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EFFICIENT HIGH-ORDER RATIONAL INTEGRATION AND DEFERRED

CORRECTION WITH EQUISPACED DATA∗

STEFAN GÜTTEL† AND GEORGES KLEIN‡

Abstract. Stable high-order linear interpolation schemes are well suited for the accurate approximation of
antiderivatives and the construction of efficient quadrature rules. In this paper we utilize for this purpose the family
of linear barycentric rational interpolants by Floater and Hormann, which are particularly useful for interpolation
with equispaced nodes. We analyze the convergence of integrals of these interpolants to those of analytic functions
as well as functions with a finite number of continuous derivatives. As a by-product, our convergence analysis leads
to an extrapolation scheme for rational quadrature at equispaced nodes. Furthermore, as a main application of our
analysis and target of the present paper, we present and investigate a new iterated deferred correction method for
the solution of initial value problems, which allows to work efficiently even with large numbers of equispaced data.
This so-called rational deferred correction (RDC) method turns out to be highly competitive with other methods
relying on more involved implementations or non-equispaced node distributions. Extensive numerical experiments
are carried out, comparing the RDC method to the well established spectral deferred correction (SDC) method by
Dutt, Greengard and Rokhlin.

Key words. Quadrature, barycentric rational interpolation, extrapolation, initial value problems, deferred cor-
rection.
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1. Introduction. We are concerned with the problem of approximating the antideriva-

tive
∫ y

a
f(x) dx, for possibly many values y ∈ [a, b], of a function f which is sufficiently

smooth, defined on a real interval [a, b] and not periodic. More precisely, we are interested in

computing this integral to high precision when the function is given via its values fi at n+ 1
equispaced nodes xi = a + ih, h = (b − a)/n, i = 0, 1, . . . , n. If y is one of these nodes,

then one can simply apply a quadrature rule, or a combination of several rules, restricted to

the interval [a, y]. Otherwise, one can compute the integrals for each node using a quadrature

rule as described above and interpolate between these results to obtain an approximation of

the antiderivative which is then defined throughout the interval [a, b]. There are of course

many other possibilities and we will describe our idea (DRI) after the following outline on

quadrature rules and methods derived from linear rational interpolation.

For the approximation of integrals, common and basic quadrature rules include the com-

posite trapezoid and Simpson’s rules, which converge at the rate O(h2) and O(h4), respec-

tively. Higher order methods, e.g., the Newton–Cotes rules, can be obtained from integrating

the unique polynomial interpolant of degree ≤ n of the given data. It is however well-

known, that in finite precision arithmetic the approximations from these rules diverge with

increasing n because of ill-conditioning; see [34]. Even in exact arithmetic, when f is not

analytic in a sufficiently large region around the nodes, divergence will occur due to Runge’s

phenomenon [10, 38]. If the nodes need not be equispaced, then very efficient and stable

classical rules, such as Gauss–Legendre and Clenshaw–Curtis rules, are readily available;

see, e.g., [9, 18, 42]. We will assume here that the nodes are required to be equispaced.

Various higher order quadrature methods for equispaced nodes are available, e.g., com-

posite Newton–Cotes rules, Newton–Gregory rules [23], schemes based on splines [12], least
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squares approximations [24], Fourier extensions [25], and rational interpolation, to name

just a few. For a general overview of the topic we refer to [11, 30]. Direct rational quadrature

(DRQ) [29] is based on the barycentric rational interpolation scheme proposed by Floater and

Hormann [14] and consists of interpolating the given data with a linear rational interpolant

and afterwards integrating that interpolant with an efficient method to obtain an approxima-

tion of the integral. We will further investigate this scheme and proceed to recall its essential

ingredients.

Given a nonnegative integer d ≤ n, the so-called blending parameter, consider poly-

nomial interpolants pi of degree ≤ d for the nodes xi, . . . , xi+d and data fi, . . . , fi+d (i =
0, . . . , n− d). The rational interpolant is then a “blend” of these polynomial interpolants,

(1.1) rn(x) =

∑n−d
i=0 λi(x)pi(x)∑n−d

i=0 λi(x)
, λi(x) =

(−1)i

(x− xi) · · · (x− xi+d)
.

This rational interpolant, which is linear in the data f0, . . . , fn, can be written in barycentric

form

rn(x) =

n∑

i=0

wi

x− xi
fi

/ n∑

i=0

wi

x− xi

for its evaluation. For details and formulas of the barycentric weights wi, which do not depend

on the fi, see [14]. From now on, we will always refer to this family of interpolants each time

we use the expression “linear (barycentric) rational interpolation”. For functions in Cd+2[a, b]
and equispaced nodes, the convergence rate is O(hd+1). For analytic functions and variable

d, asymptotic rates of convergence depending on the region of analyticity of f have been

established in [19]. We will recall and expand the corresponding results for equispaced nodes

in Section 2. The key idea in our analysis in [19] was to allow d to vary with n so as to balance

the convergence speed and the condition number in order to obtain fast convergence with

small values of n until the relative error comes close to machine precision and to maintain,

or even improve, that accuracy with larger values of n. This study allowed to investigate

the behaviour of linear rational interpolation with respect to the barrier from [37] on the

convergence speed of a well-conditioned approximation method from equispaced nodes. We

remind the reader that it is proven in [37] that every geometrically converging approximation

scheme from equispaced samples is ill-conditioned. The condition number associated with

linear interpolation is the maximum of the Lebesgue function [39], the Lebesgue constant.

For linear barycentric rational interpolation it is given by

Λn,d = max
a≤x≤b

Λn,d(x) = max
a≤x≤b

n∑

i=0

∣∣∣
wi

x− xi

∣∣∣
/∣∣∣∣

n∑

i=0

wi

x− xi

∣∣∣∣.

The Lebesgue constant associated with linear rational interpolation for equispaced nodes is

bounded as (see [4], and [26] for tighter bounds)

(1.2)
1

2d+2

(
2d+ 1

d

)
log
(n
d
− 1
)
≤ Λn,d ≤ 2d

(
1 + log(n)/2

)
,

where the leading factor in the lower bound is larger than 2d−2/(d+1); see, e.g., section 3.3.3

in [28]. This clearly shows that the Lebesgue constant grows exponentially with increasing

d.
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A quadrature rule can be obtained with the above linear rational interpolant as follows

(see [29]):

(1.3) I[f ] ≈

∫ b

a

rn(x) dx =
n∑

i=0

fi

∫ b

a

wi

x− xi

/ n∑

k=0

wk

x− xk
dx =

n∑

i=0

ωifi,

where the quadrature weights are defined by

(1.4) ωi =

∫ b

a

wi

x− xi

/ n∑

k=0

wk

x− xk
dx.

The sum of the absolute values of the quadrature weights,
∑n

i=0 |ωi|, is a useful measure

of the stability of a quadrature rule, as it is a bound on the amplification of inaccuracies

in the given data. An interpolatory quadrature rule usually inherits the properties of the

interpolation scheme from which it is derived. This is also the case for the stability of the

rational quadrature rule in the right-hand side of (1.3). The sum of the absolute values of the

quadrature weights can be related to the Lebesgue constant as

(1.5)

n∑

i=0

|ωi| ≤

∫ b

a

n∑

i=0

∣∣∣∣
wi

x−xi∑n
i=0

wi

x−xi

∣∣∣∣ dx =

∫ b

a

Λn,d(x) dx ≤ (b− a)Λn,d.

This is of course a crude upper bound, since the left-hand side is equal to (b− a) if all the ωi

are positive. It will, however, be sufficient for our analysis, since the quadrature weights in

DRQ rules with d ≥ 6 are not all positive, as was observed experimentally in [29].

Since there is no closed formula at the present time for the computation of the quadra-

ture weights (1.4), these may be approximated efficiently by a sufficiently accurate quadrature

rule, e.g., Gauss–Legendre, Clenshaw–Curtis quadrature as implemented in Matlab, for ex-

ample, in the Chebfun system1. Notice that the integrand in (1.4) can be evaluated stably

and efficiently at every point in [a, b]; see section 3.2 in [28] or [22] for details within the

polynomial framework which also apply to our setting. If the quadrature weights ωi are not

needed explicitly, then one of the already mentioned classical quadrature rules may be ap-

plied directly on rn for faster approximation of I[f ]; this resulting type of method is what is

called direct rational quadrature (DRQ) in [29]. For a sufficiently smooth function f and with

equispaced nodes, the DRQ rules converge at the rate O(hd+2), as was shown in [29]. Very

similar strategies can be applied to construct approximations of integrals, as we will present in

Section 2, namely by approximating the antiderivative of a linear rational interpolant rn with

another already existing efficient method; this type of method will be called direct rational

integration (DRI).

In Section 2 of this work we establish a new asymptotic convergence result for linear

rational integration and the quadrature rule (1.3) applied to an analytic function f , with eq-

uispaced nodes and a variable blending parameter d chosen proportional to n. We then com-

plement this result with another theorem on the rate of convergence for the approximation of

antiderivatives of functions with finitely many continuous derivatives, under the condition that

d is fixed. Based on the analogous result from [29] for the rational quadrature rule (1.3), we

construct a Richardson-type extrapolation scheme. We illustrate all our theoretical findings

with some numerical examples in Section 3.

In Section 4 we apply the rational integration scheme DRI to the solution of initial value

problems via the iterated deferred correction method; this application is the target of our

1The open source software Chebfun is available at http://chebfun.org.

http://chebfun.org
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paper. This method can be viewed as an extrapolation scheme that iteratively eliminates

terms in the error expansion of an initial low-order approximation to the solution, without

using finer grids as would be the case with Richardson extrapolation. This idea is not new,

it at least dates back to work by Zadundaisky [44] and Pereyra [35, 36] who in the 1960s

developed methods for equispaced data, and was popularized again around the year 2000

by Dutt, Greengard & Rokhlin [13], who presented a more stable method by combining the

Picard integral formulation of the initial value problem with spectral interpolation at Gauss–

Legendre nodes. This combination is commonly called spectral deferred correction (SDC).

Building on the integral formulation idea we present a new deferred correction method, called

rational deferred correction (RDC), which uses linear barycentric rational interpolation in

equispaced time points. Our theoretical results and numerical observations in Sections 2–3

allow us to give insight into the convergence behavior of RDC. This will be demonstrated with

several numerical examples, like the Brusselator, Van der Pol, and Burgers’ equation. We find

that with a careful choice of parameters, the attained accuracy of RDC is competitive with

SDC, and sometimes even slightly better. Computationally, RDC may be advantageous in

particular for high-dimensional stiff problems, because it allows for constant time steps and

may therefore require fewer recomputations or refactorizations of Jacobians. We conclude

this paper with a summary and some ideas for future work.

2. Rational integration from equispaced samples. The integration scheme we are de-

scribing is based on linear barycentric rational interpolation and the DRQ rules from [29].

We will couple the obtained scheme with a recommendation for how to choose the blending

parameter d, depending on the region of analyticity of the integrand. We focus on equis-

paced nodes in the following, partly to keep the exposition simple, but mainly because it is

a situation often encountered in practice and most relevant for our application in Section 4.

Moreover, the error analysis from [19], which we build upon, can be simplified if the interpo-

lation nodes are equispaced. We only mention here that all what follows could also be done

with more general node distributions.

We begin by expanding an asymptotic bound on the interpolation error with equispaced

nodes, showing how it can be generalized to quadrature, and giving a strategy for a good

choice of d. Building upon our work in [19], for every n, we seek for an optimal C ∈ (0, 1]
which will determine the blending parameter as

d = d(n) = round(Cn).

With this choice, the relative error decreases in practical computations as fast as possible

without being dominated by the amplification of rounding errors.

We start from the Hermite-type error formula

(2.1) f(x)− rn(x) =
1

2πi

∫

C

f(s)

s− x
·

∑n−d
i=0 λi(s)∑n−d
i=0 λi(x)

ds,

where C is a contour in a region around the nodes which does not contain any singularities

of f . This error formula (2.1) was obtained in [19] from the Cauchy integral formula for f
and the explicit representation of the rational interpolant of 1/(s − x). To estimate f − rn,

we need to bound |
∑n−d

i=0 λi(s)| from above for s ∈ C, and |
∑n−d

i=0 λi(x)| from below for

x ∈ [a, b]. A bound on the latter was obtained in [14], the asymptotic analogue of which was

given in [19] as

(2.2) lim inf
n→∞

∣∣∣∣
n−d(n)∑

i=0

λi(x)

∣∣∣∣
1/n

≥
( e

C(b− a)

)C
=: V0.
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To estimate |
∑n−d

i=0 λi(s)|, we observe that

(2.3)

∣∣∣∣
n−d∑

i=0

λi(s)

∣∣∣∣ ≤ (n− d+ 1)|λj(s)|,

where j is the index of a term λi(s) with maximal absolute value, which also depends on the

location of s. The node xj , whose index j corresponds to the one in (2.3), satisfies

xj ∈
[
max

{
a,Re(s)−

⌊d
2

⌋
h
}
,max

{
a,Re(s)−

⌊d
2
+ 1
⌋
h
}]

.

This follows from the definition of the λi in (1.1) and the fact that the nodes are equispaced.

Any λj can be rewritten in the form

|λj(s)| = exp

(
−

d∑

i=0

log |s− xj+i|

)
.

Let us define α = α(s) = max{a,Re(s)− C(b− a)/2}. As n → ∞, we have

d∑

i=0

log |s− xj+i| →
d+ 1

C(b− a)

∫ α+C(b−a)

α

log |s− x| dx,

so that, for d/n → C and upon taking the n-th root, we arrive at

lim sup
n→∞

∣∣∣∣
n−d∑

i=0

λi(s)

∣∣∣∣
1/n

≤ exp
(
−

∫ α+C(b−a)

α

log |s− x|

b− a
dx
)
.

The above integral can be further evaluated and amounts to (see [15, Section 3.4] and [19,

Section 2.3])

∫ α+C(b−a)

α

log |s− x|

b− a
dx = C log

(C(b− a)

2e

)

+
C

2
Re
(
(1− s′) log(1− s′)− (−1− s′) log(−1− s′)

)

=: − log(V0)− log(2C)− log
(
V (s)

)
,

with s′ = (2s− 2α)/(Cb− Ca)− 1 and

V (s) =

∣∣∣∣∣
(−1− s′)−1−s′

(1− s′)1−s′

∣∣∣∣∣

C/2

.

This now gives

(2.4) lim sup
n→∞

∣∣∣∣
n−d∑

i=0

λi(s)

∣∣∣∣
1/n

≤ 2CV0V (s).

The bound on the error in the quadrature rule for sufficiently large n now follows from inte-

grating both sides of (2.1) with respect to x over [a, b], the standard estimation of integrals

and both (2.2) and (2.4),

∣∣∣∣
∫ b

a

f(x) dx−

∫ b

a

rn(x) dx

∣∣∣∣ ≤
(b− a) length(C)maxs∈C |f(s)|

2π dist([a, b], C)
2CnV (s)n.
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448 STEFAN GÜTTEL AND GEORGES KLEIN

Let us define the following contours for later reference, their typical shape is displayed in

Figure 2.2 in [19]:

(2.5) CR :=
{
z ∈ C : 2CV (z) = R

}
.

The above reasoning can be trivially extended to the approximation of antiderivatives of f ,

especially

(2.6) F (y) =

∫ y

a

rn(x) dx, y ∈ [a, b],

the one with value 0 at the left end of the interval. The study of the conditioning of the

quadrature described in the Introduction (see (1.5)) also carries over to the approximation

of antiderivatives with little effort, so that the Lebesgue constant multiplied by (b − a) may

again be taken as a crude but valid upper bound on the condition number. Similarly to prac-

tical computations with the quadrature rule, we suggest to first approximate rn to machine

precision by a polynomial, which is then integrated to give an approximation of F in (2.6). A

convenient way of implementing this is by using the Chebfun cumsum command. Note that

the result of cumsum is a polynomial approximation to the antiderivative F , which can be

cheaply evaluated at any point y. We call direct rational integration (DRI) the combination

of these methods. An alternative would be to multiply the vector of the function values by an

integration matrix whose entries are the integrals from a to each node of all the rational basis

functions. These integrals can be computed with any efficient quadrature rule based on any

distribution of nodes. We always assume that the integral of rn can be approximated close to

machine precision, and therefore consider this additional error as practically negligible. The

computational complexity is relatively low, since it involves the evaluation of rn, which takes

O(n) operations, combined with the approximation procedure in Chebfun, which is targeted

at being as efficient as possible.

We now summarize the above derivation as our first main theorem.

THEOREM 2.1. Let f be a function analytic in an open neighborhood of [a, b], and let

R > 0 be the smallest number such that f is analytic in the interior of CR defined in (2.5).

Then the antiderivative with value 0 at x = a of the rational interpolant rn defined by (1.1),

with equispaced nodes and d(n)/n → C, satisfies

lim sup
n→∞

∣∣∣∣
∫ y

a

f(x) dx−

∫ y

a

rn(x) dx

∣∣∣∣
1/n

≤ R,

for any y ∈ [a, b].

Notice that this result includes the convergence of the quadrature rules as the special case

when y = b, and a similar bound may be obtained for any other distribution of nodes with a

slightly modified asymptotic bound, obtained from that for the interpolant in [19] combined

with the standard estimation of integrals.

As already mentioned, one cannot expect exponential convergence of an approximation

scheme with equispaced nodes in practice, and the same is true for the quadrature scheme

we are concerned with, since it is derived from linear rational interpolation with equispaced

nodes. Theorem 2.1 does not take into account the conditioning of the numerical approxima-

tion problem, which is however essential in numerical computations with equispaced nodes.

We suggest to apply the stabilization from [19] also for the approximation of antiderivatives

as follows: we minimize the sum of the theoretical error from Theorem 2.1 and the amplifi-

cation of relative rounding errors, which is the product of the machine precision εM (typically
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εM = 2−52 ≈ 2.22 · 10−16) and the Lebesgue constant bounded by (1.2), to find an appropri-

ate value of C and thus d. We proceed by collecting all the constants into K and obtain that,

for sufficiently large n,

max
a≤y≤b

∣∣∣∣
∫ y

a

f(x) dx−

∫ y

a

rn(x) dx

∣∣∣∣ ≤ K(Rn + εM Λn,d)

= K2Cn(V (z)n + εM(1 + log(n)/2)).

(2.7)

With the knowledge of the singularity s of f closest to the interval (in terms of the level

lines CR defined in (2.5)), we can then search for a value of C which minimizes the above

right-hand side, and thus the relative numerical error to be expected. We will illustrate this

procedure with an example in Section 3.

Let us now investigate the convergence rate of DRI with equispaced nodes and fixed d
for functions with a finite number of continuous derivatives; this number can obviously be

as small as 1. The theorem below shows that the approximation order is d + 2, and for the

special case of DRQ (i.e., x = b) this was proven in [29]. Moreover, the constant factor in the

upper bound on the error merely depends on the norm of a low order derivative of f , which

depends on d and not on n. The proof below is quite technical; we use several tools with the

same notation as in [14, 29], in the hope that this will help the reader.

THEOREM 2.2. Assume n and d, 0 < d ≤ n/2−1, are positive integers, f ∈ Cd+3[a, b],
and the nodes are equispaced. Then for any x ∈ [a, b],

∣∣∣∣
∫ x

a

f(y)− rn(y) dy

∣∣∣∣ ≤ Khd+2,

where K is a constant depending only on d, on derivatives of f , and on the length (b− a) of

the interval.

Proof. Throughout this proof, we generically denote by K any constant factor that does

not depend on n. Since x ∈ [a, b] is fixed, we can write it as x = a + Th, with T ∈ [0, n].
We begin by showing why we only need to study the claimed bound in details for T ∈ K :=
{k = d+1, d+3, . . . : k ≤ n−d−1}. All other cases are easily dealt with for the following

reasons. Note that we always regroup two subintervals together, which leads to the fact that

K only involves odd indexes.

If T < d+ 3, then by the standard estimation of integrals and the bound on the interpo-

lation error, it follows that

(2.8)

∣∣∣∣
∫ x

a

f(y)− rn(y) dy

∣∣∣∣ ≤
∫ x

a

|f(y)− rn(y)| dy ≤ |x− a|Khd+1 ≤ (d+ 3)Khd+2.

For T ∈ [d+ 3, n− d− 1] \ K, we call k the largest element of K smaller than T . Then,

∣∣∣∣
∫ x

a

f(y)− rn(y) dy

∣∣∣∣ ≤
∫ xd+1

a

|f(y)− rn(y)| dy +

∣∣∣∣
∫ xk

xd+1

f(y)− rn(y) dy

∣∣∣∣

+

∫ x

xk

|f(y)− rn(y)| dy

≤ (d+ 1)Khd+2 +

∣∣∣∣
∫ xk

xd+1

f(y)− rn(y) dy

∣∣∣∣.
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With T > n− d− 1, we proceed similarly,

∣∣∣∣
∫ x

a

f(y)− rn(y) dy

∣∣∣∣ ≤
∫ xd+1

a

|f(y)− rn(y)| dy +

∣∣∣∣
∫ xn−d−1

xd+1

f(y)− rn(y) dy

∣∣∣∣

+

∫ x

xn−d−1

|f(y)− rn(y)| dy

≤ Khd+2,

where the first and third terms are bounded using the standard estimation of integrals as

in (2.8), and the bound on the middle term comes from the proof of Theorem 6.1 in [29].

For the investigation of the claimed error bound with T ∈ K we denote the interpolation

error as in [14, 29] for any y ∈ [a, b] by

(2.9) f(y)− rn(y) =

∑n−d
i=0 (−1)if [xi, . . . , xi+d, y]∑n−d

i=0 λi(y)
=

A(y)

B(y)
,

where A and B are defined in the obvious way, and we call

Ωn(x) =

∫ x

xd+1

1

B(y)
dy.

We may now apply integration by parts to split the approximation error into two parts,

(2.10)

∫ x

xd+1

A(y)

B(y)
dy = A(x)Ωn(x)−

∫ x

xd+1

A′(y)Ωn(y) dy,

and study the first term in a first step. The numerator A can be bounded by a constant; see the

proofs of Theorems 2 and 3 in [14]. With the change of variable y = a+ th we rewrite Ωn as

Ωn(x) = hd+2

∫ T

d+1

1

B(t)
dt,

where B is the B from (2.9) after changing variables and neglecting the powers of h. Analo-

gously, we define λi from λi and show that the integral of the reciprocal of B is bounded by

a constant. From the definition of B, we have that

∫ T

d+1

1

B(t)
dt =

T−2∑

k=d+1

∫ k+2

k

1

B(t)
dt =

T−2∑

k=d+1

∫ k+1

k

λ0(t+ 1) + λn−d(t)

B(t)B(t+ 1)
dt.

Both functions λ0(t+1) and λn−d(t) do not change sign in the subintervals [d+1, n−d−1],
so that we can apply to each of them the mean value theorem for integrals. Moreover, it can

be deduced easily from the proofs of Theorems 2 and 3 in [14] that the reciprocal of B may

be bounded by a constant, and therefore

∣∣∣∣
∫ T

d+1

1

B(t)
dt

∣∣∣∣ ≤
T−2∑

k=d+1

∫ k+1

k

∣∣∣∣
λ0(t+ 1)

B(t)B(t+ 1)

∣∣∣∣ dt+
T−2∑

k=d+1

∫ k+1

k

∣∣∣∣
λn−d(t)

B(t)B(t+ 1)

∣∣∣∣ dt

≤ K

(∣∣∣∣
∫ T

d+1

λ0(t+ 1) dt

∣∣∣∣+
∣∣∣∣
∫ T

d+1

λn−d(t) dt

∣∣∣∣
)
.
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Since the nodes are equispaced and because of the structure of λi from (1.1), we have the

following partial fraction decomposition,

λ0(t+ 1) =
(−1)d

d!

d∑

i=0

(−1)i
(
d

i

)
1

t+ 1− i
,

λn−d(t) =
(−1)n−d

d!

d∑

i=0

(−1)i
(
d

i

)
1

t− (n− i)
.

On one hand,

d!

(−1)d

∫ T

d+1

λ0(t+ 1) dt = log

(
P (T )

Q(T )

)
−

d∑

i=0

(−1)i
(
d

i

)
log(d+ 2− i),

which goes to a constant as n → ∞, since the second term does not depend on n and in

the first one P and Q are monic polynomials in the same degree in T , which increases as n
increases. On the other hand,

d!

(−1)n−d

∫ T

d+1

λn−d(t) dt = log

(
P (n− T )

Q(n− T )

)
− log

(
P (n)

Q(n)

)
,

which tends to 0 as n increases for similar reasons as those stated above. We have just

established that the first term in (2.10) is bounded by Khd+2. In a second step we treat the

second term. We recall Lemma 6.2 from [29], which states that Ωn does not change sign in

[xd+1, xn−d−1], and we apply again the mean value theorem, i.e.,

∫ x

xd+1

A′(y)Ωn(y) dy = A′(ξ)

∫ x

xd+1

Ωn(y) dy

for some ξ ∈ [xd+1, xn−d−1]. The absolute value of A′ can be bounded by a constant; see

Lemma 2 in [3]. We proceed by integration by parts,

∫ x

xd+1

Ωn(y) dy = (x− a)Ωn(x)−

∫ x

xd+1

y − a

B(y)
dy.

The first term has been treated above and for the second we use the preceding change of

variables

∫ x

xd+1

y − a

B(y)
dy = hd+3

∫ T

d+1

t

B(t)
dt

= hd+3
T−2∑

k=d+1

∫ k+1

k

t
(
λ0(t+ 1) + λn−d(t)

)
+B(t)

B(t)B(t+ 1)
dt,

and further process the latter expression analogously to the first step by making use of the

additional power of h.

The above Theorem 2.2 states that for fixed d the error in the quadrature is of the order

of hd+2. Such a bound allows to apply Richardson extrapolation; see, e.g., [11]. Since for a

given n the quadrature error is bounded by K/nd+2 for some constant K, the error with only
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half as many nodes and the same d is bounded by 2d+2K/nd+2. Therefore, if we denote by

In the rational quadrature rule with n+ 1 nodes, the extrapolated rule

(2.11) Ĩn =
2d+2In − In/2

2d+2 − 1

will be of the order of hd+3 at least. In the generic case, one cannot expect that the order

further increases when Richardson extrapolation with the obvious modifications is iterated

on the present type of rational quadrature. The error in the quadrature scheme or in the

underlying interpolation process must indeed not necessarily be representable as an expansion

in regularly increasing powers of h, which exists for instance for the error of the trapezoid rule

under some assumptions. An example of the three approaches to rational integration studied

in the present section is provided at the end of the next section on numerical examples.

In Section 4 we will apply rational quadrature for the solution of initial value problems

via iterated deferred correction. That method has the same aim as Richardson extrapolation,

namely iteratively eliminate terms in the error expansion corresponding to increasing powers

of h, but it does not require to use a finer grid. The iterative scheme will be applied on

an initial solution obtained using a first order method and whose error can be written as an

expansion in powers of h.

3. Numerical examples on integration. To illustrate the theoretical results from the

previous section, we present a numerical example for each of the three topics, namely the

fast convergence of the approximation of antiderivatives with variable d, the convergence

behaviour with constant blending parameter, and Richardson extrapolation. We stress that all

the examples displayed are computed exclusively from equispaced data.

To better understand the results and to situate the rational integration methods within

classical ones, we also display the error in the approximation of antiderivatives using B-

splines of degree d + 1 and in the quadrature with Newton–Gregory rules for the examples

with fixed convergence rates.

The behavior of the error in the approximation of antiderivatives with variable d is closely

related to that of the interpolation of functions in the same setting, which we analyzed in

greater detail in [19]. We show here the stabilization procedure from (2.7) with numerical op-

timization in practice, with two functions, namely f1(x) = e1/(x+2) and f2(x) = e1/(x+1.5)

on [−1, 1]. Both functions have a singularity to the left of the interval at different distances.

The maximal relative error of the approximation of the antiderivative on the interval therefore

decays at different speeds, faster when the singularity lies further away; see Figure 3.1. In

addition, we show the smallest error attainable with an optimal choice of d found by search-

ing for the smallest error with all admissible values of d. In the pictures on the right, we show

the values of the blending parameter involved in the examples, the one on top refers to f1 and

the other one to f2. We observe that we can increase d linearly with n as long as the latter is

small enough, but then need to decrease d again so as to guarantee that the condition number

does not exceed the error from exact arithmetic. One observes geometric convergence with

small n and thereafter algebraic error decay with varying rates. Observe that we conserva-

tively overestimate the condition number as explained earlier, so that the error curves lie a bit

above the smallest attainable errors.

Our second example is the approximation of an antiderivative of 1/(1 + 5x2) on [−1, 1]
with constant values of the blending parameter, namely d = 1, 3, 5, 9; see Figure 3.2. We

compare these results with those obtained from spline integration computed using Matlab’s

fnint and the spapi command from the “curve fitting” toolbox. The degree of the splines

is d + 1 for each curve labelled d; it is chosen such that the rates of convergence match

those of the rational approximations. For n ≥ 30, the maximal absolute errors over the
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FIGURE 3.1. Relative errors (left) in the approximation of an antiderivative of f1(x) = e1/(x+2) and

f2(x) = e1/(x+1.5) on [−1, 1] with 2 ≤ n ≤ 150, compared to the smallest error with an optimal d. The

pictures on the right (top: f1, bottom: f2) compare the values of d chosen by the stabilization and the optimal

values.

interval decrease at the algebraic rates d+ 2 as expected from Theorem 2.2. The rates of the

spline based approximations are similar, the constant in the error term is larger with small

degree. The curves with larger degree almost coincide. The rational approximations deliver

however an analytic approximation whereas the splines are merely a few times continuously

differentiable. Observe that with DRI and smaller n the error decreases at the much faster

exponential rate as was the case when d increased with n in the example above, but here d
is kept constant. This behavior is not restricted to the integrand under consideration. We

observed that it appears whenever f has a singularity close to the middle of the interval, more

precisely inside the curve that joins some of the complex poles of the rational interpolant. We

propose to investigate this important effect more in detail in the future. In the theory part of

the present paper we have not taken this effect into account.
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FIGURE 3.2. Absolute errors in the approximation of an antiderivative of 1/(1 + 5x2) on [−1, 1] with

10 ≤ n ≤ 120 and various values of the theoretical convergence rates d + 2; left: DRI and right: antiderivatives

of B-splines of degree d+ 1.

Before ending this section, we present an example of Richardson extrapolation outlined

at the end of the previous section; see (2.11). In Table 3.1, we give the absolute errors and the

corresponding experimental convergence rates for the rational quadrature scheme with d = 2

and one iteration of Richardson extrapolation for the approximation of
∫ 1

−1
e1/(1+x2) dx.

The experimental order has increased almost exactly by 1 from d + 2 to d + 3 after one
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Richardson iteration. The same convergence rates with equispaced nodes can be seen with

Newton–Gregory rules, which are obtained from successively “correcting” the trapezoid rule;

see, e.g., [23] for the explicit construction. More precisely, the terms involving higher order

derivatives of the integrand in the Euler–Maclaurin formula for the error of the trapezoid rule

are approximated via expansions of forward and backward differences. Collecting the values

of the integrand at the nodes yields weights for higher order quadrature rules. In this con-

struction, only the weights corresponding to a few values near the ends of the interval are

affected. These rules are efficient for the approximation of integrals, but for the approxima-

tion of antiderivatives one would need further constructions which are less readily available

than antiderivatives of linear rational interpolants.

TABLE 3.1
Absolute errors in the direct rational quadrature (DRQ) of e1/(1+x2) on [−1, 1] with d = 2, Richardson

extrapolation as well as 4th and 5th order Newton–Gregory rules (NG) together with experimental convergence

orders.

DRQ, d = 2 extrapolation 4th order NG 5th order NG
n error order error order error order error order

10 2.04e−04 2.80e−05 2.27e−04
20 1.22e−05 4.07 6.20e−07 5.83e−06 2.26 3.18e−06 6.17
40 7.41e−07 4.04 2.26e−08 4.78 4.34e−07 3.75 5.72e−08 5.80
80 4.57e−08 4.02 7.08e−10 4.99 2.86e−08 3.92 1.28e−09 5.48

160 2.83e−09 4.01 2.22e−11 5.00 1.83e−09 3.97 3.33e−11 5.27
320 1.76e−10 4.01 6.91e−13 5.00 1.15e−10 3.99 9.57e−13 5.12
640 1.10e−11 4.00 2.49e−14 4.80 7.17e−12 4.01 3.55e−14 4.75

4. Deferred correction. We will now investigate a main application of the theoretical

results from section 2, namely the solution of initial value problems via iterated deferred cor-

rection. It is well-known that the error of an Euler scheme can be expanded as a series in pow-

ers of h [21]. Moreover, we know from [14], that the linear barycentric rational interpolants

reproduce polynomials of degree up to at least d, and Theorem 2.1 shows that antiderivatives

can be approximated stably to relatively high order with equispaced nodes. These results let

us hope, and later confirm, that deferred correction schemes can be established using rational

interpolants with equispaced nodes, polynomial reproduction guarantees that the error expan-

sion of the initial approximation is conserved, and integration to high order accuracy allows

to carry out several correction sweeps so as to obtain solutions of initial value problems with

high precision.

Iterated correction schemes originate with papers by Zadunaisky [44] and later [45]

building upon earlier ideas (see the historical notes in [17, 35]), and were originally aimed

at estimating errors in the solution of boundary value problems using so-called “pseudo-

systems” or neighboring problems. These techniques were then used by Pereyra [35, 36]

to iteratively increase the order of approximation by one per correction sweep, usually until

reaching the precision of the collocation solution [16, 17, 40, 43]. In these initial publica-

tions, the nodes used were essentially equispaced, and it is illustrated in [20] that the order

does not necessarily increase by one per correction sweep with arbitrary points. Around the

year 2000 appeared the paper [13], which reiterated investigations on deferred correction

schemes by introducing a very successful combination of Gauss–Legendre quadrature and

the Picard integral formulation of the initial value problem, so as to avoid numerical dif-

ferentiation. Possible choices of other quadrature schemes are described in [31]. Recently,

modified iterated correction schemes were presented [7, 8], which use Runge–Kutta methods

and guarantee an increase in the order per sweep by more than one, under precisely inves-

tigated conditions on the data. With additional modifications to the scheme, such increase



ETNA
Kent State University 

http://etna.math.kent.edu

RATIONAL INTEGRATION AND DEFERRED CORRECTION 455

can also be obtained with nonequispaced nodes [41], namely with a fixed point iteration be-

fore each correction sweep. Moreover, deferred correction methods have been successfully

implemented on parallel computers; see, e.g., [6, 33].

In order to comply with the usual notation in time dependent problems, we change the

variable x from the previous sections to the time variable t on the standard interval [0, T ], and

denote by x exclusively a space variable.

Consider an initial value problem for a function u : [0, T ] → C
N ,

(4.1) u′(t) = f(t, u(t)), u(0) = u0 ∈ C
N given,

and a numerically computed approximate solution ũ ≈ u. In the deferred correction method

for iteratively improving the accuracy of this numerical solution, an equation for the error

e = u − ũ is solved repeatedly by a low-order integrator. The approximate solution to this

error equation is then added to ũ to give an improved approximation to u. Dutt, Greengard &

Rokhlin [13] greatly enhanced the stability of deferred correction for initial value problems

by two modifications, which we will briefly outline.

First, numerical differentiation can be avoided by reformulating the problem (4.1) as a

Picard integral

(4.2) u(t) = u(0) +

∫ t

0

f(τ, u(τ)) dτ,

or equivalently,

(4.3) ũ(t) + e(t) = u(0) +

∫ t

0

f(τ, ũ(τ) + e(τ)) dτ.

Using (4.2) for defining the residual

(4.4) r(t) = u(0) +

∫ t

0

f(τ, ũ(τ)) dτ − ũ(t),

we immediately find from (4.3)

(4.5) e(t) = r(t) +

∫ t

0

f(τ, ũ(τ) + e(τ))− f(τ, ũ(τ)) dτ = r(t) +

∫ t

0

g(τ, e(τ)) dτ,

with g(τ, e(τ)) := f(τ, ũ(τ)+e(τ))−f(τ, ũ(τ)), which is a Picard-type formulation for the

error e(t).
Second, after this reformulation the deferred correction procedure proposed in [13] in-

volves integration of polynomial interpolants of degree n, where n can be quite large to

achieve sufficient accuracy. To prevent this polynomial interpolation from being unstable,

it was advocated in [13] to interpolate the integrand in (4.2) at Gauss–Legendre points or

Chebyshev points t0 < t1 < · · · < tn in the interval [0, T ]. Assume that ũ is given as the

interpolation polynomial of the values ũj at the points tj , then the residual r in (4.4) can be

approximated stably and very accurately via numerical integration; see also the discussion

in [31]. Because such an interpolation process will achieve spectral accuracy in time, the re-

sulting method is called spectral deferred correction (SDC) [13]. Formula (4.5) now allows

for the construction of time stepping procedures for the error e, starting from e0 = e(0) = 0,

e.g., by the explicit Euler method

ej = ej−1 + (rj − rj−1) + (tj − tj−1) · g(tj−1, ej−1), j = 1, . . . , n,
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or the implicit Euler method

ej = ej−1 + (rj − rj−1) + (tj − tj−1) · g(tj , ej), j = 1, . . . , n.

Finally, the approximation ũ is updated via ũnew = ũ + e, which concludes one deferred

correction sweep.

In the following we propose a modification of the spectral deferred correction approach

which we will refer to as rational deferred correction (RDC). In this new scheme (4.1) is still

reformulated as the Picard integral (4.2), but then the integrand is interpolated at equispaced

nodes tj = jT/n (j = 0, 1, . . . , n). This is possible because, as we have seen in the previous

sections, the barycentric rational interpolants proposed in [14] can attain stable high-order

accuracy even for equispaced nodes, provided that the blending parameter d is chosen ade-

quately. Through numerical examples later in this section, we will demonstrate that almost

the same accuracy can be achieved with RDC from equispaced data than with SDC from

clustered data.

There are many situations where it is more natural or even unavoidable to work with

approximations to the solution ũ at equispaced time points. For example, if ũ is computed via

a multistep method then equispaced time points ti are typically preferable, or the right-hand

side f of (4.1) may incorporate measurements that are only known at certain time points.

Moreover, in implicit time stepping methods where the action of the inverse of a shifted

Jacobian is required, constant time steps avoid recomputations or refactorizations of large

matrices; see also our example in Section 4.5. A need for equal time steps also arises in some

parallelized deferred correction schemes, such as the revisionist integral deferred correction

method in [6].

We merely claim here and proof later in much more detail that, as is the case with similar

deferred correction schemes, the iteratively corrected solution converges to the collocation

solution of (4.2), and that the approximation order is increased by one per iteration if the

time stepping method is explicit. The highest attainable order is d + 2 after d + 1 sweeps,

which is that of the rational collocation solution of the same problem. Experiments revealed

that further improvement in the RDC and the SDC solutions can be achieved by conformally

mapping the nodes to a grid that is more clustered toward the ends of the time interval for

RDC and more evenly spaced for SDC. We refrain from giving further details on this obser-

vation since this matter goes beyond the scope of the present paper. Notice that the accuracy

achieved by RDC and by SDC is very similar.

4.1. Stability and accuracy regions. The stability and the accuracy of a numerical

method for the solution of an initial value problem are usually studied via its performance

when applied on the so-called Dahlquist test equation on [0, 1] (see, e.g., [21]),

u′(t) = λu(t), u(0) = 1.

If ũ is the solution obtained with the method under consideration, then the region {λ ∈ C :
|ũ(1)| ≤ 1} is called the stability region. A method is A-stable if its stability region includes

the whole negative half plane, and A(α)-stable if it includes only a sector with opening angle

2α in the same half plane. The set {λ ∈ C : |u(1)− ũ(1)| < ε} is called the accuracy region

for a prescribed target accuracy ε.

We plotted the stability and accuracy regions for several values of the parameters defining

RDC with equal time steps, and focus on those which we also use for the numerical examples

later in this section. Figure 4.1 shows the stability regions for RDC with explicit Euler,

for n = 14 and n = 21, respectively, for various values of d. The number of correction

sweeps is equal to d + 1. Each plot contains the accuracy region for ε = 10−8 as well. The
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sizes of the RDC stability and accuracy regions with moderate values of d, say 14 or 15,

are similar to those of the regions of SDC presented in [13]. Moreover, we notice that the

accuracy region becomes larger as d increases, which is natural, since the underlying rational

interpolants reach higher theoretical order of convergence with larger values of d. On the

other hand, the stability regions decrease with increasing d, and this was also to be expected

since, as discussed in Section 1, the conditioning of the rational interpolants deteriorates with

increasing d.

In Figure 4.2 we present stability and accuracy regions with RDC based on implicit

Euler. This time, the stability regions are located outside the enclosed domains. We executed

8 correction sweeps in each setting. This value was determined experimentally since there is

for the moment no clear indication of an optimal number of sweeps with the implicit method.

We observed that as soon as the number of sweeps exceeds 10, the stability regions become

smaller and do not extend to −∞ on the real line, and in our numerical experiments no

further improvement in the solution was achieved with such a high number of corrections.

The pictures indicate that RDC with implicit Euler has very favorable stability properties,

even with large n. The methods are obviously not A-stable, but they are A(α)-stable with a

large angle α. A comparison of the upper and lower rows of pictures in this figure shows that

the accuracy regions increase in size as n increases and d remains fixed; notice also that the

target accuracy was increased from ε = 10−7 to ε = 10−9. We can thus expect RDC to be

stable also for stiff initial value problems, and to attain relatively high accuracy with mildly

stiff problems.

Let us now turn to the numerical experiments with RDC applied to some selected test

problems. Clearly, such experiments cannot be exhaustive, but with each example we try to

illustrate another aspect of RDC. All reported errors of a numerical solution ũ available at

time points tj are measured in uniform norm both in space and time compared to a highly

accurate (or exact) reference solution u(tj), i.e.,

error(ũ) =
maxj ‖u(tj)− ũ(tj)‖∞

maxj ‖u(tj)‖∞
.

4.2. Analytic example: blow-up equation. This first example is rather artificial, but

it admits an analytic solution and gives insight into how the asymptotic convergence theory

presented in Section 2, Theorem 2.1, relates to the convergence of the RDC method. Consider

the following blow-up equation for t ∈ [0, 1],

u′(t) =
u(t)2

s
, u(0) = 1, s > 1.

The exact solution u(t) = s/(s− t) is analytic in an open neighborhood of the interval [0, 1],
and has a simple pole at t = s. We have chosen s = 1.25. Starting from an initial explicit

Euler run with points tj = j/n (j = 0, 1, . . . , n), we execute RDC sweeps until the norm

of the correction has fallen below 10−14 and, as a result, the approximations stagnate. We

repeat this experiment for n = 5, 10, . . . , 100, and take d = round(Cn) with C = 0.2. In

Figure 4.3 (left) we show the stagnation level of RDC depending on the number of points

n. We clearly observe an initial geometric convergence, and indeed the rate of convergence

R = 0.717 corresponds to the level line going through the singularity s; see Figure 4.3

(right). For comparison, we also show in Figure 4.3 (left) the interpolation error of the exact

solution with the same barycentric rational interpolants. For larger values of n we observe

that the accuracy of RDC (and the underlying interpolation scheme) suffers as soon as the

growing Lebesgue constant (here indicated by the increasing line) is of the same order as the

interpolation error. This is in line with our findings in the previous sections: one has to be

cautious with choosing large values for d.
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FIGURE 4.1. Stability regions (outer) and accuracy regions (inner) with target accuracy ε = 10−8 for RDC

with explicit Euler with d+ 1 sweeps and n = 14 (left) and n = 21 (right).

FIGURE 4.2. Accuracy and stability regions for RDC with implicit Euler, 8 sweeps, and target accuracy

ε = 10−7 and n = 20 (top), and ε = 10−9 and n = 40 (bottom). The pictures on the left are obtained from

zooming into the pictures on the right to better visualize the accuracy regions.

4.3. Nonstiff example: Brusselator. We consider the Brusselator [21] problem for t ∈
[0, 12],

u′
1(t) = 1 + u1(t)

2u2(t)− 4u1(t), u1(0) = 0,

u′
2(t) = 3u1(t)− u1(t)

2u2(t), u2(0) = 1.
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FIGURE 4.3. Convergence of RDC with n = 5, 10, . . . , 100 and d = round(Cn), C = 0.2 for the blow-up

example (left). The convergence slope R = 0.717 can be read off from the level lines shown on the right, and

this prediction is in good agreement with the observed convergence as long as the Lebesgue constant Λn,d, also

indicated, has not grown above the error level.

With this example our aim is to compute a solution of high-order accuracy on a time grid with

equispaced points tj = 12j/ntotal (j = 0, 1, . . . , ntotal), where ntotal = 720. To this end

we partition the time grid in slices with n + 1 points, where n = 15, 20, 40, 60, 80, and run

s sweeps of RDC driven by explicit Euler on each of the ntotal/n time slices, while keeping

the blending parameter d = 15 fixed. In Figure 4.4 (left) we show the attained accuracy as

a function of the number of sweeps. Note that a number of 0 sweeps corresponds to a plain

run of the explicit Euler method, without doing any correction sweeps. We observe that the

convergence slopes for all choices of n are essentially the same, but a considerably smaller

stagnation level can be achieved when n is increased. This indicates that the interpolation

process extracts “more information” from a larger number of equispaced data points. The

attainable accuracy will be limited by the condition number of the interpolation scheme, the

Lebesgue constant Λn,d. We have computed the Lebesgue constant Λ80,15 ≈ 8.1× 103, and

indicate the level εM × Λ80,15 with a horizontal dashed line in Figure 4.4 (left). As expected,

the stagnation level of RDC cannot be below that line. When d is further increased, one will

observe an even higher stagnation level and instabilities due to the exponential growth of Λn,d

in d.

In Figure 4.4 (right) we show the convergence of SDC for the same problem. Note that

SDC requires explicit Euler time stepping at Chebyshev nodes, and in order to make sure

that the cost per sweep is exactly the same as with RDC, we have again partitioned the time

interval [0, 12] in ntotal/n time slices of equal length, then choosing n+1 Chebyshev points

on each of the time slices. We evaluate the resulting Chebyshev interpolation polynomial at

exactly the same n+1 equispaced time points we had chosen for checking the error of RDC.

4.4. Stiff example: Van der Pol equation. We now consider the Van der Pol equa-

tion [21] for t ∈ [0, 10],

u′
1(t) = u2(t), u1(0) = 2,

u′
2(t) = 10(1− u1(t)

2)u2(t)− u1(t), u2(0) = 0.

The purpose of this example is to demonstrate the behavior of RDC at a mildly stiff equation,

and to demonstrate the dependence of the stagnation level of the scheme on the blending
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FIGURE 4.4. Convergence (relative errors) of RDC and SDC for the Brusselator example with ntotal = 720.

In this experiment we vary the number n, the number of points per time slice, and show the error reduction with each

sweep. For RDC the blending parameter d = 15 is fixed. In the left picture we also show the level of the Lebesgue

constant Λn,d for n = 80 and d = 15.

parameter d. Our aim is to compute a solution of high-order accuracy on a time grid with

equispaced points tj = 10j/ntotal (j = 0, 1, . . . , ntotal), where ntotal = 1800. To this

end we partition this time mesh into 45 intervals, and compute a local rational interpolant on

each of them with n = 40 and varying d = 5, 10, 15, 20. The RDC iteration is driven by

implicit Euler, and the involved nonlinear equations have been solved by Newton’s method

with an error tolerance of 10−14 implemented in the Matlab routine nsoli; see [27]. The

error reduction of RDC per sweep is shown in Figure 4.5 (left). For comparison, we also

show the error reduction of SDC, and we note that the stagnation level of SDC is lower. This,

however, is not surprising as SDC is evaluating the right-hand side of the differential equation

at Chebyshev points, whereas RDC uses evaluations at equispaced time points exclusively.

In Figure 4.5 (right) we show for each of the 45 time slices and sweeps the decay of the

norms of updates ‖e‖∞ defined in (4.5), and the decay of the residuals ‖r‖∞ defined in (4.4)

(the plot is for d = 15). We observe that the error reduction per sweep is quite fast on all time

slices except a few of them which are nearby a complex singularity of the exact solution u(t).
In this case, a local refinement of the time mesh would reduce the stagnation level of the RDC

iteration, but we have not implemented this as we are focusing on uniformly equispaced data

in this paper.

4.5. Implicit-explicit time stepping: Burgers’ equation. A feature of deferred cor-

rection methods is the ease with which high-order semi-implicit methods can be constructed

from simple low-order methods; see, e.g., [5, 32]. In our last example we consider a semilin-

ear initial value problem of the form

(4.6) Mu′(t) = Ku(t) + g(t, u(t)), u(0) = u0,

where M,K ∈ R
N×N are possibly large matrices, and g is a nonlinear term that can be

treated by an explicit integrator. A simple method for integrating such problems on a time

grid t0, t1, . . . , tn is the implicit-explicit Euler combination

Muj+1 = Muj + hjKuj+1 + hjg(tj , uj), hj = tj+1 − tj .

This recursion can be reformulated as

uj+1 = (M − hjK)−1(Muj + hjg(tj , uj)),
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FIGURE 4.5. Left: convergence (relative errors) of RDC and SDC for the Van der Pol equation. In this

experiment we vary the blending parameter d = 5, 10, 15, 20 for RDC. The number n = 40 is fixed, so that there

is a constant number of Newton solves per sweep and time slice. Right: the norms of updates and residuals in RDC

on each of the 45 time slices. In this example all norms are monotonically decreasing, so that the top-most markers

correspond to the first sweep, the ones below to the second sweep, and so on.

which involves the solution of a linear system per time step. Now a computational advantage

of running a deferred correction iteration with constant time steps hj = h becomes apparent:

if the involved linear systems are solved with a direct solver, then only a single LU factoriza-

tion of the constant matrix (M − hK) needs to be computed and stored. Similar savings are

possible with higher-order time stepping methods within deferred correction iterations. For

an overview of such high-order methods we refer to [5], and the references therein.

A popular test problem for implicit-explicit time stepping is Burgers’ equation for a

function u(t, x) defined on [0, 0.5]× [−1, 1] (see, e.g., [1, 2, 5, 32])

∂tu = ν ∂xxu− u ∂xu, u(t,−1) = u(t, 1) = 0, u(0, x) = − sin(πx).

Following [2] closely, we have chosen a rather small viscosity ν = 1/(100π) and discretized

the problem in space by collocation at N = 512 Chebyshev points xj ∈ [−1, 1]. The space-

discretized problem is of the form (4.6), with M being the identity matrix and K a collocation

matrix for the operator ν∂xx. The time integration is performed for t ∈ [0, 0.5] via deferred

correction.

In Figure 4.6 we show the error of SDC and RDC when the total number of time steps

ntotal = 40, 80, . . . , 2560 is varied. We have grouped n = 40 time steps into one time slice

and then applied a varying number of SDC or RDC sweeps on each slice. The blending

parameter for RDC was always chosen as d = 15. We observe that, as long as stagnation

does not occur, RDC achieves a slightly higher accuracy than SDC. A partial explanation is

given by the fact that the maximal distance between n Chebyshev points is by a factor ≈ π/2
larger than the distance between equispaced points on the same time interval (for n → ∞
this factor is exact). It is therefore possible that a low-order time stepping method within

RDC delivers higher accuracy than the same method used within SDC. In order to support

this explanation we have run SDC with an increased number of round(nπ/2) nodes per time

slice, and obtained errors closer to those of RDC. The improved accuracy of RDC comes in

addition to the computational savings that are possible by reusing the same LU factorization

of (M − hK) for each constant time step h, which should be particularly attractive for large-

scale problems.
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FIGURE 4.6. Convergence comparison (relative errors) of an implicit-explicit SDC and RDC method for the

Burgers’ equation with a varying number of time steps on the interval [0, 0.5]. Each time slice has n = 40 nodes,

and for RDC the blending parameter was chosen as d = 15.

5. Summary. In this paper we have analyzed a numerical quadrature scheme based on

barycentric rational interpolation, with an emphasis on situations where data is available at

equispaced nodes. In the first part, devoted to the analysis of this quadrature scheme, we

have presented two theorems that complement each other. Theorem 2.1 characterizes the

asymptotic convergence speed of the scheme in the case where the integrand is analytic in

the neighborhood of the integration interval. The expected convergence can be read off from

certain level lines in the complex plane, and this theorem also allows for an improved choice

of the blending parameter d, as we have demonstrated in Section 3. Theorem 2.2, on the

other hand, covers the case where the integrand is not necessarily analytic and possesses a

finite number of continuous derivatives. This theorem allowed us to apply extrapolation to the

quadrature scheme. We compared the performance of the rational integration schemes with

splines and Newton–Gregory rules. The results are similar, the linear rational interpolants are

however easier to handle in numerous applications. An important application of quadrature

is the solution of initial value problems. In Section 4 we have shown how the barycentric ra-

tional interpolation scheme can be used to construct a robust and efficient deferred correction

algorithm using equispaced points in time, even when the number of points is quite large (say,

40–80). We have called this method rational deferred correction (RDC). On several numer-

ical examples RDC performed comparably to spectral deferred correction (SDC), although

the stagnation level of RDC may be higher than with SDC. This stagnation effect is caused

by a faster growing condition number, on which bounds are available so that this effect is in

principle controllable. RDC depends on the choice of the blending parameter d which comes

from the rational interpolation scheme on which RDC is based. This may lead to some diffi-

culty if no additional information about the functions involved in the initial value problem is

available, but we found from numerous experiments that d = 15 is a good default choice.

Several questions remain open, in particular with RDC, and we plan to address some

of them in the future. First of all, it should be investigated why RDC sometimes converges

faster than SDC, before stagnation sets in. A partial explanation was given for the Burgers’

equation, but this is far from a rigorous analysis. We would also like to understand better how

the error of the approximate solution reduces with each sweep of RDC until stagnation occurs

at the level of the rational collocation solution. Extensions to the presented scheme with eq-
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uispaced nodes could possibly include the use of Runge–Kutta integrators in the expectation

that the order increases by the order of that integrator per sweep, and the implementation of

RDC on parallel computers.
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