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ENERGY BACKWARD ERROR: INTERPRETATION IN NUMERICAL
SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND
BEHAVIOUR IN THE CONJUGATE GRADIENT METHOD  *

SERGE GRATTON, PAVEL JIRANEK?, AND XAVIER VASSEUR}

Abstract. Backward error analysis is of great importance in the ansiyisihe numerical stability of algorithms
in finite precision arithmetic, and backward errors are afsenoemployed in stopping criteria of iterative methods
for solving systems of linear algebraic equations. The baclverror measures how far we must perturb the data
of the linear system so that the computed approximation sa\esctly. We assume that the linear systems are
algebraic representations of partial differential equaidiscretised using the Galerkin finite element method.i$n th
context, we try to find reasonable interpretations of théypkations of the linear systems which are consistent with
the problem they represent and consider the optimal backpextdrbations with respect to the energy norm, which
is naturally present in the underlying variational formidat We also investigate its behaviour in the conjugate
gradient method by constructing approximations in the ugdeglKrylov subspaces which actually minimise such
a backward error.
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1. Introduction. Backward error analysis in numerical linear algebra, péwaé by von
Neumann and Goldstei2§], Turing [26], Givens [LO] and further developed and popularised
by Wilkinson (see, e.g.30, 31]), is a widely used technique employed in the study of effect
of rounding errors in numerical algorithms. When solving @egi algebraic problem for
some data by means of a certain numerical algorithm, we woaitthally be satisfied with
an approximate solution with a small relative error (thevard error) close to the precision
of our arithmetic. This is, however, not always possibleywsamay ask instead for what data
we actually solved our problem. Thus we interpret the comgbgblution as a solution of the
perturbed problem and identify the norm of the data pertishavith the backward error as-
sociated with the computed approximate solution. (Theghirbe many such perturbations,
so we are interested in the smallest one).

In practical problems, the data are often affected by emloesto, e.g., measurements,
truncation, and round-off. We could hence be satisfied wiolation which solves the
given problem for some data lying within a certain neighlhaad of the provided data. The
backward error provides natural means for quantifying tteueacy of computed solutions
with respect to the accuracy of the problem data. In additio& bounds on forward errors
can often be obtained from backward errors using the pextiaritheory associated with the
problem to be solved, which is independent of the algoritlseduto obtain the solution. For
more details, seelp, Chapter 1]. See alsd.f, Section 5.8] for a recent overview of the
relations between the concepts of numerical stability aukbard error.

Backward error analysis provides an elegant way how to studyerical stability of
algorithms, that is, their sensitivity with respect to rding errors. If an algorithm is guaran-
teed to provide a solution with a backward error close to thehine precision of the given
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finite precision arithmetic for any data (the backward stathgorithm), one could be satisfied
with such an algorithm and solution it provides. Indeed thebfem data cannot be stored
exactly in finite precision arithmetic anyway independgiofi the means how they were ob-
tained. It is therefore perfectly reasonable to considerttaickward error as a meaningful
accuracy measure for quantities obtained from algorithimshkwvould (in the absence of the
rounding errors) deliver the exact solution of the givenbpem.
The backward error concept is sometimes used to constragtay criteria for compu-

tations which are inherently inexact even in exact arithienét particular, we are interested
in its use in stopping criteria for iterative solvers fordar algebraic systems

(1.1) Au="f, A e RVXN

whereA is assumed to be nonsingular. For a given approximaiiofithe solution of {.1),
the backward error represents a measure by whicindf have to be perturbed so that
solves the problerfA + E)u = f + g. The norm-wise relative backward error

minfe : (A+E)a=f+g, |E| <c[|Al, &) <e|f]}
was shown by Rigal and GacheAl] to be given by

If — Aq

(1.2) —_—
A + (1]

where|| - || is any vector norm and its associated matrix norm, althooghactice one usually
chooses the standard Euclidean one. There are reasons evbgdkward errorl(.2) should

be preferred over the standard relative residual norm aguftke for stopping the iterative
solvers when more relevant and sophisticated measureoaevailable; see, e.g.3[12],

and [L7, Section 5.8.3]. This might be certainly supported by thet fhat some iterative
methods, e.g., the methods based on the generalised miniesitual methodZ3, 29, are
backward stableZ, 8, 13, 19] and thus may deliver solutions with an accuracy in terms of
the backward error close to the machine precision if requik®e also point out the related
discussion in25], in particular in Sections 1 and 2 there.

Iterative methods are in practice chiefly applied for sajvimear systemsi(1) aris-
ing from discretised partial differential equations (PD&)., by the finite element method
(FEM). Here the main source of errors is due to the truncatiotihhe continuous differen-
tial operator, which, however, does not need to be refledtedlg by the data errors in the
coefficients of the resulting linear algebraic system. Thsid FEM discretisation of the
one-dimensional Poisson equation considered in Segtiepresents this fact; the coefficient
matrix can be stored exactly even in finite precision aritticn& he stopping criteria for itera-
tive solvers based on the norm-wise backward error (in thaidean norm) might be at least
questionable in this context. More sophisticated critbancing the inaccuracy of the so-
lution obtained by the iterative solver and the inaccuragy @ truncation (the discretisation
error) should be used; see, e.g)],4nd the references therein.

We believe that when a certain stopping criterion based tmpiturbations such as the
backward error is considered, the effects of these pettiorisin the original problem to be
solved should be clarified. Here the systehil) is the algebraic representation of a FEM
discretisation of an elliptic PDE and solved inaccurately,, by an iterative method. When
a stopping criterion based on the backward error is used andehthe computed approxi-
mation is interpreted as the solution of a perturbed lingatesn, we may ask whether such
perturbations have meaningful representations in thenyideg discrete problem as well.

In Section2 we consider a general weak formulation of a self-adjoimptt PDE which
can be characterised by a variational equation involvingrdicuous, symmetric, and elliptic
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bilinear form defined on a real Hilbert space and a generatetisation by the Galerkin finite
element method. We also introduce a simple one-dimensioadtl problem, which we use
throughout the paper to illustrate our results. In Seciore assume to have an approximate
solutiona of the algebraic representatiofh.{) of the discretised variational problem in a
fixed basis of the discrete space, which we associate withnbexd problems

(1.3) Au=f+g and (A+E)a=f,

and look for possible interpretations of the data pertiobatg andE in the discrete varia-
tional equation. Although the role gfin (1.3) is well known (see, e.g.1]), the interpretation
of E is in our opinion worth some clarification. A similar idea afrpurbing the operator was
considered before by Arioli et al5] as the so-called functional backward error. Itis, however
not obvious whether such an operator perturbation still beidentified with a (discretised)
PDE or how it “physically” affects the original PDE. In Semti3 we try to interpreft as a
certain perturbation of the FEM basis for which the secorsdiesy in (L.3) can be associated
with the algebraic form of the original discretised PDE. td#ion, we look for the opera-
tor & optimal with respect to the norm relevant in our settingt teathe energy norm, and
find a simple characterisation of such a definition of the ekl error (called the energy
backward error here) in the functional setting. Our appndaaelated to the work inZ[0].
There the authors interpret the total error (that is, theedihce between the solution of the
continuous problem and the approximate discrete solutisrthe error of the exact discrete
solution on a modified mesh. Here, on the other hand, we keegisiarete space fixed.
Throughout the paper we illustrate our observations at @lsimne-dimensional model
problem introduced in Sectiahand consider solving the resulting algebraic system by the
conjugate gradient method (CQ)J]. It is known that CG minimises th& -norm (the dis-
crete representation of the energy norm) of the error ove@Kitylov subspace constructed
using the initial residual vector and the matAx It appears that the energy backward error
introduced in SectioB is closely related to the relativé-norm of the error, that is, the for-
ward error. According to this fact, we look in Sectidrfor an approximation in the same
Krylov subspace which actually minimises the energy baclvearor. We show that it is
just a scalar multiple of the CG approximation. There is alsinteresting “symmetry” with
respect to the CG approximations showing that they are imaesequivalent. We do not
consider the effects of rounding errors throughout Sectioalthough we are aware of the
limits of the presented results in practice.

2. Galerkin FEM and model problem. In this section we recall the abstract weak
formulation of a linear partial differential equation and discretisation using the Galerkin
finite element method. For more details, see, efy)./]. Although we use a simple one-
dimensional Poisson equation as an illustrative modellpropour ideas can be kept in this
very general setting.

We consider an abstract variational problem on a real Hilggaice): find u € V such
that

(2.2) a(u,v) = (f,v) Yo e,

where we assume thatis a continuous, symmetric, and elliptic bilinear form¥nf € 1,
where)’ denotes the space of continuous linear functionald’pand (-, -) is the duality
pairing between and)’. The bilinear formu(-, -) defines an inner product anand its as-
sociated normi§-||, = [a(-,-)]'/? (usually called the energy norm). Due to the Lax-Milgram
lemma [LE] (see also, e.g.,7] Theorem 1.1.3]), the problerd.(l) is uniquely solvable.
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Let V), be a subspace of of finite dimensionV. The Galerkin method for approximating
the solutionu of (2.1) reads: findu;, € V), such that

(2.2) a(up,vn) = {f,vn) Yoy, € V.

It is well known that the discrete probler2.p) has a unique solution. The discretisation
erroru — uy, is orthogonal toV;, with respect to the inner produat-, -) and, equivalently,
the discrete solution;, minimises the energy norm af — u;, overVy, that s,

= wnlla = min [l = vl

In order to transform the discrete problethd) to a system of linear algebraic equations,
we choose a basis of,. For simplicity, we use the same notation for the basis andht®
matrix representing it. In other words, we do not distinguietweend = {¢;,...,dn}
and the matrix®? = [¢1,...,¢n]. Thus we choose a bas® = [¢1,...,¢n] Of V;, SO
that we can express the solutiap in terms of the basi® asu;, = ®u for some vec-
toru € RY representing the coordinatesof in the basigk. Then @.2) holds if and only
if a(up,d;) = (f,¢;) fori =1,..., N, which leads to a system of algebraic equatidn&)(
with

(233) A= (Aij)7 Aij :a(¢j,¢i), Z,j = 17...,N,
(2.3b) f=(f), fi = {f, i)

As an illustrative example used in further sections, we iers simple one-dimensional
Poisson problem

(2.4) —u"(z) = f(z), reQ=(0,1), u(0) = u(1) =0,

where f is a given continuous function o[, 1]. The weak formulation of3.4) is given
by (2.1) with

V= H(Q), a(u,v) = /Qu’(as)v’(x)dx, (f,v) = /Qf(x)v(ac)dx,

where H} (Q) = {v € L3(Q) : v/ € L*(Q), v(0) = v(1) = 0} is the Sobolev space
of square integrable functions on the inter¢alwhich have square integrable (weak) first
derivatives and vanish at the end points of the interval lim $ense of traces). We use
here f(z) = 2a[l — 2a(z — 1/2)?]exp[—a(z — 1/2)?] for which the solution of Z.4)

is given byu(r) = exp[—a(x — 1/2)?] — exp(—a/4) with a = 5. For the discretisation
of (2.4), we partition(2 into N + 1 intervals of constant length = 1/(N + 1) and identifyV),
with the space of continuous functions linear on each ialgi, (i + 1)h] (¢ = 0,..., N)
and choose the standard “hat-shaped” bdsis [¢,, ..., ¢n] Of piecewise linear functions
such thatp;(jh) = 1if i = j ande;(jh) = 0if < # j. The matrixA and the right-hand side
vectorf are respectively given by

1
f=(f), fi:/o f(@)pi(x)dx, i=1,...,N.

We setN = 20 but the actual dimension is not important for the illustrafpurpose.
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3. Energy backward error and its interpretation in the Galerkin FEM. Leta € RY
be an approximation to the solutianof (1.1). In the backward error analysis, the veciois
interpreted as the solution of a problefnl), where the system data andf are perturbed.
We restrict ourselves here to the extreme cases where waeoperturbations only in the
right-hand side or the system matrix.

In this section, we discuss how such perturbations in thealimlgebraic system may be
interpreted in the problem it represents, that is, in therdige problemZ.2). The represen-
tation of the residual vector is quite straightforward arall\nown (see, e.g./1} 5]) but we
include this case for the sake of completeness. We are, leowmainly interested in inter-
preting the perturbations in the matu itself, where some interesting questions may arise,
e.g., whether the symmetry and positive definiteness oféhifped matrix is preserved and
whether the perturbed problem still represents a disciaiational problem.

In order to measure properly the perturbation norms in thekakic environment, we
discuss first the choice of the vector norms relevant to thggnad variational problem, more
precisely its discretisatior2(2), where the energy norm induced by the bilinear far-) is
considered. Lety,, w, € V), and letv, w € RY be respectively the coordinatesigfandwy,
in the basigp so thatv, = ®v andw;, = ®w. From .39 we have

(3.1) a(vp,wp) = a(Pv, Pw) = wlAv, lvrlle = [v]ja = VVT Av.

The energy norm ofy, is hence equal to thA-norm of the vector of their coordinates with
respect to the basi®. Let g, € V; be such thatg,,¢;) = ¢;, ¢ = 1,...,N, and let

the vectorg = [g1,...,9n]7 € RY represent the discrete functiongl with respect to the
basis®. For anyv, = ®v € V}, withv = [vq,...,vx]|T, we have

N N
(3.2) (gnovn) =Y vilgn, ¢i) = Y _givi =g'v.

=1 =1

From @3.1) and (3.2), the dual norm ofy, is given by

_ (gn,vn) glv
= ma. max —_—
vn eV \{0} ||vnlla veRN\{0} [[V|la

lax =

= llglla-1,

that is, the dual norm ofy, is equal to theA ~!-norm of the vector of its coordinates with
respect tob. The last equality can be obtained using the Cauchy-Schwagquality

T TA-1/271/2
gv 8 v glla-t|vla

(3.4) = < [8las v = |Iglla-
[via IN4IPN [vila

and choosingy = A~ !g, which gives equality in3.4). We can thus consider the mati
as the mapping froRY to RY equipped with theA-norm andA ~!-norm, respectively:

(3.5) A:RY - fla) = ®Y ] [la-1)-

The accuracy of the given approximatianof the solution of {.1) is characterised by
the residual vectot = [f,...,7n]T = f — Ad. By definition, the vecton satisfies the
perturbed algebraic system

(3.6) At=f— ¢

Letu;, = ®u € V), be the approximation to the solutian of the discrete problen®(2) ob-
tained from the inexact solutiod of the system 1.1) and let7, < V; be defined
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by (71, ¢:;) = 7,1 =1,...,N. Itis straightforward to verify that the syster®.§) is the al-
gebraic representation of the perturbed discrete prablem

(37) a(’lAL}“Uh) = <f, vh> — <7A’h,'l}h> Yop, € V.

From 3.3, the relationA (u — a) = r, and @.1), we have for the dual norm of the residual
functional?;, the relation

[1Pnlla. = [[Ella— = llu —al[a = [lun — @nlla-

Note that 8.7) still represents a discretisation of a PDE. In particutardur model Poisson
equation, the functional, can be identified with a piecewise linear perturbation ofrigbt-
hand sidef and the approximate discrete soluti@ncan be considered as the (exact) solution
of the discretisation of the original problem with the ridtend sidef replaced byf — 7.

Now we make an attempt to find a suitable interpretation optréurbation of the system
matrix A. Let the approximationi be nonzero and let the matri® € RV*Y be such
thatEa = # so that the vectoi satisfies the perturbed system

(3.8) (A+E)a=f.

Note that such aR is not unique; we will consider finding certain optimal pebtations later.
According to 8.5), we consistently measure the size of the perturbdiidoy the norm

Evia-:

— ||A_1/2EA_1/2||2,
veRM\{0} [[v]a

(3.9) |Elaa1 =

where|| - ||, denotes the spectral matrix norm aAd/? the unique SPD square root of the
matrix A. We will refer to the norm defined by3(9) as theenergy nornof the matrixk.

We can consider an approach similar to what is called thetifumel backward error
in [5]. The matrixE = (E;;) can be identified with the bilinear fory, on V), defined
by én(¢;, ¢i) = Eij, i,j=1,...,N. Itis then straightforward to show tHat

(3.10) alln, vn) + énltn,vn) = (fyvn)  Vop € Vp.

That is, the discrete variational problet110 is represented in the basisby the perturbed
system 8.8). The norm of¢;, is given by the energy norm &

én(vp, wp) wlEv .
max — = max —————— = |E|[aa-1.
v w, €V \{0} [[vnllallwnlla  viwerN\{0} ||V]||alW]a ’

Note that the matrixA + E does not need to be sparse nor symmetric (depending on the
structure of the perturbation mati), and in general it does not need to be nonsingular. The
form ¢, therefore does not need to be symmetric either.

It is not easy (if possible) to find a reasonable interpretedif the bilinear forng,,, e.g.,
to find out whether the perturbed variational probleni() still represents a discretised PDE.
We thus look for a different interpretation d3.8) which might preserve the character of the

*For the sake of simplicity, we restrict ourselves to the @itespacd/’,, although we could interpre8(7) as
the discretisation of a perturbed (continuous) variatipnablem @.1) with 7}, replaced by a proper norm-preserving
extension td.’ due to the Hahn-Banach theorem; see, 23], [

tAgain, we restrict ourselves to the discrete space and doamstder the extension éf, to V.
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original problem. In particular, we will see that the pebed system3.8) can be consid-
ered as a certain perturbation of the baBisn which the approximate solutioa provides
coordinates of the (exact) discrete solutign

Let® = [&,,...,dy] be a basis o, obtained from the basi® by perturbing its
individual components by linear combinations of the ordgibasis®. We can write

N
(3.11) & =®(I+D), thatis, ¢; =¢;+» Dijér, j=1,....N,

whereD = (D;;) € RVN*Y is a matrix of perturbation coefficients afidenotes the identity
matrix. We assume that+ D is nonsingular so thab is indeed a basis f),. We look for the
discrete solutionu;, given by the linear combination of the modified badisvith coefficients
given by the vectofi. If uj, = ®a with & = [dy, ..., ax]7 and® as in @.11), we have

N
uh7¢z Z ¢]7¢1 Z( ¢]v¢l +ZD]€] ¢k7¢z)>

f: (40 3t )6, = o+ A

k=1 !

where[]; denotes the-th component of the vector given in the argument. Henceirequ
ing (2.2) to hold forv, = ¢;,i=1,..., N, leads to

(A+E)ja=f  E=AD,

that is, to the perturbed systed§) with E = AD. Equivalently, given an approximatiain
of the solution of the algebraic systein) and the perturbatloE such thati satisfies 8.8),
there is a basi® given by® = &(I + D), whereD = A~'E such that the vectoit
represents the coordinates of the (exact) discrete solutioof (2.2) with respect to the
modified basish. Note that® is a (linearly independent) basis o, if (and only if) the
matrix A + E (as well as the matrix + D) is nonsingular.

In order to give the interpretation to the energy normfof= AD, we define a relative
distance between the two baskand® by

R | BV — BV,
(3.12) d(d,®) = =y - =l
( ) vERN\ {0} |®v|.
From 3.11) we have
. dv — dv|, ®Dv||,
A @) = max 12V ®Vle [[®Dv]l.
veRNM\{0}  [|®V]q verRN\{0} [ ®V||q
_ N ||15VI|A7 HA”EVIIA: e |Ev|a—
veRM\{0} [v[a  verM\{o}  [[v]a verM\{0} [|v]a

= ||El|a,a-1,

thatis, the relative distance between the basesd® related by 8.11) is equal to the energy
norm of the matrix = AD. We summarise the discussion above in the following theorem
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THEOREM3.1. Letu be a nonzero approximate solution of the sys{er) representing
algebraically the discretised variational proble(g.2) with respect to the basi® of V.
Let E be such thafi satisfies the perturbed systém8) and letA + E be nonsingular. Then
the vectori contains the coordinates of the solutiop of (2.2) with respect to the basi®
given by(3.11) with D = A~'E. In addition, the perturbed syste(@.§) is the algebraic
representation of the discrete variational problgeh?) with respect to the baseB and ®.
The relative distancé3.12) between® and & is given by the energy norm B

For a given nonzero vectd, there are “many” perturbatiors so thatEa = . Equiv-
alently, there are many bas@swhich can be (linearly) combined ta, using the vector of
coordinatesi. We look hence for the perturbatidhoptimal with respect to the energy norm.
For this purpose we define tle@mergy backward erroby

(3.13) £(@1) = min {HEHAA_l : EcRVYN (A +E)a= f} ‘

The following theorem holds for any systerh.1) with a symmetric positive definite ma-
trix A.

THEOREM 3.2. Letu be a nonzero approximation of the solution(Gf1) with a sym-
metric positive definite matriA and letr = f — A1 be the associated residual vector. Then

e Ju—dlla
(3:14) SO =Tala T T4la

The matrixE, (i) for which the minimum if3.13) is attained is given by

onT
(3.15) E, ()= 2 f.
[aflA

The matrixA + E, (1) is nonsingular if¢ (i) < 1.

Proof The proof essentially follows that of.p, Theorem 7.1]. LefE be any matrix
such that 8.8) holds and hencé(t) < |E[a a1 due to 8.13. FromEd = f — Ad = ¢
we have thatA~/2EA~1/2)(AY/24) = A~1/2}. By taking the 2-norm on both sides and
using @.9), we get

IEla-s < |ATV2EATY2 |20 a = [|El|la,a-18]la

and thus

[[%]]a-

IIﬁHA

< [|Eflaa-1
Hence the rat|¢|rHA 1/|[al|a is a lower bound o (u). To prove equality, we consider the

matrix E = E. (1) given by 3.19. Itis easy to see that, (4)a =r. Indeed,

YR Ay 2
laa [a ||A

"$>

and henc& = E, (1) satisfies 8.9). Its energy norm is given by

|A 2R A2y E]a-

[l A s

B (@) 2,01 = [|ATVE (A2, =
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where the last equality follows from the fact th@B||; = ||v||2||w]|2 holds true for the
matrix B = vw? € RV*N with v, w € R”; see, e.g.,37, Problem 2.3.9]. Therefore,

%]l
[alla

1B ()]s, = < E(0) < [|B. ()] 4,81

which (together withA (u — a) = ) implies that 8.14) holds. It is well known (see, e.g.,
[24, Corollary 2.7]) thatA + E. (1) is nonsingular if

1B ()] a8 1
[Alla,a- rka,a-1(A)’

where for a nonsingular matrix

kaa-1(X) = [IX[[aa-1 X a-1a-

Since|Alla.a-1 = |A~!|a-1.a = 1, we obtain that the matriA + E. (1) is nonsingular
it €)= [Bo(@faar <1 O

The optimal perturbatio, () defined in Theoren3.2 is related to certain optimal
perturbation of the basi®. In fact, combining Theorent 1and3.2, we obtain the following
result.

THEOREM3.3. Letu be a nonzero approximate solution of the sysfér) representing
algebraically the discretised variational problef®.2) with respect to the basi® of V}, and
let¢(a) < 1. Thenu is the solution of the perturbed problem

<A+E*(ﬁ)> a=f

with the perturbation matrid, (1) given by(3.15. Furthermore, leD., (1) = A~'E, ()
and®, (1) = ®(I + D, (1)). Thend, (1) is the basis o, closest to the basi® in terms
of the relative distancé3.12 among all bases d#;, in which the vectoii represents the co-
ordinates of the solution,, of (2.2). Their relative distance is given by the energy backward
error £(1) in (3.13 and (3.14), that is,d(®, (11), ®) = £(1).

REMARK 3.4. Backward errors provide bounds on forward errors fixelaorms of the
error) via the condition number of the mati (with respect to consistently chosen norms).
If & satisfies the perturbed systet§) and the condition numbet(A) = [|A|[[|A7}] is

such that:(A4)||E||/|A|| < 1, the forward error can be bounded by

Ju—a| _  s(A)|E]/|A]
lull = 1—w(A)|E|/|A]

(3.16)

see, e.g.,44, Theorem 2.11]. With our choice of norms, both forward andkazard errors
do coincide since the condition number and the norm of theixat are equal to one. The
bound 8.16) then (withE = E.. (1)) becomes

[lu—uala _ &)
lafla  — 1-¢(w)

provided that (1) < 1. In addition, from||u||a < ||i|la(1 + £(0)), we have

[lu—ala _ &)
lala = 1+&(0)
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and hence the forward and backward error inAr@orm are equivalent in the sense that

@) _fu-dla &)

Tre@ S Jula S1oe@ @<L

Note that this is simply due to the fact that the condition benof A is one with respect to
the chosen matrix norms.

The perturbation matriE*(ﬁ) is determined by the errors in solving the systeni)
Minimising the energy norm cE generally leads to a dense (and nonsymmetric) perturba-
tion matrix E*(ﬁ) (although structured, in our case of rank one). The cormedipg trans-
formation matrixD..(i1) = A~'E, (1) is dense as well, which means that the perturbed
matrix é*(ﬁ) has global supports even though the support® afan be local. This would
be the case even if we considered the component-wise patiombE [18] since the inverse
of A (and hence the transformation mati)) is generally dense. This is, however, not
important for the interpretation of the perturbation cagdfints itself.

We illustrate our observations at the model problem deedrih Sectior2, which we
solve approximately using the conjugate gradient (CG) oeefthl]. It is well known that,
given an initial guessiy with the residualry = f — Auy, CG generates the approxima-

tionsub® € uy + K,,, wherekC,, is the Krylov subspack,, = span{rg, Arg, ..., A" ry},
such that
(3.17) [u—ul[a= min |u-1]a.

ucug+KC,

In Figure3.1, we display the exact solution of the discrete problem, étative A-norms

(318) 6CG = ||ll — uSG”A

" [[ul|a

of the errors of the CG approximations,“ and their associated energy backward er-
rors £(u$“) (where we setny = 0). The backward errors of the CG approximations, al-
though monotonically decreasing as we will see in the nesti@® need not to be necessarily
smaller than one as it is the case for the relative error nefifis For our model problem, we
have (note that is not defined for the initial guess, = 0)

(uf) =1.2718, £(u§®) =1.0572, £(uf%) =0.8658.

In order to demonstrate how the perturbation and transfoomamatrices E. (1)
and ]f)*(ﬁ) defined in Theorem8.2 and 3.3, respectively, look like, we consider two ap-
proximationst computed by CG at the iterationisand 5, that is, we takead = uf“
andia = u§S. In Figure3.2 we display (together with the exact solutiap of the dis-
crete problem) the approximation$/; = ®uS“ of u;, constructed from the CG approx-
imationsu$® (for n = 1 andn = 5). The entries of the perturbation and transformation
matricesE, (u¢%) and D, (uS%), respectively, corresponding to these approximate solu-
tions are visualised in Figure&s3and3.4 (using the MATLAB commandur f ). Since the
standard hat-shaped badisis used, the interior nodal values of §; are equal to the corre-
sponding components of the vectars®. We would getu;, by forming linear combinations
of the basigp (I + D, (u$“)) using the coefficienta{“ obtained by the:-th CG iteration
which, at the same time, satisfy the perturbed probléfns- E, (u$%))u$® = f.
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FIG. 3.1.The discrete solution;, of the model problem on the left plot and the convergence oinG&ms of
the relative A-norm of the errore§¢ = |ju — u$%||a/|lulla and of the energy backward errg(u$) on the
right plot.

0.8 T T T T 0.8 T T T T

0.7r

0.61

0.5r

0.4r

0.3r

0.2r

0.1r

On —e— Discrete solution uy,
—m— Approximate solution 'u,hC(;

0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
x x

—e— Discrete solution wuy,
—=— Approximate solution u§$

FiG. 3.2. The discrete solution;, and the approximate solution$'¢ = ®u$S for n = 1 (left plot)
andn = 5 (right plot).

4. Conjugate gradient method and energy backward error. The conjugate gradient
method constructs, starting from the initial guess the sequence of approximation§“
from the (shifted) Krylov subspaag, + /C,,. Similarly to the Galerkin method, the approxi-
mationsu$ minimise the discrete energy norm{norm) of the errom — u$% in the sense
of (3.17). Equivalently, the erroe$¢ = u — u$“ is A-orthogonal tac,,.

REMARK 4.1. In the Galerkin finite element method, there is even rabmut the opti-
mality of CG than in the iterative method itself. df'¢ = ®u{“ is the associated approxi-
mation of the solution of the discrete probletnd), we have

—ubG = i —
oSl = _min fju— ol

where®(uy + K,,) = {vp, € Vi, : v, = ®v, v € up + K,, }. It means that CG provides op-
timal approximations to the solutianof the (continuous) problen?(1) from the subspaces
of V;, which consist of all linear combinations of the ba®isvith coefficients taken from the
shifted Krylov subspaces, + IC,,. This follows from the identity

= vnll2 = llu—unlls + llun — vallZ = lu— usll + lu—v[%,
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Fic. 3.3. Surface plots of the perturbation matnﬁ:*(ufe) (left plot) and the transformation ma-
trix D, (u§'S) (right plot).

Column index

Column index

Row index Row index

Fic. 3.4. Surface plots of the perturbation matr@*(uge) (left plot) and the transformation ma-
trix D (u§9) (right plot).

which holds for any;, = ®v € V), and is a consequence of theorthogonality ofu — uy,
to Vy,; see also9, Section 2.1], 17, Section 2.5.2], and2[] for more details.

In the following we assume that; = 0. We use a simple relation between thenorms
of the CG erroret“, the solutionu, and the CG approximationS“ of the form

ca ca
(4.1) len“lla = llulla — IS4,
which follows from the fact than$“ € KC,, and theA-orthogonality ofu — u$ to KC,,:
cG cG cG CcG
u=u %+ u-u)% = Jula =[[u A + [lu—-uCA.

Using @.1), the energy backward error of the CG approximatidi¥ can be expressed as

CG CG
4.2 uCG _ Hen HA _ €n ;
( ) 5( n ) ||ugG||A 1— (67(5(;)2

wheree$C is the relativeA -norm of the erroe$“; see 8.189. The energy backward error is
well defined for every CG iteration except for the zero ithigaess. It is due to the fact that
the energy norm of the error in CG decreases strictly moricatip at each step. Sine&“ is
decreasing, the energy backward erof) decreases as well in CG. Bagfu$“) andeS“

n
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are close (as can be observed in FigduEfor our model problem) provided thef“ is small
enough due to
ca

Note also that (u$¢) < 1if 5¢ < 1/v/2.

One could ask whether it is possible (instead of Ah@orm of the error) to minimise the
energy backward erra over the same Krylov subspaég,. Letu,, be an arbitrary vector
from KC,, and lete, = u — u,, be the associated error vector. Frafi® — u,, € K,

the A-orthogonality ofe®“ to KC,,, and the Pythagorean theorem, we get that

(4.3) lealla = llen + (i —wa)la = ey “IA + [Juf® — 3.

From @3.14) and @.3), we have

e ClIA + [[uf® —unllZ

s A

(4.4) 52 (un) =

LEMMA 4.2. Letv € R™ be a given nonzero vectar, € R, and

Thenw, = yv withy = 1 + (a/|[v]|2)? is the unique minimiser of over all nonzero
vectorsw and it holds thatp(w..) = a?/(a? + ||v]|3).

Proof. Letw = nv 4+ v, wheren € R andv is an arbitrary vector orthogonal &g
thatis,v? v = 0. From the Pythagorean theorem we have

a? + (L —n)?|Iv]3 + l[v. 3
PIvI3+Ilvel3

(4.5) pnpv+vy) =

Note thaty does not depend on the vector itself but only on its norm. Dividing both the

numerator and denominator iA.p) by the (nonzero) valugv |2, we obtain

a2+ (1-n)*+¢
7?4+ ¢

pv+vy) = ¥(n,¢),

wherea = o/||v|2 and¢ = ||v.||2/]|v||2- Hence the statement is proved by showing that
has a global minimum dty, ¢) = (v,0) = (1+a2,0) and that)(1 +a&2,0) = a2/(1+ a?),
which can be shown by standard calculus. The functiois smooth everywhere except
for (n,¢) = 0. We have

- 2 @@ +1) —n2+ (2
Vi, Q) = —Ga ey [ C(1+a*—2n) ] ’

and thus we hav&1)(n,¢) = 0 if (and only ify» = 1 + &% and¢ = 0. The minimum can
be verified by checking the positive definiteness of the maifisecond derivatives at the
stationary pointn, ¢) = (1 + &2,0), which holds since

~ 2 10
V21,ZJ(]. +OLZ,O) = m |:0 1:| .
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Substituting the stationary point intbgives
Y(1+a2%0)=a%/(1+a%) =a®/(a®+|v]3) < L.

The minimum is also global sineg(tw) — 1 ast — oo for any fixedw. a

THEOREM 4.3. Let u$“ be the approximation of CG with the initial guess = 0 at
the stepn > 1. Then the unique vectar! minimising the energy backward errgrover
all v,, € K, is given by

CG

* —
un _rynun ’

where

1
= (o

The energy backward error af}, is equal to the relatived-norm of the CG error

=1 +£2(USG) =

f(u*) _ ||u_uSG||A —_ CG
" [[ulla

Proof. The relation 4.4) can be written as

leglIA + A2 (ul — )3
”AI/QUHH%

gz(un) =

If we setw = A'2u,, v = AY2uSC, o = ||eS%| o, we have from Lemma.2 that the
minimum of¢2(u,,) is attained ati¥ = ~,,u$¢ with

2 CG |2
S R R i
e

1
= =1+86(u¢) =
V13

T (O

where the last equality follows fromd(2). The minimum is given by

o o _ leSCla _ lefClla _ ca
§(uy) = 2 2 CG 2 cGlz [[u] = €n
VeZ+ vz VIeSCIA + [uSC % ujla

using @.1) again. d

The approximationst!, minimising the energy backward errgrover the Krylov sub-
spacek’,, are thus given by a simple scalar multiple of the CG approtionau®c. It is
clear thatu* ~ u®“ provided that the relative erref’ is small enough and the difference
between both approximations gets smaller with the deargasinorm of the CG approxi-
mations.

REMARK 4.4. There is an interesting “symmetry” between the redatirnorms of
the errors and the energy backward errors of the approxomstiC¢ andu? illustrated in
Table4.1. The expression for the relative energy norm of the errarpfollows from (3.14)

and Theorem.3
. lu—ujlla
E(uy) = €,¢ = "
[EHIPN
and hence together with (1) we get

il _ e SVI- (9?2  af

lua — 1-(e§9)2 /T (562

n

lenlla _ gy inlla _ ) ey

lufla [ufa !
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TABLE 4.1
Symmetry betweenSS andu;.

uS¢: minimises|e,, ||a u’: minimises¢(u,,)
llen I _
Tl ;¢ e Ol — (e§9)2 712
§(uyn) e Ol — (9?12 &
1 0.8
0.8f B 0.7

0.6
0.61

0.5
0.4
0.4r

0.2
0.3r

0.2r

—e— Discrete solution wuy,
—=— Approximate solution u§$

—e— Discrete solution uy,
—=— Approximate solution u%(ﬁ

0.1r

—a— Approximate solution uj , —— Approximate solution wuj; ,
04 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
& xT
Fic. 4.1. The discrete solution,, and the approximate solutions;¢ = ®u$“ andu; = ®uj}

for n = 1 (left plot) andn = 5 (right plot).

In fact, we can also say that the forward errondf is equal to the backward error of
and vice versa.

In order to demonstrate the effects of the minimisatio&(@f), we consider as in the pre-
vious section the CG approximations obtained at iteratlcansd5. In Figure4.1we show, to-
gether with the discrete solutian, of our model problem, the approximation§® = ®u$“
obtained from the CG iterates at steps- 1 andn = 5 and the approximationlq’n = ®u;
obtained from the CG approximations scaled according toofdme 4.3. In Figures4.2
and 4.3, we also show the surface plots of the corresponding petiors and transfor-
mation matricedt, (u*) andD, (u*) of these scaled CG approximations. It is interesting
to observe that although the perturbation matriEeéuc) andE, (u*) (left plots of Fig-
ures3.3, 3.4, 4.2, and4.3) visually look very similar, this is not the case for the sérmation
matricesD, (u®%) andD, (u*) (right plots of the same figures). This means that (in our ex-
ample) the scaling of the CG approximations does not changshr(at least visually) the
coefficients of the perturbation matricBfuSS), while the changes in the transformation
matricesD (uSS) seem to be more prominent.

In order to explain this phenomenon, we evaluate the relad®anorm of the differ-
encestl, (uS%) — B, (u?) andD, (uS¢) — D, (u?). Letr(S = f — AuSS be the residual
vector of a nonzero CG approximatiay'© different from the exact solution of (1.1). Us-
ingu’ = ~,uSC (defined in Theorem.3), f — Au =f — v, AuS® =~,rC + (1 — 7,)f,
(1 =)/ = —(¢£9)2, and @.15), we find

2f(ur?G>TA
[uSC(1A
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FIG. 4.2. Surface plots of the perturbation matrﬁk*(u{) (left plot) and the transformation matr®*(u{)
(right plot).
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FIG. 4.3. Surface plots of the perturbation matrﬁ*(ug) (left plot) and the transformation matr®*(u§)
(right plot).

Due to the relatiof, (-) = AD,(-), we have similarly that

CG\T
]j*(uCG) _ f)*(u*) + (GCG)2u(un ) A
S lIA
Although the approximatiom’ is a scalar multiple o1&, this is not the case for their
corresponding perturbation/transformation matricestt@mother hand, their differences are
rank one matrices depending only on the CG approximatipfi and its associated rela-
tive A-norm of the erroe$“. For the 2-norm, we obtain

B, (u) = Eu (uS9) ]2 _(eCGy2 I[£]l2
|E.(ug®)]l2 " E = AugSl;
and
|D. (u;) = Dy (uf) |2 _ (eS6)2 [ufz
D (ug)]2 " la—ufC;

Thus we can expect more prominent differences in the coefiisiof the transformation
matrices when the relative norm of the error of the CG appnaxionu$“ is considerably
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smaller than its relative residual norm. In our example, exestju — uf'S||o/|lul|2 = 0.7982
and||f — Au§{S|2/|/f|l2 = 2.195 forn = 1, and forn = 5, |[u — u$||2/||ul|2 = 0.2998

and ||f — AuS|2/||f||2 = 2.102. We can hence expect more prominent differences be-
tween the transformation matricks, (u*) andD, (uS%) than between the perturbation ma-
tricesE, (u*) andE, (uS%), in particular at the iteration 5, where the relative reaichorm

is about 10 times larger than the relative error norm.

5. Conclusions. Motivated by the use of backward errors in stopping critésiatera-
tive solvers, we made an attempt to find an “easy-to-toucteérpretation of the data pertur-
bations in linear algebraic systems arising from discatiti;is of elliptic partial differential
equations. In particular, we were interested in finding ajixds meaning of the perturbations
of the system matriXA and related them to certain perturbations of the basis oapipeox-
imation space where the discrete solution of the underlyariational problem is sought.
Although we are aware of the limited usability of our resuftgractice while bearing in
mind recent results on dealing with discretisation andlaigie errors in numerical solution
of PDEs, we believe that they might be of certain interestrantivate designers of stopping
criteria for iterative processes to justify their relevanc the problem to be solved.

We showed that minimising the backward error induced byAheorm over the Krylov
subspacéC,, leads to approximations which are closely related to thea@mations com-
puted by CG, which minimise thA-norm of the error ovelC,,. This is similar to the idea
behind the methods called GMBACK and MINPERT introducedli [L5] for general non-
symmetric problems. In contrast to the iterates computetthése methods, we showed that
the optimal approximations minimising the backward errerjast scalar multiples of the CG
approximations and they are closer to each other aa\tliorm of the CG approximations
decreases. Nevertheless, we do not claim that approxinsationstructed in this way have
any superiority with respect to CG which is optimal itseltiwiespect to the closely related
measure.

Acknowledgments. We would like to thank to Zde¥k Straké and the anonymous ref-
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tion of our results.
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