) ∈ Y.(1.3)
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Here,L2(J ;V ) is the Bochner space ofV -valued measurable functions onJ , andH1(J ;V ′)
the subspace ofL2(J ;V ′) with distributional derivative inL2(J ;V ′). Omitting the last
term w(T ) of ‖ · ‖X yields an equivalent norm, albeit not uniformly in the length of J ,
by continuity of the embeddingX →֒ C0(J̄ ;H); see [10, Chapter 1]. The present choice,
however, simplifies some estimates such as the result of Lemma 3.2. In the following we
identify Y ′ with H × L2(J ;V ′) and, where convenient, alsoL2(J ;V ) ∼= L2(J) ⊗ V , and
H1(J ;V ) ∼= H1(J) ⊗ V isometrically, similarly for other Hilbert spaces. The symbol ⊗
denotes the tensor product of Hilbert spaces or of linear operators.

Fundamental to the present paper is the fact:the linear parabolic evolution equation

(∂t +A)u(t) = f(t) ∈ V ′, (a.e.)t ∈ J, u(0) = g ∈ H,(1.4)

defines an isomorphism betweenX andY ′. In other words, the mappingX → Y ′, u 7→
(g, f), is bounded and linear, with a bounded inverse. This is in fact true even ifA is allowed
to depend (weak-star) measurably ont with uniform continuity and coercivity bounds (see
for instance [10, Chapter 3, Section 4.7]), but for our purposes it will suffice to assume thatA
is constant in the time variablet. We moreover assume thatA is self-adjoint and thatγ = 0
in (1.1), that is

(Aχ, χ̃) = (χ,Aχ̃) and (Aχ, χ) ≥ α2‖χ‖2V , ∀χ, χ̃ ∈ V.(1.5)

Given a source termf ∈ L2(J ;V ′) and an initial datumg ∈ H, the parabolic evolution
equation can be equivalently formulated as the linear operator equation

find u ∈ X s.t. B(u, v) = F (v), ∀v ∈ Y,(1.6)

where the bilinear formB : X × Y → R and the linear functionalF ∈ Y ′, given by

B(w, v) :=

∫

J

((∂t +A)w, v1)dt+ (w(0), v0), (w, v) ∈ X × Y,(1.7)

F (v) :=

∫

J

(f, v1)dt+ (g, v0), v = (v0, v1) ∈ Y,(1.8)

are both well-defined and bounded. Thus, the temporal evolution is enforced in (1.6) by
testing with functionsv1 ∈ L2(J ;V ), while the initial condition is enforced by testing with
v0 ∈ H.

We occasionally omit the specification of the norm if clear from the context, for instance
the norm ofB is denoted by‖B‖. Generally, we omit thet-dependence of the integrands in
the notation.

1.2. Space-time stability.Runge–Kutta time-stepping schemes are among the classical
numerical solution methods for evolution equations such as(1.4). In this paper we focus
on the subclass of collocation Runge–Kutta time-stepping schemes because these are, in the
sense specified below, equivalent to piecewise polynomial in time Petrov–Galerkin meth-
ods for the space-time variational formulation (1.6). For (nonlinear) ordinary differential
equations this equivalence was observed for instance in [9]. Broadly speaking, a colloca-
tion Runge–Kutta time-stepping scheme with a possible semi-discretization ofV applied to
the parabolic evolution equation (1.4) coincides with the solution to the conforming Petrov–
Galerkin space-time variational formulation

find uh ∈ Xh s.t. B(uh, vh) = F (vh), ∀vh ∈ Yh,(1.9)
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for certain closed subspacesXh ⊂ X andYh ⊂ Y containing piecewise polynomial functions
on the temporal intervalJ with values in (a closed subspace of)V . Herein, the subscript
h > 0 encodes the discretization parameters such as the temporalmesh, the polynomial
degrees involved, etc., and we presuppose that the span of

⋃
h>0 Xh is dense inX. This

interpretation raises the usual question ofstabilityof Petrov–Galerkin discretizations, namely
whether the continuous dependence on the data of the exact solution is also true for the
discrete solution: does there exist a constantCh > 0 such that for anyF ∈ Y ′ the solution
of (1.9) satisfies

‖uh‖X ≤ Ch‖F‖Y ′(1.10)

and how doesCh depend on the discretization parameterh? This question reduces to the
study of the discrete inf-sup constant

γh := inf
wh∈Xh\{0}

sup
vh∈Yh\{0}

B(wh, vh)

‖wh‖X‖vh‖Y
,(1.11)

because the estimateCh ≤ γ−1h holds for the constant in (1.10). We shall speak ofspace-time
stability if uniform stability

inf
h>0

γh > 0(1.12)

occurs.
As alluded to at the beginning of this section, our aim is to identify conditions on the

discretization parameters under which collocation Runge–Kutta time-stepping schemes for
the linear parabolic evolution equation (1.4) are space-time stable in the sense of (1.12).
Thus we are interested in an a priori analysis and, in contrast to the typical convergence
analysis for Runge–Kutta time-stepping schemes, we do not assume any additional temporal
smoothness of the exact solution or the residual, or regularity of the initial datum. The a priori
convergence analysis usually proceeds via the quasi-optimality estimate

‖u− uh‖X ≤ ‖B‖
γh

inf
wh∈Xh

‖u− wh‖X ,

which is valid for conforming Petrov–Galerkin discretizations [12], and highlights the impor-
tance of the discrete inf-sup constant (1.11).

For collocation Runge–Kutta time-stepping based on Gauß–Legendre nodes, our find-
ings are in essence similar to the those of Babuška and Janik in [5], although based on a
slightly different space-time variational formulation. Assumptions of [5, Theorem 3.4.1] on
the relative size of the temporal elements and on the distribution of the polynomial degrees
are unnecessary here, probably due to our formulating the results in terms of the local CFL
number instead of the number of temporal elements. Moreover, we do not rely on the eigen-
basis representation of the operator and give explicit constants. We find an additional bound
which is active for large CFL numbers and is independent of the details of the temporal dis-
cretization. When this uniform bound is not active, the space-time stability constant in (1.10)
is essentially proportional to the CFL number.

The second contribution of this work is a similar analysis for collocation Runge–Kutta
time-stepping based on right-Radau nodes, whose most notable representative is the backward
Euler time-stepping scheme, as well as Lobatto nodes. We findfor instance that for right-
Radau nodes the space-time stability constant in (1.10) is in general proportional to the square
root of the CFL number, except in certain important situations where it is indeed of order
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one. Moreover, our estimates and numerical examples indicate that Lobatto nodes is the least
space-time stable choice among the three.

We remark that it may be possible, via the identification of discontinuous Galerkin and
right-Radau collocation Runge–Kutta time-stepping schemes [1], to relate our results to [11].
There, space-time stability in mesh-dependent norms of a space-time discontinuous Galerkin
discretization of the heat equation was obtained, interestingly, assuming that the CFL number
is not too small. Our results may also be seen as an extension of the semidiscrete analysis
of [6] to fully discrete time-stepping schemes.

In Section2 we describe collocation Runge–Kutta time-stepping schemes, and recall
their classicalA- andL-stability properties. We introduce the adjoint of the polynomial
interpolation operator.

In Section3 the adjoint of the polynomial interpolation operator is used to formulate
collocation Runge–Kutta time-stepping schemes equivalently as a conforming space-time
Petrov–Galerkin method for the space-time variational formulation (1.9), which is satisfied
by the exact solution to the parabolic evolution equation (1.4). Subsequently, we mainly focus
on Gauß–Legendre and right-Radau collocation, and obtain results on Lobatto collocation as
a by-product. We estimate the discrete inf-sup constant (1.11) in terms of the discretization
parameters such as the time step size and the polynomial degrees, together with a measure of
self-duality of the discretization ofV . Here the parabolic CFL number appears naturally in
the estimates. Finally, we conclude in Section4.

1.3. Illustration. We illustrate the kind of behaviour of the stability constant Ch that we
wish to exhibit and explain in this paper, for the implicit midpoint rule and the backward Euler
time-stepping schemes. These are examples ofA-stable andL-stable collocation Runge–
Kutta time-stepping schemes, respectively; see Section2. On the temporal nodes the implicit
midpoint rule solution coincides with that produced by the Crank–Nicolson time-stepping
scheme or implicit trapezoidal rule in the present case of a linear evolution equation. We
consider the heat equation as a model parabolic evolution equation (1.4). More precisely, the
operatorA is taken as the minus Laplacian on a bounded spatial domain inEuclidean space
with homogeneous Dirichlet boundary conditions. The spatial domain and the spatial semi-
discretization by finite elements are fixed to be those from [2, Sections 2–8], the details are
immaterial for us and can be found there. The computations were done using the methods
of [4], the main difference being in the choice of the norm onX. We setT = 20 for the
end time. For both time-stepping schemes we performN equidistant time steps. The results
are summarized in Figure1.1. For comparison, also the stability constant for the Radau5
time-stepping scheme (collocation Runge–Kutta based on 3 right-Radau nodes) is shown.

We observe, and prove in Section3 below, the following. The space-time stability con-
stantCh decreases with the number of time stepsN , and, whenN is large enough, approaches
one(implicit midpoint rule) andtwo (backward Euler), respectively. This happens when the
parabolic CFL number (that can be thought of as time step sizedivided by the square of
spatial mesh width, see (3.12) for the definition) is of order one. On the other hand, when
the number of time steps is small, and the CFL number is comparatively large, the implicit
midpoint rule and the backward Euler time-stepping schemesexhibit qualitatively different
behaviour: in the first case,Ch stagnates, and then decays proportionally to the CFL num-
ber; in the second case,Ch decays proportionally to the square root of the CFL number from
the onset on. From this perspective, backward Euler is the preferable time-stepping scheme
among the two, at least on an equidistant temporal mesh. The Radau5 time-stepping scheme
behaves essentially like the backward Euler one. The space-time stability constant, which in
this toy example barely spans one order of magnitude, can be much larger for finer spatial
finite element discretizations containing local refinementand/or for larger temporal intervals.
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FIGURE 1.1. Space-time stability constant for implicit midpoint rule,backward Euler and Radau5 time-
stepping schemes as a function of the numberN of equidistant time steps; see Section1.3for details.

Our task is to explain the behaviour observed in Figure1.1for a certain class of colloca-
tion Runge–Kutta time-stepping schemes. These are introduced in the next section.

2. Collocation Runge–Kutta time-stepping schemes.

2.1. Construction. A finite set of temporal nodes of the formT = {0 = t0 < t1 <
. . . < tN = T} is called a temporal mesh. The intervals(tn−1, tn), n = 1, . . . , N , are called
temporal elements ofT . GivenT with N temporal elements, for any vector of polynomial
degreesp = (pn)

N
n=1 ∈ NN

0 let S0,p(T ) denote the space of left-continuous functionss :
[0, T ] → R for which s|(tn−1,tn] is a polynomial of degree at mostpn for each element
numbern = 1, . . . , N . We further define the space of continuous piecewise polynomials
S1,p(T ) := C0([0, T ]) ∩ S0,p(T ).

Let Vh ⊂ V be a finite-dimensional subspace,T a temporal mesh, andp ∈ NN
0 a vector

of polynomial degrees. Recall thatV →֒ H and that(·, ·) denotes the scalar product inH.
A collocation Runge–Kutta time-stepping scheme for the parabolic evolution equation (1.4)
can now be described as the process of constructinguh : [0, T ] → Vh as follows: 1) Fix
uh(0) requiring(uh(0), χh) = (g, χh) for all χh ∈ Vh. 2) For eachn = 1, . . . , N , pick a set
of pn distinct collocation nodesNn ⊂ [tn−1, tn], and require that theVh-valued polynomial
uh|[tn−1,tn] of degreepn, of which the valueuh(tn−1) is already known by continuity ofuh,
satisfies thepn collocation conditions

((∂t +A)uh(τ)− f(τ), χh) = 0 ∀τ ∈ Nn ∀χh ∈ Vh.(2.1)

If a node ofT was chosen for collocation then the temporal derivative is understood as the
one-sided derivative from within the current temporal element(tn−1, tn).

By construction,uh is in the spaceXh := S1,p(T )⊗Vh of continuousVh-valued piece-
wise polynomial functions on[0, T ]. As in [1, Equation (2.17)], we can replace the colloca-
tion conditions (2.1) by

(∂tuh + INn
(Auh − f), χh) = 0 on [tn−1, tn] ∀χh ∈ Vh,

whereINn
denotes the polynomial interpolation operator on the collocation nodesNn by

a polynomial of degree(pn − 1). Let IN denote the compound interpolation operator that
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produces a piecewise polynomial inS0,p−1(T ). SetYh := Vh × [S0,p−1(T ) ⊗ Vh]. Then
the whole process can be formulated as:

find uh ∈ Xh s.t. BN (uh, vh) = FN (vh) ∀vh ∈ Yh,(2.2)

whereBN is defined as in (1.7) with Au replaced byINAu, andFN is defined as in (1.8)
with f replaced byIN f .

The latter space-time variational formulation (2.2) suffers from the drawback that the
sourcef ∈ L2(J ;V ′) needs to have some more regularity forIN f to be well-defined. We
shall instead show that there are subspacesYh for which the sameuh is obtained from the
discrete variational formulation (1.9) with the original definitions of the bilinear formB and
the functionalF wheneverf is a piecewise polynomial inS0,p(T )⊗ V ′.

Before doing so, let us recall the classical notions of stability, here only for collocation
Runge–Kutta time-stepping schemes of the above type.

2.2. Classical stability properties.For any set of distinct collocation nodesN ⊂ R let
ΠN denote the polynomialΠN : t 7→ ∏

τ∈N (t− τ), with the conventionΠ∅ := 1. LetN ⊂
[0, 1] be a set of distinct collocation nodes, andz ∈ C. Define the collocation polynomial
y : R → C of degree#N by y(0) = 1 and the collocation conditionsy′(τ) = zy(τ) for
τ ∈ N . SetRN (z) := y(1), which is called the stability function ofN . ThenN is called
A-stable if|RN (z)| ≤ 1 for all z ∈ C with Re z ≤ 0, and it is calledL-stable if in addition
RN (−∞) := limz→∞RN (−z) = 0. We do not consider more refined notions of stability of
time-stepping schemes; see for instance [8, Section V.9]. By [8, Theorem 3.10], the stability
function is the rational functionRN (z) = Q1(z)/Q0(z) with Qt(z) :=

∑
j≥0 Π

(j)
N (t)z−j .

This representation implies thatN can only beL-stable if1 ∈ N .
Let Pd denote the space of polynomials of degree at mostd. If d < 0 thenPd :=

{0}. For eachd ∈ N, let Gd ⊂ (0, 1), Rd ⊂ (0, 1], andLd ⊂ [0, 1] denote thed Gauß–
Legendre, the right-Radau, and the Lobatto nodes for the interval [0, 1], respectively. These
are characterized [7, Theorem 1.4.5] by requiring1 ∈ Rd+1 and {0, 1} ⊂ Ld+2 for all
d ≥ 0, and

∫ 1

0
ΠN (t)p(t)dt = 0 for all p ∈ Pd−1, N ∈ {Gd,Rd+1,Ld+2}, d ≥ 1. The

implicit midpoint rule is the collocation Runge–Kutta time-stepping scheme based onG1,
while backward Euler with piecewise linear reconstructioncorresponds toR1.

The unique rational function of numerator degreek and denominator degreej that ap-
proximates the exact solutiony : z 7→ ez up to an error ofO(zj+k+1), asz → 0, is called
(k, j)-Pad́e approximation [8, Theorem 3.11]. It follows thatRGd = RLd+1

is the (d, d)-
Pad́e approximation andRRd

is the(d − 1, d)-Pad́e approximation, and each isA-stable [8,
Theorem 4.12]. However, only the right-Radau nodes areL-stable,RRd

(−∞) = 0, because
the denominator has higher polynomial degree than the numerator. This is the fundamental
difference between the implicit midpoint rule and the backward Euler time-stepping schemes.

Please note that even if the stability functions of two sets of collocation nodes coincide
(for instance, for the Gauß–LegendreGd and the LobattoLd+1 nodes), the respective col-
location polynomials, which have different polynomial degrees, differ in general; see also
Section3.3.

2.3. The adjoint of the interpolation operator. For any polynomialπ, its span is de-
noted byRπ. Recall the notationΠN : t 7→ ∏

τ∈N (t − τ) with Π∅ := 1. For any set
N ⊂ [0, 1] of d distinct collocation nodes letIN be the polynomial interpolation operator on
N . We define the operatorI⋆N by

I⋆N : Pd−1 → Pd, q 7→ q − (q,ΠN )L2(0,1)

(Ld,ΠN )L2(0,1)
Ld,(2.3)
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whereLd is the Legendre polynomial of degreed on [0, 1], which is orthogonal to all polyno-
mials of lower degree inL2(0, 1). Throughout, the Legendre polynomials are normalized to
unit norm inL2. Many useful properties of orthogonal polynomials can be derived from their
recurrence formulae; see [7, Section 1.3.2]. For instance, for future purposes we note that
Ld(1) =

√
2d+ 1. SinceΠN has degreed, the denominator in (2.3) is nonzero. Obviously,

the inverse ofI⋆N is given byp 7→ p − (p, Ld)L2(0,1)Ld, which is a contraction onL2(0, 1).
The reason for the notation is the following observation.

LEMMA 2.1. The mappingI⋆N : Pd−1 → Pd defined by(2.3) is linear and injective, and

(IN p, q)L2(0,1) = (p, I⋆N q)L2(0,1) ∀(p, q) ∈ Pd × Pd−1.(2.4)

Proof. Linearity is clear, and injectivity is due toLd /∈ Pd−1. To verify (2.4) we check
it for p ∈ Pd−1 andp = ΠN separately, sincePd−1 ⊕ RΠN = Pd. First, if p ∈ Pd−1 then
IN p = p, andq − I⋆N q ∝ Ld is indeed orthogonal top. Second, ifp = ΠN thenIN p = 0,
but also(ΠN , I⋆N q) vanishes after simplification.

For any setN ⊂ [0, 1] of d distinct collocation nodes, we define the polynomial space

QN := I⋆NPd−1 ⊂ Pd.(2.5)

LEMMA 2.2. LetN ⊂ [0, 1] be a set ofd distinct nodes andp ∈ Pd. Thenp vanishes at
N if and only if(p, q)L2(0,1) = 0 for all q ∈ QN .

Proof. By Lemma2.1 and the definition (2.5), the operatorI⋆N : Pd−1 → QN is an
isomorphism. Now, the polynomialp ∈ Pd vanishes atN if and only if its interpolantIN p is
identically zero, that is0 = (IN p, (I

⋆
N )
−1q)L2(0,1) = (p, q)L2(0,1) for all q ∈ QN .

We say that the nodesN ⊂ [0, 1] are exact onPd if the interpolatory quadrature ofp on
[0, 1] based on the nodesN coincides with

∫ 1

0
pdt for all p ∈ Pd. We will repeatedly use the

fact [7, Section 1.4] that the Gauß–Legendre nodesGd are exact onP2d−1, the right-Radau
nodesRd are exact onP2d−2, and the Lobatto nodesLd are exact onP2d−3.

The following result characterizes the polynomial spaceQN in (2.5) for these particular
cases. We writeN ◦ := N ∩ (0, 1).

PROPOSITION2.3. The spacesQN = I⋆NPd−1 for the Gauß–Legendre, right-Radau
and Lobatto nodes are explicitly given byQGd = Pd−1, QRd

= Pd−2 ⊕ RΠR◦

d+1
, and

QLd
= Pd−3 ⊕ RLd−1 ⊕ RΠL◦

d+2
.

Proof. In each case, the spaces have the correct dimension, and allare subspaces of
Pd. By (2.4), we only need to check that any polynomialq from the characterizing space
is orthogonal toΠN for the set of nodesN in question. ConsiderN = Ld, as the other
cases are similar. First, ifq ∈ Pd−3 then (ΠLd

, q)L2(0,1) = 0 because the Lobatto nodes
Ld are exact onP2d−3 andΠLd

q ∈ P2d−3 vanishes atLd. Second,(ΠN , Ld−1)L2(0,1) = 0
because the polynomials have opposite parity around the midpoint of the interval. Finally,
(ΠN ,ΠL◦

d+2
)L2(0,1) = 0 becauseLd+2 are exact onP2d.

For nodesN other than the Gauß–Legendre nodes, there is a “degree gap” because
QN 6= Pd−1 is d-dimensional. For instance,QR1

is the span ofΠ{1/3} : t 7→ t − 1/3,
since thed = 2 right-Radau nodes on the unit interval areR2 = {1/3, 1}. For the Lobatto
nodes, Lemma2.2 holds also withQLd

:= Pd−3 ⊕ RΠLd+2\{0} ⊕ RΠLd+2\{1}, which is a
subspace ofPd+1.

The reason that the polynomialΠR◦

d+1
appears in Proposition2.3 is the property

(Π, p)L2(0,1) =
‖Π‖2L2(0,1)

Π(1)
p(1) ∀p ∈ Pd, where Π := ΠR◦

d+1
.
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That is, testing a polynomialp with Π yields a multiple of the value ofp at t = 1. Indeed,
the right-Radau nodesRd+1 being exact onP2d, the left-hand side yields a multiple ofp(1).
The factor is determined by settingp := Π.

Since the right-Radau nodesRd are exact onP2d−2, the polynomialΠRd
is linear com-

bination of the Legendre polynomialsLd−1 andLd. RecallingΠRd
(1) = 0 we find

ΠRd
∝ Ld−1(1)Ld − Ld(1)Ld−1.(2.6)

Proposition2.3 implies thatI⋆Rd
Ld−1 ∝ ΠR◦

d+1
, becauseI⋆Rd

Ld−1 is orthogonal toPd−2.
The definition (2.3) of I⋆N and (2.6) show the relation

ΠR◦

d+1
∝ I⋆Rd

Ld−1 = Ld−1 +
Ld(1)

Ld−1(1)
Ld.(2.7)

For the Lobatto nodes, the polynomialΠLd
can also be guessed, as it must be a linear

combination ofLd, Ld−1 andLd−2. But Ld−1 does not appear due to opposite parities of
ΠLd

andLd−1 around the midpoint. The conditionΠLd
(0) = 0 = ΠLd

(1) is ensured if

ΠLd
∝ Ld−2(1)Ld − Ld(1)Ld−2.(2.8)

With the definition (2.3) of I⋆N we find thatI⋆Ld
Ld−1 = Ld−1. Taking (2.8) and Proposi-

tion 2.3 into account we obtain

ΠL◦

d+2
∝ I⋆Ld

Ld−2 = Ld−2 +
Ld(1)

Ld−2(1)
Ld.(2.9)

In our numerical experiments, we used the above relations (2.7) and (2.9) to set up the
test spacesQN as suggested by Proposition2.3.

The following is a consequence of Lemma2.2.
PROPOSITION2.4. Let Vh ⊂ V be finite-dimensional. LetN ⊂ [0, 1] be a set ofd

distinct nodes. Letwh ∈ Pd ⊗ Vh. Assume thatf ∈ Pd ⊗ V ′. Then, withQN as in(2.5), the
collocation condition

((∂t +A)wh(τ)− f(τ), χh) = 0 ∀τ ∈ N ∀χh ∈ Vh

is synonymous with the variational statement

∫ 1

0

((∂t +A)wh − f, vh)dt = 0 ∀vh ∈ QN ⊗ Vh.

Proof. The functionp : t 7→ ((∂t + A)wh(t) − f(t), χh) is a polynomial inPd for any
fixedχh ∈ Vh. The claim therefore follows from Lemma2.2.

3. Space-time stability of collocation Runge–Kutta time-stepping schemes.Given a
set ofpn distinct collocation nodesNn in the interval[tn−1, tn] of then-th step of the Runge–
Kutta time-stepping scheme (2.1), we can defineI⋆Nn

on [tn−1, tn] analogously to (2.3), and
Qn := I⋆Nn

Ppn−1 analogously to (2.5). DefineXh := S1,p(T ) ⊗ Vh andYh := Vh × Y 1
h

with Y 1
h := {s ∈ S0,p(T ) : s|(tn−1,tn) ∈ Qn} ⊗ Vh. Using Proposition2.4 transported to

each of the intervals[tn−1, tn] we conclude that the collocation Runge–Kutta time-stepping
scheme (2.1) is equivalent to the space-time variational formulation (1.9), with the present
choice of trialXh and testYh spaces, wheneverf ∈ S0,p(T ) ⊗ V ′ in the definition (1.8) of
the functionalF . Let us now address the question of space-time stability (1.12) of these trial
and test spaces.
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A crucial ingredient in the proof of the subsequent theorem will be the following lemma.
Herein,p′ denotes the derivative ofp.

LEMMA 3.1. For the Gauß–Legendre nodes one has

(p′, IGdp)L2(0,1) = (p′, p)L2(0,1) ∀p ∈ Pd,(3.1)

while for the right-Radau nodes,

(p′, IRd
p)L2(0,1) = (p′, p)L2(0,1) +

1

2
|(p− IRd

p)(0)|2 ∀p ∈ Pd.(3.2)

Proof. Let N ∈ {Gd,Rd}. Take anyp ∈ Pd and writep = cΠN + p̃ for somec ∈ R

and some polynomial̃p ∈ Pd−1. Thenp− IN p = cΠN . Observing thatΠN is orthogonal to
Pd−2 in L2(0, 1), one has

(p′, IN p− p)L2(0,1) = −c2(Π′N ,ΠN )L2(0,1) =
c2

2

(
|ΠN (0)|2 − |ΠN (1)|2

)
.

The right-hand side vanishes in the case of Gauß–Legendre nodes by (anti-)symmetry. This
establishes (3.1), whileΠN (1) = 0 in the case of right-Radau nodes yields (3.2).

Due to this lemma, in the remainder of this section we shall assume that eachNn are
either the Gauß–Legendre nodes, or the right-Radau nodes, if not stated otherwise.

In connection with this lemma we will further require the following observation: for any
polynomialp ∈ Pd

|(p− IN p)(0)|2
‖p− IN p‖2L2(0,1)

=
|ΠN (0)|2

‖ΠN ‖2L2(0,1)

=

{
2d+ 1, N = Gd,

4d− 1/d, N = Rd.
(3.3)

This can be verified recalling that the orthonormalized Legendre polynomialLk satisfies
|Lk(0)| =

√
2k + 1, and using the expression (2.6) for ΠRd

.
We defineI : S0,p(T ) → S0,p−1(T ) andI⋆ : S0,p−1(T ) → S0,p(T ) element-wise

in the obvious way and letQ ⊂ S0,p(T ) denote the image ofI⋆. We writeI−⋆ := (I⋆)−1.
Let TR := {tn−1 ∈ T : Nn are right-Radau nodes} collect the left endpoints of the temporal
intervals which host right-Radau nodes. WritingIw, w ∈ Xh, andI−⋆v1, v1 ∈ Y 1

h , etc., the
interpolation operator is understood to act on the temporalcomponent, in the same way that
Aw sometimes means(Id⊗A)w. Note thatYh = Vh × I⋆IXh, which could also serve as
the definition of the discrete test space.

3.1. Stability in node-dependent norms.This subsection contains the centerpiece of
our analysis, which is Theorem3.3. In it, we show space-time stability with a constant that
is uniform in temporal discretization parameters but in non-uniform space-time norms. Our
strategy for further analysis is to relate these discretization parameter dependent norms to the
original parabolic space-time norms. This is done in subsequent subsections.

OnXh we define the norm

‖w‖2† := ‖∂tw‖2L2(J;V ′) + ‖Iw‖2L2(J;V ) + ‖w(T )‖2H +
∑

t∈TR

‖(w − Iw)(t←)‖2H ,(3.4)

for all w ∈ Xh. The last sum collects contributions of temporal elements that host right-
Radau nodes, andt← means the limit from the right; the sum is void if Gauß–Legendre nodes
are used on each temporal element. The definition is motivated by its role in Theorem3.3
below, but also by the following observation.

LEMMA 3.2. ‖w(τ)‖H ≤ ‖w‖† holds for allw ∈ Xh and all temporal nodesτ ∈ T .
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Proof. Starting with‖w(τ)‖2H − ‖w(T )‖2H = −2
∫ T

τ
(∂tw,w)dt, apply Lemma3.1

on each temporal element, then the inequalities|(∂tw, Iw)| ≤ ‖∂tw‖V ′‖Iw‖V and2ab ≤
a2 + b2.

Recall symmetry and positivity ofA from (1.5). It is now convenient to introduce an
inner product onYh = Vh × [Q⊗ Vh] by

(v, ṽ)⋆ :=

∫

J

(I−⋆Av1, I
−⋆ṽ1)dt+ (v0, ṽ0), v, ṽ ∈ Yh.(3.5)

Let ‖ · ‖⋆ denote the induced norm.
Both, the†- and⋆-norms, undo the introduction of the adjoint interpolationoperatorI⋆

in the sense that the subsequent theorem could be equivalently formulated for the bilinear
form BN in (2.2). An immediate consequence of Lemma3.2 is that the bilinear formsB
in (1.9) andBN in (2.2) are continuous onXh × Yh equipped with these norms.

As a final preparation for the subsequent theorem set

Kh := inf
z∈∂tXh\{0}

sup
v∈Yh\{0}

∫
J
(z, v1)dt

‖z‖L2(J;V ′)‖v‖⋆
.(3.6)

This quantity is essentially a measure of “self-duality” ofVh; see Section3.2.1.
THEOREM 3.3. With the definitions and assumptions of this section,

inf
w∈Xh\{0}

sup
v∈Yh\{0}

B(w, v)

‖w‖†‖v‖⋆
≥ γ†⋆ := min{Kh, α, 1}.(3.7)

Proof. Define the linear mapΓ : Xh → Yh by

(Γw, v)⋆ = B(w, v) ∀(w, v) ∈ Xh × Yh .(3.8)

For arbitrary and nonzerow ∈ Xh we show that‖Γw‖⋆ ≥ γ†⋆‖w‖†, which implies the
claimed estimate (3.7) using

sup
v∈Yh\{0}

B(w, v)

‖v‖⋆
= sup

v∈Yh\{0}

(Γw, v)⋆
‖v‖⋆

= ‖Γw‖⋆ ≥ γ†⋆‖w‖†.

To that end, we setvw := (w(0), I⋆Iw) ∈ Yh, write ‖Γw‖⋆ as

‖Γw‖2⋆ = ‖Γw − vw‖2⋆ + 2(Γw, vw)⋆ − ‖vw‖2⋆,(3.9)

and estimate the individual terms. For the first term in (3.9), definition (1.7) of the bilinear
formB, definition (3.5) of the inner product(·, ·)⋆, and definition (3.6) of Kh yield

‖Γw − vw‖⋆ = sup
v∈Yh\{0}

(Γw − vw, v)⋆
‖v‖⋆

= sup
v∈Yh\{0}

B(w, v)− (vw, v)⋆
‖v‖⋆

= sup
v∈Yh\{0}

∫
J
(∂tw, v1)dt

‖v‖⋆
≥ Kh‖∂tw‖L2(J;V ′).
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For the second term of (3.9), we insertvw in the definition (3.8) of Γ, apply Lemma2.1,
followed by Lemma3.1, and evaluate

∫
J
(∂tw,w)dt:

(Γw, vw)⋆ =

∫

J

(∂tw +Aw, I⋆Iw)dt+ ‖w(0)‖2H

=

∫

J

(∂tw, Iw)dt+

∫

J

(AIw, Iw)dt+ ‖w(0)‖2H

=

∫

J

(∂tw,w)dt+ ‖vw‖2⋆ +
1

2

∑

t∈TR

‖(w − Iw)(t←)‖2H

=
1

2

(
‖w(T )‖2H − ‖w(0)‖2H

)
+ ‖vw‖2⋆ +

1

2

∑

t∈TR

‖(w − Iw)(t←)‖2H .

Inserting these in (3.9), combining and estimating further, we obtain‖Γw‖⋆ ≥ γ†⋆‖w‖† as
announced.

We remark that this result remains valid for trial and test spaces with temporally vari-
able spatial discretization constructed as follows. IfV n

h ⊂ V , n = 0, 1, . . . , N , are finite-
dimensional subspaces, set the discrete trial spaceXh as the collection of allw ∈ S1,p(T )⊗
V satisfyingw(t) ∈ V n−1

h + V n
h on each temporal element(tn−1, tn), andw(tn) ∈ V n

h on
each temporal node. TakeYh := V 0

h ×I⋆IXh as the definition for the discrete test space. The
crucial part is to generalize Lemma3.1 to vector valued functions of this type, for instance
by splittingw into threeH-orthogonal parts inV n−1

h , V n
h andV n−1

h ∩ V n
h , on each temporal

element.

3.2. Stability in original norms. Let us supposeXh andYh are families of subspaces
parameterized byh > 0 of the form introduced at the beginning of this section withT and
p dependent onh. To obtain space-time stability (1.12) from the estimate (3.7) of Theo-
rem (3.3), it suffices to verify

1. Kh ≥ K0 > 0,
2. ‖ · ‖Y ≤ C⋆‖ · ‖⋆ onYh,
3. ‖ · ‖X ≤ C†‖ · ‖† onXh,

with constantsC† > 0, C⋆ > 0, andK0 > 0 independent of the discretization parameters.
Indeed, space-time stabilityinfh>0 γh ≥ γ0 > 0 would follow in (1.12) with

γ0 := C−1† C−1⋆ min{K0, α, 1}.
We therefore investigate conditions on the spatial discretization Vh, the temporal meshes
T , and the polynomial degreesp (whereT andp may depend onh) that allow suchh-
independent constants.

3.2.1. Approximate self-duality of the spatial discretization. The quantityKh de-
fined in (3.6) only depends on the chosen finite-dimensional subspaceVh ⊂ V and the
operatorA. Let us identifyv1 6= 0 in (3.6) with z̃ := I−⋆v1 ∈ Zh := ∂tXh. Then
‖z̃‖2L2(J;V ) ≥ ‖A‖−1‖(0, v1)‖2⋆. It suffices to take the supremum over(0, v1) in (3.6), hence
it becomes

Kh ≥ ‖A‖−1/2 inf
z∈Zh\{0}

sup
z̃∈Zh\{0}

∫
J
(z, z̃)dt

‖z‖L2(J;V ′)‖z̃‖L2(J;V )
.

Please note thatz andz̃ are measured in different norms. Expandingz andz̃ with respect to
anL2(J) orthonormal basis allows one to verify thatKh ≥ ‖A‖−1/2κh, where

κh := inf
χ∈Vh\{0}

sup
χ̃∈Vh\{0}

(χ, χ̃)

‖χ‖V ′‖χ̃‖V
> 0(3.10)
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is a measure of self-duality ofVh. One can show thatκ−1h is the norm of theH-orthogonal
projection ontoVh viewed as an endomorphism onV , and thereforeκh is bounded form
below for some commonly used finite element spaces [3, Lemma 6.2]. The boundedness of
the spatialL2 projection inH1 has appeared in the context of parabolic partial differential
equations of second order in [5, 6].

We show thatKh cannot be removed from (3.7) in Theorem3.3, because that would
imply Ch ∼ 1 for the operator norm of the discrete solution mapping in (1.10) when the
temporal discretization is sufficiently accurate, that is,when the CFL number is small; see
below. For simplicity assume additionally thatA is an isometry, and thatϕm, m ∈ N, are
H-orthonormal eigenfunctions ofA with Aϕm = m2ϕm. Thenm−1ϕm andmϕm, m ∈ N,
are orthonormal inV andV ′, respectively. DefineχM :=

∑M
m=1 m

−1ϕm, andVh as the
span of the singleχM . Observe thatζM := ‖χM‖2H and‖χM‖V ′ ≥ 1 saturate asM → ∞,
while ‖χM‖V =

√
M . ThereforeKh ≥ κh ∼ 1/

√
M for largeM . It remains to verify

that with this spatial discretization, the stability constantCh in (1.10) is not of order one but
indeed scales with

√
M . Takef := 0 andg := χM in the discrete space-time variational

formulation (1.9), with Xh := H1(J) ⊗ Vh andYh := Vh × [L2(J) ⊗ Vh]. It is solved by
t 7→ uM (t) = e−tM/ζMχM , which has‖uM‖X ∼

√
M for largeM . But ‖F‖Y ′ ∼ 1, hence

Ch ∼
√
M in (1.10) for largeM , as claimed.

3.2.2. Norm comparison on the test space.In this subsection we address the norm
comparison‖ · ‖Y ≤ C⋆‖ · ‖⋆ onYh. We estimate as follows,

‖v‖2Y = ‖I⋆I−⋆v1‖2L2(J;V ) + ‖v0‖2H
≤ ‖I⋆‖2‖I−⋆v1‖2L2(J;V ) + ‖v0‖2H
≤ max{‖I⋆‖2/α2, 1}

(
α2‖I−⋆v1‖2L2(J;V ) + ‖v0‖2H

)
≤ C2

⋆‖v‖2⋆,

for anyv = (v0, v1) ∈ Yh with the constantC⋆ := max{‖I⋆‖/α, 1}, using positivity (1.5)
of A. Thus it remains to estimate‖I⋆‖.

As noted following (2.3), the operator norm of(I⋆N )
−1, induced by theL2(0, 1) norm, is

bounded by one irrespectively of the choice ofd distinct nodesN ⊂ [0, 1]. Let us comment
on the norm ofI⋆N , which, in view of (2.4), is the same as that ofIN , and is invariant under
rescaling of the interval.

1. If N ⊂ (0, 1) are the Gauß–Legendre nodes thenI⋆N is the identity, hence of unit
norm.

2. LetN ⊂ (0, 1] be thed right-Radau nodes for the interval[0, 1]. SinceΠRd
is a

multiple ofLd(1)Ld−1 − Ld−1(1)Ld, see (2.6), one can compute

‖I⋆N ‖2 = ‖I⋆NLd−1‖2L2(0,1) = 1 +

∣∣∣∣
Ld(1)

Ld−1(1)

∣∣∣∣
2

= 1 +
2d+ 1

2d− 1
.

Thus,‖I⋆N ‖ ≤ 2 for Radau nodesN of any order.
3. Similarly,‖I⋆Ld

‖2 = 1+(2d+1)/(2d−3) holds for the Lobatto nodes. In particular,
the estimate‖I⋆Ld

‖ ≤
√
6 holds uniformly in the number of Lobatto nodesd ≥ 2.

4. For generald nodes one can show‖IN ‖ = ‖I⋆N ‖ ≤ 1 + (2d)!/(d!)2 ≤ 1 + 4d.
Now recall that we have assumed the test spaceYh to be based on Gauß–Legendre or

right-Radau nodes. Then‖I⋆N ‖ ≤ 2 as discussed above, and we obtain the desired norm
comparison uniformly in the discretization parameters, inparticular in the polynomial de-
grees. More precisely,‖I⋆‖ ≤ 1 if only Gauß–Legendre nodes are used, and‖I⋆‖ ≤ 2 if
also right-Radau nodes are admitted. These are responsiblefor the asymptotic behaviour of
the space-time stability constant observed in Figure1.1.
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3.2.3. Norm comparison on the trial space.In this subsection we obtain the norm
comparison‖·‖X ≤ C†‖·‖† onXh. The constantC†, however, depends on the discretization
parameters, and the goal of this subsection is to investigate this dependence. To that end we
introduce the CFL number. We abbreviate

Λh := sup
χ∈Vh\{0}

‖χ‖V
‖χ‖H

(3.11)

and on each temporal element we define the local CFL number

CFLn := |tn − tn−1|Λ2
h, n = 1, . . . , N.(3.12)

One can see from the parabolic evolution equation (1.4) that the CFL number is dimension-
free. Moreover,Λh is the same if the pair(V,H) is replaced by(H,V ′) in (3.11). The
(global) CFL number is the maximum of all local ones,CFL := maxn=1,...,N CFLn. We
remark that, in the following, the local CFL number always appears in conjunction with the
local polynomial degree, but we chose not to include these inthe definition (3.12).

For convenience, we recall here the two norms (1.2) and (3.4) defined for allw ∈ Xh as

‖w‖2X := ‖∂tw‖2L2(J;V ′) + ‖w‖2L2(J;V ) + ‖w(T )‖2H ,

‖w‖2† := ‖∂tw‖2L2(J;V ′) + ‖Iw‖2L2(J;V ) + ‖w(T )‖2H +
∑

t∈TR

‖(w − Iw)(t←)‖2H ,

whereTR are the left endpoints of the temporal elements with right-Radau nodes, andt←

means the limit from the right.
To obtain the desired norm comparison‖·‖X ≤ C†‖·‖†, we need to estimate‖w‖L2(J;V )

in terms of‖w‖† or, if more convenient,‖w − Iw‖L2(J;V ) in terms of the same, since for all
ǫ > 0 there holds

‖w‖2L2(J;V ) ≤ (1 + ǫ−2)‖Iw‖2L2(J;V ) + (1 + ǫ2)‖w − Iw‖2L2(J;V ).(3.13)

If only Gauß–Legendre nodes are present, the sharper orthogonality relation

‖w‖2L2(J;V ) = ‖Iw‖2L2(J;V ) + ‖w − Iw‖2L2(J;V )(3.14)

is at our disposal.
We look at estimates that are valid on each interval. These correspond to the three types

of behaviour observed in Figure1.1 in the introduction.
1. For the temporal elements that host right-Radau nodes, the sum in the‖ · ‖†-norm,

see (3.4), is useful for the norm comparison. LetJn := (tn−1, tn) be such a
temporal element withpn right-Radau nodesNn ⊂ (tn−1, tn]. On Jn we have
w − Iw = ΠNn

⊗ χn with someχn ∈ Vh, and therefore

‖w − Iw‖L2(Jn;V ) =
‖ΠNn

‖L2(Jn)

|ΠNn
(tn−1)|

‖(w − Iw)(t←n−1)‖V .(3.15)

Using (3.3) for ΠNn
and the definition of the local CFL number (3.12) we find (note

the squares)

‖w − Iw‖2L2(Jn;V ) ≤
CFLn

4pn − 1/pn
‖(w − Iw)(t←n−1)‖2H .(3.16)
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If only right-Radau nodes are present we obtain the norm comparison‖ · ‖X ≤
C†‖ · ‖† from (3.13) with a constant

C2
† ≤ inf

ǫ>0
max{1 + ǫ−2, (1 + ǫ2) CFL /3} = 1 + CFL /3.(3.17)

This is sharp for the backward Euler case (d = 1). For Radau5 (d = 3), the estimate
improves toC2

† ≤ 1 + CFL /(11 2
3 ). This explains the preasymptotic behaviour of

the stability constant (1.10) for the backward Euler and the Radau5 time-stepping
schemes in Figure1.1. A competing estimate for right-Radau nodes is derived in
Section3.4below.

2. On the temporal intervals that host Gauß–Legendre nodes we have no control on
point values explicitly in the norm‖ · ‖†, but Lemma3.2 gives a hint. Consider a
set of Gauß–Legendre nodesN = Gd of arbitrary order on the unit interval(0, 1).
Using (3.3) and an argument similar to (3.13), we obtain

(2d+ 1)‖p− IN p‖2L2(0,1) = |(p− IN p)(0)|2

≤ (1 + ǫ−2)|IN p(0)|2 + (1 + ǫ2)|p(0)|2

≤ (1 + ǫ−2)d2‖IN p‖2L2(0,1) + (1 + ǫ2)|p(0)|2.

The last inequality is seen by expandingIN p into the Legendre polynomials, evalu-
ating at zero, estimating with Cauchy–Schwartz, and computing

∑d−1
k=0(2k + 1) =

d2. For a set ofpn Gauß–Legendre nodesNn on Jn = (tn−1, tn) and any vector-
valued polynomialw ∈ Ppn

⊗ Vh we obtain

(3.18)

‖w − Iw‖2L2(Jn;V ) ≤

≤ (1 + ǫ−2)
p2n

2pn + 1
‖Iw‖2L2(Jn;V ) + (1 + ǫ2)

|tn − tn−1|
2pn + 1

‖w(tn−1)‖2V

≤ (1 + ǫ−2)
pn
2
‖Iw‖2L2(Jn;V ) + (1 + ǫ2)

CFLn

3
‖w‖2† ,

where in the second inequality we used‖w(τ)‖H ≤ ‖w‖† from Lemma3.2and the
definition (3.12) of the local CFL number.
Note that

∑N
n=1 CFLn = TΛ2

h. Thus, if only Gauß–Legendre nodes are present,
we sum up over all temporal elements and use (3.14) to find the norm comparison
‖w‖X ≤ C†‖w‖† with

C2
† ≤ inf

ǫ>0

{
1 +

1 + ǫ−2

2
|p|∞ +

1 + ǫ2

3
TΛ2

h

}
,(3.19)

where we have taken the sameǫ for each temporal element and estimatedpn by the
maximal occurring polynomial degree|p|∞. This explains the initial stagnation of
the stability constant (1.10) for the implicit midpoint rule time-stepping scheme in
Figure1.1. In the case of a single temporal element,TΛ2

h = CFL, and the bounds
in (3.17) and (3.19) are very close. This is confirmed by Figure1.1.

3. When the CFL number is small, another type of inequality becomes relevant. Again,
we first consider the reference unit interval. LetN ⊂ [0, 1] be a set of distinct collo-
cation nodes. Take any polynomialp ∈ Pd of degreed ≥ 1. Thenp = ΠN + IN p,
where the coefficient of the leading monomial was assumed to be one without loss of
generality. Its derivative isp′ = Π′N + (IN p)

′. The polynomial(IN p)′, if nonzero,
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is of lower degree thanΠ′N , which implies‖p′‖L2(0,1) ≥ |(Π′N , Ld−1)L2(0,1)|. We
arrive at

‖p− IN p‖L2(0,1) ≤ C ′N ‖p′‖L2(0,1), C ′N :=
‖ΠN ‖L2(0,1)

|(Π′N , Ld−1)L2(0,1)|
.

For Gauß–Legendre and right-Radau nodes the denominator equals|ΠN (1)Ld−1(1)−
ΠN (0)Ld−1(0)|, as can be seen after integration by parts. With this, and theexpres-
sion (2.6) for ΠRd

,

C ′Gd =
1

2
√
4d2 − 1

and C ′Rd
=

2√
2− 1/d

C ′Gd ≤ 2C ′Gd .

The boundC ′Rd
≤ 2C ′Gd ≤ 1/

√
3 is again uniform in the polynomial degreed.

For a set ofpn Gauß–Legendre or right-Radau nodesNn on the temporal element
Jn = (tn−1, tn) and any vector-valued polynomialw ∈ Ppn

⊗ Vh we obtain

‖w − Iw‖L2(Jn;V ) ≤ C ′Nn
CFLn ‖∂tw‖L2(Jn;V ′),(3.20)

whereC ′Nn
is eitherC ′Gd or C ′Rd

with d = pn. ThereforeCFL . 1 entailsC† ∼ 1
in the norm comparison‖ · ‖X ≤ C†‖ · ‖†.
When only Gauß–Legendre nodes are present, the orthogonality of Iw and (w −
Iw) (3.14) allows one to chooseC2

† ≤ 1 + CFL2 /12. Thus the behaviour of the
implicit midpoint rule time-stepping scheme in Figure1.1 is explained also in the
regime of moderate CFL numbers.

In summary we have found for Gauß–Legendre and right-Radau nodes the norm com-
parison of the form

‖ · ‖X ≤ C†‖ · ‖† with C† := Cmin{|p|∞ +
√
TΛh, 1 + CFL},

and if only right-Radau nodes are present the improved estimate

‖ · ‖X ≤ C†‖ · ‖† with C† := 1 + C
√
CFL.

The constantC > 0 can be chosen independently of all parameters, in particular nonincreas-
ing with the polynomial degrees.

3.2.4. Numerical evaluation of the bounds.We return to the example discussed in
Section1.3and compare the measured stability constantCh in (1.10) with the bounds derived
in this section. The boundCh ≤ γ−10 is composed as follows:γ0 := C−1† C−1⋆ min{Kh, α, 1},
whereα = 1 in this example, and we replaceC⋆ by the estimate derived in Section3.2.2and
C† by the estimates derived in Section3.2.3. We computedKh ≈ 0.9528 andΛh ≈ 4.0942.
Figure3.1 shows validity of the estimates and good agreement with the measured stability
constant.

We remark that our bounds on the various quantities may be notactive simultaneously,
which leads to overestimation of the stability constantCh in certain cases. Specifically, for
the backward Euler time-stepping scheme (and similarly forthe Radau5 case), see the center
(and right) graph of Figure3.1, the bound onC† and the bound on‖I⋆‖ together yield an
overestimate by a factor≈ 2 when the CFL number is large. Indeed, we observe numerically
that in the case of a single temporal element the optimizing pair (w, v) ∈ Xh × Yh in the
discrete inf-sup constant (3.7) may have the property that‖I−⋆v1‖L2(J;V ) is much smaller
than‖v0‖H , and therefore estimating‖v‖Y ≤ ‖I⋆‖‖v‖⋆ as we did in Section3.2.2 is too
pessimistic by a factor of approximately‖I⋆‖ = 2.
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FIGURE 3.1. Space-time stability constant for implicit midpoint rule (left), backward Euler (center), and
Radau5 (right) time-stepping schemes as a function of the numberN of equidistant time steps; see Section1.3,
together with the analytical bounds discussed in Section3.2.

3.3. Analysis of the Lobatto nodes.Recall that Lemma3.1 on Gauß–Legendre and
right-Radau nodes was used in the proof of Theorem3.3 and was crucial for the aforegoing
analysis. We have no similar result for the Lobatto nodes. Instead, in this section we will show
and use the fact that the Lobatto collocation polynomial (asdefined in Section2.2) of degree
(d+ 1), interpolated on the corresponding(d+ 1) Lobatto nodes, coincides with the Gauß–
Legendre collocation polynomial of degreed. Ford = 1, this is readily seen as follows. The
stability functions of the implicit midpoint rule with nodesG1 and the implicit trapezoidal rule
with nodesL2 are the same, so the collocation polynomials have the same values at the nodes
{0, 1}. Therefore, linear interpolation on the Lobatto nodesL2 = {0, 1} of the quadratic
implicit trapezoidal rule collocation polynomial is precisely the linear implicit midpoint rule
collocation polynomial.

Using this observation we will estimate the stability constant (1.10) for Lobatto nodes in
terms of that for Gauß–Legendre nodes. To start with, consider the relation

(p′, q)L2(0,1) = ((ILd+1
p)′, q)L2(0,1), ∀(p, q) ∈ Pd+1 × Pd−1,(3.21)

for the (d + 1) Lobatto nodes,d ∈ N. Integration by parts shows that this is equivalent to
(p − ILd+1

p, q′)L2(0,1) = 0 for the samep andq. This in turn is true because the integrand
is a polynomial of degree2d − 1 vanishing at the Lobatto nodesLd+1, which are exact on
P2d−1.

Let the discrete trial spaceXh := S1,p(T ) ⊗ Vh be the space of the same form as in
the beginning of this section, and let the discrete test space Yh be based on Gauß–Legendre
nodes. We increase the polynomial degrees by one to obtainX̂h := S1,p+1(T )⊗ Vh, and let
Ŷh = Vh × Ŷ 1

h denote the corresponding discrete test space that is based on Lobatto nodes.
The compound interpolation operators are denoted accordingly by I and Î. Assume that
f ∈ S0,p(T )⊗V ′ andg ∈ H. Letuh (andûh) denote the solution to the discrete space-time
variational formulation (1.9) with Xh × Yh (replaced byX̂h × Ŷh). We now estimate‖ûh‖X
from above in terms of‖uh‖X .

Let us writeUh := Î ûh for discrete solution based on the Lobatto nodes, interpolated on
these nodes. From the identity of the stability functionsRLd+1

= RGd stated in Section2.2, it
is clear thatUh anduh coincide on the mesh nodesτ ∈ T , in particularUh(0) = uh(0). We
claim that in factUh = uh. To prove this we verify thatUh ∈ Xh satisfies the discrete space-
time variational formulation (1.9) that characterizesuh. Therefore we use the aforegoing



ETNA
Kent State University 

http://etna.math.kent.edu

78 R. ANDREEV AND J. SCHWEITZER

relation (3.21), exactness of̂I onS0,p(T ), andÎ⋆v1 ∈ Ŷ 1
h for anyv1 ∈ Y 1

h , to compute
∫

J

(∂tUh +AUh − f, v1) dt =

∫

J

(Î(∂tûh +Aûh − f), v1) dt

=

∫

J

(∂tûh +Aûh − f, Î⋆v1) dt = 0.

As noted, the initial values coincide,Uh(0) = uh(0), and thusUh = uh.
These ingredients allow one to estimate

‖ûh‖2X ≤ ‖∂tûh‖2L2(J;V ′) + 2‖ûh − Î ûh‖2L2(J;V ) + 2‖uh‖2L2(J;V ) + ‖uh(T )‖2H .

We employ the Poincaré-like estimate‖ûh − Î ûh‖ ≤ CFL /
√
10‖∂tûh‖ as in (3.20), for the

second term on the right, and collect it with the first term. Inserting∂tûh = −Auh + Îf and
estimating further we arrive at‖ûh‖X ≤ Ĉh‖F‖Y ′ , with

Ĉh ≤ 2(1 + 2CFL2 /10)
(
(‖A‖2 + 1)C2

h + 1
)
,

whereCh is the stability constant foruh from (1.10). Thus, as forCh, we expect a three-
phase behaviour for̂Ch: as the number of temporal intervals increases, the constant is first
proportional to the CFL number, then to the square of the CFL number, and is eventually of
order one. The estimate is pessimistic roughly by a factor offour for large CFL numbers. We
indeed observe this in our numerical experiments for the twopoint Lobatto collocation in the
set-up of Section1.3; see Figure3.2, where also the derived bound is shown.

3.4. Temporal mesh with geometric warm up.Using the relation (3.15) and continu-
ity of the discrete solutionw, one can estimate the defectw − Iw on the temporal element
Jn+1 = (tn, tn+1) in terms of the quantities available in‖w‖† if the preceding temporal el-
ementJn = (tn−1, tn) hosts right-Radau nodes. In this situation, observe thatIw(→tn) =
w(→tn) = w(t←n ), becausetn is a collocation point inNpn

on the temporal elementJn,
where→tn denotes the limit from the left. Thus we can estimate‖(w − Iw)(t←n )‖V ≤
‖Iw(→tn)‖V + ‖Iw(t←n )‖V in (3.15). For the sake of clarity, let us again assume that all
temporal intervals host right-Radau nodes. We write|Jn| for the length of the temporal ele-
mentJn. Similarly to (3.16) and (3.18) we find

(3.22)

‖w − Iw‖2L2(Jn+1;V ) =
|Jn+1|

4pn+1 − 1/pn+1
‖(w − Iw)(t←n )‖2V

≤ |Jn+1|
3

[
pn√
|Jn|

‖Iw‖L2(Jn;V ) +
pn+1√
|Jn+1|

‖Iw‖L2(Jn+1;V )

]2

≤ 2

3
|p|2∞

( |Jn+1|
|Jn|

‖Iw‖2L2(Jn;V ) + ‖Iw‖2L2(Jn+1;V )

)
.

Set σ := max1,...,N−1 |Jn+1|/|Jn| for the maximal ratio of the lengths of neighbouring
temporal elements. Collecting all defects and using (3.16) on the first temporal element, we
obtain the norm comparison‖ · ‖X ≤ C†‖ · ‖† with

C2
† ≤ inf

ǫ>0
max

{
1

3
(1 + ǫ2) CFL1, (1 + ǫ−2) +

2

3
(1 + ǫ2)|p|2∞(σ + 1)

}
.

Note that only the local CFL number of the first temporal element enters the estimate.
This suggests a “geometric warm up” strategy for positioning the temporal nodes in order
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FIGURE 3.2. Space-time stability constant for implicit midpoint rule,backward Euler, and Radau5 time-
stepping schemes as a function of the numberN of temporal elements. Left: comparison with the two point Lobatto
collocation Runge–Kutta time-stepping scheme (with end timeT = 20); see Section3.3. Right: the effect of the
“geometric warm up” (with end timeT = 1000); see Section3.4.

to improve the space-time stability constant. To illustrate this we revisit the example from
Section1.3. For each uniform temporal mesh we subdivide the first temporal elementJ1
using geometric refinement towards the origin by appending the nodesσ−ℓ|J1|, ℓ = 1, 2, . . .,
for which σ−ℓ|J1|Λ2

h ≥ 1, whereσ := 2. To render the stabilizing effect more visible
we setT = 1000 for the end time. The results in Figure3.2 show that for the backward
Euler time-stepping scheme (unlike for the implicit midpoint rule) the “geometric warm up”
strategy renders the space-time stability constant of order one, uniformly in the initial number
of temporal elements, at the expense of only a few additionaltemporal elements.

The local CFL number of the first temporal element appears in the above estimate be-
cause we assumedg ∈ H for the initial datum in (1.8), but it can be dropped ifg is
more regular, sayg ∈ V . From the discrete space-time variational formulation (1.9) it is
clear thatw(0) is theH-orthogonal projection ofg onto Vh. From Section3.2.1we have
‖w(0)‖V ≤ κ−1h ‖g‖V , whereκh is the measure of self-duality (3.10) of Vh. With this in
mind let us revisit the estimate (3.22) on the first temporal element:

‖w − Iw‖2L2(J1;V ) ≤
2

3
|J1|κ−2h ‖g‖2V +

2

3
p21‖Iw‖2L2(J1;V ).

As noted in Section3.2.1, one can boundκh from below for some common finite element
spacesVh, thus we may assume that|J1|κ−2h ‖g‖2V is bounded above by a certaing-dependent
constant multiple of‖F‖2Y ′ . Using this estimate instead of (3.16) on the first temporal element
leads to a space-time stability constantCh in (1.10) that depends on the operatorA, the
initial datumg, the lower bound onκh, the end timeT , the polynomial degreesp, and the
interelement ratioσ (or upper bounds onT , p, andσ), but not on the CFL number.

4. Conclusions. We have shown that collocation Runge–Kutta time-stepping schemes
applied to a spatially semi-discretized linear parabolic evolution equation produce a solution
that a priori depends continuously on the input data in a parabolic space-time norm, but its
operator norm may be large, unless the parabolic CFL number is of order one. If one is
interested in a moderate operator norm of the discrete solution mapping, for instance for
space-time simultaneous solution and preconditioning of the parabolic evolution equation,
this entails restrictions on the time step size even if theseschemes areA- orL-stable.

To arrive at this conclusion, we have formulated collocation Runge–Kutta time-stepping
schemes as Petrov–Galerkin methods for a space-time variational formulation of an abstract
linear parabolic evolution equation. The main ingredient in the construction of the appropriate



ETNA
Kent State University 

http://etna.math.kent.edu

80 R. ANDREEV AND J. SCHWEITZER

discrete test spaces is the adjoint of the interpolation operator. For collocation Runge–Kutta
time-stepping schemes based on Gauß–Legendre, right-Radau and Lobatto nodes, we have
analyzed the a priori stability of the resulting Petrov–Galerkin method, and we have shown
that the stability constant is linked to the parabolic CFL number. We stress that this a priori
analysis does not assume any additional smoothness of the exact solution, the initial datum,
or the residual; we plan to comment on the implications of smoothness and the relation to the
classical convergence analysis elsewhere.

Our numerical experiments for the heat equation indicate that the bounds are, up to a
small constant, sharp. In fact, it is possible to construct examples which verify that the scaling
of the stability constant with respect to the CFL number cannot be improved in general.
These functions are highly oscillatory in time in the case ofGauß–Legendre nodes such that
Iw is small in (3.18), and functions supported on the first temporal element in the case of
right-Radau nodes for which (3.16) is the only available estimate. On the other hand, in
the case of right-Radau nodes the restriction on the time step size can be circumvented by
applying a “geometric warm up” strategy on the first temporalelement tailored to the spatial
discretization, or by assuming a sufficiently regular initial datum.

Acknowledgement. RA acknowledges the hospitality of the Seminar for Applied Math-
ematics, ETH Z̈urich, where this work was initiated. The authors thank Volker Grimm for the
careful reading of the manuscript.
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