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ON COMPUTING STABILIZABILITY RADII OF LINEAR TIME-INVARIANT
CONTINUOUS SYSTEMS∗

D. C. KHANH†, H. T. QUYEN‡, AND D. D. X. THANH§

Abstract. In this paper we focus on a non-convex and non-smooth singularvalue optimization problem. Our
framework encompasses the distance to stabilizability of a linear system(A,B) when bothA andB or only one of
them are perturbed. We propose a trisection algorithm for the numerical solution of the singular value optimization
problem. This method requiresO(n4) operations on average, wheren is the order of the system. Numerical
experiments indicate that the method is reliable in practice.
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1. Introduction. Consider the linear time-invariant continuous dynamical system

(1.1) ẋ(t) = Ax(t) +Bu(t), t ≥ 0,

whereA ∈ C
n×n, B ∈ C

n×m, with state vectorx(t) ∈ C
n and control vectoru(t) ∈ C

m

for all t ≥ 0. The system (1.1) is calledstabilizableif there exists a feedbacku(t) = Fx(t),
whereF is a fixed matrix, making the closed-loop systemẋ(t) = (A + BF )x(t) asymptot-
ically stable. It is well-known that the system (1.1) is stabilizable if and only if the condi-
tion rank [A−λI B]=n holds for allλ ∈ C+ := {λ ∈ C : ℜλ ≥ 0}; see, for example, [10].

One of the most effective and flexible approaches towards problems of robustness of
stabilizability is based on the concept of thestabilizability radius—the norm of the smallest
perturbation that makes a given system unstabilizable, introduced in [5, 6] as

τ0(A,B) := inf {‖[∆A, ∆B ]‖ : the perturbed system

ẋ = (A+∆A)x+ (B +∆B)u is unstabilizable} ,

where‖.‖ denotes the spectral norm. This definition is inspired from the definition of the
controllability radius in [14]. The stabilizability radius is expressed in [5, 6] as

(1.2) τ0(A,B) = min
λ∈C+

σmin ([A− λI B]) ,

whereσmin(.) denotes the smallest singular value of its matrix argument.Recently in [12],
we considered stabilizability radii when only one of the system matrices,A orB, is perturbed

τ1(A) := inf {‖∆A‖ : the perturbed systeṁx = (A+∆A)x+Bu is unstabilizable} ,

τ2(B) := inf {‖∆B‖ : the perturbed systeṁx = Ax+ (B +∆B)u is unstabilizable} ,

and the formulas for these values are given by

(1.3) τ1(A) = min
λ∈C+

σmin ([null (B∗)]∗(A− λI)) ,
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(1.4) τ2(B) = min
λ∈σ(A)∩C+

σmin(B
∗null (A− λI)),

wherenull (.) is the matrix whose columns form an orthonormal basis of the null space of its
matrix argument.

Problem (1.4) can be computed easily. But problems (1.2) and (1.3) are non-smooth
optimization problems in two real variablesα andβ, the real and imaginary parts ofλ. More-
over, the objective functionsσmin ([A− λI B]) or σmin ([null (B∗)]∗(A− λI)) are not con-
vex and may have many local minima, so standard optimizationmethods, which usually are
only guaranteed to converge to a local minimum, will not yield reliable results in general.

To the best of our knowledge, the problem of computing stabilizability radii has not
been studied in the literature even though several algorithms have been designed to compute
controllability radii; see [3, 4, 7, 8, 9, 11, 13]. In the papers [4, 7, 11], two-dimensional
grid techniques are used that are too costly for high accuracy. Gu [8] proposed a bisection
method which can correctly estimateτ0(A,B) within a factor of two in polynomial time inn.
Burke et al. [3] suggested a trisection variant to retrieve the distance touncontrollability to any
desired accuracy withO(n6) complexity. Gu et al. [9] and Mengi [13] reduced the average
running time toO(n4) by employing inverse iterations and the shift-and-invert preconditioned
Arnoldi method. It is the main purpose of this paper to describe a numerical method for
computing both problems (1.2) and (1.3).

Indeed, we consider the following non-convex and non-smooth general optimization
problem

(1.5) τ(P,Q) = min
λ∈C+

σmin (P − λQ) ,

whereP,Q are some given matrices inCp×q such thatp ≤ q andrank(Q) = p.
We can check that ifP := [A B] , Q := [I 0] , then problem (1.5) reduces to prob-

lem (1.2), and if P := [null(B∗)]∗A, Q := [null (B∗)]∗, then problem (1.5) reduces to
problem (1.3). In this paper, based on the idea of the trisection algorithm introduced in [3],
we present a method to solve (1.5).

The structure of this paper is as follows. In the next section, we give a modified version
of Gu’s result [8, Theorem 3.1] that is applicable to (1.5). Then, we apply the obtained results
to state a method for solving this problem in Section3. Finally, the reliability of the algorithm
is demonstrated by numerical examples in Section4.

2. Modified version of Gu’s theorem. The methods for computing the controllabil-
ity radius in [8, 9, 13] are based on a simultaneous comparison of two boundsδ1 > δ2
with τ0(A,B), i.e., one of the following inequalities is verified

τ0(A,B) ≤ δ1 or τ0(A,B) > δ2.

This so-called Gu’s test based on [8, Theorem 3.1] returns some information about only one
of the inequalities even if both of them may be satisfied.

It is remarkable that Gu’s test in [8] cannot be applied to solve the general problem (1.5).
The search space of (1.5) is just the closed right half of the complex plane, which naturally
leads to the idea of avertical searchas in the following theorem.

THEOREM 2.1. Assume thatδ > τ(P,Q). Given a numberη ∈ (0, 2(δ−τ(P,Q))
‖Q‖

2

], then

there exists a pair(α, β) of a non-negative numberα and a real numberβ such that

(2.1) σmin [P − (α+ βi)Q] = σmin [P − (α+ ηi+ βi)Q] = δ.
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We omit the proof of this theorem, since it is similar to that of [8, Theorem 3.1] but with
horizontal search replaced by vertical search. If we rewrite problem (1.5) as

τ(P,Q) = min
λ∈C,ℜλ≥0

σmin (iP − λQ) ,

the horizontal search can also be applied to solve (1.5). For the numerical verification, we
only need a relation implied by (2.1).

COROLLARY 2.2. Assume thatδ > τ(P,Q). Given a numberη ∈ (0, 2(δ−τ(P,Q))
‖Q‖

2

], then

there exists a pair(α, β) of a non-negative numberα and a real numberβ such that

(2.2) δ ∈ σ [P − (α+ βi)Q] ∩ σ [P − (α+ ηi+ βi)Q] ,

whereσ(.) is the set of all singular values of its matrix argument.
For δ1 > δ2 > 0, setδ = δ1 andη = 2(δ1−δ2)

‖Q‖
2

. This corollary implies that when no

pair (α, β) satisfying (2.2) exists, the inequalityη > 2(δ−τ(P,Q))
‖Q‖

2

is valid, so condition

(2.3) τ(P,Q) > δ2

holds. On the other hand, when a pair exists, then by definition we can conclude that

(2.4) τ(P,Q) ≤ δ1.

This is called themodified Gu test for the stabilizability radius.

3. Trisection algorithm for computing stabilizability rad ii. The bisection algorithm
of Gu [8] keeps only an upper bound on the distance to uncontrollability. It refines the upper
bound until condition (2.3) is satisfied, and at termination the controllability radius lies within
a factor of2 of δ1, i.e., δ1/2 < τ(P,Q) ≤ 2δ1. To obtain the distance to uncontrollability
with better accuracy, Burke et al. [3] proposed a trisection variant. Since the derivation of
the details of the algorithm presented in this section follows [9] step by step, we just give
brief results. Using the modified Gu test for the stabilizability radius instead of Gu’s test,
the trisection algorithm yields bounds ofτ(P,Q) in form of an interval[l, u] and reduces the
length of this interval by a factor of23 at each iteration.

Trisection algorithm for computing (1.5)
Input: P,Q ∈ C

k×n with k ≤ n andrank(Q) = k and a toleranceε > 0.
Output: Scalarsl andu satisfyingl < τ(P,Q) ≤ u andu− l < ε.
Initialize the lower bound asl = 0 and the upper bound asu = σmin (P ).

repeat
δ1 = l + 2

3 (u− l)
δ2 = l + 1

3 (u− l)
Apply the modified Gu test for stabilizability radius.
if (2.4) is verifiedthen

u← δ1.
else

% Otherwise (2.3) is verified.
l← δ2.

end if
until u− l < ε

Return l andu.
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3.1. Verification scheme.Let the singular value decomposition ofQ be

Q = U [Σ 0]V ∗,

and define

[P1 P2] := U∗PV,

whereP1 ∈ C
p×p andP2 ∈ C

p×n−p. It is remarkable thatδ ∈ σ[P − (α+βi)Q] if and only
if α is an eigenvalue of the following matrix

H(β, δ) :=

[

Σ−1P ∗
1 + iβI −δΣ−1

Σ−1P̂2 Σ−1P1 − iβI

]

,

whereP̂2 :=
P2P

∗

2

δ
− δI. Then, condition (2.2) is equivalent to the fact that the following

Sylvester equation

H(β, δ)X +XH(β + η, δ) = 0

has a nontrivial solution. By the Kroneckerization of this Sylvester equation, for the verifica-
tion of a pair(α, β) satisfying (2.2), we search at first for an imaginary eigenvalueiβ of the
following matrix

A :=
1

2

(

[

−δC2 δC1

B1 −B2

] [

A3 −A4 0
0 A2 −A1

]−1 [
B2 δC1

B1 δC2

]

+

[

A2 −A3 0
0 A1 −A4

]

)

,

(3.1)

where

A1 := I ⊗
(

Σ−1P1

)

, A2 :=
(

Σ−1P1 − iηI
)T
⊗ I,

A3 := I ⊗
(

Σ−1P ∗
1

)

, A4 :=
(

Σ−1P ∗
1 + iηI

)T
⊗ I,

B1 := I ⊗
(

Σ−1P̂2

)

, B2 :=
(

Σ−1P̂2

)T

⊗ I,

C1 := I ⊗ (Σ−1), C2 := (Σ−1)T ⊗ I.

Next, if there exists an imaginary eigenvalueiβ of (3.1) such that the matricesH(β, δ)
andH(β + η, δ) share a common non-negative eigenvalueα, then the verification succeeds.

3.2. Eigenvalue search.We can observe that searching for an imaginary eigenvalueiβ

of A ∈ C
2p2×2p2

is the key operation of the modified Gu test for the stabilizability radius.
In [3], the Matlab functioneig can solve the search problem at a cost ofO(k6). In [9], an
algorithm for searching real eigenvalues of a matrix inC

2p2×2p2

is given at a cost ofO(p4)
on average by employing a shift-and-invert Arnoldi method of the matrix at a cost ofO(p3).
Clearly, we can search for a real eigenvalueβ of −iA instead of searching for an imaginary
eigenvalueiβ of A. Moreover, the linear system(−iA − νI)v = u can be solved at a cost
of O(p3) for any ν ∈ R, by means of a Sylvester equation solver (such as the LAPACK
routinedtrsyl [1]) as indicated by the following lemma.
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LEMMA 3.1. Let u ∈ C
2p2

and suppose thatv ∈ C
2p2

is the solution of the linear
system(−iA− νI)v = iu. Then the following Sylvester equation

[

Σ−1P ∗
1 + iνI − δΣ−1

Σ−1P̂2Σ
−1P1 − iνI

]

Z − Z

[

Σ−1P ∗
1 + i(η + ν)I − δΣ−1

Σ−1P̂2Σ
−1P1 − i(η + ν)I

]

= 2

[

0 −U1

U2 0

]
(3.2)

has a unique solutionZ =

[

W1 V1

V2 W2

]

, whereu =

[

vec(U1)
vec(U2)

]

andv =

[

vec(V1)
vec(V2)

]

.

4. Numerical experiments. SettingP := A andQ := I, we observe thatτ(P,Q) is the
stability radius of the system (1.1). Hence, we can compare the accuracy of our method given
in this paper and the method for computing the stability radius given in [2, 13]. Table4.1
presents this comparison for a variety of examples chosen from EigTool [15] with a tolerance
of 10−4. All the tests are run using Matlab 6.5 under Linux on a PC.

TABLE 4.1
Stability radii with tolerance =10−4.

Example New method Method in [2]
Airy(5) (0.00370, 0.00380] 0.0038
Airy(10) (0.01245, 0.01254] 0.0125
Convection Diffusion(5) (0.60395, 0.60403] 0.6040
Convection Diffusion(10) (0.75310, 0.75317] 0.7532
Transient(5) (0.02935, 0.02942] 0.0294
Transient(10) (0.02025, 0.02032] 0.0203

For the next results, we again choose matricesA from EigTool [15] and letB be matrices
with normally distributed entries. Table4.2 displays the results ofτ0(A,B) andτ1(A) in
the second and the third columns, respectively, when we apply our method for computing
problem (1.5). These results illustrate the inequality given in [12] that τ0(A,B) ≤ τ1(A). In
particular, the result for the Godunov and Skew Laplacian matrices show the importance of
computing the stabilizability radius when only the system matrixA is perturbed.
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