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ON COMPUTING STABILIZABILITY RADII OF LINEAR TIME-INVARIANT
CONTINUOUS SYSTEMS*

D. C. KHANHT, H. T. QUYEN!, AND D. D. X. THANH?

Abstract. In this paper we focus on a non-convex and non-smooth singalae optimization problem. Our
framework encompasses the distance to stabilizability ofesli systeni A, B) when bothA and B or only one of
them are perturbed. We propose a trisection algorithm ntimerical solution of the singular value optimization
problem. This method require®(n*) operations on average, whereis the order of the system. Numerical
experiments indicate that the method is reliable in practice.
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1. Introduction. Consider the linear time-invariant continuous dynamigatem
(1.2) #(t) = Ax(t) + Bu(t), t>0,

whereA € C"*™ B € C™*™, with state vector:(¢t) € C™ and control vectow(t) € C™
forall t > 0. The system1.1) is calledstabilizableif there exists a feedbaak(t) = Fz(t),
whereF is a fixed matrix, making the closed-loop systefit) = (A + BF)z(t) asymptot-
ically stable. It is well-known that the systerh.{) is stabilizable if and only if the condi-
tionrank [A—AI B]=nholds for all\ € C; := {\ € C: R\ > 0}; see, for example 1[].

One of the most effective and flexible approaches towardbl@nas of robustness of
stabilizability is based on the concept of tstabilizability radius—the norm of the smallest
perturbation that makes a given system unstabilizabledoted in b, 6] as

70(4, B) := inf {||[A4, Ag]]| : the perturbed system
&= (A+ Ax)r+ (B+ Ap)u is unstabilizablg,

where||.|| denotes the spectral norm. This definition is inspired frbm definition of the
controllability radius in [L4]. The stabilizability radius is expressed i p] as

(1.2) 70(4, B) = min oy (4~ AT B))

whereomin(.) denotes the smallest singular value of its matrix argumBetently in 2],
we considered stabilizability radii when only one of theteys matricesA or B, is perturbed

71(A) := inf {||A 4| : the perturbed system= (A + A 4)z + Bu is unstabilizablé,
T2(B) := inf {||Ag|| : the perturbed systeth= Az + (B + Ap)u is unstabilizablé,
and the formulas for these values are given by

(1.3) 71(4) = uin au ([l (BY)]" (A= A1)
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(1.4) T2(B) = e omin(B*NUIl (A = \I)),

wherenull (.) is the matrix whose columns form an orthonormal basis of thespace of its
matrix argument.

Problem (.4) can be computed easily. But problemisZ and (L.3) are non-smooth
optimization problems in two real variablesandg, the real and imaginary parts af More-
over, the objective functionsy,i, ([A — AI B]) 0 o ([nUll (B*)]*(A — AI)) are not con-
vex and may have many local minima, so standard optimizatiethods, which usually are
only guaranteed to converge to a local minimum, will notgiedliable results in general.

To the best of our knowledge, the problem of computing steddillity radii has not
been studied in the literature even though several algnsthave been designed to compute
controllability radii; see 3, 4, 7, 8, 9, 11, 13]. In the papers4, 7, 11], two-dimensional
grid techniques are used that are too costly for high acgur@a [8] proposed a bisection
method which can correctly estimaig A, B) within a factor of two in polynomial time in.
Burke et al. B] suggested a trisection variant to retrieve the distancatontrollability to any
desired accuracy witth(n°) complexity. Gu et al. §] and Mengi [L3] reduced the average
running time ta0(n*) by employing inverse iterations and the shift-and-invegtpnditioned
Arnoldi method. It is the main purpose of this paper to déscia numerical method for
computing both problemsi(2) and (L.3).

Indeed, we consider the following non-convex and non-sin@eneral optimization
problem
(1.5) (P, Q) = oI i (P—-2Q),
whereP, ) are some given matrices @ *? such thap < ¢ andrank(Q) = p.

We can check that i := [A B],Q := [I 0], then problem 1.5) reduces to prob-
lem (1.2), and if P := [null(B*)]*4, Q := [null (B*)]*, then problem 1.5 reduces to
problem (L.3). In this paper, based on the idea of the trisection algarititroduced in ],
we present a method to solve ).

The structure of this paper is as follows. In the next sectingive a modified version
of Gu’s result B, Theorem 3.1] that is applicable tb.f). Then, we apply the obtained results

to state a method for solving this problem in Sectioifrinally, the reliability of the algorithm
is demonstrated by numerical examples in Secfion

2. Modified version of Gu’s theorem. The methods for computing the controllabil-
ity radius in B, 9, 13] are based on a simultaneous comparison of two bodpds d-
with 7o (A, B), i.e., one of the following inequalities is verified

To(A,B) <4, or To(A,B) > 0.

This so-called Gu's test based d) Theorem 3.1] returns some information about only one
of the inequalities even if both of them may be satisfied.

Itis remarkable that Gu's test i cannot be applied to solve the general problém)(
The search space of.§) is just the closed right half of the complex plane, whichunally
leads to the idea of @ertical searchas in the following theorem.

THEOREM 2.1. Assume that > 7(P, Q). Given a number € (0, W], then
2

there exists a paif«, ) of a non-negative number and a real numbep such that

(21) Omin [P - (a + BZ)Q} = Omin [P - (a + 772 + ﬁZ)Q] = 0.
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We omit the proof of this theorem, since it is similar to thf& Theorem 3.1] but with
horizontal search replaced by vertical search. If we rengibblem {.5) as

T(Pa Q) = XE(II:I,?RQEO Omin (ZP - )\Q) 5

the horizontal search can also be applied to solvB)( For the numerical verification, we
only need a relation implied by (2).

COROLLARY 2.2. Assume thad > 7(P, Q). Given a numbern € (0, 2(‘5]227(”1:’@)], then
there exists a paif«, 3) of a non-negative number and a real numbeg such that

(2.2) deoP—(a+pi)Q|No[P— (a+ni+pi)Q],

whereo (.) is the set of all singular values of its matrix argument.
Ford, > 02 > 0, setd = 6, andn = 201-02) ~ Thjg corollary implies that when no

el
pair («, B) satisfying @.2) exists, the inequality > W is valid, so condition
(2.3) (P, Q) > 62

holds. On the other hand, when a pair exists, then by definiti® can conclude that
(2.4) T(P,Q) < d1.

This is called thenodified Gu test for the stabilizability radius

3. Trisection algorithm for computing stabilizability rad ii. The bisection algorithm
of Gu [8] keeps only an upper bound on the distance to uncontratiabii refines the upper
bound until conditionZ.3) is satisfied, and at termination the controllability ragliies within
a factor of2 of 4y, i.e., 81 /2 < 7(P,Q) < 26;. To obtain the distance to uncontrollability
with better accuracy, Burke et al3][proposed a trisection variant. Since the derivation of
the details of the algorithm presented in this section fe#ld9] step by step, we just give
brief results. Using the modified Gu test for the stabiliigbradius instead of Gu'’s test,
the trisection algorithm yields bounds of P, @) in form of an intervall, ] and reduces the
length of this interval by a factor of at each iteration.

Trisection algorithm for computing (1.5

Input: P,@Q € CF*™ with k < n andrank(Q) = k and a tolerance > 0.
Output:  Scalard andu satisfyingl < 7(P, Q) < uvandu — [ < ¢.
Initialize the lower bound ak= 0 and the upper bound as= o, (P).

repeat
&=z+§m—u
S =1+ 5(u— 1)

Apply the modified Gu test for stabilizability radius.
if (2.4) is verifiedthen
U <— 51.
else
% Otherwise 2.3) is verified.
[+ (52.
end if
until u — Il < e
Return [ andu.
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3.1. Verification scheme.Let the singular value decomposition@fbe

Q=U[X0V",
and define

[Pl PQ] = U*P‘/,

whereP; € CP*P andP, € CP*" P, Itis remarkable thaf € [P — (a+ $5¢)Q)] if and only
if ais an eigenvalue of the following matrix

YTLPy Bl —6x~1
H(B,0) == Eflp2 Z—lpl_iﬁf )
whereP, := —PQ;D; —
Sylvester equation

oI. Then, conditionZ.2) is equivalent to the fact that the following

H(B,)X+XH(B+n,)=0
has a nontrivial solution. By the Kroneckerization of thigw@ster equation, for the verifica-

tion of a pair(«, 3) satisfying @.2), we search at first for an imaginary eigenvaiigeof the
following matrix

i S

Bl —BQ 0 A2 — A1 Bl 502
(3.1)
Ay— Ay 0
* { 0 Ai- AJ )
where
A =10 (27'P), Ayi= (7P —inD) @1,
Ay =1 (1P, A= (3P +inD) @1,
N NI
B i=Iw (s 2) , By = 2*1P2) ®1,
Cr=I® (X, Cy:=(EH eI

Next, if there exists an imaginary eigenvaly@ of (3.1) such that the matricesl (53, ¢)
andH (5 + n, §) share a common non-negative eigenvaliiéhen the verification succeeds.

3.2. Eigenvalue searchWe can observe that searching for an imaginary eigenvalue
of A € C2"*2" s the key operation of the modified Gu test for the stabiligtradius.
In [3], the Matlab functioreig can solve the search problem at a cosOg£%). In [9], an
algorithm for searching real eigenvalues of a matri<C#®” *2¢” is given at a cost of)(p*)
on average by employing a shift-and-invert Arnoldi methéthe matrix at a cost of(p?).
Clearly, we can search for a real eigenvatuef —iA instead of searching for an imaginary
eigenvalue s of A. Moreover, the linear syster-i.A — vI)v = u can be solved at a cost
of O(p?) for anyv € R, by means of a Sylvester equation solver (such as the LAPACK
routinedtrsyl[1]) as indicated by the following lemma.
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LEMMA 3.1. Letu € C2° and suppose that € C?° is the solution of the linear
system{—iA — vI)v = iu. Then the following Sylvester equation
SUUPf vl =08 P STUP; 4y + )] — 68!
271P2271P1 —avl 271P2271P1 —1(77—|—Z/)I

3.2
(3.2) o o
U, 0
. . o W, Wi N VEC(Ul) N vec(Vl)
has a unique solutio = [Vg WJ,Whereu = [veo(Ug)] andv = {veo(Vz) .

4. Numerical experiments. SettingP := A andQ := I, we observe that(P, Q) is the
stability radius of the systeni(1). Hence, we can compare the accuracy of our method given
in this paper and the method for computing the stability wadjiven in P, 13]. Table4.1
presents this comparison for a variety of examples chosen EigTool [L5] with a tolerance
of 10~%. All the tests are run using Matlab 6.5 under Linux on a PC.

TABLE 4.1
Stability radii with tolerance =10~4.

Example New method Method in ]
Airy(5) (0.00370, 0.00380] 0.0038
Airy(10) (0.01245, 0.01254] 0.0125
Convection Diffusion(5) | (0.60395, 0.60403] 0.6040
Convection Diffusion(10)| (0.75310, 0.75317] 0.7532
Transient(5) (0.02935, 0.02942] 0.0294
Transient(10) (0.02025, 0.02032] 0.0203

For the next results, we again choose matri¢dom EigTool [15] and letB be matrices
with normally distributed entries. Tabke?2 displays the results ofy(A, B) and 7 (A) in
the second and the third columns, respectively, when weyamp method for computing
problem (L.5). These results illustrate the inequality given 1Z][that o (A4, B) < 71 (A4). In
particular, the result for the Godunov and Skew Laplaciatrices show the importance of
computing the stabilizability radius when only the systeatnix A is perturbed.
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