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A DEFLATED BLOCK FLEXIBLE GMRES-DR METHOD FOR LINEAR
SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES ∗

JING MENG†, PEI-YONG ZHU†, HOU-BIAO LI†, AND XIAN-MING GU †

Abstract. This study is mainly focused on the iterative solution of multiple linear systems with several right-
hand sides. To solve such systems efficiently, we first presenta flexible version of block GMRES with deflation
of eigenvalues according to [R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Appl. Numer.
Math., 54 (2005), pp. 222–236] and then apply a modified block Arnoldi vector deflation technique to accelerate the
convergence of this new flexible version. Incorporating this deflation technique, the new algorithm can address the
possible linear dependence at each iteration during the block Arnoldi procedure and reduce computational expense.
Moreover, by analyzing its main mathematical properties, we show that the vector deflation procedure arises from the
non-increasing behavior of the singular values of the blockresidual. In addition, the new approach also inherits the
property of deflating small eigenvalues to mitigate convergence slowdown. Finally, the effectiveness of the proposed
method is illustrated by some numerical experiments.
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1. Introduction. Consider the linear system withp right-hand sides

(1.1) AX = B,

whereA ∈ C
n×n is a large nonsingular matrix,B ∈ C

n×p has full rank, andX ∈ C
n×p,

where(p ≪ n). Linear systems with multiple right-hand sides arise in many applications,
e.g., electromagnetic scattering [34], model reduction in circuit simulation [13], Quantum
Chromo Dynamics QCD [2, 3, 4, 31], and dynamics of structures [8], etc.

At present, there has been substantial interest in developing block Krylov solvers for
the solution of the problem (1.1). This is due to the fact that block Krylov subspaces can
enlarge the search space, which makes all Krylov subspaces associated with each right-hand
side contained. Moreover, the ability of using level-3 BLASoperations also makes block
solvers much more competitive than non-block methods from acomputational point of view.
Methods based on the Lanczos process have been developed to solve (1.1) such as block
CG [28], block QMR [14], block BiCGstab [11], block LSQR [18], and a recently proposed
block IDR(s) method [10]. In addition, methods based on the Arnoldi process [1, 30], e.g.,
block restarted GMRES (BGMRES(m)) and its variants [6, 7, 9, 16, 19, 22, 25, 29, 33], were
also proposed. Nevertheless, due to restarting, the convergence of a block method based
on the Arnoldi process may stagnate and becomes slow. To retain the convergence rate,
block GMRES with deflation of eigenvalues (BGMRES-DR) [25] was recently proposed by
Morgan. This method exploits a deflation technique to remove(or deflate) small eigenvalues
at each restart to improve convergence. For convenience, this technique is referred to as
’eigenvalue deflation’ throughout this paper.

The BGMRES-DR method [25] is a well-established block Krylov subspace method
for linear systems with multiple right-hand sides. In this paper, we extend the BGMRES-
DR method to the case of variable preconditioning, which allows different preconditioning
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(possibly nonlinear) operators at each step of the algorithm. In particular, an inexact solution
of the preconditioned systems is considered as well as the use of an (inner) iterative method
as a preconditioner. The resulting method is called block flexible GMRES with deflation of
eigenvalues (BFGMRES-DR).

When block Krylov solvers are used in practice, it is common tocome across a possible
linear dependence of some columns of the block residuals. Anattractive idea should be a
combination of BFGMRES-DR with a skill to address such a dependence during the block
iterative procedure. A simple technique is to delete linearly or almost linearly dependent
vectors from the subspace explicitly. It is also called deflation [16]. To distinguish from
eigenvalue deflation, we will refer to this technique as ’vector deflation’. Nevertheless, vector
deflation may also lead to a loss of information that slows down the convergence [19]. To
remedy this situation, Robbé and Sadkane kept the almost linearly dependent vectors and
reintroduced them in the next iterations if necessary during the block Arnoldi procedure;
for more details, see [29]. We call this technique modified block Arnoldi vector deflation
throughout this paper.

Modified block Arnoldi vector deflation technique has shown great potential to improve
the convergence and reduce computational costs for block Krylov subspace solvers [6, 16, 29]
in many cases without dramatically increasing the memory requirements. Therefore, if we
can combine BFGMRES-DR with this modified vector deflation technique, we will have an
effective method which not only allows eigenvalue deflationand variable preconditioning
but also addresses the possible linear dependence in the block Krylov subspace. This new
approach is referred to as deflated BFGMRES-DR (DBFGMRES-DR).

The main contributions of this paper can be summarized as follows. First we derive
the DBFGMRES-DR method by exploiting modified block Arnoldivector deflation technol-
ogy. Second, we analyze its main mathematical properties and then show that the deflation
procedure is mainly based on a non-increasing behavior of the singular values of the block
residual.

The structure of the paper is as follows. In Section2, we recall some fundamental prop-
erties of block Krylov subspaces from [16, 17]. A flexible version of the BGMRES-DR
algorithm is presented in Section3. We describe in detail the DBFGMRES-DR method by
exploiting modified block Arnoldi vector deflation technology in Section4. In Section5, we
demonstrate the effectiveness of the proposed method. Finally, conclusions are summarized
in Section6.

2. Block Krylov subspace. In this section, we first introduce some notation and def-
initions used in the remainder of this paper and then recall some fundamental properties of
block Krylov subspaces from [16, 17].

2.1. Notations and definitions.Throughout this paper,‖.‖2 and‖.‖F denote the Eu-
clidean norm and Frobenius norm, respectively. We use·H to refer to the conjugate transpose
operation of a vector or matrix, the identity matrix of orderk is designated asIk ∈ C

k×k, and
0i×j is defined as the zero rectangular matrix withi rows andj columns.R(·) andtol denote
the range of the matrix and the convergence threshold, respectively. If C ∈ C

k×l is a rectan-
gular matrix (k > l), we denote byC = UΣWH the singular value decomposition (SVD) of
C, whereU ∈ C

k×l,W ∈ C
l×l are unitary, andΣ = diag(σ1(C), σ2(C), . . . , σl(C)) ∈ C

l×l

is diagonal withσ1(C) ≥ σ2(C) ≥ . . . ≥ σl(C). In addition, MATLAB notation is used, for
example,U(1 : i, 1 : j) denotes the submatrix of the firsti rows and the firstj columns ofU ,
U(:, j) refers to itsj-th column, andU(i, j) corresponds to theUi,j entry of the matrixU .
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DEFINITION 2.1 (Harmonic Ritz pair [15]). Consider a subspaceU of Cn. Given
B ∈ C

n×n, θ ∈ C, andy ∈ U . Then (θ, y) is a harmonic Ritz pair ofB with respect toU if
and only if

By − θy ⊥ BU ,

or, equivalently for the canonical scalar product,

∀w ∈ range(BU), wH(By − θy) = 0.

We cally a harmonic Ritz vector associated with the harmonic Ritz valueθ.

2.2. Block Krylov subspace. Let X0 ∈ C
n×p be the initial block guess

andR0 = B − AX0 be the corresponding initial block residual. The block Krylov sub-
space generated byA fromR0 is defined as follows

Km(A,R0) = span{R0, AR0, A
2R0, . . . , A

m−1R0}.

As mentioned in [16], the definition of ‘block span’ does not mean a linear combination of
the block matrices, i.e.,

∑m−1
i=0 AiR0αi for some scalarsαi’s ∈ C. Instead, it is a linear

combination of all them × p columns in{R0, AR0, A
2R0, . . . , A

m−1R0}. To clarify this
point, we give the following definition

Km(A,R0) =

{

m−1
∑

i=0

AiR0γi, ∀γi ∈ C
p×p, 0 ≤ i ≤ m− 1

}

⊂ C
n×p.

Then the approximate solutionXm ∈ C
n×p generated by a block iterative method satisfies

Xm −X0 ∈

{

m−1
∑

i=0

AiR0γi, ∀γi ∈ C
p×p, 0 ≤ i ≤ m− 1

}

⊂ C
n×p.

Note that each column ofXm satisfies

Xm(:, ℓ)−X0(:, ℓ) ∈







m−1
∑

i=0

p
∑

j=1

AiR0(:, j)γi(j, ℓ), γi(j, ℓ) ∈ C, ∀1 ≤ ℓ ≤ p







∈

p
∑

j=1

Km(A,R0(:, j)),

whereKm(A,R0(:, j)) = span{R0(:, j), AR0(:, j), . . . , A
m−1R0(:, j)}. Unlike the stan-

dard Krylov solvers, the search space of block Krylov methods for each right-hand side is
much larger, i.e., approximate solutionsXm(:, ℓ) are sought in the subspace
∑p

j=1 Km(A,R0(:, j)) rather than inKm(A,R0(:, j)), which hopefully leads to a reduction
in terms of iteration count. This is the main reason for usingblock solvers.

Similarly to the standard Krylov subspace, a generalization of the block grade for the
block Krylov space was discussed in [17].

3. Block flexible GMRES-DR. In this section, we propose a flexible version of
BGMRES-DR (BFGMRES-DR) that combines the numerical features of BGMRES-DR and
the flexibility property of FGMRES-DR [15].

We first recall the block flexible Arnoldi process [7] applied to the matrixA and starting
with then×p orthonormal matrixV1. Let us denote byMj the preconditioning operator used
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at thej-th iteration. The block flexible Arnoldi algorithm [7] recursively constructs the block
matricesV1, V2, . . . , Vm such that{V1, V2, . . . , Vm} is an orthonormal basis of the subspace
{V1, AZ1, . . . , AZm−1}, whereZj = M−1

j Vj represents the preconditioning operation at
iterationj (1 ≤ j ≤ m). At the end of them-th iteration, a typical relation (block flexible
Arnoldi relation) is obtained, that is,

(3.1) AZm = Vm+1Hm,

whereZm = [M−1
1 V1, . . . ,M

−1
m Vm] ∈ C

n×mp,Vm+1 = [V1, V2, . . . , Vm+1] ∈ C
n×(m+1)p,

andHm ∈ C
(m+1)p×mp has the following form

Hm =

[

Hm

Hm+1,mEH
m

]

.

Note that

Hm =



















H1,1 H1,2 . . . . . . H1,m

H2,1 H2,2

...

H3,2
. . .

...
. . .

. ..
...

Hm−1,m Hm,m



















∈ C
mp×mp

is supposed to be nonsingular with thep×p smaller matrixHi,j andEm = [0(m−1)p×p, Ip]
H .

For simplicity of discussion, each pass through the block Arnoldi iteration between restarts
is referred to as one “cycle”.

Suppose that the block flexible Arnoldi relation (3.1) holds. In the following, we will de-
flate eigenvalues of smallest magnitude over the subspaceR(AZm) to improve convergence.
This technique is similar to the one used in the BGMRES-DR method [25] (or the FGMRES-
DR method [15]), which retains an approximate invariant subspace between cycles. In partic-
ular, it focuses on removing (or deflating) the eigenvalues of smallest magnitude by recycling
an approximate invariant subspace associated with those eigenvalues. This approximate in-
variant subspace is constructed by harmonic Ritz vectors ofA computed at the end of the
previous cycle. Unlike the case of a fixed preconditioner, the eigenvalue deflation procedure
for the flexible setting relies on harmonic Ritz vectors ofAZH

mVm with respect toR(Vm).
The following theorem presents the harmonic Ritz formulation used in the BFGMRES-DR
method.

THEOREM 3.1. Block flexible GMRES-DR relies on the computation ofk harmonic Ritz
vectorsỸk = VmGk with Vm ∈ C

n×mp and Gk = [g1, . . . , gk] ∈ C
mp×k, where each

harmonic Ritz pair (θi, gi) satisfies

(3.2) (Hm +HH
m+1,mHm+1,mH−H

m EmEH
m)gi = θigi, 1 ≤ i ≤ k.

Ỹk corresponds to harmonic Ritz vectors ofAZmVH
m with respect toR(Vm), and the har-

monic residual vectorsAZmVH
mVmgi − θiVmgi ∈ R(Vm+1) are orthogonal to anmp-

dimensional subspace spanned by the columns ofAZm.
Proof. The proof follows straightforwardly from [15, Proposition 1].
Let R0 be the block residual from the previous cycle or, equivalently, the initial block

residual for the new cycle, which can be stated asR0 = Vm+1R̂m, whereR̂m denotes the rep-
resentation of the block residual in theVm+1 basis. Observe that the block residualR0 resides
in the subspaceR(Vm+1) and is also orthogonal to the subspaceR(AZm). So the harmonic
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residuals and the block residual are in the samep-dimensional spaceR(AZm)⊥∩R(Vm+1),
and the harmonic residuals are all linear combinations of the columns of the block residual.
We next characterize the relationship between the harmonicresiduals and the block residual
by the following formulae

AZmGk = Vm+1

[[

Gk

0p×k

]

R̂m

] [

diag(θ1, . . . , θk)
ap×k

]

,

where each column of the matrixa satisfiesAZmgi − θiVmgi =
∑p

j=1 R0(:, j)a(j, i),
1 ≤ i ≤ k. Since BFGMRES-DR is a natural extension of the FGMRES-DR method [15],
a block flexible Arnoldi-like relation can be derived analogous to that in [15, Section 3.1.2].
Therefore, we compute the reduced QR factorization ofGk = PkΓk and then orthonormal-

ize the block matrixR̂m against the columns of

[

Pk

0p×k

]

to obtain the orthonormal matrix

[pk+1, pk+2, . . . , pk+p] ∈ C
(m+1)×p satisfying

(3.3) AZmPk = Vm+1Pk+1Γk+1

[

diag(λ1, . . . , λk)
ap×k

]

Γ−1
k

with Pk+1 =

[[

Pk

0p×k

]

pk+1, pk+2, . . . , pk+p

]

andΓk+1 =

[[

Γk

0p×k

]

up×k

]

.

Thus, by (3.1) andPH
k+1Pk+1 = Ik+p, we obtain

(3.4) Hnew
k = Γk+1

[

diag(λ1, . . . , λk)
a1×k

]

Γ−1
k = PH

k+1HmPk,

whereHnew
k is a(k+p)×k rectangular matrix. LetZnew

k = ZmPk andV new
k+p = Vm+1Pk+1.

Combining the conditions (3.3) and (3.4) yields

AV new
k = V new

k+p H
new
k ,(3.5)

V new
k+p

H
V new
k+p = Ik+p,

R([Yk, R0]) = R(V new
k+p ).

We can consequently see that the block Arnoldi-like recurrence formulae (3.5) can be recov-
ered without involving any matrix-vector product withA when restarting with some harmonic
Ritz vectors.

Assuming thatk is divisible byp, then we carry outm − k
p

steps of the block flexible
Arnoldi process with the starting block matrixV new

k+p (:, k + 1 : k + p) to eventually obtain

AZm = Vm+1Hm,

Vm+1
HVm+1 = I(m+1)p,

whereZm = [Z1, Z2, . . . , Zm] with Zi = Znew
k (:, (i − 1)p + 1 : ip), for 1 ≤ i ≤ k

p
, and

Zi = M−1
i Vi+1, for k

p
+ 1 ≤ i ≤ m, Vm+1 = [V1, V2, . . . , Vm+1] with

Vi = V new
k+p (:, (i − 1)p + 1 : ip), for 1 ≤ i ≤ k

p
+ 1 andHm now is an upper block

Hessenberg matrix, except for a full leadingk + p by k portion. At the end of the cycle the
approximate solutionXm = X0+ZmYm ∈ C

n×p is found by minimizing the residual norm
‖R0 −AZmY ‖F , whereYm is the solution of the following least-squares problem of size
(m+ 1)p×mp,

Ym = argmin
Y ∈Cm

‖R0 −AZmY ‖F = argmin
Y ∈Cm

∥

∥

∥
Λ̂0 −HmY

∥

∥

∥

F
,
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Algorithm 1 BFGMRES-DR.

Input: A ∈ C
n×n, B ∈ C

n×p. Choose an initial guessX0 andtol > 0.
Output: Xm ∈ C

n×p with Xm ≈ A−1B.
1: Compute the block residualR0 = B−AX0. Compute the reduced QR decomposition of

R0 = V1R. GenerateVm+1 andHm =

[

Hm

Hm+1,mEH
m

]

with the block Arnoldi process.

SetΛ̂0 = [RH , 0, . . . , 0]H .

2: Solvemin
∥

∥

∥
Λ̂0 −HmY

∥

∥

∥
for Ym. SetXm = X0 + VmYm, Rm = B − AXm. Check

residual norms for convergence and proceed if not satisfied.
3: Compute thek smallest eigenpairs (θj , gj) of (Hm +HH

m+1,mHm+1,mH−H
m EmEH

m).
4: Orthonormalize the vectorsgi by first separating them into real and imaginary parts if

they are complex to form the columns ofPk ∈ R
mp×k. (It may be necessary to adjustk

to include both the real and imaginary parts of complex eigenvectors.)
5: Extend the vectorsp1, . . . , pk to lengthmp+p with zero entries, then orthonormalize the

columns ofR̂m = Λ̂0 − HmYm against the columns of

[

Pk

0

]

to form pk+1, . . . , pk+p.

SetPk+1 =

[

Pk

0
pk+1 . . . pk+p

]

.

6: SetZnew
k = ZmPk, V new

k+p = Vm+1Pk+1 andHnew
k = PH

k+1HmPk. Apply m− k
p

steps
of the block flexible Arnoldi process to extendZnew

k , V new
k+p andHnew

k toZm, Vm+1 and
Hm.

7: Let Λ̂0 = VH
m+1Rm andX0 = Xm. Go to step 2.

whereΛ̂0 = VH
m+1R0. Details of the BFGMRES-DR method are given in Algorithm1.

As mentioned above, the BFGMRES-DR method exploits the eigenvalue deflation tech-
nique to mitigate convergence slowdown. In the next section, we will adopt another deflation
technique to address the possible linear dependence occurring in the block Krylov space.

4. Deflated BFGMRES-DR. When block Krylov solvers are used in practice, the trou-
ble comes from the possible linear dependence of some columns of the block residuals. Such
a dependence implies that the matrix[R0, AZ1, . . . , AZm−1] is almost rank deficient. In such
a situation, the block Arnoldi procedure does not continue as usual, and the computational
cost will be expensive. To remedy this situation, Robbé and Sadkane [29] kept these almost
linearly dependent vectors and reintroduced them in the next iteration if necessary rather than
deleting them explicitly. To distinguish from eigenvalue deflation, we refer to this technique
as modified block Arnoldi vector deflation throughout this paper, while the block flexible
Arnoldi process with this deflation strategy is defined as deflated block flexible Arnoldi pro-
cedure [29]. In addition, they proposed two criteria either based on the numerical rank of the
block Krylov basis (W-criterion) or on the numerical rank ofthe block residual (R-criterion),
to detect dependence. The R-criterion is used to judiciously decompose the block residual
into two parts. One part stores vectors ensuring convergence, the other keeps the deflated
vectors. Recently, Calandra et al. [6] extended this concept by performing an additional de-
composition at the beginning of each cycle. Inspired by these ideas in [6, 29], we next apply
the modified block Arnoldi vector deflation strategy to the BFGMRES-DR method.

4.1. Deflated block flexible Arnoldi procedure. Thej-th iteration of the deflated block
flexible Arnoldi procedure [6] is briefly reviewed as follows. Assume that an orthonormal
matrixK ∈ C

n×p contains all thep Krylov directions after iterationj − 1. However, all the
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p Krylov directions in the subspaces ofR(K) may not be needed for ensuring convergence
along the iterative procedure. In order to reduce unnecessary computational cost, the R-
criterion is considered to judiciously decomposeR(K) into two parts:

R(K) = R(Vj)⊕R(Pj), with [Vj , Pj ]
H [Vj , Pj ] = Ip,

whereVj ∈ C
n×kj , Pj ∈ C

n×dj with kj + dj = p. Thenkj Krylov directions ensuring
convergence (stored inVj) will be effectively considered at iterationj and multiplied byA,
while dj directions (stored inPj) do not participate in the matrix-vector product process.
Langou [19] showed that deleting the deflated spaceR(Pj) is not recommended since it
may lead to a loss of information that slows down the convergence. So the deflated part is
not deleted but left aside at the same iteration and then reintroduced in the next iteration if
necessary. In addition,AVj is orthogonal to all the previous Krylov directionsVi(1 ≤ i ≤ j)
andPj . The algorithmic details of the deflated block flexible Arnoldi procedure are described
in Algorithm 2.

Algorithm 2 Deflated block flexible Arnoldi procedure [6]: computation ofV̂j+1 with
[Vj , Pj ]

H [Vj , Pj ] = Isj−1+p.

Input: [Vj , Pj ] ∈ C
n×(sj−1+p) with Vj = [V1, V2, . . . , Vj ], Vj ∈ C

n×ki such that
V H
j Vj = Ikj

, Pj ∈ C
n×dj , andkj + dj = p.

Output: V̂j+1 ∈ C
n×kj orthonormal columns,

[

Hj

Hj+1,j

]

∈ C
(sj+p)×kj

with AZj = [Vj , Pj , V̂j+1]

[

Hj

Hj+1,j

]

.

1: Definesj−1 =
∑j−1

l=1 kl with s0 = 0.
2: ComputeZj = M−1

j Vj .
3: ComputeW = AZj .
4: for i = 1, . . . , j do
5: Hi,j = V H

i W

6: W = W − ViHi,j

7: end for
8: Hp = PH

j W

9: W = W − PjHp

10: Hj ∈ C
(sj−1+p)×kj asHj =











H1,j

...
Hj,j

Hp











11: Compute the reduced QR decomposition ofW as W = QR, Q ∈ C
n×kj and

R ∈ C
kj×kj .

12: SetV̂j+1 = Q, Hj+1,j = R.
13: Definesj assj = sj−1 + kj .
14: Define Vj ∈ C

n×sj as Vj = [V1, V2, . . . , Vj ] and V̂j+1 ∈ C
n×(sj+p) as

V̂j+1 = [Vj , Pj , V̂j+1] such thatAZj = [Vj , Pj , V̂j+1]

[

Hj

Hj+1,j

]

.

The deflated orthogonalization procedure leads to the following relation, for1 ≤ j ≤ m,

(4.1) AZj = V̂j+1

[

Hj

Hj+1,j

]

.
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Assume that the deflated block flexible Arnoldi relation holds at the beginning of thej-th
iteration

(4.2) AZj−1 = [Vj , Pj ]Hj−1

with [Vj , Pj ]
H [Vj , Pj ] = I(sj−1+p) andHj−1 ∈ C

(sj−1+p)×sj−1 . We can rewrite (4.1)
together with (4.2) as a deflated block flexible Arnoldi-like relation,

[AZj−1, AZj ] = [Vj , Pj , V̂j+1]

[

Hj−1 Hj

0kj×sj−1
Hj+1,j

]

,(4.3)

AZj = V̂j+1Ĥj .

Next, the R-criterion [29] is considered to decompose the subspaceR([Pj , V̂j+1]) into
two parts[Vj+1, Pj+1]. Suppose that the subspace decomposition can be stated as

(4.4) [Vj+1, Pj+1] = [Pj , V̂j+1]Fj+1,

whereFj+1 ∈ C
p×p is a unitary matrix. We can rewrite (4.3) together with (4.4) as a deflated

block flexible Arnoldi relation

AZj = [Vj , Pj , V̂j+1]Fj+1F
H
j+1Ĥj = [Vj+1, Pj+1]Hj ,

whereFj+1 =

[

Isj 0sj×p

0p×sj Fj+1

]

. So, the deflated block flexible Arnoldi procedure can con-

tinue as usual. The way to choose the matrixFj+1 will be considered in Section4.2.
In the following, we present a framework for the new method named deflated

BFGMRES-DR (DBFGMRES-DR) based on the deflated block flexible Arnoldi relation,
which allows eigenvalue deflation, vector deflation, and variable preconditioning simultane-
ously. Since the eigenvalue deflation technique is not performed at the first cycle, the new
method carries outm steps of the deflated block flexible Arnoldi process startingwith the
initial block residual. After the first cycle, we carry out step (3.2) to compute thek harmonic
Ritz vectors and then construct a new block flexible Arnoldi-like recurrence (3.5). Note that
the harmonic Ritz vectors added to the next subspace are independent. Therefore, the algo-
rithm only runsm − k

p
steps of the deflated block flexible Arnoldi process with the starting

block matrixV new
k+p (:, k + 1 : p). Consequently, it only requires a total ofsm − k (or sm

for the first cycle) matrix-vector products withA to construct a new orthogonal basis for the
deflated block Krylov subspace of dimension ofsm+dm (≤ mp), includingk harmonic Ritz
vectors. The details of the DBFGMRES-DR approach are described in Algorithm3.

REMARK 4.1. If we replaceMj with In, i.e., without using a preconditioner, the above
algorithm reduces to the deflated BGMRES-DR method (referred to as DBGMRES-DR),
which relies on the deflated block Arnoldi relation. The numerical behavior concerning
DBGMRES-DR is presented in Section5.

4.2. Details of the modified block Arnoldi vector deflation. In this section, we briefly
introduce Robb́e and Sadkane’s R-criterion [29] that is used to detect dependencies and
identify the linearly independent vectors ensuring convergence in the deflated block flexi-
ble Arnoldi procedure.

Let Xj ∈ C
n×p be an approximation generated by DFBGMRES-DR at iterationj. The

corresponding residual is given by

Rj = B −AXj = R0 −AZjYj = R0 − Vj+1HjYj = R0 − [Vj , Pj , V̂j+1]ĤjYj

= [Vj , Pj , V̂j+1](Λ̂j − ĤjYj) = [Vj , Pj , V̂j+1]R̂j ,
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Algorithm 3 Deflated BFGMRES-DR algorithm.

Input: A ∈ C
n×n, B ∈ C

n×p. Choose an initial guessX0 andtol > 0.
Output: Xm ∈ C

n×p with Xm ≈ A−1B.
1: ComputerR0 = B −AX0.
2: Compute the QR decomposition ofR0 asR0 = V̂1Λ̂0 such thatp0 = rank(V̂1) with

V̂1 ∈ C
n×p0 andΛ̂0 ∈ C

p0×p; Sets0 = 0, j = 1.
3: for cycle = 1, . . . do
4: Use Algorithm 4 to determine deflation unitary matrixFj andkj , dj such thatkj +

dj = p. Sets1 = k1 if j = 1 or sj = k if j = k
p
+ 1.

5: Define [Vj , Pj ] = V̂jFj , with Vj ∈ C
n×sj (Pj ∈ C

n×dj ) as the firstsj (last dj)
columns ofV̂jFj .

6: DefineVj = Vj , Hj = FH
j Ĥj andΛj = FH

j Λ̂j−1 with Λj ∈ C
(sj−1+p)×p.

7: while j ≤ m, do
8: Apply Algorithm 2 to getVj ∈ C

n×sj , V̂j+1 ∈ C
n×(sj+p), Ĥj ∈ C

(sj+p)×sj such

thatAZj = V̂j+1Ĥj with V̂j+1 = [V1, V2, . . . , Vj , Pj , V̂j ].

9: SetΛ̂j ∈ C
(sj+p)×p asΛ̂j =

[

Λj

0kj×p

]

.

10: ComputeYj = argmin
Y ∈C

sj×p

∥

∥

∥
Λ̂j − ĤjY

∥

∥

∥

F
.

11: ComputeR̂j = Λ̂j − ĤjYj .
12: SetXj = X0 + VjYj , Rj = B −AXj . Check residual norms for convergence, and

proceed if not satisfied.
13: Determine deflation unitary matrixFj+1 ∈ C

(sj+p)×(sj+p) andkj+1, dj+1 such
thatkj+1 + dj+1 = p.

14: Setsj+1 = sj + kj+1.
15: Define [Vj+1, Pj+1] = V̂j+1Fj+1, with Vj+1 ∈ C

n×kj+1 and
Vj+1 ∈ C

n×sj+1(Pj ∈ C
n×dj+1) as the firstsj+1 (last dj+1) columns of

V̂j+1Fj+1.
16: Define Hj = FH

j+1Ĥj and Λj+1 = FH
j+1Λ̂j with Hj ∈ C

(sj+p)×sj and
Λj+1 ∈ C

(sj+p)×p.
17: end while
18: Let Hm ∈ C

p×sm be the submatrix ofHm with rows fromsm + 1 to sm + p. Let
F = H−H

m HH
m with Hm = Hm(1 : sm, :).

19: Compute thek smallest eigenpairs (θi, gi) of Hm + FHm.
20: Orthonormalize the vectorsg,is to form the columns ofPk ∈ C

sm×k.
21: Extend the columns ofPk to lengthsm + p with zero entries, then orthonormalize the

columns ofR̂sm+p against the columns of

[

Pk

0(sm+p)×k

]

to formpk+1, pk+2, . . . , pk+p,

setPk+p =

[

Pk

0(sm+p)×k
pk+1 . . . pk+p

]

.

22: SetZnew
k = ZmPk andVnew

k+p = VmPk+p.

23: Setj = k
p
+ 1, Ĥj = PH

k+pHmPk andV̂j = Vnew
k+p (:, k + 1 : k + p).

24: Let Λ̂j−1 = [R̂H
mPk+p, 0]

H andX0 = Xm.
25: end for
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whereR̂j = Λ̂j − ĤjYj is thej-th block quasi-residual. Consider the SVD of the block

quasi-residual̂Rj = UΣWH , whereU ∈ C
(sj+p)×p, W ∈ C

p×p have orthonormal columns
andΣ ∈ C

p×p is diagonal. By [7, 29], we can determine a subset of singular values ofR̂j

satisfying the following condition:

σℓ(R̂j) > εdtol, ∀ ℓ such that1 ≤ ℓ ≤ pd (pd < p),

whereεd is a real positive parameter smaller than one. This allows usto decompose the
matrixΣ as follows,

Σ =

[

Σ+ 0pd×(p−pd)

0(p−pd)×pd
Σ−

]

,

with Σ+ = Σ(1 : pd, 1 : pd) andΣ− = Σ(pd + 1 : p, pd + 1 : p). Thus, the block residual
can be written as

Rj = [Vj , Pj , V̂j+1](U+Σ+W
H
+ + U−Σ−W

H
− ).

Since[Vj , Pj , V̂j+1] is an orthogonal matrix, it is straightforward to obtain
∥

∥

∥
[Vj , Pj , V̂j+1]U+Σ+W

H
+

∥

∥

∥

2
> εdtol,

while
∥

∥

∥
[Vj , Pj , V̂j+1]U−Σ−W

H
−

∥

∥

∥

2
≤ εdtol.

We setkj+1 = pd anddj+1 = p − pd. If pd < p, then there existdj+1 linearly or almost
linearly dependent vectors in the generated block Krylov space. In this case, the subspace
decomposition will be performed to select the linearly independent vectors (stored inVj+1)
and leave aside the linearly dependent vectors (stored inPj+1).

From a practical point of view, the search spaceR(Vj+1) spanned by the linearly inde-
pendent vectors should satisfyR(Vj+1) ⊂ R([Vj , Pj , V̂j+1]U+). Moreover, the orthonormal
relationVj+1 ⊥ Vj is required. This can be expressed as

R(Vj+1) = R((I − VjV
H
j )[Vj , Pj , V̂j+1]U+) = R([0n×sj , Pj , V̂j+1]R̂jW+)

= R([0n×sj , Pj , V̂j+1]

[

R̂sj

R̂p

]

W+) = R([Pj , V̂j+1]R̂pW+).
(4.5)

Similarly,

(4.6) R(Pj+1) = R([Pj , V̂j+1]R̂pW−).

We can rewrite (4.5) together with (4.6) as the following relation

(4.7) R([Vj+1, Pj+1]) = R([Pj , V̂j+1]R̂pW ) = R([Pj , V̂j+1]Fj+1T ),

whereFj+1 is ap × p unitary factor of the QR factorization of̂RpW . In view of (4.7), we
can keep the firstkj+1 columns of[Pj , V̂j+1]Fj+1 asVj+1, while the nextdj+1 columns are
stored inPj+1. For more details, see Algorithm4.

Note that determiningFj+1 is rather inexpensive in terms of computational operations
sincep ≪ n. Moreover, we conclude that the singular values of the blockresidual generated
by the DBFGMRES-DR are monotonically decreasing.
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Algorithm 4 Determination ofkj+1, dj+1 and ofFj+1 [6].

1: Choose a deflation thresholdεd.
2: Compute the SVD ofR̂j as R̂j = UΣWH . with U ∈ C

(sj+p)×p, Σ ∈ C
p×p and

W ∈ C
p×p.

3: Selectpd singular values of̂Rj such thatσl(R̂j) > εdtol for all l such that1 ≤ l ≤ pd.
4: Setkj+1 = pd anddj+1 = p− kj+1.
5: DefineR̂p ∈ C

p×p asR̂p = R̂j(sj + 1 : sj + p, 1 : p).
6: Compute the QR factorization:̂RpW as R̂pW = Fj+1T with Fj+1 ∈ Cp×p and

FH
j+1Fj+1 = Ip.

7: DefineFj+1 ∈ C
(sj+p)×(sj+p) as

[

Isj 0sj×p

0p×sj Fj+1

]

.

THEOREM 4.2. Let Rj,ℓ be the block residual at thej-th iteration of theℓ-th cycle of
DFBGMRES-DR. Then the singular valuesσi(Rj,ℓ) satisfy the inequality

σi(Rj,ℓ) ≤ σi(Rj−1,ℓ), 1 ≤ i ≤ p.

Proof. The relationRj,ℓ = (I − VjV
H
j )Rj−1,ℓ holds. Therefore the proof follows

straightforwardly from [6, Proposition 3].
Sincekj+1 is directly determined by the singular values ofRj,ℓ, i.e.,kj+1 = pd. From

Theorem4.2, we deduce that the sequence of each cyclekj , j ≥ 1, is progressively decreas-
ing, which may yield a significant reduction in terms of matrix-vector products and then,
hopefully, lead to a reduction in terms of computational operations.

REMARK 4.3. In addition, it is worth mentioning that one difficulty arises whenkj
reaches the value0, and the block solver with vector deflation technique has notsatisfied
the stopping criterion. In this case, the deflated block flexible Arnoldi procedure cannot
continue sincekj = 0. Therefore, we investigate a combination of DBFGMRES-DR and
BGMRESD(m) as Calandra et al. did in [6]. Whenkj reaches the value0, the DBFGMRES-
DR approach is replaced with BFGMRES(m) at the next restart in order to achieve a con-
vergence criterion. We refer to this combination as Combined(m, 0). Experiments show that
Combined(m, 0) works well and faster convergence behavior is retained; see Section5.

4.3. Computational cost for the modified block Arnoldi vector deflation. Compared
with BFGMRES-DR, additional operations concerning the computation of [Vj+1, Pj+1],
Fj+1, Λj , andHj are needed in DBFGMRES-DR. We summarize the additional compu-
tational cost for every iteration of DBFGMRES-DR in Table4.1.

TABLE 4.1
Computational cost for the modified block Arnoldi vector deflation.

Operation Cost

FH
j+1Ĥj 2p3

FH
j+1Λ̂j 2p3

[Pj , V̂j+1]Fj+1, (j 6= 0) 2np2

Computation ofFj+1 4sjp
2 + 14p3

Table4.1shows that the computation of[Vj+1, Pj+1] is the most expensive one in prac-
tice, while the computation ofFj+1, Λj andHj is rather inexpensive since these matrices do
not depend onn, requiring

∑m

j=1(4sjp
2 +18p3) + 14p3 (or

∑m

j= k
p
+1(4sjp

2+18p3)+14p3)
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operations. Moreover, the cost for each cycle is monotonically decreasing as the method con-
verges since the sequencekj (j ≥ 1) is non-increasing. In addition, ifp3 is larger than the
problem sizen, we can naturally split the right-hand sides into small subblocks and solve the
successive subsystems block by block.

Even though DBFGMRES-DR requires more computational cost due to the modified
block Arnoldi vector deflation, this can be balanced with thefaster convergence speed as
shown in Section5.

5. Numerical experiments. In this section, we present some numerical experiments to
illustrate the potential of the new algorithm, with or without preconditioning, for the solution
of the linear system (1.1).

In the following subsections, we mainly evaluate and compare the performance of the
new method against the GMRES-DR approach [26] and other popular block iterative algo-
rithms for solving linear systems with multiple right-handsides. The first block solver is
BGMRES-DR [25] with no deflation strategy. The second method is BGMRES withSVD
based deflation (BGMRESD(m)) [7]. The third approach is modified block GMRES with de-
flation at each iteration (BGMRES-S(m)) [6]. Meanwhile, we also investigate the numerical
behavior of Combined(m, 0).

Here,m andk denote the number of iterations for each restart and the number of har-
monic Ritz vectors, respectively. If the harmonic Ritz vectors are added to the subspace, the
algorithm only runsm − ⌈k

p
⌉1 steps of the deflated block flexible Arnoldi process to limit

the dimension of the space. To limited storage or significantorthogonalization cost, the max-
imum of the dimension of the subspace is set to100. In all of our runs we useX0 = 0n×p

as our initial guess. The block right-hand sideB hasp columns generated randomly from a
normal distribution. The deflation threshold is consideredasεd = 0.1. We make comparisons
in three aspects: the number of matrix-vector products, theruntime in seconds (referred to as
CPU), and final true relative residualF -norm defined as‖B−AXk‖F

‖R0‖F

(referred to as res.norm).

As stopping criterion we used either the condition‖B−AXk‖F

‖B‖
F

≤ 10−6 for all the solvers or
that the matrix-vector products exceed the maximal matrix-vector product number (referred
to asMAXIT ). We considerMAXIT = 2n except for the last two cases where we choose
MAXIT = 2000. All the numerical experiments were performed in MATLAB 2011b on a
PC-Pentium(R), CPU 2.00 GHz, 8.00 GB of RAM.

EXAMPLE 5.1. The purpose of this example is to illustrate the numerical behavior of
BGMRES-DR, DBGMRES-DR, and the GMRES-DR approach when applied to the solution
of thep linear systems in sequence. Following [25], the test matrix is a tridiagonal matrix with
entries 0.1, 0.2, 0.3, 0.4, 0.5, 6, 7,. . . , 1000 on the main diagonal, sub-diagonal entries all 1,
and super-diagonal entries all 1. The right-hand sides are chosen to be random vectors with
p = 5 or 10. For fair comparison, GMRES-DR will build a Krylov subspaceof dimension
m× p. The numerical computations are carried out withm = 10, k = 10. The convergence
curves are plotted in Figure5.1.

From Table5.1 and Figure5.1, we can see that the block solvers require fewer matrix-
vector products than GMRES-DR applied to the sequence of linear systems. In addition,
when the number of right-hand sides increases, the average number of matrix-vector products
for DBGMRES-DR is non-increasing. The above results show that block iterations have the
potential to speed up the convergence, compared with the standard Krylov method.

EXAMPLE 5.2. In the second part, we test three matrices from Matrix Market [5]. These
cases are summarized in Table5.2, which shows the names of the matrices, the size, the

1⌈x⌉ rounds the elements ofx to the nearest integers greater than or equal tox.
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TABLE 5.1
Results of tridiagonal matrix.

p = 5,m = 10 p = 10,m = 10
mvps CPU mvps CPU

BGMRES-DR(m) 665 0.420 990 0.499
DBGMRES-DR(m) 517 0.385 777 0.467

GMRES-DR(mp) 1050 1.569 1900 3.398
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FIG. 5.1.The convergence curves of different iterative methods on tridiagonal matrix. Left: p = 5. Right: p = 10.

density of nonzero elements, and the type. We evaluate the performance of the five block
solvers on the first two test matrices without preconditioning, while for the last one (saylr4)
we use ILU preconditioning [20]. As block right-hand side we chooseB = rand(n, p)
(RHSs1) orB = ( random rank-six matrix)+ 10−4 × rand(n, p) with p = 10 (RHSs2). The
parameters are set tom = 10 andk = 10.

Figures5.2, 5.3, and5.4show the convergence histories for all block solvers for RHSs1
(left) and RHSs2 (right). The corresponding matrix-vectorproducts, CPU, and residual norms
are reported in Table5.3. Block methods allowing eigenvalue and vector deflation, i.e.,
DBGMRES-DR and Combined(m, 0), are found to be efficient. They enjoy a significantly
faster decrease in the number of matrix-vector products than other block solvers. Moreover,
their convergence curves clearly highlight the interest ofperforming modified block Arnoldi
vector deflation, compared with the BGMRES-DR algorithm. Inaddition, we also remark
that the convergence curves of DBGMRES-DR and Combined(m, 0) are different at the end
for RHSs2 since DBGMRES-DR does not satisfy the stopping criterion due tokj = 0. Even
though Combined(m, 0) requires slightly more runtime than DBGMRES-DR, it is ableto
satisfy the stopping criterion. Therefore, Combined(m, 0) can be considered a slight modi-
fication of the DBGMRES-DR algorithm. On the whole, the two deflated solvers are more
competitive for tough problems with small eigenvalues.

In addition, we also show the behaviour ofkj while performing modified block Arnoldi
vector deflation. Figures5.5, 5.6, and5.7 depict the evolution ofkj , which is consid-
ered as the effective Krylov directions at iterationj, for two deflated block space solvers
(DBGMRES-DR and BGMRES-S(m)). It is observed that both of them have a non-increasing
behavior forkj . However, the evolution ofkj for DBGMRES-DR enjoys a significant de-
crease due to eigenvalue deflation that exploits some spectral information, which could lead
to less computing cost than for BGMRES-S(m).
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TABLE 5.2
Summary of cases are used to study DBGMRES-DR.

Problem n nnz Density Type Application area

1 sherman4 1104 3784 0.0031 real unsymmetric Oil reservoir modeling
2 tt ocean 4629 32,063 0.0015 real unsymmetric Ocean circulation problem
3 saylr4 3564 22,316 0.0018 real unsymmetric Oil reservoir modeling

TABLE 5.3
Performance comparisons for different block iterative methods.

problem method
RHSs1 RHSs2

mvps CPU res.norm mvps CPU res.norm

sherman4

BFGMRES-DR 820 3.090e-01 9.607e-07 520 2.083e-01 8.101e-07
BFGMRES-S(m) 2288 1.328e+00 9.997e-07 1361 9.429e-01 3.208e-07
BFGMRESD(m) 2170 6.790e-01 9.974e-07 1140 3.568e-01 5.339e-07
DBFGMRES-DR 595 2.607e-01 9.877e-07 322 1.643e-01 1.827e-06
Combined(m, 0) 595 2.650e-01 9.877e-07 420 2.102e-01 1.447e-07

ocean

BFGMRES-DR 14,270 1.108e+01 9.878e-07 15,550 1.169e+01 9.885e-07
BFGMRES-S(m) 18,516 1.742e+01 4.419e-01 18,517 2.218e+01 1.425e-02
BFGMRESD(m) 18,517 1.342e+01 4.401e-01 18,517 1.510e+01 1.259e-02
DBFGMRES-DR 7758 7.208e+00 9.990e-07 5287 6.117e+00 1.455e-06
Combined(m, 0) 7758 7.192e+00 9.990e-07 5487 6.224e+00 9.419e-07

saylr4

BFGMRES-DR 270 2.532e-01 8.443e-07 280 2.561e-01 8.211e-07
BFGMRES-S(m) 744 1.311e+00 9.995e-07 1077 2.990e+00 9.378e-09
BFGMRESD(m) 610 5.225e-01 7.794e-07 600 5.391e-01 9.074e-07
DBFGMRES-DR 189 1.981e-01 8.792e-07 143 1.711e-01 1.398e-06
Combined(m, 0) 189 1.922e-01 8.792e-07 243 2.373e-01 2.587e-08
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FIG. 5.2. The convergence curves of different block iterative methods on matrixsherman4. Left: RHSs1.
Right: RHSs2.

EXAMPLE 5.3. This test case evaluates the performance of block solvers applied to two-
dimensional Helmholtz problems with flexible preconditioning. We consider the problem on
the domain0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with the following Robin boundary conditions:

−△u− β2u = f,

u(0, y) = g(y),

u(x, 0) = ρ(y),

ux(1, y) = pu(1, y) + a(y),

uy(x, 1) = qu(x, 1) + c(x),



ETNA
Kent State University 

http://etna.math.kent.edu

492 J. MENG, P. Y. ZHU, H. B. LI, AND X. M. GU

0 0.5 1 1.5 2

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

mvps

R
el

at
iv

e 
re

si
du

al
 n

or
m

 

 

 
BGMRES−DR
BGMRES−S(m)
BGMRESD(m)
DBGMRES−DR
Combined(m,0)

0 0.5 1 1.5 2

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

mvps

R
el

at
iv

e 
re

si
du

al
 n

or
m

 

 

 
BGMRES−DR
BGMRES−S(m)
BGMRESD(m)
DBGMRES−DR
Combined(m,0)

FIG. 5.3. The convergence curves of different block iterative methods on matrixocean. Left: RHSs1.
Right: RHSs2.
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FIG. 5.4. The convergence curves of different block iterative methods on matrixsaylr4. Left: RHSs1.
Right: RHSs2.
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FIG. 5.5. Evolution ofkj versus iterations different block iterative methods on matrix sherman4. Left:
RHSs1. Right: RHSs2.

whereβ, p, andq are constants. We specify the following conditions:

g(y) = 0, ρ(x) = 0, p = −3, q = 2, a(y) = 3 sinπy, and c(x) = −π sin
πx

2
.

We use the classical five-points difference scheme to discretize the Helmholtz equation.
We consider27×27 and28×28 grids for the discretization of the Helmholtz equation, which
lead to nonsymmetric16384 × 16384 and65536 × 65536 matrices, respectively. Different
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FIG. 5.6. Evolution ofkj versus iterations different block iterative methods on matrix ocean. Left: RHSs1.
Right: RHSs2.
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FIG. 5.7.Evolution ofkj versus iterations different block iterative methods on matrix saylr4. Left: RHSs1.
Right: RHSs2.

grid resolutions are used to solve the problem with wavenumbersβ = π. The flexible pre-
conditioning is governed by a few steps of block full GMRES. Here, we consider 10 steps
of block full GMRES. As block right-hand side we chooseB = rand(n, p) with p = 10 or
p = 20 and considerk = 10, m = 10 orm = 5. The results are shown in the Table5.4.

We can see from Table5.4, Figures5.8, and5.9 that BGMRESD(m) and BGMRES-
S(m) can not solve all the problems within the given steps with variable preconditioning.
However, one should note that DBFGMRES-DR and Combined(m, 0) enjoy a significant
decrease in the number of matrix-vector products. Moreover, in terms of CPU time, the
two deflated solvers are faster than the BFGMRES-DR method inmost cases. In addition,
since DBFGMRES-DR converges to the stopping criterion beforekj reaches the value 0, the
convergence curves of DBFGMRES-DR are the same as those of Combined(m, 0).

6. Conclusions and future work. We have derived a new DBFGMRES-DR method for
linear systems with multiple right-hand sides. The new algorithm can address the possible
linear dependence at each iteration during the block Arnoldi procedure and reduce computa-
tional expense. It is observed by experiments that DBFGMRES-DR significantly reduces the
number of matrix-vector products. In addition, numerical examples also show that it enjoys
faster convergence than some other block solvers on tough problems with small eigenval-
ues. In future work, we will combine the modified block Arnoldi vector deflation technique
with the block GCROT(m, k) method [23]. The corresponding results [24] are also being
considered.
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TABLE 5.4
Results of Example Helmholtz.

p m method
n=16384 n=65536

mvps CPU res.norm mvps CPU res.norm

10 10

BFGMRES-DR 330 5.556e+00 5.165e-07 710 4.795e+01 9.312e-07
BFGMRES-S(m) 817 1.296e+01 9.693e-07 2001 1.182e+02 6.152e-02
BFGMRESD(m) 1000 1.383e+01 8.704e-07 2000 1.053e+02 3.489e-02
DBFGMRES-DR 200 3.369e+00 9.263-07 424 2.867e+01 9.736e-07
Combined(m, 0) 200 3.368e+00 9.263e-07 424 2.865e+01 9.736e-07

20 5

BFGMRES-DR 820 1.530e+01 7.096e-07 2020 1.579e+02 8.172e-01
BFGMRES-S(m) 2002 4.261e+01 1.960e-03 2001 1.498e+02 7.363e-01
BFGMRESD(m) 2000 3.378e+01 2.142e-03 2000 1.378e+02 7.546e-01
DBFGMRES-DR 356 6.821e+00 8.580e-07 1076 9.133e+01 9.647e-07
Combined(m, 0) 356 6.822e+00 8.580e-07 1076 9.111e+01 9.647e-07
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FIG. 5.8. The convergence curves for different block flexible methodson Helmholtz problem withp = 10.
Left: n = 16384. Right: n = 65536.
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FIG. 5.9. The convergence curves for different block flexible methodson Helmholtz problem withp = 20.
Left: n = 16384. Right: n = 65536.
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