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COMPUTING APPROXIMATE EXTENDED KRYLOV SUBSPACES WITHOUT
EXPLICIT INVERSION ∗

THOMAS MACH†, MIROSLAV S. PRANIĆ‡, AND RAF VANDEBRIL†

Abstract. It is shown that extended Krylov subspaces—under some assumptions—can be computed approxi-
mately without any explicit inversion or system solves involved. Instead, the necessary computations are done in an
implicit way using the information from an enlarged standard Krylov subspace.

For both the classical and extended Krylov spaces, the matrices capturing the recurrence coefficients can be
retrieved by projecting the original matrix on a particular orthogonal basis of the associated (extended) Krylov space.
It is also well-known that for (extended) Krylov spaces of full dimension, i.e., equal to the matrix size, the matrix
of recurrences can be obtained directly by executing similarity transformations on the original matrix. In practice,
however, for large dimensions, computing time is saved by makinguse of iterative procedures to gradually gather
the recurrences in a matrix. Unfortunately, for extended Krylov spaces, one is obliged to frequently solve systems of
equations.

In this paper the iterative and the direct similarity approach are integrated, thereby avoiding system solves. At
first, an orthogonal basis of a standard Krylov subspace of dimensionmℓ + mr + p and the matrix of recurrences
are constructed iteratively. After that, cleverly chosen unitary similarity transformations are executed to alter the
matrix of recurrences, thereby also changing the orthogonalbasis vectors spanning the large Krylov space. Finally,
only the firstmℓ +mr − 1 new basis vectors are retained resulting in an orthogonal basis approximately spanning
the extended Krylov subspace

Kmℓ,mr
(A, v) = span

{
A−mr+1v, . . . , A−1v, v, Av,A2v, . . . , Amℓ−1v

}
.

Numerical experiments support the claim that this approximation is very good if the large Krylov subspace
approximately containsspan

{
A−mr+1v, . . . , A−1v

}
. This can culminate in significant dimensionality reduction

and as such can also lead to time savings when approximating or solving, e.g., matrix functions or equations.

Key words. Krylov, extended Krylov, iterative methods, Ritz values, polynomial approximation, rotations, QR
factorization
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1. Introduction. There is an intimate relation between orthogonal polynomials, their
recurrence relations, and the associated matrix formalismin terms of classical Krylov spaces,
the orthogonal basis vectors spanning the spaces, and theirrecurrences. This link proved to
be of bidirectional prosperity for both the polynomial as well as the matrix communities, as
illustrated by, e.g., a numerically reliable retrieval of the weights for Gauss quadrature [12, 21]
and the convergence analysis of Krylov based algorithms relying on approximation theory
and potential theory [18, 19, 31]. Approximations of functions by Laurent polynomials and
rational functions have been present for a long time (see [4] and the references therein), but
in [26] the matrix analogue in terms of Krylov subspaces was introduced for the first time.
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Since then rational Krylov spaces have been the subject of many studies; it is therefore
impossible to provide an exhaustive listing of all the relevant literature. We attempt to high-
light the references closest linked to the extended (pole free) case in the next paragraph. Ruhe
initiated this research and constructed several algorithms related to (generalized) eigenvalue
computations based on rational Krylov spaces; see e.g., [26, 27, 28, 29]. The relations with
matrices and possible numerical issues were investigated in [6, 7, 20, 23]. Fasino proved
in [9] that the matrix capturing the recurrence coefficients, though dense, is highly structured
and dominated by low rank parts. This low rank structure was already exploited in eigenvalue
and inverse eigenvalue problems [34, 35, 36, 37]. An analysis of convergence is presented
in [3, 5]. The main bottleneck, however, in the design of these rational iterative methods
still remains the computation of the vectors spanning the Krylov subspace, which requires
successive system solves [22].

Rational Krylov methods [13] and extended Krylov methods in particular are popular for
numerically approximating the action of a matrix functionf(A) on a vectorv [8, 14, 15, 16].
Extended Krylov subspace methods have also been used to solve Lyapunov equations [17]
and have been proven useful in model order reduction [1]. In practice, a rational, extended or
classical Krylov space defines a small subspace on which one projects the original matrix or
problem, thereby reducing the dimension and leading to an approximate solution.

In an extended Krylov space defined by a matrixA and a vectorv, not only multiplica-
tions with positive powers ofA but also with negative powers are admitted. This extra flex-
ibility often allows the extended spaces to be chosen much smaller than the standard Krylov
subspaces for achieving a certain accuracy. As a result, theprojected problem linked to the
extended space can sometimes be much smaller than the corresponding projected problem
linked to the standard Krylov subspace, but it still contains the vital properties of the origi-
nal matrix. When building the extended Krylov subspace, system solves to obtainA−1v are
necessary. In the numerical examples in the above mentionedpapers, this is often done by us-
ing the MATLAB functionbackslash or a direct solver. For large systems, direct solvers
often require too much storage or too much computation time.Therefore it is sometimes
necessary to switch to an iterative solver, which in turn is again based on a Krylov subspace
method. The approach presented here integrates the Krylov subspaces utilized for comput-
ingA−kv, k = 1, 2, . . . , with the construction of the desired extended Krylov subspace.

More precisely, the proposed algorithm is initiated by building a large standard Krylov
subspace of a certain dimension. After that, the compression procedure is initiated, and clev-
erly chosen unitary similarity transformations are executed on the matrix capturing the recur-
rence coefficients. As a result, the matrix of recurrences changes structure and approximates
the matrix of recurrences linked to a predefined extended Krylov space. These similarity
transformations do not alter the starting vectorv but do mix up the Krylov space. Finally,
only a subset of all changed Krylov vectors is retained, which now approximate the vectors
of the extended space.

Before the new algorithm is presented in Section4, some essential facts on extended
Krylov spaces, rotations, and operations on rotations are reviewed in Section2. An extension
of the implicit Q-theorem for Hessenberg matrices, see, e.g., [10], required for the validation
of the results, is given in Section3. Section5 is confined to the error estimates introduced
by approximating the extended space. In the numerical experiments in Section6, it is shown
that the new approach is feasible for some but not all cases: experiments for approximating
matrix functions, approximately solving Lyapunov equations, computational timings, and
visualizations of the behavior of the Ritz values are included.

2. Preliminaries. The novel algorithm mostly relies on manipulating the QR factoriza-
tion of the matrix of recurrences, where the matrixQ itself is factored in essentially2 × 2
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rotations. This section elucidates transformations involving rotations (Section2.2), and links
the appearance of negative and positive powers ofA in the extended Krylov subspace to the
ordering of the rotations when factoring theQ-factor in the QR factorization of the matrix of
recurrences (Section2.3). At first, after notational conventions, Krylov and extended Krylov
spaces are introduced (Section2.1).

The following notation is employed throughout this paper: matrices are typeset as upper
case lettersA, vectors as lower casev. Matrix elements are denoted asAi,j and MATLAB’s
colon notation is used, e.g.,A:,1:k stands for the firstk columns ofA. The Hermitian conju-
gate of a matrixA is marked by a superscripted asteriskA∗. Theith standard basis vector is
denoted byei andIi stands for thei× i identity matrix.

2.1. Krylov and extended Krylov spaces.Let A ∈ C
n×n be a matrix andv ∈ C

n a
vector. TheKrylov subspace1 Km(A, v) is defined as

Km(A, v) = span
{
v,Av,A2v, . . . , Am−1v

}
.

Closely related is theKrylov matrixdefined byKm(A, v) = [v,Av,A2v, . . . , Am−1v]. We
use a calligraphicK for the space and a non-calligraphicK for the matrix; the same conven-
tion holds for the extended Krylov subspace, which is definedbelow.

If the dimension ofKm(A, v) is m, then there exists an orthogonal matrixV ∈ C
n×m

such that

span {V:,1:k} = span
{
v,Av,A2v, . . . , Ak−1v

}
∀k ≤ m.(2.1)

An extendedKrylov subspace is of the form

Kmr,mℓ
(A, v) = span

{
A−mr+1v, . . . , A−1v, v, Av,A2v, . . . , Amℓ−1v

}
.

When building such a space, vectors are added one by one, either on the left (negative powers)
or on the right (positive powers). To record which vector enlarges the subspace in each step,
aselection vectors is introduced, determining which vector from the bilateralsequence

. . . , Amℓv,Amℓ−1v, . . . , A2v,A1v, v, A−1v,A−2v, . . . , A−mr+1v,A−mrv, . . .(2.2)

is chosen next. To make the ordering in the bilateral sequence consistent with forthcoming
deductions, the positive powers ofA are defined to be the left (ℓ) sequence and the negative
powers the right (r) sequence. The selection vectors only comprises elementsℓ andr. The
first vector of the extended space is alwaysv. The second vector isAv chosen from the
left if s1 = ℓ or A−1v selected from the right fors1 = r. The ith successive vector in the
extended Krylov space is taken left wheneversi−1 = ℓ or right if si−1 = r, and it is selected
next to the last picked vector on that side of the bilateral sequence. An alternative notation
to Kmℓ,mr

(A, v) is Ks,m(A, v), wheres is the selection vector andm = mℓ + mr − 1 is
the number of vectors taken out of (2.2) to generate the extended Krylov space. The number
of timesℓ appears in the firstm − 1 components ofs equalsmℓ, andmr corresponds to the
number of occurrences ofr.

EXAMPLE 2.1. For example, a Krylov space’s selection vector has onlyvaluesℓ. The
selection vector accompanying a pure (only inverse powers involved) extended Krylov space
only comprises valuesr. The alternating occurrence ofℓ’s andr’s leads to an extended Krylov
space of the form

Ks,m(A, v) = span
{
v,Av,A−1v,A2v,A−2v,A3v,A−3v, . . .

}
,

1For brevity we will call in the remainder of the paper the classical or standard Krylov subspace just Krylov
subspace.
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which, for unitary matrices, links closely to CMV matrices [32]. We come back to this in
Example2.5. There is no particular reason to restrict oneself to periodic vector successions,
e.g.,s =

[
rℓ rrrℓ r . . .

]
corresponds to

Ks,m(A, v) = span
{
v,A−1v,Av,A−2v,A−3v,A−4v,A2v,A−5, . . .

}
.

It is well-known that in the Krylov space, the matrix of recurrencesH = V ∗AV ∈C
m×m,

often also named theprojected counterpart, is an upper Hessenberg matrix (i.e.,Hi,j = 0,
for all i > j + 1). In the extended case, however, this does not longer hold. The structure of
the projected counterpart is examined in Section2.3and relies on concepts introduced in the
next section.

2.2. Rotations and their manipulations. Rotations [11] (also called Givens or Jacobi
transformations) are commonly used to set entries in a matrix to zero, e.g., in order to retrieve
the QR decomposition of a matrix.

DEFINITION 2.2. MatricesG(i, j, θ) which are equal to the identity, except for the
positionsGi,i = cos(θ), Gi,j = sin(θ), Gj,i = −sin(θ), andGj,j = cos(θ) are named
rotations.

We will restrict ourselves to rotationsG(i, i+1, θ) acting on neighboring rows or columns,
abbreviated asGi. A rotationG is unitary, that is,G applied to a vector leaves the2-norm
unchanged. By theaction of a rotation, we mean the effect thatG has on the rows/columns of
the matrix to which it is multiplied. To keep track of the action of a rotation, we typically rep-
resent them graphically by a bracket having arrows pointingto the rows respectively columns
affected, e.g.,

��

[
× ×
0 ×

]

=

[
× ×
× ×

]

.

When forming a product of several rotations, their order and actions clearly matter. We say
that they are organized in a particularseriesof rotations or satisfy a certainpattern.

In this paper, we will nearly always operate on the QR factorization and in particular,
on the factorization of the matrixQ into rotations, which we also address as arotational
factorization. The role of the upper triangular matrixR is inconsequential as one can transfer
rotations from the left to the right through the upper triangular matrix without destroying its
upper triangularity and without altering the pattern of therotations involved. More precisely,
applying a rotation acting on neighboring rows from the leftto an upper triangular matrix
introduces a non-zero entry on the sub-diagonal. One can always restore the upper triangular
structure by eliminating this entry by a rotation from the right (the elements marked with a
tilde are the only ones affected):

��







× × × ×
0 × × ×
0 0 × ×
0 0 0 ×






=







× × × ×
0 ×̃ ×̃ ×̃
0 ×̃ ×̃ ×̃
0 0 0 ×






=







× ×̃ ×̃ ×
0 ×̃ ×̃ ×̃
0 0 ×̃ ×̃
0 0 0 ×







�� .

This operation, passing rotations from one side to the otheris called atransfer. Of course,
one can transfer rotations from the right to the left as well.Moreover, letQ be a matrix
factored into2 × 2 rotations obeying a particular pattern. Transferring one rotation after
the other through the upper triangular matrix shows that therotational pattern remains un-
affected. This means that a matrixA having an RQ factorizationA = R̂Q̂ admits a QR
factorizationA = QR, where the rotational factorizations ofQ andQ̂ obey the same pattern.
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2.3. The projected counterpart, extended Krylov spaces, and patterns in the QR
factorization. This section discusses the connection between the extendedKrylov subspace
and the structure of the QR factorization of the projected counterpart.

Let us first consider ann × n Hessenberg matrix. Its QR decomposition can be written
as a descending series of rotations times an upper triangular matrix, e.g.,











× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×











=

��

��

��

��

��











× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×











.

The unitary matrixQ is thus decomposed inton − 1 rotations according to aposition vec-
tor p = [ℓ ℓ ℓ ℓ ℓ ], which captures the positioning of successive rotations with respect to each
other: an entrypi = ℓ signifies that the rotationGi is positioned to the left of the rota-
tionGi+1, whereaspi = r indicates thatGi is positioned to the right ofGi+1.

When going from classical Krylov spaces to extended Krylov spaces, one can no longer
guarantee the projected counterpart to remain of Hessenberg form. Nevertheless these matri-
ces, let us name themextended Hessenbergmatrices, share major properties with the classical
Hessenberg matrix when comparing their QR factorizations.Each extended Hessenberg ma-
trix admits a QR factorization with Q factored inton − 1 rotationsGi for i = 1, . . . , n − 1.
Recall thatGi acts on neighboring rowsi andi+1. Due to noncommutativity, it clearly mat-
ters whether, for|i − j| = 1, Gi is positioned to the left or to the right ofGj . So the mutual
arrangement of successive rotations is stored in the position vector, uniquely characterizing
the rotational pattern in the QR factorization of an extended Hessenberg matrix.

DEFINITION 2.3. LetA be a matrix having a QR decompositionA = QR. If the unitary
matrixQ admits a decomposition into at mostn− 1 rotations all acting on different pairs of
neighboring rows, then we will callA an extended Hessenberg matrix.

If Q can be decomposed into exactlyn − 1 rotations differing from the identity, we will
call A an unreduced extended Hessenberg matrix.

WheneverA is of extended Hessenberg form, the matrixQ, with A = QR being a QR
factorization, will also be of extended Hessenberg form.

EXAMPLE 2.4. Equation (2.3) displays the rotational pattern of theQ-factors showing
up in the QR factorization of a Hessenberg (left), a CMV matrix (center), and an inverse
Hessenberg matrix (right).

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.(2.3)

In [36, 37] the link between extended Hessenberg matrices and extended Krylov spaces
is examined. The position and selection vector nicely tie together both concepts: they are
identical. Therefore, from now on, we will limit ourselves to the selection vector for both
concepts. Summarizing, consider an extended Krylov spaceKs,m(A, v) determined by its
selection vectors. LetV ∈ C

n×m be an orthogonal basis for this extended space such that

span {V:,1:k} = Ks,k(A, v) ∀k ≤ m.(2.4)
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Then the matrixV ∗AV ∈ C
m×m will be of extended Hessenberg form. More precisely,

theQ-factor in the QR decomposition ofV ∗AV admits a decomposition intom − 1 rota-
tionsGi acting on rowsi andi + 1, whereGi is positioned to the left ofGi+1 if si = ℓ or
positioned to the right forsi = r.

EXAMPLE 2.5. Reconsider Examples2.1 and2.4. Classical Krylov subspaces can be
identified with a selection vector of onlyℓ’s and hence with a descending series of rotations
as on the left of (2.3). It is not hard to see that a classical Krylov space generated byA−1,
results in a projected counterpartV ∗A−1V being of Hessenberg form. Obviously, its in-
verseV ∗AV will thus be of inverse Hessenberg form. Both the pure extended space and
the inverse Hessenberg matrix are described by a selection vector of solelyr’s. The alter-
nating vectors = [ℓ rℓ r . . . ] results in azigzagshaped pattern, associated with the CMV
decomposition.

3. The implicit Q-theorem for the extended case.Given a matrixA and a vectorv,
the selection vector has a strong impact on the structure andessential uniquenessof the pro-
jected counterpart, as shown in the next theorem. Withessential uniquenessof the projected
counterpart we mean uniqueness up to unitary similarity with a diagonal matrix. When con-
sidering essential uniqueness of the matrixV of orthogonal vectors, we mean uniqueness up
to unimodular scaling of each column.

THEOREM 3.1 (From [36, 37]). Let A be a non-singular matrix,s a selection vector,
and letV and V̂ be two unitary matrices sharing the first column, i.e.,V e1 = V̂ e1. Assume
that both projected counterparts are QR-factored as

QR = H = V ∗AV and Q̂R̂ = Ĥ = V̂ ∗AV̂ .(3.1)

If Q andQ̂ are extended Hessenberg matrices factored into non-identity rotations following
the ordering imposed bys, then the matricesH andĤ are essentially the same.

Theorem3.1 is an extension of the so called implicit Q-theorem for Hessenberg matri-
ces, stating that once the matrix structure—determined by the selection vector—and the first
vectorV e1 are fixed, everything else is implicitly defined. For our purpose, this theorem is
not general enough: we require essential uniqueness of a part of the projected counterparts
(typically of a strictly smaller dimension than the matrix). In this case, the matricesV andV̂
are not necessarily square anymore, the associated selection vector(s) need only be defined
for the firstk components, and we cannot guarantee all rotations to be different from the
identity. Generalizing this, we first reformulate Theorem3.1dealing with reducible matrices.

THEOREM 3.2. LetA be a non-singular matrix,s a selection vector, and letV and V̂
be two unitary matrices sharing the first column, i.e.,V e1 = V̂ e1. Assume both projected
counterparts are QR-factored as in(3.1). Denote the individual rotations appearing in the

rotational factorizations ofQ and Q̂ as G
Q
i and G

Q̂
i , respectively, where the subscripti

indicates that the rotation acts on rowsi andi+ 1. Assume both patterns of rotations satisfy

the ordering imposed bys. Definek̂ as the minimali for which eitherGQ
i or GQ̂

i equal the
identity, i.e.,

k̂ = min
i

{

1 ≤ i ≤ n− 2, such thatGQ
i = I or GQ̂

i = I
}

,

and if no such rotation exists, setk̂ = n− 1. Then the upper left̂k× k̂ parts ofH andĤ are
essentially the same, as are the firstk̂ columns ofV andV̂ .
Theorem3.2follows directly from the more general Theorem3.5, which we prove below.

COROLLARY 3.3. Under the assumptions of Theorem3.2 and for k̂ = n − 1, the two
tuples (V ,H) and (V̂ ,Ĥ) are essentially unique as a result of the unitarity ofV andV̂ .
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Proof. If k̂ = n − 1, then according to Theorem3.2 the firstn − 1 columns ofV are
essentially fixed. Sincespan {V } = C

n, the last column is then fixed as well.
Theorem3.2states again a property related to a full projection, i.e., for square matricesV

andV̂ . Obviously, the conclusions are not the same when relaxing this condition as illustrated
in the following example.

EXAMPLE 3.4. Take a5 × 5 diagonal matrixA = diag(1, 2, 3, 4, 5) and starting vec-
tor v = [1, 1, 1, 1, 1]T . Consider two Krylov spaces not of full dimension

K = span
{
v,Av,A2v

}
and K̂ = span

{
v,Av,A−1v

}
.

The associated orthogonal matricesV andV̂ are

V =











1√
5

−2√
10

2√
14

1√
5

−1√
10

−1√
14

1√
5

0 −2√
14

1√
5

1√
10

−1√
14

1√
5

2√
10

2√
14











and V̂ =











1√
5

−2√
10

.52
3α

1√
5

−1√
10

−.425
3α

1√
5

0 −.37
3α

1√
5

1√
10

−.065
3α

1√
5

2√
10

.34
3α











,

havingα2 = 7.0775. UsingV andV̂ in the similarity transformation, we get forH = V ∗AV
andĤ = V̂ AV̂

H =







3 −
√
2

−
√
2 3

√
14
10

√
14
10 3







and Ĥ =






3 −
√
2

−
√
2 3 1.1089

1.1089 2.3133




 .

Obviously bothH andĤ admit an identical pattern in the Q-factor of both QR factoriza-
tions, and secondly the matricesV andV̂ share the first column. Nevertheless, the projected
counterparts are non-identical, neither are the third column vectors ofV andV̂ .

The difference is subtle. Only considering the selection vector associated to the projected
counterparts, we see thats = [ℓ ] suffices. For the Krylov space, however, as long as it has
not reached its full dimension, the selection vectorss = [ℓ ℓ ] andŝ = [ℓ r ] differ and are vital
to reconstruct the spacesK andK̂. We modify Theorem3.2accordingly.

THEOREM 3.5. LetA be a non-singularn× n matrix,s and ŝ be two selection vectors,
and letV andV̂ be twon×(m+1), (with2 m < n) rectangular matrices having orthonormal
columns and sharing the first columnV e1 = V̂ e1. Let V and V̂ be the principal leading
submatrices of sizen×m of V andV̂ , respectively. Consider

AV = V H + rmw∗
m = V H = V Q R,

AV̂ = V̂ Ĥ + r̂mŵ∗
m = V̂ Ĥ = V̂ Q̂ R̂,

(3.2)

with rm, r̂m ∈ C
n, wm, ŵm ∈ C

m, H, Ĥ ∈ C
m×m, H, Ĥ ∈ C

(m+1)×m, and with the
QR decompositionsH = QR andĤ = Q̂R̂ of H andĤ, respectively, whereQ and Q̂ are
decomposed into a series of rotations ordered as imposed bys and ŝ. Definek̂ as follows

k̂ = min
i

{

1 ≤ i ≤ m− 1 such that,GQ
i = I,G

Q̂
i = I, or si 6= ŝi

}

,(3.3)

2The casem = n requires a reformulation of (3.2) and is therefore excluded. One can fall back on Theorem3.2.
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and if no sucĥk exists, set̂k equal tom. Then the first̂k columns ofV and V̂ and the upper
left k̂ × k̂ blocks ofV ∗AV andV̂ ∗AV̂ are essentially the same.

In Example3.4 we haves1 = ŝ1 ands2 6= ŝ2 and thuŝk = 2. This example confirms
thatH1:2,1:2 = Ĥ1:2,1:2. To actually prove Theorem3.5, Lemma3.6 is required.

LEMMA 3.6. Let H be anm × m matrix withHPk being of (rectangular) extended
Hessenberg form for1 ≤ k < n, wherePk = [Ik, 0]

T ∈ R
m×k. Assume that the unitary

matrixQ, whereQR = HPk, has the firstk rotations in its rotational factorization ordered
according to the selection vectors. ThenKs,k(H, e1) is upper triangular.

The proof is identical to the proof of Theorem 3.7 from [37]: the clue is the necessity
of having elementsi available to make a statement for the(i + 1)st subspace and to have
non-identity rotations as well. Let us now prove Theorem3.5.

Proof of Theorem3.5. First we need to increase the matricesV , H, and their variants
with a hat in size. LetVe and V̂e be augmented square unitary matrices, sharing the first
columns withV and V̂ , respectively. The enlarged matricesHe andĤe are defined as the
projected counterpartsV ∗

e AVe = He andV̂ ∗
e AV̂e = Ĥe. By Theorem3.6, with k̂ as in (3.3),

we haveK
s,k̂

(He, e1) = Ks,n−1(He, e1)Pk̂
andK

ŝ,k̂
(Ĥe, e1) = Kŝ,n−1(Ĥe, e1)Pk̂

both
upper triangular. Elementary computations provide us with

VeKs,n−1(He, e1) = Ks,n−1(VeHeV
∗
e , Vee1) = Ks,n−1(A, Vee1) = Ks,n−1(A, V e1),

and similarlyV̂eKŝ,n−1(Ĥe, e1) = Kŝ,n−1(A, V̂ e1). Combining everything and projecting
onto the first columns leads to

VeKs,n−1(He, e1)Pk̂
= Ks,n−1(A, V e1)Pk̂

= Kŝ,n−1(A, V̂ e1)Pk̂
= V̂eKŝ,n−1(Ĥe, e1)Pk̂

.

Uniqueness of the partial QR factorizations of the outer left and outer right factorizations
yields the essential equality of the firstk̂ vectors ofV andV̂ . The rest follows trivially.

4. An implicit extended Krylov subspace algorithm. Building an extended Krylov
subspace typically requires solving some linear systems. In this section, an algorithm for
approximately computing an extended Krylov subspace without explicit system solves is pre-
sented.

To clarify the description of the algorithm (see Algorithm1 for a pseudo-code version),
it is accompanied by an example having selection vectors = [ℓ r . . . ]. First, an oversampling
parameterp is chosen and the Krylov subspaceKm̃(A, v) with dimensionm̃ = |s| + 1 + p

(here|s| equals the length of the vectors) is constructed. This oversampling parameterp

determines how many vectors in addition are put into the Krylov subspace before the trans-
formation to the extended space starts. A large value ofp increases the computational cost
of the algorithm, but it will also improve the approximationto the extended Krylov sub-
spaces. LetV be an orthogonal matrix forming a basis ofKm̃(A, v) satisfying (2.1). We
haveAV = V H + re∗m̃ with H in Hessenberg form.
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Second, the QR decomposition ofH = QR using a series of rotations is computed3:










× × × × · · · × ×
× × × × · · · × ×

× × × · · · × ×
× × · · · × ×

. . .
. . .

... ×
× × ×

× ×











=

��

��

��

. . .

��

︸ ︷︷ ︸

=Q














× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×














︸ ︷︷ ︸

=R

.

In the third step,H is transformed via unitary similarity transformations to the desired
shape corresponding to the extended Krylov subspace havingselection vectors = [ℓ r . . . ].
The first rotation must always remain unaltered, sinceV ’s first column must stay fixed. The
first entry ins is anℓ, entailing the second rotation to be on the right-hand side of the first
one. Since this is already the case in the example, nothing remains to be done. The next
entry is anr, meaning the third rotation must be brought to the other side. To this end, all the
rotations starting from the third one are transferred through the upper triangular4 R:

AV = V

��

��











× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×











��

. . .

��

︸ ︷︷ ︸

=W

+ re∗m̃.

To execute a similarity transformation on the Hessenberg matrix H, we multiply withW ∗

from the right-hand side and setṼ = VW ∗. As a result, we obtain

AṼ = Ṽ

��

�

�

�

�

. . .

��

︸ ︷︷ ︸

=Q̃














× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×














︸ ︷︷ ︸

=H̃

+ re∗m̃W ∗.

Note thatW is an orthogonal matrix and hence alsoṼ . The first three rotations iñH have
now the shape for a selection vector beginning with[ℓ r ]. Next, all the other entries ins are
dealt with. If the entry ins is r, the trailing rotations are transferred to the right and brought
back to the left by similarity transformations. If the next entry is ℓ, nothing is done. This
procedure is repeated until the end ofs is reached; as a result̃H is in the desired form.

3Probably there are much more economical manners of retrieving the QR factorization ofH, e.g., by storingH
directly in factored form and updating the factors as in the SYMMLQ case [25]. This is, however, beyond the goal
of this paper.

4 Whenever the matrixH is highly structured, e.g., tridiagonal, the QR decomposition partially destroys the
existing structure. Typically, however, a new, exploitable structure emerges. We do not want to defer too much from
the core message of the current paper and as such do not inspectthis in detail.
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We now have an approximation to the extended Krylov subspacewith too many vectors.
So in the fourth and last step, the first|s|+1 columns ofV and the upper(|s|+1)× (|s|+1)
block ofH is retained.

Selecting only part of the entire decomposition introducesan approximation error (see
Section5) as also the residual is affected by the previous transformations and part of it gets
ignored. More precisely, the original residualre∗m̃ is transformed intore∗m̃W ∗, with Wem̃ of
the following form

... GW
m̃−2

� GW
m̃−1�

��








...
0
0
1







=

. . .

��








...
0
α1

β1







=








...
α1α2

α1β2

β1







,

with GW
m̃−i

∣
∣
m̃−i:m̃−i+1,m̃−i:m̃−i+1

=

[
αi βi

−β̄i ᾱi

]

and|αi| , |βi| ≤ 1. The product|∏i αi|
is expected to be smaller than one and is possibly decaying tozero fast, of course depending
on the properties ofH, A, andKm̃(A, v). So, if the first|s|+1 entries of(e∗m̃W ∗)1:|s|+1 are
negligibly small, then we can apply Corollary4.1 and know that we have computed a good
approximation.

COROLLARY 4.1. Having computed̃V and H̃ as described above, assuming the ma-
trix r(e∗m̃W ∗)1:|s|+1 is zero, and none of the rotations in the factorization ofQ̃ equals the

identity, thenṼ and H̃ are essentially the same as ifV were computed as the orthogonal
basis of the extended Krylov subspaceKs,|s|+1(A, v) andH = V ∗AV .

Proof. The first rotation remains unaltered and as suchV e1 = Ṽ e1. Applying Theo-
rem3.5yields the result.

It will be shown in Section5 that this algorithm works well in practice ifA−1v has a
good approximation within the space spanned byV .

5. Error bounds. In this section we will show that the algorithm computes a good
approximation to the extended Krylov subspace ifA−1v is well approximated in the large
Krylov subspaceKm̃(A, v).

For our analysis, a matrix̃A is needed for which the algorithm will not approximate but
compute the exact extended Krylov subspace linked to the original matrixA. Consider the
matrix

Ã = A− rv∗m̃.(5.1)

Corollary 4.1 implies that Algorithm1 computes the exact solution if the residual‖r‖ is
zero. ObviouslyÃvi = Avi, ∀i < m̃, sinceV has orthonormal columns, implying that up to
sizem̃, the Krylov subspacesKm̃(A, v) andKm̃(Ã, v) are identical. Because of

Ãvm̃ = Avm̃ − rv∗m̃vm̃ = V H:,m̃,

we obtainÃV = V H. HenceÃ is a matrix for which the algorithm computes the exact
extended Krylov subspace identical to the computed approximation when applying the al-
gorithm toA. The difference‖Ã − A‖2 is, however, a too large overestimation to be an
adequate error measure because even when the algorithm produces a good approximation,
the norm can be large.

First, assume that in the selection vectors only oner appears, and so the extended
Krylov subspace contains only a single vectorA−1v besides positive powers ofA timesv.
This means in fact that the algorithm computesKs,|s|+1(Ã, v) instead ofKs,|s|+1(A, v).
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Algorithm 1: Computing an extended Krylov subspace without inversion.

Input : A ∈ C
n×n, v ∈ C

n, s, e.g.,s =
[
ℓ rℓ r . . .

]
, oversampling parameterp

Output : H, V with AV = V H + V:,m+1e
∗
m + ̺h∗ ≈ V H + V:,m+1e

∗
m

1 m̃ := |s|+ 1 + p; m := |s|+ 1;
2 ComputeV spanning the Krylov subspaceKm̃(A, v), H := V ∗AV , and
̺ := (AV − V H)em̃, with AV = V H + re∗m̃ andem̃ = I:,1:m̃;

3 h := em̃;
4 Compute the QR-factorization ofH = QR into m̃− 1 rotations
G1G2 . . . Gm̃−1 := Q and an upper triangularR;

5 for j = 1, . . . , |s| do
6 if s(j) == r then
7 Compute theRQ-factorization ofR

∏m̃−1
i=j+1 Gi :=

∏m̃−1
i=j+1 GiR;

8 V := V
∏j+1

i=m̃−1 G
∗
i ;

9 h :=
∏j+1

i=m̃−1 Gih;
10 end
11 end
12 if ‖̺‖2 ‖h1:m‖2 is small enoughthen
13 V := V:,1:m, H := H1:m,1:m;
14 return V andH;
15 else
16 Choose a largerp and start again;
17 end

Note that the Krylov subspacesKs,|s|+1(A, v) andKs,|s|+1(Ã, v) are both spanned by the
vectorsv,Av,A2v, . . . , A|s|−1v and byA−1v, respectivelyÃ−1v. Hence, the norm of the
difference between the last two vectors,‖A−1v − Ã−1v‖2, is a measure of the accuracy of
the computed extended Krylov space approximation. In Lemma5.1 this norm is linked to
the approximation accuracy ofA−1v in the subspaceKm̃(A, v) = span {V }, which can be
quantified by

∥
∥(I − V V ∗)A−1v

∥
∥.

LEMMA 5.1. TakeA ∈ C
n×n and letÃ be as in(5.1). LetV be the matrix of orthonor-

mal columns spanningKm̃(A, v) = Km̃(Ã, v). Setγ = ‖V V ∗A(I − V V ∗)‖2, and assume
thatH = V ∗AV is invertible. Then

∥
∥
∥A−1v − Ã−1v

∥
∥
∥
2
≤

(
1 + γ

∥
∥H−1

∥
∥
2

∥
∥V ∗∥∥

2

) ∥
∥(I − V V ∗)A−1v

∥
∥
2
.

Proof. It follows from ÃV = V H thatÃ−1V = V H−1 andÃV = V V ∗AV . We have
(for all norms)

∥
∥
∥A−1v − Ã−1v

∥
∥
∥ ≤

∥
∥(I − V V ∗)A−1v

∥
∥+ x

∥
∥
∥V V ∗A−1v − Ã−1v

∥
∥
∥

≤
∥
∥(I − V V ∗)A−1v

∥
∥+

∥
∥
∥Ã−1ÃV V ∗A−1v − Ã−1v

∥
∥
∥

≤
∥
∥(I − V V ∗)A−1v

∥
∥+

∥
∥
∥Ã−1V V ∗AV V ∗A−1v − Ã−1v

∥
∥
∥ .(5.2)

The projection ofv on V is againv, hencev = V V ∗v. As V V ∗ is a projection, the iden-
tity V V ∗ = V V ∗V V ∗ holds. Using the sub-multiplicativity of the 2-norm, the second norm
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in (5.2) can be bounded as

(5.3)

∥
∥
∥Ã−1(V V ∗)V V ∗AV V ∗A−1v − Ã−1(V V ∗)v

∥
∥
∥
2

≤
∥
∥
∥Ã−1V V ∗

∥
∥
∥
2

∥
∥V V ∗AV V ∗A−1v − v

∥
∥
2
.

Furthermore,
∥
∥
∥Ã−1V V ∗

∥
∥
∥
2
=

∥
∥V H−1V ∗∥∥

2
≤ ‖V ‖2

︸ ︷︷ ︸

=1

∥
∥H−1

∥
∥
2
‖V ∗‖2 .(5.4)

By combining (5.3), (5.4), and the following estimate [30, Proposition 2.1]
∥
∥V V ∗AV V ∗A−1v − v

∥
∥
2
≤ γ

∥
∥(I − V V ∗)A−1v

∥
∥
2
,

the proof is completed.
This lemma tells us that Algorithm1 computes a good approximation to the sought ex-

tended Krylov subspace ifA−1v is approximated well enough inKm̃(A, v).

6. Numerical experiments. In Section6.1 we compare the accuracy of the novel ap-
proach at first for the examples from [15], where explicit matrix inversions are used to approx-
imate matrix functions (Examples6.1–6.3), and secondly (Example6.4taken from [17]), we
illustrate the possible gain in compression with the new approach when approximately solv-
ing Lyapunov equations. In Section6.2, the behavior of the Ritz values is examined when
executing the compression technique. And finally in Section6.3, the computational complex-
ity of the new method is analyzed.

6.1. Accuracy of approximating matrix functions. The approach of computing the
extended Krylov subspace implicitly is suitable for approximating (some) matrix functions
as the following numerical experiments show. The experiments for Examples6.1–6.3 are
taken from Jagels and Reichel in [15]. Four different selection vectors are used: with nor’s,
with anr at every second entry, every third, and every fourth entry. In this section the vari-
ablem, determining which vectors and submatrix to retain, is always taken as|s| + 1. The
computations are performed in MATLAB. The main idea behind these examples is to show
that one can do equally well as in [15] without explicit inversions, whenever the inverse op-
eration ofA onv is approximated well enough in the large subspace.

The implicit extended Krylov subspace method is used for theapproximation off(A)v.
We haveH = V ∗AV, sof(A)v can be approximated by

f(A)v ≈ V f(H)V ∗v = V f(H)e1 ‖v‖2 .

Three functions were tested:f(x) = exp(−x)
x

, f(x) = log(x), andf(x) = 1√
x

. It is known
that in these cases the approximations stemming from extended Krylov subspaces are of-
ten quite good. In Figures6.1–6.6, the plotted error is a measure of the relative distance
betweenf(A)v and its approximation.

EXAMPLE 6.1. In this example, we demonstrate that we are able to reproduce the figures
from [15, Examples 5.1–5.2], meaning that the implicit approach performs equally well as the
explicit one. Consider a1000 × 1000 symmetric positive definite Toeplitz matrixA having
entries

ai,j =
1

1 + |i− j| .
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In Figures6.1 and6.2 we report the relative error of approximatingf(A)v for different se-
lection vectors. In Figure6.1 for f(x) = exp(−x)

x
and in Figure6.2 for f(x) = log(x).

The vectorv has normally distributed random entries with mean zero and variance one.
The oversampling parameter isp = 100. It is known that both functions can be approxi-
mated well by extended Krylov subspaces, and as a result, an almost identical behavior as
in [15, Figures 5.1–5.2] is observed.

std. Krylov subsp.
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FIG. 6.1. Relative error in approximatingf(A)v for f(x) =
exp(−x)

x
for various selection vectorss

andm = 12, 24, 36, 48, 60.
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FIG. 6.2. Relative error in approximatingf(A)v for f(x) = log(x) for various selection vectorss
andm = 12, 24, 36, 48, 60.

EXAMPLE 6.2. In this example, the matrixA arises from the discretization of the
operatorL(u) = 1

10uxx−100uyy on the unit square as in [15, Examples 5.4–5.5]. The results
are less accurate, but still reasonable approximations areretrieved. For the discretization in
each direction, a three point stencil with 40 equally distributed interior points has been used.
Together with a homogeneous boundary condition, this yields a 1600 × 1600 symmetric
positive matrixA. The starting vectorv is chosen to bevj = 1√

40
, for all j. Figure6.3

displays the relative approximation error forf(x) = exp(−x)
x

and Figure6.4for f(x) = 1√
x

.
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We notice that the oversampling parameterp = 100 is not large enough, as the sub-
spaceKm̃(A, v), depicted by the upper green line in Figure6.3 is not approximatingA−1v

norf(A)v up to a satisfactory accuracy. After truncation (forp = 100), we arrive at the mid-
dle lines revealing an accuracy for the extended space almost identical as for the large untrun-
cated Krylov space (depicted again by the green line containing, however,p = 100 additional
vectors). The Krylov subspace of dimension112 can thus be reduced to an approximated
extended Krylov subspace with only12 vectors, while retaining an almost identical relative
error. The error of the approximated space with12 vectors is more than3 orders smaller than
the error for a Krylov subspace of dimension12, which corresponds to the top green line.

An even larger oversampling parameter of200 is tested (corresponding to the bottom
line in Figure6.3) and a reduction of the dimension from212 of the classical Krylov space
to 12 for the extended Krylov subspace is observed without loss ofaccuracy. Moreover, the
accuracy achieved with the approximated space is even6 orders better than the one attained
by the classical Krylov space of only12 vectors.

In Figure6.4, corresponding tof(x) = 1√
x

, almost the same behavior is observed when
reducing a space of dimension136 respectively236 to an extended Krylov subspace of di-
mension36 with a selection vector[ℓ rℓ rℓ r . . . ].
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FIG. 6.3. Relative error in approximatingf(A)v for f(x) =
exp(−x)

x
for various selection vectorss

andm = 12, 24, 36, 48, 60.

EXAMPLE 6.3. In this example, a matrixA for whichA−1v does not lie in the Krylov
subspace is taken. The algorithm is expected to fail here. The matrixA is a symmetric
indefinite matrix of the following form

A =

[
B C

C∗ −B

]

∈ R
1000×1000,

with a tridiagonal matrixB with 2’s on the diagonal and−1’s on the subdiagonals andC is a
matrix with all entries zero except for a1 in the lower left corner. The setting of Example6.1
is repeated here for approximatingf(A)v with f(x) = exp(−x)

x
. Figure6.5reveals an equally

bad performance as in the Krylov case.
In [15], the extended Krylov subspace was successful in the approximation of f(A)v

because of the use of explicit solves with the MATLAB backslash function. In practice,
however, such solvers are not always available and often other iterative solvers are used to
solve these systems of equations, which would lead to similar problems as observed here.
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FIG. 6.4. Relative error in approximatingf(A)v for f(x) = 1√
x

for various selection vectorss

andm = 12, 24, 36, 48, 60.

10 20 30 40 50 60 70

100

10−4

10−8

10−12

m

R
el

at
iv

e
er

ro
r

[ℓ ℓ ℓ ℓ ℓ ℓ ℓ . . . ]

[ℓ rℓ rℓ rℓ . . . ]

[ℓ rℓ ℓ rℓ ℓ . . . ]

[ℓ ℓ rℓ ℓ ℓ r . . . ]

FIG. 6.5. Relative error in approximatingf(A)v for f(x) = 1√
x

for various selection vectorss

andm = 12, 24, 36, 48, 60.

EXAMPLE 6.4. In this example [17, Example 4.2], the implicit extended Krylov sub-
space method is used for solving Lyapunov equations. The matrix A ∈ R

5000×5000 is a
diagonal matrix having eigenvaluesλ = 5.05 + 4.95 cos(θ), θ ∈ [0, 2π]. The Lyapunov
equationAX + XA∗ + BB∗ = 0 is considered withB a vector with normally distributed
entries with variance one and mean zero. In Figure6.6 we report the relative difference (in
the 2-norm) of the approximatioñX computed via

X̃ = V:,1:m̃Y V ∗
:,1:m̃,

whereY is the solution of

H̃Y + Y H̃ + (V ∗
:,1:rB)(V ∗

:,1:rB)∗ = 0(6.1)

and the exact solution computed with the MATLAB functionlyapchol . An oversampling
parameterp = 50 was chosen. Compared to the standard Krylov subspace, the dimension of
the small Lyapunov equation in (6.1) can be reduced by50–65% without loss of accuracy.
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FIG. 6.6.Relative error in the approximate solutions ofAX +XA∗ +BB∗ = 0 for m = 12, 24, 36, 48, 60.

6.2. Ritz values. In the next three examples, we would like to highlight the fact that
the algorithm starts with the information from the Krylov subspace and then squeezes this
information into a smaller extended space. The experimentsreveal that the truncated subspace
will try to keep possession of all information linked to the extended space as long as possible.

In the next three examples, so-called Ritz plots (see Figures 6.7, 6.8, and6.10) are de-
picted. In all these examples, the matrices under consideration have eigenvalues residing in
a real interval; this interval corresponds to the range shown on the y-axis. The x-axis ranges
from 0 tom, with m being the dimension ofKm(A, v) or Ks,m(A, v). For each0 < k < m

on the x-axis, the eigenvalues ofV ∗
:,1:kAV:,1:k, with V as in (2.1) or (2.4), named theRitz val-

ues, are computed and plotted parallel to the y-axis. Red crosses reveal Ritz values approx-
imating eigenvalues quite well, having absolute error smaller than1e−7.5. Yellow crosses
represent good approximations with errors between1e−7.5 and1e−5, the green markers
represent reasonable approximations, i.e., errors between 1e−5 and1e−2.5 and the blue
ones the remaining Ritz values.

EXAMPLE 6.5. Consider a simple diagonal matrix of size200 × 200 with equal dis-
tributed eigenvalues between0 and2 and a uniform starting vector consisting solely of1’s.
At first, the Krylov subspace of dimensionm = 180 is computed for this matrix. A classical
convergence pattern of the Ritz values, where first the extreme eigenvalues are found, is ob-
served in Figure6.7a. The second plot, Figure6.7b, shows the Ritz values obtained after the
truncation algorithm is applied to approximate an extendedKrylov subspace; in this case the
selection vector contains alternatingℓ’s andr’s. The truncation is initiated once the Krylov
subspace of size180 was reached. Again the Ritz values according to the number ofKrylov
vectors retained are plotted. We start with dimension180, and so it cannot be better than
the final column of Figure6.7a. Furthermore, the algorithm is also unable to outperform the
results displayed in the third plot, Figure6.7c, since this plot shows the eigenvalues for the
exact extended spaces of dimension up to180.

To envision what happens more clearly, avideo (equal spaced pos HQ.mp4) is
generated5. The animation first shows the Ritz value plots for the classical Krylov space.
The Ritz values are plotted concurrently while increasing the subspace’s size. After dimen-
sion180 is reached, the final column is separated from the plot and puton hold at the right on
the screen, the classical Ritz values are kept in the background in gray. Next the Ritz value
plot for the extended space is generated. One can now clearlysee the difference between the

5The videos are also available athttp://people.cs.kuleuven.be/ ˜ thomas.mach/extKrylov/ .

http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/equal_spaced_pos_HQ.mp4
http://people.cs.kuleuven.be/~thomas.mach/extKrylov/


ETNA
Kent State University 

http://etna.math.kent.edu

430 T. MACH, M. S. PRANIĆ, AND R. VANDEBRIL
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(c) Extended Krylov method.

FIG. 6.7.Ritz plots for equal spaced eigenvalues in[0, 2].

extended and the classical case, where obviously the emphasis of the extended case is more
towards zero. Now the interesting part starts: the extendedspace is kept where it is, and we
start the truncation algorithm based on the Ritz values positioned on the outer right. The outer
right vector moves back into the picture, and in each consecutive truncation step (diminishing
of the subspace size), the Ritz values from the extended space are overwritten by the ones of
the truncated space. Now one clearly sees how the truncationalgorithm tries hard to match
the extended space, but is strongly limited by the initiallyavailable information. Eventually,
the truncation plot almost entirely integrates in the extended plot.

EXAMPLE 6.6. In the second example again a diagonal matrix is taken with equal dis-
tributed eigenvalues but now between− 1

2 and 1
2 . We observe that the traditional Krylov

method as before first locates the outer eigenvalues (Figure6.8a). The extended Krylov
method on the other hand (Figure6.8c), due to its pole at zero, converges rapidly to the
interior eigenvalues. The truncation strategy starts withthe information from the standard
Krylov space and tries to approximate the extended space as good as possible. Figure6.8b
visualizes that the truncation strategy tries to retain as much information as possible from the
interior of the spectrum and rapidly disposes of the information near the edges. It is expected
that the truncation strategy will fail in delivering accurate results when used for, e.g., approxi-
mating matrix functions. Again avideo(equal spaced sym HQ.mp4) is generated along

http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/equal_spaced_sym.mp4
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(c) Extended Krylov method.

FIG. 6.8.Ritz plots for equal spaced eigenvalues in[−.5, .5].

the same lines as in Example6.5. In this case we see that the truncation algorithm quickly
throws away most of the valuable information in its attempt to approximate the extended
space. This is caused by the clear discrepancy between the approximations reached by the
classical and the extended Krylov spaces.

EXAMPLE 6.7. In the final example again a diagonal matrix was taken with eigenvalues
according to the distribution (see Figure6.9)

α+ 1

2
(1− |x|)α,

whereα = − 3
4 , as in [19]. The distribution shows that most of the eigenvalues are located

at the boundaries−1 and1. Based on potential theory [18, 19], one knows that for this dis-
tribution first the inner eigenvalues, located around0, are found by classical Krylov methods.
This implies that the classical Krylov space will have a similar goal as the extended Krylov
approach namely first finding the eigenvalues around the origin. As before, Figures6.10a–
6.10care generated. In this case the truncation strategy will work very well. A visualization
video(heavy tail HQ.mp4) is also available.

6.3. Computational efficiency. In this section we investigate the computational effi-
ciency of the new algorithm with respect to matrix function evaluations. Assume a matrix

http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/heavy_tail.mp4


ETNA
Kent State University 

http://etna.math.kent.edu

432 T. MACH, M. S. PRANIĆ, AND R. VANDEBRIL
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FIG. 6.9.Eigenvalue distribution.
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FIG. 6.10.Ritz plots for strong eigenvalue concentrations near the borders of[−1, 1].
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linked to a Krylov space of dimension|s| + p + 1 is built and then truncated to an extended
space of dimension|s|+1. In practice it is impossible to estimate the time required for build-
ing the Krylov space because typically the matrix vector multiplications are the dominant
factor and its complexity heavily depends on the algorithm or structures used. As this time
is identical for both approaches, we do not report on it. Barein mind, however, that overall
it might occur to be the dominating computation. Nevertheless, even in this case, the pro-
posed method is able to significantly reduce the size of the subspace resulting in equivalently
significant memory savings.

So, for now, we neglect the time needed to construct the Krylov space and only investi-
gate the forthcoming computations on the projected counterparts of sizes|s|+1 and|s|+p+1
including the time required for executing the compression.Each parameterℓ in the selec-
tion vectors implicates a transfer of at most|s| + p rotations through an upper triangular
matrix. Such a transfer costsO(|s| + p) flops. As there are at most|s| ℓ’s, we have an
upper bound ofO

(
|s|(|s|+ p)2

)
to complete the truncation process. Additionally, the trans-

ferred rotations are applied toV . This costsO(n) per rotation, wheren is the dimension
of A, or O (n|s|(|s|+ p)) in total. Naturally this is not the total complexity, and additional
computations are exerted on the truncated and untruncated projected counterpart. For in-
stance, assume this second phase to have cubical complexity. Then we arrive at a total cost
of O

(
(|s|+ p)3

)
for the untruncated matrix and atO (|s|(|s|+ p)) + O

(
|s|3

)
operations

for the truncated matrix. Clearly the turning point to arrive at cheaper algorithms is attained
early.

EXAMPLE 6.8. The same operator as in Example6.2is used but now discretized with 70
equal distributed interior points, so thatA becomes a matrix of size4900×4900. On the dense
matrixA, the computation off(A)v relying on the MATLAB functionexpm took18.4 s. Due
to the properties ofA, a large oversampling parameterp = 1600 is required to achieve good
results. For the Krylov subspace of dimension1604, 0.66 s were needed to computef(A)v
with a relative accuracy of5.15 e−11. With the reduction approach, one is able to reduce
the Krylov subspace to an extended Krylov subspace of dimension 4 (s = [ℓ rℓ ]) in 0.59 s.
Within this subspace one can computef(A)v to the same accuracy as in the large Krylov
subspace in0.001 s. The computation of the large Krylov subspace was the most expensive
part of the computation and took126.6 s.6

EXAMPLE 6.9. In this example a plain flop count is depicted. LetA be a matrix of
sizen×n with n = 10, 000. Again the computation off(A)v is the goal, which is conducted
via the eigendecomposition of the matrixA or the compressed matrixV ∗AV . Assume this
cost15n3 with n being the dimension ofA respectivelyV ∗AV . Once the Krylov subspace
of dimension|s| + p + 1 (costs are about2n(|s| + p)2 flops) is computed, one can con-
tinue in two different ways. Either one directly computes the eigendecomposition or one first
compresses the Krylov space and then computes the eigendecomposition. The compression
requires about|s|(2n(|s|+p)+2(|s|+p)2) flops. Together, it requires15|s|3+|s|(2Nn+2n2)
flops versus15(|s| + p)3 for the direct computation. For different values of|s| and|s| + p,
the flop counts are shown in Figure6.11.

7. Conclusions.We have presented a new algorithm which often computes sufficiently
accurate approximations to extended Krylov subspaces without using explicit inversion or ex-
plicit solves of linear systems. The numerical examples clearly illustrate these claims when-
ever the larger subspace approximates the action ofA−1 on the starting vectorv well enough.
If, however, this constraint was not satisfied, it was shown that the presented approach was

6The computation of the Krylov subspace was done without any special tricks or optimization. This explains
the large gap to the18.4 s for the computation for the full dense matrix.
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FIG. 6.11.Complexity plot.

able to significantly reduce the size of the Krylov space by bringing it to extended form with-
out notable loss of accuracy with respect to the larger space. A larger compression can have
multiple advantages such as reduced storage costs and reduced operation counts for sub-
sequent computations. A final set of numerical experiments illustrates this latter statement
revealing a nonneglectable reduction of computational efforts.

This research poses quite some questions. How is this related to the implicitly restarted
Lanczos method [2, 24, 33] and can this truncation be used for restarts? Is it possibleto
go from extended Lanczos to rational Lanczos allowing the usage of shifts? Are there good
heuristics to determine the selection vectors, the size of the initial large Krylov space, and the
dimension of the truncated part?
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