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MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS ∗

SILVIA GAZZOLA † AND PAOLO NOVATI†

Abstract. For the solution of linear ill-posed problems, in this paper we introduce a simple algorithm for
the choice of the regularization parameters when performing multi-parameter Tikhonov regularization through an
iterative scheme. More specifically, the new technique is based on the use of the Arnoldi-Tikhonov method and the
discrepancy principle. Numerical experiments arising from the discretization of integral equations are presented.
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1. Introduction. In the framework of Tikhonov regularization for the solution of ill-
posed linear systemsAx = b, A ∈ R

N×N , the use of the multi-parameter regularization
(even called multiple penalty regularization) has been introduced with the aim of acting si-
multaneously on different frequency bands of the solution,in the hope of reproducing all the
basic features of the unknown solution with a good accuracy.Due to the wide range of appli-
cations, there is a growing interest in this kind of regularization, and many numerical schemes
have been recently presented in various contexts; we cite [11] and the references therein for
an overview.

In this paper we mainly focus the attention on linear discrete ill-posed problems (see
[8, Chap. 1] for a background) and we assume that the available right-hand side vectorb is
affected by noise, caused by measurement or discretizationerrors. Therefore, throughout the
paper we suppose that

b = b + e,

whereb represents the unknown noise-free right-hand side, and we denote byx the solution
of the error-free systemAx = b.

In the multi-parameter Tikhonov regularization setting, denoting by
Λ = (λ1, . . . , λk)T the vector of the regularization parameters (λi ≥ 0, i = 1, ..., k, Λ 6= 0)‡

and byL = {L1, . . . , Lk} the set of regularization matrices, a regularized solutionxΛ,L is
defined as

(1.1) xΛ,L = arg min
x∈RN

J(x,Λ,L), whereJ(x,Λ,L) = ‖Ax − b‖2
+

k∑

i=1

λi ‖Lix‖2
.

Here and in the sequel, the norm used is always the Euclidean norm.
While the multi-parameter regularization is theoreticallysuperior to any single-parameter

regularization which uses one of the matricesLi in (1.1), the main problem is that in practice
it may be quite difficult to work simultaneously with more than one regularization matrix and
to suitably define the regularization parametersλi. The existing methods for the automatic
choice of the parameters are essentially based on the generalized L-curve criterion (e.g., [2])
and on the generalization of the GCV criterion; see [4]. More recently an algorithm based on
the knowledge of the noise structure has been introduced in [1].
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In many real applications, the noisy datab is known to satisfy

‖b − b‖ ≤ ε,

so that the use of the discrepancy principle [13] may be considered even in the case of the
multi-parameter regularization. Indeed, in [11] the authors introduce an algorithm for the
definition of the regularization parameters based on the numerical solution with respect toΛ
of the equation,

(1.2) ‖AxΛ,L − b‖ = ηε, η ≥ 1.

Up to now, to the best of our knowledge, such technique seems to be the only existing one
based on the discrepancy principle in the framework of the multi-parameter regularization.

In this paper, we solve (1.1) using an iterative scheme called Arnoldi-Tikhonov (AT)
method, first proposed in [5] in the case of the single-parameter regularization with
L = {IN}, whereIN denotes the identity matrix of orderN . This method has proved to
be particularly efficient when dealing with large scale problems, as for instance the ones aris-
ing from image restoration. Indeed, it is based on the projection of the original problem (1.1)
onto Krylov subspaces of smaller dimensions computed by theArnoldi algorithm.

Using an iterative method for (1.1) we automatically introduce a new parameter to be
determined, that is, the number of iterations. Let us denoteby x

(m)
Λ them-th approximation

arising from the Arnoldi-Tikhonov process (from now we omitindicating the dependency on
L, since this set is assumed to be fixed). The algorithm here proposed for the definition ofΛ
and to stop the procedure, is based on the solution of

∥∥∥Ax
(m)
Λ − b

∥∥∥ = ηε,

at each step, by means of a linear approximation (with respect to each parameterλi,
i = 1, ..., k) of the function,

φ(m)(Λ) =
∥∥∥Ax

(m)
Λ − b

∥∥∥ .

This method generates a sequence of regularization vectorsΛ(m), m ≥ 1, whose compo-
nentsλ(m)

i are automatically defined. The idea extends the one studied in [6] for the single-
parameter case, which has been shown to be competitive with existing ones for Krylov type
solvers; see, e.g., [5, 10, 16].

The paper is organized as follows. In Section2, we explain the use of the AT method for
the solution of (1.1). In Section3, we describe our scheme for the choice of the parameter
vectorΛ. In Section4, we explain the algorithm associated to the new method alongwith a
computationally cheaper variant. In Section5, we display the main results obtained perform-
ing common test problems. Finally, in Section6, we provide some concluding remarks. We
also include an AppendixA, which reports some tables that summarize various meaningful
results related to the experiments described in Section5.

2. The Arnoldi-Tikhonov method. Let us work in the single parameter case with
Λ = {λ} andL = {L}. The Arnoldi-Tikhonov (AT) method was introduced in [5] with
the basic aim of reducing the problem,

(2.1) min
x∈RN

{
‖Ax − b‖2 + λ‖Lx‖2

}
, whereλ > 0 andL = IN ,

to a problem of much smaller dimension. The idea is to projectthe matrixA onto the Krylov
subspaces generated byA and the vectorb, i.e.,Km(A, b) = span{b, Ab, . . . , Am−1b} with
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m ≪ N . The method was also introduced to avoid the matrix-vector multiplication with
AT required by Lanczos type schemes; see, e.g., [3, 5, 9, 15]. To construct the Krylov sub-
spaces, the AT method employs the Arnoldi algorithm (see [17, Section 6.3] for an exhaustive
background), which yields the decomposition,

(2.2) AVm = Vm+1H̄m,

whereVm+1 = [v1, . . . , vm+1] ∈ R
N×(m+1) has orthonormal columns which span the

Krylov subspaceKm+1(A, b) andv1 is defined asb/ ‖b‖. The matrixH̄m ∈ R
(m+1)×m

is an upper Hessenberg matrix. Denoting byhi,j the entries ofH̄m, in exact arithmetic the
Arnoldi process terminates wheneverhm+1,m = 0, which meansKm+1(A, b) = Km(A, b).

The AT method searches for approximations of the solution ofthe problem (2.1) belong-
ing to Km(A, b). In this sense, substitutingx = Vmym (ym ∈ R

m) into (2.1), yields the
reduced minimization problem,

(2.3) min
ym∈Rm

{∥∥H̄mym − V T
m+1b

∥∥2
+ λ ‖ym‖2

}
,

sinceV T
m+1Vm+1 = Im+1. Remembering thatv1 = b/‖b‖ we also have

V T
m+1b = ‖b‖e1 wheree1 = (1, 0, . . . , 0)T ∈ R

m+1.

Looking at (2.3), we can say that the AT method can be regarded to as a regularized version
of the GMRES.

The method considered in this paper is an extension of the AT method in order to work
with one or more regularization operators not necessarily equal to the identity matrix. In
detail, substituting, as before,x = Vmym (ym ∈ R

m) into (1.1) and using (2.2), we have that

min
x∈Km(A,b)

J(x,Λ,L) = min
ym∈Rm

{
∥∥H̄mym − ‖b‖ e1

∥∥2
+

k∑

i=1

λi ‖LiVmym‖2

}
(2.4)

= min
ym∈Rm

∥∥∥∥∥∥∥∥∥




H̄m√
λ1L1Vm

...√
λkLkVm


 ym −




‖b‖ e1

0
...
0




∥∥∥∥∥∥∥∥∥

2

.(2.5)

In the sequel we will refer to (2.5) as least squares formulation of the multi-parameter Arnoldi-
Tikhonov method. We emphasize that the above strategy can beapplied even when the reg-
ularization matrices are rectangular, as for instance whenconsidering scaled finite difference
approximations of the derivative operators. However, we remark that, contrary to (2.3), the
original dimension of the problem is only partially reduced, sinceLiVm ∈ R

(N−pi)×m if
Li ∈ R

(N−pi)×N .
SinceH̄m = V T

m+1AVm, if Li ∈ R
N×N , i = 1, ..., k, one may even consider the

projected operators,

(2.6) K
(m)
i = V T

m+1LiVm,

and hence the reduced minimization,

(2.7) min
ym∈Rm

{∥∥H̄mym − ‖b‖ e1

∥∥2
+
∑m

i=1
λi

∥∥∥K(m)
i ym

∥∥∥
2
}

.
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Even if problem (2.7) is not equivalent to the original one (2.4), many numerical experiments
have revealed that the use of (2.6) is worthy of further investigation. However, it is impor-
tant to point out that, in fact, the computational cost associated to the solution of (2.7) is
comparable with the one of (2.5), because of the operation (2.6).

Finally, we remark that if an initial approximationx0 of the solutionx̄ is available,
then we can incorporate it into the Arnoldi-Tikhonov schemeby defining the initial residual
r0 = b − Ax0 and by considering the Krylov subspacesKm(A, r0). Consequently, the
approximate solution of the problem (1.1) is of the formxm = x0 + Vmym and in the
expressions (2.3), (2.4), (2.5), (2.7), we simply have to substituteb with r0; cf. [6].

3. The parameter selection strategy.As already said in the introduction, if we assume
that the quantityε = ‖b − b‖ is known, it turns out that a successful strategy to defineΛ, as
well as a stopping criterion, is the discrepancy principle (1.2) adapted to the iterative setting

of the AT method. At each iteration we can define the functionφ(m)(Λ) =
∥∥∥b − Ax

(m)
Λ

∥∥∥,

and we say that the discrepancy principle is satisfied as soonas

φ(m)(Λ) ≤ ηε, where η ' 1.

We remark that, if we rather know the noise levelε̃ = ‖e‖/‖b‖, then the discrepancy principle
reads

(3.1) φ(m)(Λ) = ηε̃‖b‖.

We immediately note that, since for the AT method the approximations are of the form
x

(m)
Λ = Vmy

(m)
Λ ∈ Km(A, b), wherey

(m)
Λ solves (2.5), the discrepancy can be rewritten

as

(3.2) φ(m)(Λ) = ‖b − AVmy
(m)
Λ ‖ = ‖c − H̄my

(m)
Λ ‖,

wherec = ‖b‖e1 ∈ R
m+1.

Now we briefly focus on the casek = 1, since the strategy derived to choose the com-
ponents of the regularization vectorΛ in the multi-parameter case is a generalization of the
algorithm for the single-parameter case.

3.1. The one-parameter case.As in Section2, here we denote the unique regulariza-
tion parameter and operator simply byλ andL, respectively. The method that we are going
to describe has been introduced in [6] and has already been used in [14]; we underline that it
is able to simultaneously determine suitable values for both λ andm. Our basic hypothesis is
that the discrepancy can be well approximated by

(3.3) φ(m)(λ) ≈ α(m) + λβ(m),

i.e., by a linear function with respect toλ, in whichα(m), β(m) ∈ R can be easily computed
or approximated.

Sincey
(m)
λ solves the normal equations,

(H̄T
mH̄m + λV T

mLT LVm)y
(m)
λ = H̄T

mc,

associated with the least square problem (2.5) with k = 1, by (3.2) we obtain

(3.4) φ(m)(λ) =
∥∥H̄m(H̄T

mH̄m + λV T
mLT LVm)−1H̄T

mc − c
∥∥ .
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For the computation ofα(m) in (3.3), the Taylor expansion of (3.4) suggests the choice

α(m) = φ(m)(0) =
∥∥H̄m(H̄T

mH̄m)−1H̄T
mc − c

∥∥ ,

which is just the norm of the residual of the GMRES iterate, which can be evaluated working
in reduced dimension, by solving the least squares problem

(3.5) min
y∈Rm

∥∥H̄my − c
∥∥ .

For the computation ofβ(m), suppose that, at stepm, we have used the parameterλ(m−1)

(obtained at the previous step or, ifm = 1, given by the user) to computey(m)

λ(m−1) by solving
(2.5) with λ = λ(m−1). The corresponding discrepancy is

φ(m)(λ(m−1)) =
∥∥∥c − H̄my

(m)

λ(m−1)

∥∥∥ ,

and consequently, using the approximation (3.3), we obtain

(3.6) β(m) =
φ(m)(λ(m−1)) − α(m)

λ(m−1)
.

To selectλ(m) for the next step of the Arnoldi-Tikhonov algorithm we impose

(3.7) φ(m)(λ(m)) = ηε

and we force the approximation

(3.8) φ(m)(λ(m)) = α(m) + λ(m)β(m);

Hence, by (3.6) and (3.7), we define

(3.9) λ(m) =
ηε − α(m)

φ(m)(λ(m−1)) − α(m)
λ(m−1).

The method (3.9) has a simple geometrical interpretation which allows it tobe seen as
a zero finder. Indeed, with this choice ofα(m) andβ(m), the functionφ(m)(λ) is linearly
interpolated at(0, α(m)) and(λ(m−1), φ(m)(λ(m−1))); looking at (3.8), we understand that,
at each iteration of the Arnoldi-Tikhonov method, a step of asecant-like zero-finder for the
solution of (3.7) is performed; see, again, [6].

We remark that in the first iterations of (3.9) instability can occur, due to the fact that we
may haveα(m) ≫ ηε. In this situation the result of (3.9) may be negative (recall that the
functionφ(m)(λ) is increasing and is only defined forλ > 0); therefore, we consider

(3.10) λ(m) =

∣∣∣∣
ηε − α(m)

φ(m)(λ(m−1)) − α(m)

∣∣∣∣λ
(m−1).

Numerically, formula (3.10) is very stable, in the sense that after the discrepancy principle
is satisfied,λ(m) ≈ const for growing values ofm. We address the fact that this parameter
choice technique can also be used together with the Range-Restricted approach [10] and even
in the case of Krylov methods based on the Lanczos bidiagonalization process [5].

Finally we note that, with respect to the strategies used so far in connection with the AT
method, the present one is intrinsically simpler and cheaper; indeed it essentially involves
quantities that are strictly connected to the projected problem and the only additional com-
putations are performed in reduced dimension. More specifically, the computation of the
GMRES residual requiresO(m2) operations (if the QR update is not employed, otherwise
justO(m)).
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3.2. The multi-parameter case.As pointed out by many works in the literature (cf.,
for example, [4] and [11]), the most natural way to face a multi-parameter problem isto first
solve some single-parameter problems, one for each regularization matrix, and then to find a
connection between all the problems. In our case, at them-th step of the Arnoldi-Tikhonov
algorithm and for a givenj, 1 ≤ j ≤ k, we consider the problem,

(3.11) min
ym∈Rm

∥∥∥∥∥∥∥∥∥∥∥∥∥




H̄m√
λ

(m)
1 L1Vm

...√
λ

(m)
j−1Lj−1Vm√
λLjVm




ym −




‖b‖ e1

0
...
0
0




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

,

which is aj-parameter Arnoldi-Tikhonov scheme; it can also be regarded as a reduced version
of the system (2.5), where the corresponding regularization vector is

(3.12) Λ =
(
(Λ

(m)
j−1)

T , λ, 0, . . . , 0
)T

, where Λ
(m)
j−1 = (λ

(m)
1 , . . . , λ

(m)
j−1)

T .

According to the notation that we have used in the one-parameter case, this means that
we have already solved, in a sequential way,(j − 1) reduced problems obtained adding to
the original projected problem (3.5) a new regularization term and that we have determined
the suitable regularization parametersλ

(m)
1 , . . . , λ

(m)
j−1, for the problems so far considered.

Therefore, now the task is to determine the parameterλ
(m)
j . Since we only have to update

one parameter, we can use the strategy employed for the single parameter AT method. We
define the function

(3.13) φ
(m)
j (λ) = φ(m)(Λ) =

∥∥∥c − H̄my
(m)
Λ,j

∥∥∥ , Λ =
(
(Λ

(m)
j−1)

T , λ, 0, . . . , 0
)T

,

wherey
(m)
Λ,j is the solution of (3.11). In this framework, the normal equations associated with

the problem (3.11) are
(

H̄T
mH̄m +

j−1∑

i=1

λ
(m)
i V T

m LT
i LiVm + λV T

mLT
j LjVm

)
y
(m)
Λ,j = H̄T

mc.

As before, we are looking for a linear approximation, with respect to the parameterλ, of the
discrepancy associated with the reduced multi-parameter problem so far considered, i.e.,

(3.14) φ
(m)
j (λ) ≈ α

(m)
j + λβ

(m)
j .

Analogously to the one-parameter case, to obtainα
(m)
j we considerλ = 0, that is,

α
(m)
j = φ

(m)
j (0) =

∥∥∥∥∥∥
H̄m

(
H̄T

mH̄m +

j−1∑

i=1

λ
(m)
i V T

m LT
i LiVm

)−1

H̄T
mc − c

∥∥∥∥∥∥
.

Observing the above expression, we see that now we have to deal with the discrepancy asso-
ciated to the(j − 1)-parameter method with vector of the regularization parameters given by
Λ

(m)
j−1. Using the definition (3.13) we also have

(3.15) α
(m)
j = φ(m)(Λ

(m)
j−1).
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We emphasize that, to obtain the quantityα
(m)
j , we have to solve again the(j − 1)-parameter

problem with the regularization vector given byΛ
(m)
j−1. Of course, whenj = 1, the determi-

nation ofλ(m)
1 again requires the computation of the solution of the problem (3.5) as in the

one-parameter case, i.e.,α
(m)
1 = φ

(m)
1 (0) is still the residual of them-th GMRES iterate.

Regarding the quantityβ(m)
j , once we have solved (3.11) for λ = λ

(m−1)
j , we obtain

(3.16) φ
(m)
j (λ

(m−1)
j ) =

∥∥∥c − H̄my
(m)
Λ,j

∥∥∥ , Λ =
(
(Λ

(m)
j−1)

T , λ
(m−1)
j , 0, . . . , 0

)T

,

and consequently, using the approximation (3.14), we get

β
(m)
j =

φ
(m)
j (λ

(m−1)
j ) − α

(m)
j

λ
(m−1)
j

.

Finally, imposingφ
(m)
j (λ

(m)
j ) = ηε and forcing again (3.14), we compute the newj-th

component of the regularization vector as

λ
(m)
j =

ηε − α
(m)
j

φ
(m)
j (λ

(m−1)
j ) − α

(m)
j

λ
(m−1)
j .

As in the one-parameter case, the computation of eachλ
(m)
j , j = 1, . . . , k, can be mean-

ingless for the first few iterations, since whenηε is larger thanα(m)
j , the values ofλ(m)

j are
negative. For this reason we consider

(3.17) λ
(m)
j =

∣∣∣∣∣
ηε − α

(m)
j

φ
(m)
j (λ

(m−1)
j ) − α

(m)
j

∣∣∣∣∣λ
(m−1)
j .

At this point, if j < k we add a regularization term and we repeat the previous computation
with j+1 instead ofj; otherwise, ifj = k, the solutiony(m)

Λ,k of (3.11) is indeed the solution of

the complete multi-parameter problem (2.5). We stop the iterations as soon asφ(m)(Λ) ≤ ηε.

3.3. Geometrical interpretation. We close this section suggesting a geometrical inter-
pretation of the above proposed scheme. For simplicity we treat the casek = 2, but the
exposed ideas can be generalized to an arbitrary number of regularization terms. We fix an
indexm and a Cartesian coordinate system(λ1, λ2, z). Consideringz = φ(m)(λ1, λ2) we
obtain a differentiable surface inR3; solving (1.2) means finding the intersections between
the just mentioned surface and the horizontal planez = ηε; see Figure3.1, upper frame.
The strategy described above prescribes to initially takeλ2 = 0; in this way we work on
the plane(λ1, z) and the approximate solutionλ(m)

1 of φ(m)(λ1, 0) = φ
(m)
1 (λ1) = ηε is the

intersection betweenz = α
(m)
1 + λ1β

(m)
1 andz = ηǫ if this scalar is positive, otherwise

its absolute value; see Figure3.1, lower leftmost frame. At this point we takeλ1 = λ
(m)
1 ,

that is, we work on the plane(λ(m)
1 , λ2, z); the new valueλ(m)

2 is the approximate solution of

φ(m)(λ
(m)
1 , λ2) = φ

(m)
2 (λ2) = ηε, which is the intersection betweenz = α

(m)
2 +λ2β

(m)
2 and

z = ηǫ if this scalar is positive, otherwise its absolute value; see Figure3.1, lower rightmost
frame; in this case we display what happens when the quantityα

(m)
2 is larger than the noise

level.
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λ
1
(m) λ

1
(m−1) λ

1

φ
1
(m)(λ

1
)

α
1
(m)

ηε

z

λ
2
=0

ηε

α
2
(m)

λ
2

φ
2
(m)(λ

2
)

λ
2
(m) λ

2
(m−1)

z

λ
1
=λ

1
(m)

FIG. 3.1.Geometric interpretation of the strategy proposed to find the values of the regularization parameters
when performing Arnoldi-Tikhonov multi-parameter methodin the casek = 2 and for a fixedm. Upper frame:

plot of the surfacez = φ(m)(λ1, λ2) along with the planesz = ηε and λ1 = λ
(m)
1 . Lower leftmost frame:

plot of the curveφ(m)
1 (λ1) = φ(m)(λ1, 0) on the planeλ2 = 0; we also display the thresholdηε, and the

considered linear approximation and the computed new valueλ
(m)
1 . Lower rightmost frame: plot of the curve

φ
(m)
2 (λ2) = φ(m)(λ

(m)
1 , λ2) on the planeλ1 = λ

(m)
1 ; we also display the thresholdηε, and the considered

linear approximation and the computed new valueλ
(m)
2 (note that, in this case,α(m)

2 > ηε).

4. Algorithms. In this section, we summarize the method described above andwe pro-
pose a computationally cheaper variant of the following algorithm.

ALGORITHM 4.1. Multi-parameter Arnoldi-Tikhonov
1. Input: A, b, L = {L1, . . . , Lk}, Λ = (λ

(0)
1 , . . . , λ

(0)
k ), x0, ε, η

2. For m = 1, 2, ... until ‖c − H̄my
(m)
Λ ‖ ≤ ηε

(a) UpdateVm, H̄m by the Arnoldi algorithm (2.2).
(b) For j = 1, . . . , k − 1

i. Solve (3.11) with the parameters((Λ(m)
j−1)

T , λ
(m−1)
j )T and evaluateφ(m)

j (λ
(m−1)
j )

by (3.16).
ii. Solve (3.11) with the parameters((Λ(m)

j−1)
T , 0)T and evaluateφ(m)

j (0) by
(3.16).

iii. Compute the new parameterλ
(m)
j by (3.17) and thenΛ(m)

j (cf. (3.12)).

(c) Compute the vectory(m)
Λ := y

(m)
Λ,k by solving the complete problem (2.5), with

Λ = ((Λ
(m)
k−1)

T , λ
(m−1)
k )T .

(d) Compute the new parameterλ
(m)
k by (3.17) and then updateΛ.

3. Compute the approximate solutionx = Vmy
(m)
Λ .
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Algorithm 4.1 follows the discussion of the previous section, and hence requires the
solution of each reduced system twice (for eachj = 1, . . . , k), in order to sequentially update
the values of the components of the regularization vectorΛ. There is however a cheaper
alternative that consists in not using the updated values ofthe parameter. In other words,
for j = 1, . . . k − 1, we do not need to replaceλ(m−1)

j by λ
(m)
j , but we can work with the

regularization vector((Λ(m−1)
j−1 )T , λ

(m−1)
j )T = (λ

(m−1)
1 , . . . , λ

(m−1)
j−1 , λ

(m−1)
j )T at Step2bi.

The new expression ofα(m)
j is now (cf. (3.15))

(4.1) α
(m)
j = φ(m)(Λ

(m−1)
j−1 ).

This alternative approach, described by Algorithm4.2, requires only one solution of (3.11),
for j = 1, . . . , k, at each step.

ALGORITHM 4.2. Multi-parameter Arnoldi-Tikhonov without intermediate update
1. Input: A, b, L = (L1, . . . , Lk), Λ = (λ

(0)
1 , . . . , λ

(0)
k ), x0, ε, η

2. For m = 1, 2, ... until ‖c − H̄my
(m)
Λ ‖ ≤ ηε

(a) UpdateVm, H̄m by the Arnoldi algorithm (2.2).
(b) For j = 1, . . . k

i. Solve (3.11) with the parameters(Λ(m−1)
j−1 )T and evaluateφ(m)

j (λ
(m−1)
j )

by (3.16).
ii. Takeα

(m)
j as in (4.1).

iii. Compute the new parameterλ
(m)
j by (3.17).

(c) Update the vectorΛ = (λ
(m)
1 , . . . , λ

(m)
k ).

3. Compute the approximate solutionx = Vmy
(m)

Λ(m−1) .

The numerical tests reported in AppendixA show that this strategy can compute regu-
larized solutions whose relative error is still comparableto the one of the solutions obtained
running Algorithm4.1. However, the number of iterations required to return the solution is,
on average, larger than for the former method.

REMARK 4.3. In our computations both Algorithm4.1 and Algorithm4.2 have been
implemented with some minor changes regarding the stoppingcriterion. Indeed we have
employed a sort ofweakened discrepancy principle, that is, we stop the iterations as soon as

(4.2) φ(m)(λ) − ηε̃‖b‖ < 10θ,

whereθ < 0 is automatically determined as the sum of the order of the noise level̃ε and of the
order of the last significant digit ofη. In this way, when applying the discrepancy principle,
we neglect any quantity coming after the last significant digit of the product̃εη. For instance,
if ε̃ = 10−2 andη = 1.01 thenθ = −4 and we stop the iterations as soon as

φ(m)(λ)/‖b‖ ≤ 1.01 · 10−2 + 9.9̄ · 10−5.

We remark that, if the “classical”discrepancy principle (3.1) is fulfilled, then also (4.2) is sat-
isfied. We introduced this weakened version of the discrepancy principle because, while exe-
cuting the numerical experiments, we noted that very often the discrepancy stagnates slightly
above the prescribed threshold without crossing it and, when performing too many iterations,
the quality of the approximate solution deteriorates. At the same time, we decide to enforce
the stopping criterion in order to assure that not only the solution y

(m)
Λ of the complete prob-

lem but also all the solutions of the reduced regularizationproblems satisfy the weakened
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discrepancy principle (4.2), that is,φ(m)
j (λ

(m−1)
j ) − ηε̃‖b‖ < 10θ ∀j = 1, . . . , k − 1. This

is a quite natural choice, since the solution of the multi-parameter problem is formed taking
into account thek solutions of the associated one-parameter problems.

5. Numerical experiments. In this section we test the behavior of Algorithm4.1 to
solve multi-parameter problems. We believe that the best way to validate the method just
described is to make suitable comparisons with what happensin the one-parameter case; in
the sequel we will explain the details and the goal of each experiment. We will exclusively
focus on two-parameter and three-parameter cases. All the test problems are taken from
Hansen’s packageRegularization Tools[7].

In all the examples we assume that we know the exact solutionx and that the exact
right-hand side vector is either given in [7] or constructed by takingb = Ax. The elements
of the noise vectore are normally distributed with zero mean and the standard deviation is
chosen such that‖e‖/‖b‖ is equal to a prescribed levelε̃. Moreover, we always consider the
initial guessx0 = 0 and we setη = 1.01 andΛ = (1, . . . , 1)T ∈ R

k. Following [11], each
test problem is generated 100 times to reduce the dependenceof the results on the random
components of the vectore. All the computations have been executed using MATLAB 7.10
with 16 significant digits on a single processor computer Intel Core i3-350M.

Before describing each test, we list the regularization matrices that we have employed:
• The identity matrixIN ∈ R

N×N .
• Scaled finite difference approximations of the first and second order derivatives, i.e.,

D1 : =




1 −1
. ..

.. .
1 −1


 ∈ R

(N−1)×N ,(5.1)

D2 : =




1 −2 1
. ..

.. .
. . .

1 −2 1


 ∈ R

(N−2)×N ,(5.2)

whose null spaces are given byN (D1) = span
{
(1, 1, . . . , 1)T

}
⊂ R

N and
N (D2) = span

{
(1, 1, . . . , 1)T , (1, 2, . . . , N)T

}
⊂ R

N .
• Square projection matrices built using the strategy suggested in [12]: given

M ∈ R
N×ℓ we compute the “skinny” QR factorizationM = WR (where

W ∈ R
N×ℓ andR ∈ R

ℓ×ℓ) and we take, as regularization matrix

(5.3) L := IN − WWT ∈ R
N×N .

In this way the null space ofL is spanned by the orthonormal columns ofW . This
kind of matrix is particularly useful when we want to consider a regularization oper-
ator with a given null space different from the ones of the commonly used operators
(5.1) and (5.2).

5.1. Results obtained considering particular solutions.The aim of the first set of
experiments is to show that, when applying the multi-parameter method to a problem whose
exact solutionx lies in the null space of the regularization operatorLi, the parameter selection
strategy correctly weights thei-th component of the regularization vectorΛ by assigning to
λi a value dominating the other components. Indeed, in this situation, the regularization
operatorLi is the most suitable one, since the important features of thesolution are not
damped. Therefore, we start to consider two particular exact solutions: the constant one,
xc := (1, 1, . . . , 1)T ∈ R

N , and the linear one,xl := (1, 2, . . . , N)T ∈ R
N ; as recalled in the
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above list,xc ∈ N (D1) ∩ N (D2), while xl ∈ N (D2). For this reason we will employ both
two- and three-parameter methods with different combinations of the regularization matrices
IN , D1, andD2.
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FIG. 5.1. Results obtained running 100 times the test problemi laplace with the particular solutionxc

(we plot one single marker for each performed test). Upper frame: we report the values of the relative errors in
logarithmic scale on the horizontal axis and, at each vertical level, we mark the values corresponding to theI200
one-parameter (circle), theD1 one-parameter (square), and the(I200, D1) two-parameter (asterisk) methods.
Lower frame: we report the values of the regularization parameters in logarithmic scale on the horizontal axis and,
at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-parameter
(square), and the(I200, D1) two-parameter (asterisk) methods; concerning the multi-parameter method, the first
line (labelled byI200) refers to the parameter that weights the term‖x‖2, while the second line (labelled byD1)
refers to the parameter that weights the term‖D1x‖2.

First, we take the solutionxc and consider the matrix of sizeN = 200 associated with
the problemi laplace. The noise level is̃ε = 10−2 and we determine a regularized
solution by using the(I200,D1) two-parameter method. To illustrate what happens using the
single-parameter Tikhonov method, for each test we also report results obtained considering
exclusivelyL = I200 andL = D1. We display the results for 100 different noisy right-hand
sides in Figure5.1. We can clearly see that, with very few exceptions, the components of
the regularization vector associated withI200 andD1 replicate the behavior of the parameter
of the Tikhonov method withL = I200 and L = D1, respectively. This means that, in
the regularization process, the most appropriate regularization operator, in this caseD1, gets
a larger weight than the others. In almost all cases, the solutions of theI200 andD1 one-
parameter methods belong to Krylov subspaces of dimensions5 and 6, respectively, while
most of the solutions associated to the two-parameter method belong to Krylov subspaces of
dimensions 6 or 7. In Figure5.2 we focus on a single test and we display the course of the
relative error, the regularization parameters, and the discrepancies of the examined methods
at each step of the Arnoldi algorithm. Looking at both figureswe can see that the quality
of the solutions computed by the multi-parameter method does not improve with respect to
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FIG. 5.2. Behavior of the relative errors, regularization parameters and discrepancies versus the number of
iterations for the test problemi laplace with solutionxc. Upper box: we consider the multi-parameter method
(asterisk), theI200 one-parameter method (circle), and theD1 one-parameter method (square); middle box: we
display the values of the parametersλ1 associated toI200 (asterisk with dashed line) andλ2 associated toD1

(asterisk with dash-dot line) and the values of the parameters of the two one-parameter methods considered above
(with the same markers as listed above); lower box: the norm of the residual of the GMRES over‖b‖ (circle) and

the discrepanciesφ(m)
1 /‖b‖ associated to the first regularization term (square),φ

(m)
2 /‖b‖ associated to the second

regularization term (diamond).

the results for theD1 one-parameter method. However, this is quite reasonable since, as
said in the introduction, the task of the multi-parameter method is to preserve many different
features of the solution; when, as in this case, the solutionbelongs to the null space of one of
the considered operators, the one-parameter method with that regularization operator is the
one that works the best.

Now we consider the matrix associated to the problemphillips with N = 200 and
take, as exact solution, the linear onexl; the noise level is agaiñε = 10−2. We compute
the regularized solution employing the three-parameter method with regularization matrices
L1 = I200, L2 = D1, andL3 = D2. We display the results in Figure5.3 together with
our results for the same problem with theI200, D1, D2 one-parameter methods. Even in
this case the parameter selection strategy assigns the largest parameter value to the matrix
whose null space contains the exact solution (in this case,D2). Regarding the number of
iterations required to satisfy the weakened discrepancy principle, the three-parameter method
needs in most of the cases 8, 11, or 13 iterations, theI200 one-parameter method requires 7
or 8 iterations, while both theD1 andD2 one-parameter methods demand 8 or 9 iterations.
In Figure5.4we show the relative errors of the regularization parameters and of the discrep-
ancies versus the number of iterations for the problemshaw of size 200. We take again the
linear vectorxl as exact solution.

The method has been applied to the most popular test problemsof [7], all of dimension
N = 200, using the two particular solutionsxc andxl. We also consider two different noise
levels (̃ε = 10−2 andε̃ = 5 · 10−2) and several combinations of regularization operators. We
summarize the obtained results in TablesA.1, A.2, A.3, andA.4 reported in AppendixA.
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FIG. 5.3.Results obtained running 100 times the test problemphillips with the particular solutionxl (we
plot one single marker for each performed test). Upper frame: we report the values of the relative errors on the
horizontal axis and, at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), the
D1 one-parameter (square), theD2 one-parameter (diamond), and the(I200, D1, D2) three-parameter (asterisk)
methods. Lower frame: we report the values of the regularization parameters in logarithmic scale on the horizontal
axis and, at each vertical level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-
parameter (square), theD2 one-parameter (diamond), and the(I200, D1, D2) three-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labelled byI200) refers to the parameter that weights the term
‖x‖2, the second line (labelled byD1) refers to the parameter that weights the term‖D1x‖2, and the third line
(labelled byD2) refers to the parameter that weights the term‖D2x‖2.

Finally, we consider experiments with the artificial solutions

(5.4) xsin = x(a) + x(b) := 10 sin
(x

2

)
+ x ∈ R

N ,

(5.5) xtan = x(a) + x(b) :=
1

10
tan

(
x

N + 1

π

2

)
+ x ∈ R

N .

Herexsin is oscillating whilextan is quickly increasing. These expeiments are motivated
by the fact that the pair of matrices (5.1) and (5.2) considered so far represents a particular
situation, sinceN (D1) ⊂ N (D2). Taking instead the solution (5.4) or (5.5), by (5.3) we
can build two particular regularization matricesL(a) andL(b) such thatx(a) ∈ N (L(a)),
x(b) ∈ N (L(b)) andN (L(a)) ∩ N (L(b)) = {0}. Consequently, neitherxsin norxtan belong
to the null space of the matricesL(a) or L(b). In this way we can really appreciate that the
essence of the multi-parameter methods is, as said in the introduction, to preserve many dif-
ferent features of the solution of the original problem thatmay be distorted imposing only
one regularization operator. For both solutions we consider the matrixA ∈ R

200×200 associ-
ated to the test problemfoxgood, a noise level̃ε = 10−2, and the regularization matrices
L1 = L(a), L2 = L(b). We display the results for (5.4) and (5.5) in Figure5.5.

5.2. Results for more general solutions.In the second set of computed experiments
we simply consider the most common test problems in [7] with their appropriate solution.
We are just going to display some graphs that compare the performances of the new multi-
parameter method and the usual Arnoldi-Tikhonov method. Weconsider the regularization
matricesIN , D1, andD2.
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FIG. 5.4. Behavior of the relative errors, regularization parameters and discrepancies versus the number of
iterations for the test problemshaw with solutionxl. The displayed quantities are the same as in Figure5.2and are
denoted by the same markers. In addition: in the upper box we visualize theD2 one-parameter method (diamond);
in the middle box we visualize the parameterλ3 (asterisk with solid line) that weights the term‖D2x‖2 of the multi-
parameter method along with the regularization parameter associated to theD2 one-parameter method (diamond);

in the lower box we visualize the discrepancyφ
(m)
3 /‖b‖ (hexagram) associated to the third regularization term.

Figure5.6displays the behavior of the relative errors and the values of the regularization
parameters obtained when solving the test problemi laplace of dimensionN = 200
with noise of levelε̃ = 10−2 in the right-hand-side vector. We consider theI200 andD1

one-parameter methods and the(D1, I200) two-parameter method. We remark that, when
performing the multi-parameter method, the results can be affected by the order in which the
regularization matrices appear. Indeed, looking at the parameters selection strategy described
in subsection3.2, we can understand that the first regularization matrix (in this case,L1) is
weighted similarly to the one-parameter case, while the following ones work as corrections.
This is a consequence of the fact that many reduced problems are solved sequentially and
each one is based on the solutions and on the parameters associated to the previous ones; in
this sense the first regularization operator is somehow advantaged with respect to the others.
Therefore, if one has some intuition about the regularity ofthe solution, we suggest to put
in the first place the most suitable regularization matrix. TablesA.5 and A.6 reported in
AppendixA collect results obtained by considering one-, two-, and three-parameter methods
with various combinations of the usual regularization matrices and two different noise levels.

5.3. Further considerations. In this subsection we highlight a couple of important fea-
tures of the new method that we noted while carrying out the numerical experiments just
described.

The first property is that the AT multi-parameter method is very robust with respect to
the initial choice of the regularization vectorΛ, that is, considering different values of the
components ofΛ, the accuracy of the results and the number of iterations arebasically stable.
In Figure5.7 we display the values of the regularization parameters obtained by solving the
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FIG. 5.5. Results obtained running 100 times the test problemfoxgood with the particular solutionsxsin

(first and second frames) andxtan (third and fourth frames); as before, we plot one single marker for each performed
test. The regularization operatorsL(a) andL(b) are projection operators of the form (5.3). First and third frames:
we report the values of the relative errors on the horizontalaxis and, at each vertical level, we mark the values
corresponding to theL(b) one-parameter (circle), theL(a) one-parameter (square), and the(L(a), L(b)) two-
parameter (asterisk) methods. Second and fourth frames: wereport the values of the regularization parameters in
logarithmic scale on the horizontal axis and, at each vertical level, we mark the values corresponding to theL(b)

one-parameter (circle), theL(a) one-parameter (square), and the(L(a), L(b)) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labelled byL(a)) refers to the parameter that weights the first
regularization term (i.e., the one that acts on thex(a) component of the solutions (5.4) and (5.5)), and the second
line (labelled byL(b)) refers to the parameter that weights the second regularization term (i.e., the one that acts on
thex(b) component of the solutions (5.4) and (5.5)).
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FIG. 5.6.Results obtained running 100 times the test problemi laplace (we plot one single marker for each
performed test). Upper frame: we report the values of the relative errors on the horizontal axis and, at each vertical
level, we mark the values corresponding to theI200 one-parameter (circle), theD1 one-parameter (square), and the
(D1, I200) two-parameter (asterisk) methods. Lower frame: we report the values of the regularization parameters
in logarithmic scale on the horizontal axis and, at each vertical level, we mark the values corresponding to theI200
one-parameter (circle), theD1 one-parameter (square), and the(D1, I200) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (labelled byD1) refers to the parameter that weights the term
‖D1x‖2, while the second line (labelled byI200) refers to the parameter that weights the term‖x‖2.

test problemshaw of dimensionN = 200 and taking as exact solution the one given in [7];
the noise level is̃ε = 10−2. We have employed the(I200,D1,D2) three-parameter method
and carried out four tests with initial vectorΛ whose three entries are all equal to0.5, 1,
10, or 100. We can see that, except in the very first iterations, the behavior of eachλi,
i = 1, 2, 3, is very similar independently of the initial valueλ(0)

i . We have also considered
different components of the initial vectorΛ and the results, even if not shown, are identical
to the ones just described.

The second property is about the performance of the method when many extra itera-
tions are executed after the stopping criterion is fulfilled. Despite that we had to review the
stopping criterion introducing the weakened discrepancy principle (cf. Section4), we can ap-
preciate that in many cases the behavior of the method is verystable even when we decide to
go on with an arbitrary number of iterations. For instance, in Figure5.8we display what hap-
pens when solving the problemshaw by the three-parameter method and letting, as above,
N = 200, ε̃ = 10−2, L1 = I200, L2 = D1, andL3 = D2. Similar results have been obtained
for phillips andfoxgood.

6. Conclusion. We have described a new strategy to work with multi-parameter Tikhonov
methods when an iterative scheme based on the Arnoldi algorithm is applied. The parameter
selection method is based on the discrepancy principle and the algorithm to determine suit-
able regularization parameters at each step of the Arnoldi algorithm is computationally very
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FIG. 5.7. Values of the components of the regularization vectorΛ versus the number of iterations (each
frame corresponds to a different component). The test problem isshaw and we consider the(I200, D1, D2) multi-
parameter AT method. The initial values for the regularization vector areΛ = (0.5, 0.5, 0.5)T (diamond),Λ =
(1, 1, 1)T (asterisk),Λ = (10, 10, 10)T (circle), Λ = (100, 100, 100)T (square).
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FIG. 5.8. Values of the relative error, of the discrepancies and of theregularization parameters versus the
number of iterations for the test problemshaw solved by the(I200, D1, D2) multi-parameter method. In the second
and third boxes, the circle denotes the quantities associated to the first regularization matrix (I200), the diamond
denotes the quantities associated to the second regularization matrix (D1), and the square denotes the quantities
associated to the third regularization matrix (D2). This method would stop at the 9th iteration (denoted by thelarge
asterisk), but we decide to run it until the 30th iteration.
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cheap, since it exclusively involves computations in reduced dimension. We have verified
that the new method is able to automatically weight different regularization terms, assigning
larger values of the regularization parameters to the most suitable regularization matrices.
The numerical experiments performed also show that, in manycases, the new method is able
to improve the solution computed by means of the one-parameter Arnoldi-Tikhonov method.

Appendix. A.
We report some tables for the experiments described in Section 5. The results are ob-

tained performing, for each problem, 100 tests and taking the average of the relative errors,
the average of each regularization parameter that appears in the method, and the average of
the number of iterations. The parametersλ1, λ2, andλ3 are always associated with the regu-
larization matricesIN , D1, andD2, respectively. When the multi-parameter method is used,
we report the results obtained applying both Algorithm4.1and Algorithm4.2 (we mark the
latter with the abbreviationWU within brackets next to the test name). The dimension of the
problem is alwaysN = 200. TablesA.1, A.2, A.3, andA.4 show tests for particular solutions
(constant and linear), while TablesA.5 andA.6 use solutions given by the routines of [7]. We
consider different noise levels and we highlight the most interesting results with boldface.
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TABLE A.1
Constant solutionxc with noise leveleε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 1.0378e-001 6.7818e-004 - - 3.00
baart 3.1941e-002 - 2.9526e+002 - 3.36
baart 4.6184e-002 - - 1.5322e+003 3.08
baart 3.3079e-002 4.1362e-003 2.3190e+003 - 3.40
baart (WU) 3.8475e-002 2.3079e-003 1.0314e+003 - 4.31
baart 3.5972e-002 5.8633e-003 - 8.8528e+004 3.34
baart (WU) 4.6334e-002 6.8556e-004 - 1.5115e+004 3.01
baart 5.4689e-003 - 3.9761e+002 1.5605e+005 4.01
baart (WU) 6.3468e-003 - 3.3345e+002 6.4547e+005 4.00
baart 3.2744e-002 3.9987e-003 2.7437e+003 8.9722e+007 3.48
baart (WU) 2.5777e-003 3.7114e-003 8.3275e+003 2.0124e+009 5.30
gravity 7.6927e-002 2.7235e-002 - - 4.05
gravity 3.5608e-002 - 1.2120e+002 - 4.89
gravity 3.7409e-002 - - 7.5008e+003 5.01
gravity 3.6233e-002 4.3953e-002 5.0042e+001 - 5.06
gravity (WU) 3.6591e-002 3.5814e-002 9.1060e+001 - 4.82
gravity 3.7397e-002 4.6282e-002 - 1.8640e+002 4.94
gravity (WU) 3.7525e-002 3.7270e-002 - 2.6912e+003 4.92
gravity 3.0131e-002 - 2.9360e+002 1.8309e+004 6.08
gravity (WU) 2.7768e-002 - 3.8358e+002 2.3200e+004 7.08
gravity 3.1157e-002 5.7598e-002 4.7711e+001 3.1995e+003 6.50
gravity (WU) 2.6016e-002 6.3788e-002 2.6957e+002 7.3402e+003 8.02
shaw 1.9111e-001 8.2282e-004 - - 11.96
shaw 1.0719e-001 - 9.6939e-001 - 6.82
shaw 1.4307e-001 - - 1.7511e+002 7.12
shaw 1.2701e-001 1.1500e-003 6.5296e+000 - 6.91
shaw (WU) 9.5561e-002 8.9523e-004 1.2847e1 - 7.65
shaw 1.1748e-001 9.5530e+000 - 1.3175e+003 7.44
shaw (WU) 1.2813e-001 6.1538e+000 - 2.2507e+003 7.82
shaw 1.1748e-001 - 9.5530e+000 1.3175e+003 7.44
shaw (WU) 1.2813e-001 - 6.1538e+000 2.2507e+003 7.82
shaw 1.7063e-001 1.0023e-003 3.0629e+000 1.2808e+003 7.65
shaw (WU) 1.0891e-001 9.5358e-004 7.0005e+000 1.5660e+003 8.38
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TABLE A.2
Constant solutionxc with noise leveleε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 4.7271e-002 1.8289e-002 - - 3.03
baart 4.6467e-002 - 2.6946e+002 - 3.00
baart 4.8727e-002 - - 3.1295e+001 3.00
baart 2.8299e-002 3.5002e-002 2.8047e+003 - 3.81
baart (WU) 4.5396e-002 1.8319e-002 3.1644e+002 - 3.01
baart 5.6287e-002 3.5177e-002 - 6.1848e+004 3.81
baart (WU) 4.5595e-002 1.8319e-002 - 2.0673e+004 3.01
baart 4.1186e-002 - 2.6891e+003 3.5107e+006 3.12
baart (WU) 4.2843e-002 - 1.2127e+003 4.1811e+006 3.09
baart 2.9684e-002 3.4540e-002 2.8129e+003 7.0676e+006 3.95
baart (WU) 4.5433e-002 1.8319e-002 3.1644e+002 1.4420e+005 3.01
gravity 1.4412e-001 6.2068e-002 - - 3.00
gravity 7.3863e-002 - 1.0178e+003 - 3.38
gravity 7.6596e-002 - - 5.8340e+002 3.30
gravity 7.5657e-002 8.9338e-002 2.6968e+001 - 3.52
gravity (WU) 5.9147e-002 1.7299e-001 1.4920e+003 - 4.61
gravity 7.6178e-002 9.4794e-002 - 7.9399e+002 3.41
gravity (WU) 7.7175e-002 6.9617e-002 - 1.6570e+003 3.23
gravity 5.6443e-002 - 3.4291e+003 1.0032e+005 5.13
gravity (WU) 5.7096e-002 - 2.1291e+003 1.7057e+005 5.14
gravity 7.5426e-002 1.1257e-001 3.4710e+001 1.6360e+004 3.90
gravity (WU) 5.5631e-002 3.2129e-001 7.2494e+002 5.6887e+004 10.39
shaw 3.8658e-001 1.1241e-002 - - 4.73
shaw 3.7087e-001 - 1.0679e+001 - 4.30
shaw 3.7499e-001 - - 1.1396e+002 4.08
shaw 3.4765e-001 4.0968e-002 6.2112e+000 - 5.77
shaw (WU) 3.2295e-001 2.8325e-002 8.9987e+000 - 6.71
shaw 3.6824e-001 9.7160e-002 - 5.0404e+002 4.85
shaw (WU) 3.5303e-001 1.8491e-002 - 1.3922e+003 5.06
shaw 2.2610e-001 - 8.0840e+001 1.0614e+003 6.59
shaw (WU) 2.8593e-001 - 2.4070e+001 2.7850e+003 6.02
shaw 3.4812e-001 3.0250e-002 6.1392e+000 5.6965e+002 7.06
shaw (WU) 3.2119e-001 3.3386e-002 3.6780e+000 1.0717e+003 9.23
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TABLE A.3
Linear solutionxl with noise leveleε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
gravity 9.1882e-002 9.9070e-003 - - 5.88
gravity 4.3925e-002 - 6.2429e+000 - 6.60
gravity 4.4210e-002 - - 8.3509e+002 6.60
gravity 4.8555e-002 3.0927e-002 - 1.5557e+001 6.32
gravity (WU) 4.5759e-002 2.1120e-002 - 2.0771e+003 6.85
gravity 4.0287e-002 - 3.9018e+001 7.2829e+003 7.96
gravity (WU) 3.5810e-002 - 6.9289e+001 7.7211e+003 9.39
gravity 4.0742e-002 3.3236e-002 5.2950e+000 1.8860e+003 8.15
gravity (WU) 3.6273e-002 4.3565e-002 6.7350e+000 2.0170e+003 12.37
phillips 8.3395e-002 7.5351e-004 - - 3.88
phillips 5.1312e-002 - 6.0850e+000 4.79
phillips 2.5810e-002 - - 1.0223e+004 3.70
phillips 4.9806e-002 1.1568e-003 - 1.5404e+002 3.76
phillips (WU) 2.9860e-002 7.8084e-004 - 1.1637e+005 3.73
phillips 2.0121e-002 - 1.3793e+001 3.0215e+005 5.34
phillips (WU) 7.3637e-003 - 1.0211e+001 7.1454e+007 5.82
phillips 2.1245e-002 1.1547e-003 5.1765e+000 7.0991e+005 4.03
phillips (WU) 4.9555e-003 1.0063e-003 2.6263e+000 1.3782e+009 6.12
shaw 1.6558e-001 5.6169e-004 - - 8.04
shaw 9.8639e-002 - 2.0738e+000 - 7.05
shaw 1.1969e-001 - - 2.8091e+002 7.90
shaw 1.6111e-001 9.4367e-004 - 2.4475e+002 7.60
shaw (WU) 1.4970e-001 6.4663e-004 - 3.0588e+002 8.65
shaw 1.8624e-001 - 1.4567e+003 7.5914e+003 10.66
shaw (WU) 1.8275e-001 - 1.6192e+003 6.4621e+004 12.87
shaw 1.5545e-001 7.2387e-004 1.1118e+000 3.0236e+002 8.34
shaw (WU) 8.5492e-002 6.8840e-004 2.3488e-001 9.2377e+002 10.08
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TABLE A.4
Linear solutionxl with noise leveleε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
gravity 2.8768e-001 5.5438e-002 - - 4.05
gravity 7.9760e-002 - 8.3692e+001 - 4.99
gravity 9.9241e-001 - - 2.0821e+003 6.47
gravity 9.9263e-001 3.0098e-002 - 3.0273e+002 8.08
gravity (WU) 9.9256e-001 3.0199e-002 - 3.9649e+002 9.23
gravity 7.0756e-002 - 5.1613e+002 5.8957e+004 6.88
gravity (WU) 6.9625e-002 - 5.1480e+002 8.2787e+004 7.32
gravity 7.1772e-002 2.7579e-001 3.3161e+001 3.5037e+003 8.09
gravity (WU) 6.9084e-002 2.8820e-001 1.6383e+001 2.2734e+003 15.31
phillips 1.3393e-001 6.9273e-003 - - 4.98
phillips 4.6177e-002 - 1.9380e+001 - 4.00
phillips 6.2626e-002 - - 1.5541e+002 3.00
phillips 5.9475e-002 1.2138e-002 - 3.8318e+003 3.04
phillips (WU) 4.4428e-002 7.1280e-003 - 7.3170e+005 3.96
phillips 4.4724e-002 - 8.0428e+001 2.8338e+006 5.74
phillips (WU) 3.0147e-002 - 4.9414e+001 9.6469e+006 5.51
phillips 5.9309e-002 1.1927e-002 1.9741e+001 2.6932e+004 3.15
phillips (WU) 5.1288e-002 8.9332e-003 5.1621e+000 2.0490e+007 6.68
shaw 4.2575e-001 5.0157e-003 - - 5.40
shaw 3.3582e-001 - 9.5404e+000 - 5.81
shaw 3.8572e-001 - - 1.2562e+003 5.41
shaw 3.7063e-001 1.6175e-002 - 5.2509e+002 6.60
shaw (WU) 3.3534e-001 1.8732e-002 - 1.0808e+003 8.03
shaw 1.9170e-001 - 3.4898e+001 1.0244e+003 7.64
shaw (WU) 1.5476e-001 - 3.7043e+001 3.9485e+003 8.22
shaw 3.3859e-001 1.8235e-002 5.7642e+000 5.6926e+002 7.68
shaw (WU) 3.1797e-001 2.1206e-002 3.7208e+000 2.1282e+003 12.32
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TABLE A.5
Given solution with noise leveleε = 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 5.0485e-002 5.9453e-004 - - 4.00
baart 9.6425e-002 - 4.2167e-001 - 6.00
baart 6.2569e-002 - - 1.0876e+003 5.01
baart 1.5099e-001 1.0683e-003 6.3735e-002 - 5.50
baart (WU) 1.5135e-001 1.0854e-003 1.0809e-001 - 6.10
baart 8.8097e-002 8.3136e-004 - 1.3274e+002 4.38
baart (WU) 1.2243e-001 1.0936e-003 - 2.3528e+002 5.67
baart 1.2223e-001 - 8.5082e-001 1.6022e+002 7.57
baart (WU) 1.2907e-001 - 8.9299e-001 1.1968e+002 8.93
baart 1.4903e-001 1.1395e-003 1.5122e-002 9.7826e+001 6.63
baart (WU) 2.0029e-001 1.2088e-003 2.5714e-003 3.3557e+001 15.88
gravity 1.2013e-001 9.7765e-003 - - 5.27
gravity 4.0751e-002 - 3.4584e+000 - 6.24
gravity 4.0657e-002 - - 5.4844e+002 6.19
gravity 4.3901e-002 3.3339e-002 7.3607e-001 - 6.15
gravity (WU) 4.2829e-002 2.7101e-002 3.6701e+000 - 6.50
gravity 4.2992e-002 4.1944e-002 - 9.7444e+001 6.04
gravity (WU) 4.1431e-002 2.8425e-002 - 2.3548e+003 6.60
gravity 4.5887e-002 - 1.1104e+001 2.0749e+003 7.92
gravity (WU) 4.6282e-002 - 1.2389e+001 2.5341e+003 8.83
gravity 3.7745e-002 4.0109e-002 8.4321e-001 4.1857e+002 7.80
gravity (WU) 3.5941e-002 5.1580e-002 6.8753e-001 8.0771e+002 13.03
phillips 2.8920e-002 1.8711e-002 - - 5.00
phillips 2.5621e-002 - 5.2041e+000 - 5.05
phillips 2.5663e-002 - - 5.5949e+002 5.00
phillips 2.5654e-002 5.5102e-002 2.2946e+000 - 7.52
phillips (WU) 2.5428e-002 4.2635e-002 2.2588e+000 - 8.06
phillips 2.6108e-002 5.0990e-002 - 2.7694e+002 7.48
phillips (WU) 2.6021e-002 4.1527e-002 - 3.0252e+002 8.05
phillips 2.7134e-002 - 1.0548e+001 1.4744e+002 7.54
phillips (WU) 2.7043e-002 - 9.1030e+000 1.3533e+002 8.43
phillips 2.5571e-002 4.6571e-002 9.4471e-001 4.5558e+001 9.71
phillips (WU) 2.5307e-002 5.1642e-002 3.8008e-001 5.2265e+001 12.56
shaw 1.3445e-001 7.5858e-004 - - 5.85
shaw 1.2074e-001 - 5.4351e-001 - 6.29
shaw 1.2074e-001 - - 1.2207e+002 6.01
shaw 1.3477e-001 1.8739e-003 2.5149e-001 - 6.73
shaw (WU) 1.4452e-001 3.1749e-003 2.6832e-001 - 8.02
shaw 1.3466e-001 2.0832e-003 - 5.8343e+001 6.71
shaw (WU) 1.4767e-001 3.6720e-003 - 5.1928e+001 8.18
shaw 2.0162e-001 - 1.8871e-001 2.9227e+000 9.59
shaw (WU) 2.0445e-001 - 1.8076e-001 4.0254e+000 10.85
shaw 1.3631e-001 3.1890e-003 2.6252e-001 1.7495e+001 7.71
shaw (WU) 1.3297e-001 3.6163e-003 2.2794e-002 9.6222e+000 15.36
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TABLE A.6
Given solution with noise leveleε = 5 · 10−2.

Relative Errors λ1 λ2 λ3 Iterations
baart 2.5915e-001 5.5184e-003 - - 3.88
baart 3.5281e-001 - 4.1254e+001 - 22.62
baart 1.4907e-001 - - 7.8514e+001 3.90
baart 3.1181e-001 1.0697e-002 1.6995e+000 - 5.41
baart (WU) 3.1079e-001 1.0679e-002 1.8720e+001 - 6.17
baart 2.5738e-001 7.0589e-003 - 1.4668e+003 4.04
baart (WU) 2.4875e-001 6.3857e-003 - 1.8854e+003 4.16
baart 3.6233e-001 - 4.2956e+001 6.7892e+005 11.53
baart (WU) 3.6189e-001 - 4.2750e+001 9.5807e+005 12.31
baart 3.0971e-001 1.2027e-002 9.7625e-001 8.6695e+002 6.34
baart (WU) 3.0669e-001 1.4359e-002 5.6894e+000 2.7463e+006 22.44
gravity 2.0667e-001 7.6931e-002 - - 4.20
gravity 7.1581e-002 - 6.4767e+001 - 5.00
gravity 6.5899e-002 - - 1.0511e+002 4.96
gravity 7.0950e-002 1.5823e-001 2.6622e+000 - 5.89
gravity (WU) 6.9396e-002 9.8279e-002 2.2876e+001 - 5.08
gravity 6.7248e-002 1.4980e-001 - 1.3094e+003 5.15
gravity (WU) 6.5526e-002 9.7083e-002 - 2.3641e+003 5.03
gravity 8.9110e-002 - 1.5691e+002 7.3888e+003 7.24
gravity (WU) 9.2507e-002 - 1.5515e+002 9.6310e+003 8.28
gravity 6.7490e-002 3.0044e-001 7.9010e+000 4.7311e+002 8.24
gravity (WU) 6.6388e-002 3.1555e-001 7.0614e-001 1.0583e+003 16.10
phillips 1.7706e-001 5.4795e-002 - - 4.00
phillips 5.2064e-002 - 2.7421e+001 - 4.86
phillips 4.9188e-002 - - 1.2585e+002 4.79
phillips 5.1560e-002 2.2233e-001 3.0768e+000 - 8.89
phillips (WU) 4.5868e-002 9.5929e-002 1.1118e+001 - 5.33
phillips 5.0609e-002 2.1969e-001 - 3.3818e+002 7.30
phillips (WU) 5.3031e-002 8.1022e-002 - 3.5514e+003 5.04
phillips 6.2712e-002 - 6.8085e+001 3.2822e+002 7.74
phillips (WU) 6.2458e-002 - 6.7112e+001 3.4593e+002 8.65
phillips 4.9898e-002 2.5948e-001 1.8172e+000 5.1243e+001 10.62
phillips (WU) 4.9975e-002 2.6521e-001 2.4459e-001 9.0852e+001 16.69
shaw 1.8119e-001 7.5811e-003 - - 5.00
shaw 2.0664e-001 - 1.2412e+001 - 6.91
shaw 2.0299e-001 - - 1.9892e+003 6.81
shaw 1.8248e-001 2.9196e-002 1.1667e+000 - 9.45
shaw (WU) 1.7661e-001 2.9472e-002 1.3307e+000 - 8.14
shaw 1.7095e-001 3.2668e-002 - 3.7580e+002 8.77
shaw (WU) 1.7345e-001 3.0384e-002 - 2.4513e+002 9.91
shaw 3.6022e-001 - 1.9433e+001 2.1029e+002 8.31
shaw (WU) 4.1838e-001 - 1.6601e+001 6.2015e+002 9.97
shaw 1.6869e-001 2.7108e-002 1.3957e+000 6.2512e+001 8.53
shaw (WU) 1.7007e-001 2.9894e-002 1.6217e-001 6.3068e+001 15.61


