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ENERGY BACKWARD ERROR: INTERPRETATION IN NUMERICAL
SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND

BEHAVIOUR IN THE CONJUGATE GRADIENT METHOD ∗

SERGE GRATTON†, PAVEL JIRÁNEK‡, AND XAVIER VASSEUR‡

Abstract. Backward error analysis is of great importance in the analysis of the numerical stability of algorithms
in finite precision arithmetic, and backward errors are also often employed in stopping criteria of iterative methods
for solving systems of linear algebraic equations. The backward error measures how far we must perturb the data
of the linear system so that the computed approximation solvesit exactly. We assume that the linear systems are
algebraic representations of partial differential equations discretised using the Galerkin finite element method. In this
context, we try to find reasonable interpretations of the perturbations of the linear systems which are consistent with
the problem they represent and consider the optimal backwardperturbations with respect to the energy norm, which
is naturally present in the underlying variational formulation. We also investigate its behaviour in the conjugate
gradient method by constructing approximations in the underlying Krylov subspaces which actually minimise such
a backward error.

Key words. symmetric positive definite systems, elliptic problems, finite element method, conjugate gradient
method, backward error

AMS subject classifications.65F10, 65F50

1. Introduction. Backward error analysis in numerical linear algebra, pioneered by von
Neumann and Goldstein [28], Turing [26], Givens [10] and further developed and popularised
by Wilkinson (see, e.g., [30, 31]), is a widely used technique employed in the study of effects
of rounding errors in numerical algorithms. When solving a given algebraic problem for
some data by means of a certain numerical algorithm, we wouldnormally be satisfied with
an approximate solution with a small relative error (the forward error) close to the precision
of our arithmetic. This is, however, not always possible, sowe may ask instead for what data
we actually solved our problem. Thus we interpret the computed solution as a solution of the
perturbed problem and identify the norm of the data perturbation with the backward error as-
sociated with the computed approximate solution. (There might be many such perturbations,
so we are interested in the smallest one).

In practical problems, the data are often affected by errorsdue to, e.g., measurements,
truncation, and round-off. We could hence be satisfied with asolution which solves the
given problem for some data lying within a certain neighbourhood of the provided data. The
backward error provides natural means for quantifying the accuracy of computed solutions
with respect to the accuracy of the problem data. In addition, the bounds on forward errors
can often be obtained from backward errors using the perturbation theory associated with the
problem to be solved, which is independent of the algorithm used to obtain the solution. For
more details, see [12, Chapter 1]. See also [17, Section 5.8] for a recent overview of the
relations between the concepts of numerical stability and backward error.

Backward error analysis provides an elegant way how to studynumerical stability of
algorithms, that is, their sensitivity with respect to rounding errors. If an algorithm is guaran-
teed to provide a solution with a backward error close to the machine precision of the given
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finite precision arithmetic for any data (the backward stable algorithm), one could be satisfied
with such an algorithm and solution it provides. Indeed the problem data cannot be stored
exactly in finite precision arithmetic anyway independently of the means how they were ob-
tained. It is therefore perfectly reasonable to consider the backward error as a meaningful
accuracy measure for quantities obtained from algorithms which would (in the absence of the
rounding errors) deliver the exact solution of the given problem.

The backward error concept is sometimes used to construct accuracy criteria for compu-
tations which are inherently inexact even in exact arithmetic. In particular, we are interested
in its use in stopping criteria for iterative solvers for linear algebraic systems

(1.1) Au = f , A ∈ R
N×N ,

whereA is assumed to be nonsingular. For a given approximationû of the solution of (1.1),
the backward error represents a measure by whichA andf have to be perturbed so thatû
solves the problem(A+ Ê)û = f + ĝ. The norm-wise relative backward error

min{ε : (A+ Ê)û = f + ĝ, ‖Ê‖ ≤ ε‖A‖, ‖ĝ‖ ≤ ε‖f‖}

was shown by Rigal and Gaches [21] to be given by

(1.2)
‖f −Aû‖

‖A‖‖û‖+ ‖f‖ ,

where‖·‖ is any vector norm and its associated matrix norm, although in practice one usually
chooses the standard Euclidean one. There are reasons why the backward error (1.2) should
be preferred over the standard relative residual norm as theguide for stopping the iterative
solvers when more relevant and sophisticated measures are not available; see, e.g., [3, 12],
and [17, Section 5.8.3]. This might be certainly supported by the fact that some iterative
methods, e.g., the methods based on the generalised minimumresidual method [23, 29], are
backward stable [2, 8, 13, 19] and thus may deliver solutions with an accuracy in terms of
the backward error close to the machine precision if required. We also point out the related
discussion in [25], in particular in Sections 1 and 2 there.

Iterative methods are in practice chiefly applied for solving linear systems (1.1) aris-
ing from discretised partial differential equations (PDE), e.g., by the finite element method
(FEM). Here the main source of errors is due to the truncationof the continuous differen-
tial operator, which, however, does not need to be reflected simply by the data errors in the
coefficients of the resulting linear algebraic system. The basic FEM discretisation of the
one-dimensional Poisson equation considered in Section2 represents this fact; the coefficient
matrix can be stored exactly even in finite precision arithmetic. The stopping criteria for itera-
tive solvers based on the norm-wise backward error (in the Euclidean norm) might be at least
questionable in this context. More sophisticated criteriabalancing the inaccuracy of the so-
lution obtained by the iterative solver and the inaccuracy due to truncation (the discretisation
error) should be used; see, e.g., [4] and the references therein.

We believe that when a certain stopping criterion based on data perturbations such as the
backward error is considered, the effects of these perturbations in the original problem to be
solved should be clarified. Here the system (1.1) is the algebraic representation of a FEM
discretisation of an elliptic PDE and solved inaccurately,e.g., by an iterative method. When
a stopping criterion based on the backward error is used and hence the computed approxi-
mation is interpreted as the solution of a perturbed linear system, we may ask whether such
perturbations have meaningful representations in the underlying discrete problem as well.

In Section2 we consider a general weak formulation of a self-adjoint elliptic PDE which
can be characterised by a variational equation involving a continuous, symmetric, and elliptic
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340 S. GRATTON, P. JIŔANEK, AND X. VASSEUR

bilinear form defined on a real Hilbert space and a general discretisation by the Galerkin finite
element method. We also introduce a simple one-dimensionalmodel problem, which we use
throughout the paper to illustrate our results. In Section3 we assume to have an approximate
solution û of the algebraic representation (1.1) of the discretised variational problem in a
fixed basis of the discrete space, which we associate with perturbed problems

(1.3) Aû = f + ĝ and (A+ Ê)û = f ,

and look for possible interpretations of the data perturbations ĝ andÊ in the discrete varia-
tional equation. Although the role of̂g in (1.3) is well known (see, e.g., [1]), the interpretation
of Ê is in our opinion worth some clarification. A similar idea of perturbing the operator was
considered before by Arioli et al. [5] as the so-called functional backward error. It is, however,
not obvious whether such an operator perturbation still maybe identified with a (discretised)
PDE or how it “physically” affects the original PDE. In Section 3 we try to interpretÊ as a
certain perturbation of the FEM basis for which the second system in (1.3) can be associated
with the algebraic form of the original discretised PDE. In addition, we look for the opera-
tor Ê optimal with respect to the norm relevant in our setting, that is, the energy norm, and
find a simple characterisation of such a definition of the backward error (called the energy
backward error here) in the functional setting. Our approach is related to the work in [20].
There the authors interpret the total error (that is, the difference between the solution of the
continuous problem and the approximate discrete solution)as the error of the exact discrete
solution on a modified mesh. Here, on the other hand, we keep the discrete space fixed.

Throughout the paper we illustrate our observations at a simple one-dimensional model
problem introduced in Section2 and consider solving the resulting algebraic system by the
conjugate gradient method (CG) [11]. It is known that CG minimises theA-norm (the dis-
crete representation of the energy norm) of the error over the Krylov subspace constructed
using the initial residual vector and the matrixA. It appears that the energy backward error
introduced in Section3 is closely related to the relativeA-norm of the error, that is, the for-
ward error. According to this fact, we look in Section4 for an approximation in the same
Krylov subspace which actually minimises the energy backward error. We show that it is
just a scalar multiple of the CG approximation. There is alsoan interesting “symmetry” with
respect to the CG approximations showing that they are in a sense equivalent. We do not
consider the effects of rounding errors throughout Section4, although we are aware of the
limits of the presented results in practice.

2. Galerkin FEM and model problem. In this section we recall the abstract weak
formulation of a linear partial differential equation and its discretisation using the Galerkin
finite element method. For more details, see, e.g., [6, 7]. Although we use a simple one-
dimensional Poisson equation as an illustrative model problem, our ideas can be kept in this
very general setting.

We consider an abstract variational problem on a real Hilbert spaceV: find u ∈ V such
that

(2.1) a(u, v) = 〈f, v〉 ∀v ∈ V,

where we assume thata is a continuous, symmetric, and elliptic bilinear form onV, f ∈ V ′,
whereV ′ denotes the space of continuous linear functionals onV, and〈·, ·〉 is the duality
pairing betweenV andV ′. The bilinear forma(·, ·) defines an inner product onV and its as-
sociated norm is‖·‖a ≡ [a(·, ·)]1/2 (usually called the energy norm). Due to the Lax-Milgram
lemma [16] (see also, e.g., [7, Theorem 1.1.3]), the problem (2.1) is uniquely solvable.
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LetVh be a subspace ofV of finite dimensionN . The Galerkin method for approximating
the solutionu of (2.1) reads: finduh ∈ Vh such that

(2.2) a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh.

It is well known that the discrete problem (2.2) has a unique solution. The discretisation
erroru− uh is orthogonal toVh with respect to the inner producta(·, ·) and, equivalently,
the discrete solutionuh minimises the energy norm ofu− uh overVh, that is,

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

In order to transform the discrete problem (2.2) to a system of linear algebraic equations,
we choose a basis ofVh. For simplicity, we use the same notation for the basis and for the
matrix representing it. In other words, we do not distinguish betweenΦ = {φ1, . . . , φN}
and the matrixΦ = [φ1, . . . , φN ]. Thus we choose a basisΦ ≡ [φ1, . . . , φN ] of Vh so
that we can express the solutionuh in terms of the basisΦ asuh = Φu for some vec-
tor u ∈ R

N representing the coordinates ofuh in the basisΦ. Then (2.2) holds if and only
if a(uh, φi) = 〈f, φi〉 for i = 1, . . . , N , which leads to a system of algebraic equations (1.1)
with

A = (Aij), Aij = a(φj , φi), i, j = 1, . . . , N,(2.3a)

f = (fi), fi = 〈f, φi〉.(2.3b)

As an illustrative example used in further sections, we consider a simple one-dimensional
Poisson problem

(2.4) −u′′(x) = f(x), x ∈ Ω ≡ (0, 1), u(0) = u(1) = 0,

wheref is a given continuous function on[0, 1]. The weak formulation of (2.4) is given
by (2.1) with

V ≡ H1
0 (Ω), a(u, v) ≡

∫

Ω

u′(x)v′(x)dx, 〈f, v〉 ≡
∫

Ω

f(x)v(x)dx,

whereH1
0 (Ω) = {v ∈ L2(Ω) : v′ ∈ L2(Ω), v(0) = v(1) = 0} is the Sobolev space

of square integrable functions on the intervalΩ which have square integrable (weak) first
derivatives and vanish at the end points of the interval (in the sense of traces). We use
heref(x) = 2α[1 − 2α(x − 1/2)2] exp[−α(x − 1/2)2] for which the solution of (2.4)
is given byu(x) = exp[−α(x − 1/2)2] − exp(−α/4) with α = 5. For the discretisation
of (2.4), we partitionΩ intoN+1 intervals of constant lengthh = 1/(N+1) and identifyVh

with the space of continuous functions linear on each interval [ih, (i + 1)h] (i = 0, . . . , N )
and choose the standard “hat-shaped” basisΦ = [φ1, . . . , φN ] of piecewise linear functions
such thatφi(jh) = 1 if i = j andφi(jh) = 0 if i 6= j. The matrixA and the right-hand side
vectorf are respectively given by

A = h−1















2 −1
−1 2 −1

. . .
.. .

. ..
−1 2 −1

−1 2















∈ R
N×N ,

f = (fi), fi =

∫ 1

0

f(x)φi(x)dx, i = 1, . . . , N.

We setN = 20 but the actual dimension is not important for the illustrative purpose.
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3. Energy backward error and its interpretation in the Galerkin FEM. Let û ∈ R
N

be an approximation to the solutionu of (1.1). In the backward error analysis, the vectorû is
interpreted as the solution of a problem (1.1), where the system dataA andf are perturbed.
We restrict ourselves here to the extreme cases where we consider perturbations only in the
right-hand side or the system matrix.

In this section, we discuss how such perturbations in the linear algebraic system may be
interpreted in the problem it represents, that is, in the discrete problem (2.2). The represen-
tation of the residual vector is quite straightforward and well known (see, e.g., [1, 5]) but we
include this case for the sake of completeness. We are, however, mainly interested in inter-
preting the perturbations in the matrixA itself, where some interesting questions may arise,
e.g., whether the symmetry and positive definiteness of the perturbed matrix is preserved and
whether the perturbed problem still represents a discrete variational problem.

In order to measure properly the perturbation norms in the algebraic environment, we
discuss first the choice of the vector norms relevant to the original variational problem, more
precisely its discretisation (2.2), where the energy norm induced by the bilinear forma(·, ·) is
considered. Letvh, wh ∈ Vh and letv,w ∈ R

N be respectively the coordinates ofvh andwh

in the basisΦ so thatvh = Φv andwh = Φw. From (2.3a) we have

(3.1) a(vh, wh) = a(Φv,Φw) = wTAv, ‖vh‖a = ‖v‖A ≡
√
vTAv.

The energy norm ofvh is hence equal to theA-norm of the vector of their coordinates with
respect to the basisΦ. Let gh ∈ V ′

h be such that〈gh, φi〉 = gi, i = 1, . . . , N , and let
the vectorg = [g1, . . . , gN ]T ∈ R

N represent the discrete functionalgh with respect to the
basisΦ. For anyvh = Φv ∈ Vh with v = [v1, . . . , vN ]T , we have

(3.2) 〈gh, vh〉 =
N
∑

i=1

vi〈gh, φi〉 =
N
∑

i=1

givi = gTv.

From (3.1) and (3.2), the dual norm ofgh is given by

(3.3) ‖gh‖a,⋆ ≡ max
vh∈Vh\{0}

〈gh, vh〉
‖vh‖a

= max
v∈RN\{0}

gTv

‖v‖A
= ‖g‖A−1 ,

that is, the dual norm ofgh is equal to theA−1-norm of the vector of its coordinates with
respect toΦ. The last equality can be obtained using the Cauchy-Schwarzinequality

(3.4)
gTv

‖v‖A
=

gTA−1/2A1/2v

‖v‖A
≤ ‖g‖A−1‖v‖A

‖v‖A
= ‖g‖A−1

and choosingv = A−1g, which gives equality in (3.4). We can thus consider the matrixA
as the mapping fromRN toR

N equipped with theA-norm andA−1-norm, respectively:

(3.5) A : (RN , ‖ · ‖A) → (RN , ‖ · ‖A−1).

The accuracy of the given approximationû of the solution of (1.1) is characterised by
the residual vector̂r = [r̂1, . . . , r̂N ]T ≡ f − Aû. By definition, the vector̂u satisfies the
perturbed algebraic system

(3.6) Aû = f − r̂.

Let ûh = Φû ∈ Vh be the approximation to the solutionuh of the discrete problem (2.2) ob-
tained from the inexact solution̂u of the system (1.1) and let r̂h ∈ V ′

h be defined
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by 〈r̂h, φi〉 = r̂i, i = 1, . . . , N . It is straightforward to verify that the system (3.6) is the al-
gebraic representation of the perturbed discrete problem∗

(3.7) a(ûh, vh) = 〈f, vh〉 − 〈r̂h, vh〉 ∀vh ∈ Vh.

From (3.3), the relationA(u − û) = r̂, and (3.1), we have for the dual norm of the residual
functionalr̂h the relation

‖r̂h‖a,⋆ = ‖r̂‖A−1 = ‖u− û‖A = ‖uh − ûh‖a.

Note that (3.7) still represents a discretisation of a PDE. In particular for our model Poisson
equation, the functional̂rh can be identified with a piecewise linear perturbation of theright-
hand sidef and the approximate discrete solutionûh can be considered as the (exact) solution
of the discretisation of the original problem with the right-hand sidef replaced byf − r̂h.

Now we make an attempt to find a suitable interpretation of theperturbation of the system
matrix A. Let the approximation̂u be nonzero and let the matrix̂E ∈ R

N×N be such
thatÊû = r̂ so that the vector̂u satisfies the perturbed system

(3.8) (A+ Ê)û = f .

Note that such an̂E is not unique; we will consider finding certain optimal perturbations later.
According to (3.5), we consistently measure the size of the perturbationÊ by the norm

(3.9) ‖Ê‖A,A−1 ≡ max
v∈RN\{0}

‖Êv‖A−1

‖v‖A
= ‖A−1/2ÊA−1/2‖2,

where‖ · ‖2 denotes the spectral matrix norm andA1/2 the unique SPD square root of the
matrixA. We will refer to the norm defined by (3.9) as theenergy normof the matrixÊ.

We can consider an approach similar to what is called the functional backward error
in [5]. The matrix Ê = (Êij) can be identified with the bilinear form̂eh on Vh defined
by êh(φj , φi) = Êij , i, j = 1, . . . , N . It is then straightforward to show that†

(3.10) a(ûh, vh) + êh(ûh, vh) = 〈f, vh〉 ∀vh ∈ Vh.

That is, the discrete variational problem (3.10) is represented in the basisΦ by the perturbed
system (3.8). The norm of̂eh is given by the energy norm of̂E

max
vh,wh∈Vh\{0}

êh(vh, wh)

‖vh‖a‖wh‖a
= max

v,w∈RN\{0}

wT Êv

‖v‖A‖w‖A
= ‖Ê‖A,A−1 .

Note that the matrixA + Ê does not need to be sparse nor symmetric (depending on the
structure of the perturbation matrix̂E), and in general it does not need to be nonsingular. The
form êh therefore does not need to be symmetric either.

It is not easy (if possible) to find a reasonable interpretation of the bilinear form̂eh, e.g.,
to find out whether the perturbed variational problem (3.10) still represents a discretised PDE.
We thus look for a different interpretation of (3.8) which might preserve the character of the

∗For the sake of simplicity, we restrict ourselves to the discrete spaceVh, although we could interpret (3.7) as
the discretisation of a perturbed (continuous) variational problem (2.1) with r̂h replaced by a proper norm-preserving
extension toV ′ due to the Hahn-Banach theorem; see, e.g., [22].

†Again, we restrict ourselves to the discrete space and do notconsider the extension of̂eh toV .
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original problem. In particular, we will see that the perturbed system (3.8) can be consid-
ered as a certain perturbation of the basisΦ in which the approximate solution̂u provides
coordinates of the (exact) discrete solutionuh.

Let Φ̂ = [Φ̂1, . . . , Φ̂N ] be a basis ofVh obtained from the basisΦ by perturbing its
individual components by linear combinations of the original basisΦ. We can write

(3.11) Φ̂ = Φ(I+ D̂), that is, φ̂j = φj +
N
∑

k=1

D̂kjφk, j = 1, . . . , N,

whereD̂ = (D̂ij) ∈ R
N×N is a matrix of perturbation coefficients andI denotes the identity

matrix. We assume thatI+D̂ is nonsingular so that̂Φ is indeed a basis ofVh. We look for the
discrete solutionuh given by the linear combination of the modified basisΦ̂ with coefficients
given by the vector̂u. If uh = Φ̂û with û = [û1, . . . , ûN ]T andΦ̂ as in (3.11), we have

a(uh, φi) =

N
∑

j=1

a(φ̂j , φi)ûj =

N
∑

j=1

(

a(φj , φi) +

N
∑

k=1

D̂kja(φk, φi)

)

ûj

=
N
∑

j=1

(

Aij +
N
∑

k=1

AikD̂kj

)

ûj =
[

(A+AD̂)û
]

i
,

where[·]i denotes thei-th component of the vector given in the argument. Hence requir-
ing (2.2) to hold forvh = φi, i = 1, . . . , N , leads to

(A+ Ê)û = f , Ê = AD̂,

that is, to the perturbed system (3.8) with Ê = AD̂. Equivalently, given an approximation̂u
of the solution of the algebraic system (1.1) and the perturbation̂E such that̂u satisfies (3.8),
there is a basiŝΦ given by Φ̂ = Φ(I + D̂), whereD̂ = A−1Ê such that the vector̂u
represents the coordinates of the (exact) discrete solution uh of (2.2) with respect to the
modified basisΦ̂. Note thatΦ̂ is a (linearly independent) basis ofVh if (and only if) the
matrixA+ Ê (as well as the matrixI+ D̂) is nonsingular.

In order to give the interpretation to the energy norm ofÊ = AD̂, we define a relative
distance between the two basesΦ̂ andΦ by

(3.12) d(Φ̂,Φ) = max
v∈RN\{0}

‖Φ̂v −Φv‖a
‖Φv‖a

.

From (3.11) we have

d(Φ̂,Φ) = max
v∈RN\{0}

‖Φ̂v −Φv‖a
‖Φv‖a

= max
v∈RN\{0}

‖ΦD̂v‖a
‖Φv‖a

= max
v∈RN\{0}

‖D̂v‖A
‖v‖A

= max
v∈RN\{0}

‖A−1Êv‖A
‖v‖A

= max
v∈RN\{0}

‖Êv‖A−1

‖v‖A
= ‖Ê‖A,A−1 ,

that is, the relative distance between the basesΦ̂ andΦ related by (3.11) is equal to the energy
norm of the matrix̂E = AD̂. We summarise the discussion above in the following theorem.
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THEOREM 3.1. Let û be a nonzero approximate solution of the system(1.1) representing
algebraically the discretised variational problem(2.2) with respect to the basisΦ of Vh.
Let Ê be such that̂u satisfies the perturbed system(3.8) and letA+ Ê be nonsingular. Then
the vectorû contains the coordinates of the solutionuh of (2.2) with respect to the basiŝΦ
given by(3.11) with D̂ = A−1Ê. In addition, the perturbed system(3.8) is the algebraic
representation of the discrete variational problem(2.2) with respect to the baseŝΦ andΦ.
The relative distance(3.12) between̂Φ andΦ is given by the energy norm ofÊ.

For a given nonzero vector̂u, there are “many” perturbationŝE so thatÊû = r̂. Equiv-
alently, there are many basesΦ̂ which can be (linearly) combined touh using the vector of
coordinateŝu. We look hence for the perturbation̂E optimal with respect to the energy norm.
For this purpose we define theenergy backward errorby

(3.13) ξ(û) ≡ min
{

‖Ê‖A,A−1 : Ê ∈ R
N×N , (A+ Ê)û = f

}

.

The following theorem holds for any system (1.1) with a symmetric positive definite ma-
trix A.

THEOREM 3.2. Let û be a nonzero approximation of the solution of(1.1) with a sym-
metric positive definite matrixA and letr̂ = f −Aû be the associated residual vector. Then

(3.14) ξ(û) =
‖r̂‖A−1

‖û‖A
=

‖u− û‖A
‖û‖A

.

The matrixÊ∗(û) for which the minimum in(3.13) is attained is given by

(3.15) Ê∗(û) ≡
r̂ûTA

‖û‖2
A

.

The matrixA+ Ê∗(û) is nonsingular ifξ(û) < 1.
Proof. The proof essentially follows that of [12, Theorem 7.1]. Let̂E be any matrix

such that (3.8) holds and henceξ(û) ≤ ‖Ê‖A,A−1 due to (3.13). FromÊû = f −Aû = r̂

we have that(A−1/2ÊA−1/2)(A1/2û) = A−1/2r̂. By taking the 2-norm on both sides and
using (3.9), we get

‖r̂‖A−1 ≤ ‖A−1/2ÊA−1/2‖2‖û‖A = ‖Ê‖A,A−1‖û‖A

and thus

‖r̂‖A−1

‖û‖A
≤ ‖Ê‖A,A−1 .

Hence the ratio‖r̂‖A−1/‖û‖A is a lower bound ofξ(û). To prove equality, we consider the
matrix Ê = Ê∗(û) given by (3.15). It is easy to see that̂E∗(û)û = r̂. Indeed,

Ê∗(û)û =
r̂(ûTAû)

‖û‖2
A

=
‖û‖2

A

‖û‖2
A

r̂ = r̂

and hencêE = Ê∗(û) satisfies (3.8). Its energy norm is given by

‖Ê∗(û)‖A,A−1 = ‖A−1/2Ê∗(û)A
−1/2‖2 =

‖A−1/2r̂ûT Â1/2‖2
‖û‖2

A

=
‖r̂‖A−1

‖û‖A
,
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where the last equality follows from the fact that‖B‖2 = ‖v‖2‖w‖2 holds true for the
matrixB = vwT ∈ R

N×N with v,w ∈ R
N ; see, e.g., [27, Problem 2.3.9]. Therefore,

‖Ê∗(û)‖A,A−1 =
‖r̂‖A−1

‖û‖A
≤ ξ(û) ≤ ‖Ê∗(û)‖A,A−1 ,

which (together withA(u − û) = r̂) implies that (3.14) holds. It is well known (see, e.g.,
[24, Corollary 2.7]) thatA+ Ê∗(û) is nonsingular if

‖Ê∗(û)‖A,A−1

‖A‖A,A−1

<
1

κA,A−1(A)
,

where for a nonsingular matrixX

κA,A−1(X) = ‖X‖A,A−1‖X−1‖A−1,A.

Since‖A‖A,A−1 = ‖A−1‖A−1,A = 1, we obtain that the matrixA+ Ê∗(û) is nonsingular
if ξ(û) = ‖Ê∗(û)‖A,A−1 < 1.

The optimal perturbation̂E∗(û) defined in Theorem3.2 is related to certain optimal
perturbation of the basisΦ. In fact, combining Theorems3.1and3.2, we obtain the following
result.

THEOREM 3.3. Let û be a nonzero approximate solution of the system(1.1) representing
algebraically the discretised variational problem(2.2) with respect to the basisΦ of Vh and
let ξ(û) < 1. Thenû is the solution of the perturbed problem

(

A+ Ê∗(û)
)

û = f

with the perturbation matrix̂E∗(û) given by(3.15). Furthermore, letD̂∗(û) ≡ A−1Ê∗(û)

andΦ̂∗(û) ≡ Φ(I+ D̂∗(û)). ThenΦ̂∗(û) is the basis ofVh closest to the basisΦ in terms
of the relative distance(3.12) among all bases ofVh in which the vector̂u represents the co-
ordinates of the solutionuh of (2.2). Their relative distance is given by the energy backward
error ξ(û) in (3.13) and (3.14), that is,d(Φ̂∗(û),Φ) = ξ(û).

REMARK 3.4. Backward errors provide bounds on forward errors (relative norms of the
error) via the condition number of the matrixA (with respect to consistently chosen norms).
If û satisfies the perturbed system (3.8) and the condition numberκ(A) = ‖A‖‖A−1‖ is
such thatκ(A)‖Ê‖/‖A‖ < 1, the forward error can be bounded by

(3.16)
‖u− û‖
‖u‖ ≤ κ(A)‖Ê‖/‖A‖

1− κ(A)‖Ê‖/‖A‖
,

see, e.g., [24, Theorem 2.11]. With our choice of norms, both forward and backward errors
do coincide since the condition number and the norm of the matrix A are equal to one. The
bound (3.16) then (withÊ = Ê∗(û)) becomes

‖u− û‖A
‖u‖A

≤ ξ(û)

1− ξ(û)

provided thatξ(û) < 1. In addition, from‖u‖A ≤ ‖û‖A(1 + ξ(û)), we have

‖u− û‖A
‖u‖A

≥ ξ(û)

1 + ξ(û)
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and hence the forward and backward error in theA-norm are equivalent in the sense that

ξ(û)

1 + ξ(û)
≤ ‖u− û‖A

‖u‖A
≤ ξ(û)

1− ξ(û)
if ξ(û) < 1.

Note that this is simply due to the fact that the condition number ofA is one with respect to
the chosen matrix norms.

The perturbation matrix̂E∗(û) is determined by the errors in solving the system (1.1).
Minimising the energy norm of̂E generally leads to a dense (and nonsymmetric) perturba-
tion matrix Ê∗(û) (although structured, in our case of rank one). The corresponding trans-
formation matrixD̂∗(û) = A−1Ê∗(û) is dense as well, which means that the perturbed
matrix Φ̂∗(û) has global supports even though the supports ofΦ can be local. This would
be the case even if we considered the component-wise perturbationsÊ [18] since the inverse
of A (and hence the transformation matrix̂D) is generally dense. This is, however, not
important for the interpretation of the perturbation coefficients itself.

We illustrate our observations at the model problem described in Section2, which we
solve approximately using the conjugate gradient (CG) method [11]. It is well known that,
given an initial guessu0 with the residualr0 ≡ f − Au0, CG generates the approxima-
tionsuCG

n ∈ u0 +Kn, whereKn is the Krylov subspaceKn ≡ span{r0,Ar0, . . . ,A
n−1r0},

such that

(3.17) ‖u− uCG
n ‖A = min

û∈u0+Kn

‖u− û‖A.

In Figure3.1, we display the exact solution of the discrete problem, the relativeA-norms

(3.18) ǫCG
n ≡ ‖u− uCG

n ‖A
‖u‖A

of the errors of the CG approximationsuCG
n and their associated energy backward er-

rors ξ(uCG
n ) (where we setu0 = 0). The backward errors of the CG approximations, al-

though monotonically decreasing as we will see in the next section, need not to be necessarily
smaller than one as it is the case for the relative error normsǫCG

n . For our model problem, we
have (note thatξ is not defined for the initial guessu0 = 0)

ξ(uCG
1 ) = 1.2718, ξ(uCG

3 ) = 1.0572, ξ(uCG
4 ) = 0.8658.

In order to demonstrate how the perturbation and transformation matricesÊ∗(û)

and D̂∗(û) defined in Theorems3.2 and3.3, respectively, look like, we consider two ap-
proximationsû computed by CG at the iterations1 and 5, that is, we takêu = uCG

1

and û = uCG
5 . In Figure3.2 we display (together with the exact solutionuh of the dis-

crete problem) the approximationsuCG
h,n = ΦuCG

n of uh constructed from the CG approx-
imationsuCG

n (for n = 1 andn = 5). The entries of the perturbation and transformation
matricesÊ∗(u

CG
n ) and D̂∗(u

CG
n ), respectively, corresponding to these approximate solu-

tions are visualised in Figures3.3and3.4 (using the MATLAB commandsurf). Since the
standard hat-shaped basisΦ is used, the interior nodal values ofuCG

h,n are equal to the corre-
sponding components of the vectorsuCG

n . We would getuh by forming linear combinations
of the basisΦ(I + D∗(u

CG
n )) using the coefficientsuCG

n obtained by then-th CG iteration
which, at the same time, satisfy the perturbed problems(A+E∗(u

CG
n ))uCG

n = f .
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FIG. 3.1.The discrete solutionuh of the model problem on the left plot and the convergence of CGin terms of
the relativeA-norm of the errorǫCG

n = ‖u − uCG
n ‖A/‖u‖A and of the energy backward errorξ(uCG

n ) on the
right plot.
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FIG. 3.2. The discrete solutionuh and the approximate solutionuCG

h,n
= ΦuCG

n for n = 1 (left plot)
andn = 5 (right plot).

4. Conjugate gradient method and energy backward error.The conjugate gradient
method constructs, starting from the initial guessu0, the sequence of approximationsuCG

n

from the (shifted) Krylov subspaceu0 +Kn. Similarly to the Galerkin method, the approxi-
mationsuCG

n minimise the discrete energy norm (A-norm) of the erroru−uCG
n in the sense

of (3.17). Equivalently, the erroreCG
n ≡ u− uCG

n is A-orthogonal toKn.
REMARK 4.1. In the Galerkin finite element method, there is even moreabout the opti-

mality of CG than in the iterative method itself. IfuCG
h,n = ΦuCG

n is the associated approxi-
mation of the solution of the discrete problem (2.2), we have

‖u− uCG
h,n‖a = min

vh∈Φ(u0+Kn)
‖u− vh‖a,

whereΦ(u0 +Kn) = {vh ∈ Vh : vh = Φv, v ∈ u0 +Kn}. It means that CG provides op-
timal approximations to the solutionu of the (continuous) problem (2.1) from the subspaces
of Vh which consist of all linear combinations of the basisΦ with coefficients taken from the
shifted Krylov subspacesu0 +Kn. This follows from the identity

‖u− vh‖2a = ‖u− uh‖2a + ‖uh − vh‖2a = ‖u− uh‖2a + ‖u− v‖2A,
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FIG. 3.3. Surface plots of the perturbation matrix̂E∗(uCG
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) (left plot) and the transformation ma-
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FIG. 3.4. Surface plots of the perturbation matrix̂E∗(uCG
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) (left plot) and the transformation ma-

trix D̂∗(uCG
5

) (right plot).

which holds for anyvh = Φv ∈ Vh and is a consequence of thea-orthogonality ofu − uh
to Vh; see also [9, Section 2.1], [17, Section 2.5.2], and [20] for more details.

In the following we assume thatu0 = 0. We use a simple relation between theA-norms
of the CG erroreCG

n , the solutionu, and the CG approximationuCG
n of the form

(4.1) ‖eCG
n ‖2A = ‖u‖2A − ‖uCG

n ‖2A,

which follows from the fact thatuCG
n ∈ Kn and theA-orthogonality ofu− uCG

n toKn:

u = uCG
n + (u− uCG

n ) ⇒ ‖u‖2A = ‖uCG
n ‖2A + ‖u− uCG

n ‖2A.

Using (4.1), the energy backward error of the CG approximationuCG
n can be expressed as

(4.2) ξ(uCG
n ) =

‖eCG
n ‖A

‖uCG
n ‖A

=
ǫCG
n

√

1− (ǫCG
n )2

,

whereǫCG
n is the relativeA-norm of the erroreCG

n ; see (3.18). The energy backward error is
well defined for every CG iteration except for the zero initial guess. It is due to the fact that
the energy norm of the error in CG decreases strictly monotonically at each step. SinceǫCG

n is
decreasing, the energy backward error (4.2) decreases as well in CG. Bothξ(uCG

n ) andǫCG
n
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are close (as can be observed in Figure3.1for our model problem) provided thatǫCG
n is small

enough due to

ǫCG
n

ξ(uCG
n )

=
√

1− (ǫCG
n )2.

Note also thatξ(uCG
n ) < 1 if ǫCG

n < 1/
√
2.

One could ask whether it is possible (instead of theA-norm of the error) to minimise the
energy backward errorξ over the same Krylov subspaceKn. Let un be an arbitrary vector
from Kn and leten ≡ u − un be the associated error vector. FromuCG

n − un ∈ Kn,
theA-orthogonality ofeCG

n toKn, and the Pythagorean theorem, we get that

(4.3) ‖en‖2A = ‖eCG
n + (uCG

n − un)‖2A = ‖eCG
n ‖2A + ‖uCG

n − un‖2A.

From (3.14) and (4.3), we have

ξ2(un) =
‖eCG

n ‖2
A
+ ‖uCG

n − un‖2A
‖un‖2A

.(4.4)

LEMMA 4.2. Letv ∈ R
n be a given nonzero vector,α ∈ R, and

ϕ(w) =
α2 + ‖v −w‖22

‖w‖22
.

Thenw∗ = γv with γ = 1 + (α/‖v‖2)2 is the unique minimiser ofϕ over all nonzero
vectorsw and it holds thatϕ(w∗) = α2/(α2 + ‖v‖22).

Proof. Let w = ηv + v⊥ whereη ∈ R andv⊥ is an arbitrary vector orthogonal tov,
that is,vT

⊥v = 0. From the Pythagorean theorem we have

(4.5) ϕ(ηv + v⊥) =
α2 + (1− η)2‖v‖22 + ‖v⊥‖22

η2‖v‖22 + ‖v⊥‖22
.

Note thatϕ does not depend on the vectorv⊥ itself but only on its norm. Dividing both the
numerator and denominator in (4.5) by the (nonzero) value‖v‖2, we obtain

ϕ(ηv + v⊥) =
α̃2 + (1− η)2 + ζ2

η2 + ζ2
≡ ψ(η, ζ),

whereα̃ ≡ α/‖v‖2 andζ ≡ ‖v⊥‖2/‖v‖2. Hence the statement is proved by showing thatψ
has a global minimum at(η, ζ) = (γ, 0) = (1+ α̃2, 0) and thatψ(1+ α̃2, 0) = α̃2/(1+ α̃2),
which can be shown by standard calculus. The functionψ is smooth everywhere except
for (η, ζ) = 0. We have

∇ψ(η, ζ) = − 2

(η2 + ζ2)2

[

η(α̃2 + 1)− η2 + ζ2

ζ(1 + α̃2 − 2η)

]

,

and thus we have∇ψ(η, ζ) = 0 if (and only if) η = 1 + α̃2 andζ = 0. The minimum can
be verified by checking the positive definiteness of the matrix of second derivatives at the
stationary point(η, ζ) = (1 + α̃2, 0), which holds since

∇2ψ(1 + α̃2, 0) =
2

(α̃2 + 1)3

[

1 0
0 1

]

.
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Substituting the stationary point intoψ gives

ψ(1 + α̃2, 0) = α̃2/(1 + α̃2) = α2/(α2 + ‖v‖22) < 1.

The minimum is also global sinceϕ(tw) → 1 ast→ ∞ for any fixedw.
THEOREM 4.3. Let uCG

n be the approximation of CG with the initial guessu0 = 0 at
the stepn > 1. Then the unique vectoru∗

n minimising the energy backward errorξ over
all vn ∈ Kn is given by

u∗
n = γnu

CG
n ,

where

γn = 1 + ξ2(uCG
n ) =

1

1− (ǫCG
n )2

.

The energy backward error ofu∗
n is equal to the relativeA-norm of the CG error

ξ(u∗
n) =

‖u− uCG
n ‖A

‖u‖A
= ǫCG

n .

Proof. The relation (4.4) can be written as

ξ2(un) =
‖eCG

n ‖2
A
+ ‖A1/2(uCG

n − un)‖22
‖A1/2un‖22

.

If we setw ≡ A1/2un, v ≡ A1/2uCG
n , α ≡ ‖eCG

n ‖A, we have from Lemma4.2 that the
minimum ofξ2(un) is attained atu∗

n = γnu
CG
n with

γn = 1 +
α2

‖v‖22
= 1 +

‖eCG
n ‖2

A

‖uCG
n ‖2

A

= 1 + ξ2(uCG
n ) =

1

1− (ǫCG
n )2

,

where the last equality follows from (4.2). The minimum is given by

ξ(u∗
n) =

α
√

α2 + ‖v‖22
=

‖eCG
n ‖A

√

‖eCG
n ‖2

A
+ ‖uCG

n ‖2
A

=
‖eCG

n ‖A
‖u‖A

= ǫCG
n

using (4.1) again.
The approximationsu∗

n minimising the energy backward errorξ over the Krylov sub-
spaceKn are thus given by a simple scalar multiple of the CG approximationsuCG

n . It is
clear thatu∗

n ≈ uCG
n provided that the relative errorǫCG

n is small enough and the difference
between both approximations gets smaller with the decreasing A-norm of the CG approxi-
mations.

REMARK 4.4. There is an interesting “symmetry” between the relative A-norms of
the errors and the energy backward errors of the approximationsuCG

n andu∗
n illustrated in

Table4.1. The expression for the relative energy norm of the error ofu∗
n follows from (3.14)

and Theorem4.3

ξ(u∗
n) = ǫCG

n =
‖u− u∗

n‖A
‖u∗

n‖A
,

and hence together with (4.1) we get

‖e∗n‖A
‖u‖A

= ξ(u∗
n)

‖u∗
n‖A

‖u‖A
= γnξ(u

∗
n)

‖uCG
n ‖A

‖u‖A
=
ǫCG
n

√

1− (ǫCG
n )2

1− (ǫCG
n )2

=
ǫCG
n

√

1− (ǫCG
n )2

.
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TABLE 4.1
Symmetry betweenuCG

n andu∗
n.

uCG
n : minimises‖en‖A u∗

n: minimisesξ(un)

‖en‖A

‖u‖A
ǫCG
n ǫCG

n [1− (ǫCG
n )2]−1/2

ξ(un) ǫCG
n [1− (ǫCG

n )2]−1/2 ǫCG
n
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FIG. 4.1. The discrete solutionuh and the approximate solutionsuCG

h,n
= ΦuCG

n and u∗
h,n

= Φu∗
n

for n = 1 (left plot) andn = 5 (right plot).

In fact, we can also say that the forward error ofuCG
n is equal to the backward error ofu∗

n

and vice versa.

In order to demonstrate the effects of the minimisation ofξ(û), we consider as in the pre-
vious section the CG approximations obtained at iterations1 and5. In Figure4.1we show, to-
gether with the discrete solutionuh of our model problem, the approximationsuCG

h,n = ΦuCG
n

obtained from the CG iterates at stepsn = 1 andn = 5 and the approximationsu∗h,n = Φu∗
n

obtained from the CG approximations scaled according to Theorem 4.3. In Figures4.2
and 4.3, we also show the surface plots of the corresponding perturbations and transfor-
mation matriceŝE∗(u

∗
n) andD̂∗(u

∗
n) of these scaled CG approximations. It is interesting

to observe that although the perturbation matricesÊ∗(u
CG
n ) andÊ∗(u

∗
n) (left plots of Fig-

ures3.3, 3.4, 4.2, and4.3) visually look very similar, this is not the case for the transformation
matricesD̂∗(u

CG
n ) andD̂∗(u

∗
n) (right plots of the same figures). This means that (in our ex-

ample) the scaling of the CG approximations does not change much (at least visually) the
coefficients of the perturbation matriceŝE(uCG

n ), while the changes in the transformation
matricesD̂(uCG

n ) seem to be more prominent.

In order to explain this phenomenon, we evaluate the relative 2-norm of the differ-
encesÊ∗(u

CG
n )− Ê∗(u

∗
n) andD̂∗(u

CG
n )− D̂∗(u

∗
n). Let rCG

n ≡ f −AuCG
n be the residual

vector of a nonzero CG approximationuCG
n different from the exact solutionu of (1.1). Us-

ingu∗
n = γnu

CG
n (defined in Theorem4.3), f −Au∗

n= f − γnAuCG
n =γnr

CG
n + (1− γn)f ,

(1− γn)/γn = −(ǫCG
n )2, and (3.15), we find

Ê∗(u
CG
n ) = Ê∗(u

∗
n) + (ǫCG

n )2
f(uCG

n )TA

‖uCG
n ‖2

A

.
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FIG. 4.2. Surface plots of the perturbation matrix̂E∗(u∗
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) (left plot) and the transformation matrix̂D∗(u∗
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)

(right plot).
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FIG. 4.3. Surface plots of the perturbation matrix̂E∗(u∗
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) (left plot) and the transformation matrix̂D∗(u∗
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)

(right plot).

Due to the relation̂E∗(·) = AD̂∗(·), we have similarly that

D̂∗(u
CG
n ) = D̂∗(u

∗
n) + (ǫCG

n )2
u(uCG

n )TA

‖uCG
n ‖2

A

.

Although the approximationu∗
n is a scalar multiple ofuCG

n , this is not the case for their
corresponding perturbation/transformation matrices. Onthe other hand, their differences are
rank one matrices depending only on the CG approximationuCG

n and its associated rela-
tive A-norm of the errorǫCG

n . For the 2-norm, we obtain

‖Ê∗(u
∗
n)− Ê∗(u

CG
n )‖2

‖Ê∗(uCG
n )‖2

= (ǫCG
n )2

‖f‖2
‖f −AuCG

n ‖2

and

‖D̂∗(u
∗
n)− D̂∗(u

CG
n )‖2

‖D̂∗(uCG
n )‖2

= (ǫCG
n )2

‖u‖2
‖u− uCG

n ‖2
.

Thus we can expect more prominent differences in the coefficients of the transformation
matrices when the relative norm of the error of the CG approximationuCG

n is considerably
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smaller than its relative residual norm. In our example, we have‖u− uCG
1 ‖2/‖u‖2 = 0.7982

and‖f − AuCG
1 ‖2/‖f‖2 = 2.195 for n = 1, and forn = 5, ‖u − uCG

5 ‖2/‖u‖2 = 0.2998
and ‖f −AuCG

5 ‖2/‖f‖2 = 2.102. We can hence expect more prominent differences be-
tween the transformation matriceŝD∗(u

∗
n) andD̂∗(u

CG
n ) than between the perturbation ma-

tricesÊ∗(u
∗
n) andÊ∗(u

CG
n ), in particular at the iteration 5, where the relative residual norm

is about 10 times larger than the relative error norm.

5. Conclusions.Motivated by the use of backward errors in stopping criteriafor itera-
tive solvers, we made an attempt to find an “easy-to-touch” interpretation of the data pertur-
bations in linear algebraic systems arising from discretisations of elliptic partial differential
equations. In particular, we were interested in finding a possible meaning of the perturbations
of the system matrixA and related them to certain perturbations of the basis of theapprox-
imation space where the discrete solution of the underlyingvariational problem is sought.
Although we are aware of the limited usability of our resultsin practice while bearing in
mind recent results on dealing with discretisation and algebraic errors in numerical solution
of PDEs, we believe that they might be of certain interest andmotivate designers of stopping
criteria for iterative processes to justify their relevance to the problem to be solved.

We showed that minimising the backward error induced by theA-norm over the Krylov
subspaceKn leads to approximations which are closely related to the approximations com-
puted by CG, which minimise theA-norm of the error overKn. This is similar to the idea
behind the methods called GMBACK and MINPERT introduced in [14, 15] for general non-
symmetric problems. In contrast to the iterates computed bythese methods, we showed that
the optimal approximations minimising the backward error are just scalar multiples of the CG
approximations and they are closer to each other as theA-norm of the CG approximations
decreases. Nevertheless, we do not claim that approximations constructed in this way have
any superiority with respect to CG which is optimal itself with respect to the closely related
measure.
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