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PRECONDITIONERS BASED ON STRONG SUBGRAPHS∗

IAIN S. DUFF†‡ AND KAMER KAYA †§

Abstract. This paper proposes an approach for obtaining block diagonal and block triangular preconditioners
that can be used for solving a linear systemAx = b, whereA is a large, nonsingular, real,n × n sparse matrix.
The proposed approach uses Tarjan’s algorithm for hierarchically decomposing a digraph into its strong subgraphs.
To the best of our knowledge, this is the first work that uses this algorithm for preconditioning purposes. We
describe the method, analyse its performance, and compare it with preconditioners from the literature such asILUT
andXPABLO and show that it is highly competitive with them in terms of bothmemory and iteration count. In
addition, our approach shares withXPABLO the benefit of being able to exploit parallelism through a version that
uses a block diagonal preconditioner.
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1. Introduction. Given a linear system

(1.1) Ax = b,

whereA is a real, large, sparse square matrix of ordern, we propose a method to construct a
preconditioning matrixM to accelerate the solution of the system when using Krylov meth-
ods. The proposed method is based on a hierarchical decomposition of the associated digraph
into its strong subgraphs. This decomposition can be used tofind a permutation of the matrix
to produce a block form that can be used to build either a blockdiagonal matrix for use as
a block Jacobi preconditioner or a block tridiagonal matrixfor use as a block Gauss-Seidel
preconditioner.

The algorithm we use to create the blocks on the diagonal ofM is a modified version of
Tarjan’s algorithmHD that decomposes a digraph into its strong subgraphs hierarchically [26].
Tarjan assumed that the edges of the digraph are weighted andHD uses this weight informa-
tion to create the hierarchical decomposition. However,HD requires distinct edge weights if it
is implemented as given in [26]. In this paper, we propose a slight modification ofHD which
allows us to handle digraphs whose edge weights are not necessarily distinct. We make further
modifications to the algorithm to use it for preconditioningpurposes. The strong subgraphs
formed by the modified version ofHD correspond to the blocks on the diagonal ofM. To
the best of our knowledge, this is the first work that uses Tarjan’s hierarchical decomposition
algorithm for preconditioning purposes. We call our modified versionHDPRE.

We should emphasize at this point that this algorithm of Tarjan is different from the
much better known algorithm for obtaining the strong components of a reducible matrix. This
earlier algorithm [24], which we callSCC, is used widely in the solution of reducible systems
and is also called byHD andHDPRE, which can be viewed as extending the earlier work
to irreducible matrices. We use the output fromHDPRE to determine our preconditioners.
This is done bySCPRE that can generate a block diagonal preconditioner or a blockupper-
triangular one.
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We have conducted several experiments to see the efficiency of theSCPRE algorithm. We
compare the number of iterations for convergence and the memory requirement of
theGMRES [23] iterative solver when the proposed approach and a set ofILUT precondi-
tioners [21, 22] are used. We are aware that block based preconditioning techniques have
been studied before and successful preconditioners such asPABLO and its derivatives have
been proposed [14, 15]. These preconditioners were successfully used for several matri-
ces [3, 5, 10]. In this paper, we compare our results also withXPABLO [14, 15].

Section2 gives the notation used in the paper and background on Tarjan’s algorithmHD.
The proposed algorithm is described in Section3 and the implementation details are given in
Section4. Section5 gives the experimental results and Section6 concludes the paper.

2. Background. LetA be a large, nonsingular,n×n sparse matrix withm off-diagonal
nonzeros. The digraphG = (V,E) associated withA hasn vertices,vi, i = 1, . . . , n, in its
vertex setV wherevi corresponds to theith row/column ofA for 1 ≤ i ≤ n, andvivj is in
the edge setE if and only ifAij is nonzero for1 ≤ i 6= j ≤ n. Note that we do not consider
self-loops of the formvivi corresponding to diagonal entries in the matrix. Figure2.1shows
a simple6× 6 matrix with13 nonzeros and its associated digraph.

(a) A (b) G

FIG. 2.1.A 6×6 matrixA with 13 off-diagonal nonzeros on the left and its associated digraphG on the right.
The nonzeros on the diagonal ofA are shown with×. Except for these entries, there is an edge in the associated
digraphG for each nonzero ofA.

A path is a sequence of vertices such that there exists an edge between every two con-
secutive vertices. A path is calledclosedif its first and last vertex are the same. A vertexu is
connectedtov if there is a path fromu tov in G. A directed graphG is strongly connectedif u
is connected tov for all u, v ∈ V . Note that a digraph with a single vertexu is strongly con-
nected. A digraphG′ = (V ′, E′) is a subgraph ofG if V ′ ⊂ V andE′ ⊆ E∩(V ′×V ′). If G′

is strongly connected, it is called a strong subgraph (or a strongly connected subgraph) ofG.
Furthermore, ifG′ is maximallystrongly connected, i.e., if there is no strong subgraphG′′

of G such thatG′ is a subgraph ofG′′, it is called a strong component (or a strongly connected
component) ofG. If the matrixA cannot be permuted into a block triangular form (BTF)
by simultaneous row and column permutations, i.e., if the associated digraph is strongly con-
nected, we say thatA is irreducible. Otherwise, we call it reducible.

Let G = (V,E) be a digraph andP(V ) = {V1, V2, . . . , Vk} define a partition ofV into
disjoint sets, i.e.,Vi ∩ Vj = ∅ for i 6= j and

⋃k

i=1 Vi = V . LetV = {V1,V2} be a set of two
vertex partitions such thatV1 = P(V ) and

V2 =
⋃

Vi∈V1

P(Vi),
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i.e., V2 is a finer partition obtained from partitioning the parts inV1. Hence, for instance,
if V1 = {{1, 2, 3}, {4, 5, 6}} thenV2 can be{{1}, {2, 3}, {4, 5}, {6}} but cannot be the par-
tition {{1, 2}, {3, 4}, {5, 6}}. Let no1(v) and no2(v) denote the index of the part containing
the vertexv ∈ V for V1 andV2, respectively.

Let condense be an operation which takesG andV as inputs and returns a condensed
digraphcondense(G,V) = GV = (V V2 , EV1) where each vertex setVi ∈ V2 is condensed
into a single vertexνi ∈ V V2 . For all uv ∈ E, with no2(u) = i and no2(v) = j, there
exists an edgeνiνj ∈ EV1 if and only if no1(u) 6= no1(v), i.e., u and v are in different
coarse parts. Note that even thoughG is a simple digraph,GV can be a directed multigraph,
i.e., there can be multiple edges between two vertices. The definitions of connectivity and
strong connectivity in directed multigraphs are the same asthose in digraphs. An example
for thecondense operation is given in Figure2.2.

(a) (b)

FIG. 2.2. An example for thecondense operation on the digraph in Figure2.1(b). The vertex parti-
tionsV1 = {{1, 2, 3}, {4, 5, 6}} andV2 = {{1}, {2, 3}, {4, 5}, {6}} are shown in (a). The condensed graph
is shown in (b).

3. A strong subgraph based preconditioner.Our proposed algorithm,SCPRE, gen-
erates a preconditionerM with a block diagonal or block upper-triangular structure where
the size of each block is smaller than a requested maximum block sizembs. For the exper-
iments, we scale and permuteA from (1.1) by Duff and Koster’sMC64 with the option that
uses themaximum product transversal[11]. The idea used byMC64 is due to Olschowska
and Neumaier [20], who propose an algorithm which permutes and scales the matrix in such
a way that the magnitudes of the diagonal entries are one and the magnitudes of the off-
diagonal entries are all less than or equal to one. Such a matrix is called anI-matrix. For
direct methods, it has been observed that the more dominant the diagonal of a matrix, the
higher the chance that diagonal entries are stable enough toserve as pivots for elimination.
For iterative methods, as previous experiments have shown,such a scaling is also of inter-
est [4, 11]. We observed a similar behaviour in our preliminary experiments and usedMC64
for scaling and permuting the original matrix. From now on, we will assume that the diagonal
of A is nonzero since this is the case after this permutation.

SCPRE uses the block structure fromHDPRE to determine the diagonal blocks of the
preconditionerM. We then combine some of these blocks if the combination has fewer
thanmbs rows/columns and the combination is not block diagonal. Thediagonal blocks
of the resulting matrix can then be used to precondition the iterative solver using the block
Jacobi algorithm and can exploit parallel architectures asthe blocks are independent. If we
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require a block diagonal preconditioner, then we are finished. Otherwise,SCPRE permutes
the blocks and builds a block upper-triangular preconditioner.

If A is reducible and the maximum block size in the BTF ofA is less than or equal
to mbs, thenSCPRE will find this form or will return the diagonal blocks of it if ablock
diagonal preconditioner is desired. The permutation of a matrix into its block triangular form
is a well-known technique that has been recently and successfully used by direct and iterative
solvers for circuit simulation matrices [9, 27], which can often be permuted to a non-trivial
BTF. For some applications, such as DC operating point analysis, the block triangular form
has many but small blocks [27]. Such a matrix is usually easy to factorize if we initially
permute it to BTF, so that a direct solver likeKLU [9] only needs to factorize the diagonal
blocks. Note that Tarjan’sSCC algorithm that has linear complexity in the matrix order and
the number of nonzeros has been widely and successfully usedby the computational linear
algebra community for obtaining a BTF that is then exploitedby subsequent solvers. A code
implementing this algorithm is available asMC13 from HSL [19] and it is also an algorithm
in ACM TOMS [12, 13].

However, when the matrix is irreducible, theSCC algorithm is not applicable. Further-
more, even if the matrix is reducible, we may have little gainfrom using the BTF because
this form may have one or more very large blocks. This is the case for applications like
transient simulation or for circuit matrices with feedbacks. For this reason we propose using
Tarjan’sHD algorithm [26] as an additional tool toSCC. SCPRE usesHDPRE and further
decomposes blocks larger thanmbs to make the resulting preconditioner practical. For these
reasons, in our experiments, we only use matrices that are irreducible or have a large block in
their BTF. The details ofSCPRE and the algorithms it uses are given in the next section. Note
that since we use a combinatorial algorithm from graph theory for preconditioning purposes,
we will use terms from graph theory in the following text so that row/columnandvertexare
used interchangeably as well asnonzeroandedge.

3.1. SCPRE: obtaining the block diagonal preconditioner. To obtain a block diagonal
preconditioner,SCPRE usesHDPRE and then combines some of these blocks if the size of
the combined block is at mostmbs and the combined block is not block diagonal. In this
section, we present the details of these algorithms. First,we describe Tarjan’s hierarchical
decomposition algorithm more precisely.

3.1.1. Tarjan’s algorithm for hierarchical clustering. LetG = (V,E) be the digraph
associated withA. The weight of an edgeuv ∈ E is denoted byw(uv) and is set to the
absolute value of the corresponding off-diagonal nonzero.Hence, there arem edges and
all of the edges have positive weights. A hierarchical decomposition ofG into its strong
subgraphs can be defined in the following way. Letσ0 be a permutation of the edges.
For 1 ≤ i ≤ m, let σ0(i) be theith edge inσ0 andσ−1

0 (uv) be the index of the edgeuv
in the permutation for alluv ∈ E. Let G0 = (V, ∅) be the graph obtained by remov-
ing all the edges fromG. We then add edges one by one toG0 in the order determined
by σ0. Let Gi = (V, {σ(j) : 1 ≤ j ≤ i}) be the digraph obtained after the addition of the
first i edges. Initially inG0, there aren strong components, one for each vertex, and during
the edge addition process, the strong components graduallycoalesce until there is only one,
as we are assuming thatA is irreducible. Note that if this is not the case, the algorithm will
be used for the large irreducible blocks inA. The hierarchical decomposition ofG into its
strong subgraphs with respect to the edge permutationσ0 shows which strong components
are formed in this process hierarchically. Note that a strong component formed in this edge
addition process is indeed a strong component of some digraph Gi but not ofG. ForG, all
except the last are just strong subgraphs.
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FIG. 3.1. The hierarchical decomposition tree for the digraphG and the permutation given by the edge
ordering in Figure2.1(b).

A hierarchical decomposition can be represented by a hierarchical decomposition treeT ,
whose leaf nodes correspond to the vertices inV , non-leaf nodes correspond to edges inE,
and subtrees correspond to the decomposition trees of the strong components that form as
the process proceeds. Note that only the edges that create strong components during the
process have corresponding internal nodes inT . If σ0 is the ordering determined by the
edge numbers, the hierarchical decomposition tree for the digraph in Figure2.1(b) is given
in Figure3.1. As the figure shows, during the edge addition process, afterthe addition of
the3rd and6th edges inσ0, the sets of vertices{1, 2, 3} and{4, 5} form a strong component
of G3 andG6, respectively. These strong components are then combined and form a larger
one after the addition of the11th edge. In Figure3.1, the root of the tree is labelled with12.
Hence the first12 edges inσ0 are sufficient to construct a strongly connected digraph. For the
figures in this paper, we use the labels of the corresponding vertices and theσ−1

0 -values of
the corresponding edges to label each leaf and non-leaf nodeof a hierarchical decomposition
tree, respectively.

Given a digraphG = (V,E) with n vertices andm edges and a permutationσ0, the
hierarchical decomposition treeT can be obtained by first constructingG0 and executingSCC
for each internal digraphGi obtained during the edge addition process. Note that this is
an O(mn+m2) algorithm since1 ≤ i ≤ m and the cost ofSCC is O(n + m) due to
the strong component algorithm of Tarjan [24]. To obtainT in a more efficient way, Tarjan
first proposed anO(mlog2 n) recursive algorithm [25] and later improved his algorithm and
reduced the complexity toO(m log n) [26]. He assumed that the weights of the edges in
the digraph are distinct, i.e.,w(uv) 6= w(u′v′) for two distinct edgesuv andu′v′. Here
we modify the description of the algorithm so that it also works for the case when some
edges have equal weights. Note that the connectivity of the digraph is purely structural and
is independent of the edge weights. The only role that they play in Tarjan’s algorithmHD is
in the preprocessing step that defines a permutationσ0 of the edges and in determining the
ordering of the edges during the course of the algorithm. We eliminate the necessity of this
latter use by avoiding numerical comparisons through just using the indices of the edges with
respect toσ0. With this slight modification, the algorithm remains correct even when some
edges have the same weight, which is very important as many matrices have several or many
nonzeros with the same numerical value.

HD uses a recursive approach and for every recursive call, it gets a digraphG = (V,E),
a permutationσ of the edges, and a parameteri as inputs such thatG is strongly connected
andGi is known to be acyclic, i.e., every vertex is a separate strong component [26]. For the
initial call, i is set to0 and the initial permutation is set toσ0 which is a permutation of all
the edges in the original digraph.

For a call ofHD(G = (V,E), σ, i), thesizeof the subproblem is set to|E|−i, the number
of edges that remain to be investigated (Tarjan used the termrank to denote the size of a
subproblem). Note that in the first step,HD knows thatGi (that isG0) is acyclic, that is, there
are|V | strong components ofG0, one for each vertex. If the subproblem size is one, sinceG
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Algorithm 1 T = HD(G = (V,E), σ, i) . For the initial call,σ = σ0 andi = 0.

1: if |E| − i = 1 then
2: Let T be a tree withV leaves. Root is labelled withσ−1

0 (σ(|E|))
3: return T
4: end if
5: j = ⌈(i+ |E|)/2⌉
6: if Gj = (V, {σ(k) : 1 ≤ k ≤ j}) is strongly connectedthen
7: return T = HD(Gj , σ, i)
8: else
9: for each strong componentSCℓ = (Vℓ, Eℓ) of Gj do

10: if |Vℓ| > 1 then
11: σℓ = the permutation ofEℓ ordered with respect toσ
12: if i = 0 or (σ−1(uv) > i, ∀uv ∈ Eℓ) then
13: iℓ = 0
14: else
15: iℓ = max{k : σ−1(σℓ(k)) ≤ i}
16: end if
17: Tℓ = HD(SCℓ, σℓ, iℓ)
18: else
19: Tℓ = (Vl, ∅)
20: end if
21: end for
22: V1 = V2 = {Vℓ : SCℓ is a strong component ofGj}
23: V = {V1,V2}
24: GV = condense(G,V) = (V V2 , EV1)
25: σV = the permutation ofEV1 ordered with respect toσ
26: if (σ−1(uv) > j, ∀uv ∈ EV1 ) then
27: iV = 0
28: else
29: iV = max{k : σ−1(σV(k)) ≤ j}
30: end if
31: TV = HD(GV , σV , iV )
32: replace the leaves ofTV with the corresponding treesTℓ

33: return TV

34: end if

is strongly connected andGi is acyclic, the vertices inV are combined with the addition
of the |E|th edge inσ. HenceHD returns a treeT having a root labelled withσ−1

0 (σ(|E|))
and |V | leaves. If the subproblem size is not one,HD performs a binary chop and checks
if Gj , j = ⌈(i + |E|)/2⌉, is strongly connected. IfGj is strongly connected, then all of the
strong components will be combined before the addition of the (j + 1)th edge. Hence the
algorithm callsHD(Gj , σ, i). Otherwise, a recursive call is made for each strong component
of size larger than one. A detailed pseudo-code ofHD is given in Algorithm1.

By the definition ofi, Gi, the subgraph containing the firsti edges ofG in σ, is known
to be acyclic. Letiℓ be the number of these edges in theℓth strong subgraphSCℓ = (Vℓ, Eℓ)
of Gj , i.e., iℓ = |{uv ∈ Eℓ : σ−1(uv) ≤ i}|. SinceSCℓ is a subgraph ofGi, Gi being
acyclic implies that the subgraph ofSCℓ containing only theseiℓ edges is also acyclic. In
Algorithm 1, lines12–16, the numberiℓ is found for each strong componentSCℓ. This value
is then used in the recursive call forSCℓ at line17.
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SinceGj has more than one strong component andG is known to be strongly connected,
with the addition of some edge(s) after thejth one, at least two strong components ofGj

will be combined. To find this edge, another recursive call,HD(GV , σV , iV ), is made for the
condensed graphGV = (V V2 , EV1). Since each strong component ofGj is reduced to one
vertex inGV , a subgraph of the condensed graph which contains only the edges fromGj must
be acyclic. Hence we can find the valueiV in a similar fashion toiℓ. But this time instead
of i we usej and setiV = |{uv ∈ EV1 : σ−1(uv) ≤ j}| for the corresponding recursive call
at line31.

We investigate the size of each new subproblem for the complexity analysis ofHD. At
line 7 of Algorithm 1, the size of the subproblem becomes at mostj − i and for the lines17
and31, there will be smaller subproblems with sizes at mostj−i and|E|−j, respectively. By
definition ofj, every subproblem has a size at most2

3 of the original problem size (consider
the case wheni = 0 and|E| = 3). Note that every edge in the original problem corresponds
to an edge in at most one subproblem and, if we do not count the recursive calls, the rest of
the algorithm takesO(|E|). Let t(m, r) be the total complexity of a problem withm edges
and problem sizer, andk be the number of recursive calls. Then

t(m, r) = O(m) +

k
∑

i=1

t(mi, ri).

Since
∑k

i=1 mi ≤ m andri ≤ 2r/3, for 1 ≤ i ≤ k, a simple induction argument shows
thatt(m, r) = O(mlog r). Hence the total complexity of the algorithm isO(mlogm) which
is actuallyO(mlog n) since the original graph is a simple digraph (not a directed multigraph).

Let us sketch the algorithm for the digraphG = (V,E) in Figure2.1(b). Assume thatσ0

is the ordering described in that figure. In the initial call,line5of Algorithm1, the valuej = 7
is computed and it is checked ifG7 is strongly connected. As Figure3.2shows,G7 has three
strong components where the first and second are the new subproblems, which are solved
recursively. Since the third strong component contains only one vertex,HD does not make a
recursive call for it. An additional recursive call is made for the condensed graph. Figure3.3
displays the graphs for the recursive calls and the returnedtrees. The number of edges in the
Figures3.3(a), 3.3(b), and3.3(c)are4, 2, and7, whereas the corresponding problem sizes
are4, 2, and6 respectively. Note thati1 andi2 are0 for the first two calls andiV = 1 for the
last one withGV sinceGV

1 is known to be acyclic becausej = 7 andσV(1) = σ(7).

FIG. 3.2.Strong components ofG7 for the digraphG given in Figure2.1(b).
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Because of the multiple edges between two vertices, the condensed graph in Figure3.3(c)
has 7 edges. However, the algorithm still works if we sparsify the edges ofGV = (V V2 , EV1)
and obtain a simple digraph as follows: for an edgeuv ∈ E such thatu ∈ Vi andv ∈ Vj

andi 6= j, there existsvivj ∈ EV1 if no otheru′v′ ∈ E exists such thatu′ ∈ Vi andv′ ∈ Vj

andσ−1(u′v′) < σ−1(uv). That is, for multiple edges betweenu andv, we delete all but
the first in the permutationσ. In Figure3.3(c), these edges,σ(7) andσ(8), are shown in
bold. In [26], Tarjan states that although having less edges in the condensed graphs with this
modification is desirable, in practice the added simplicitydoes not compensate for the cost
of the reduction of multigraphs to simple digraphs. This is also validated by our preliminary
experiments.

(a)Call forSC1 (b) Call forSC2 (c) Call for the condensed graph
with three vertices

FIG. 3.3.Three recursive calls for the digraphG andσ0 in Figure2.1(b). Internal nodes in trees are labelled
with theσ−1

0
-value of the corresponding edge. Note that the overall hierarchical decomposition tree is already given

in Figure3.1.

3.1.2. HDPRE: obtaining the initial block structure. As mentioned in Section3.1.1,
Tarjan proposedHD for hierarchical clustering purposes and sorted the edges with respect to
increasing edge weights. Thus, ifσ0 is the permutation used for a hierarchical clustering,
it holds thatw(σ0(i)) ≤ w(σ0(j)), for i < j. In this work, we propose using two different
approaches to obtain the permutation: the first solely depends on the weights of the edges
and sorts them in the order of decreasing edge weights, i.e.,we define the permutationσ
such thatw(σ(i)) ≥ w(σ(j)) if i < j. The second uses the sparsity pattern of the matrix.
The reverse Cuthill-McKee (RCM) ordering [6, 18] is used to find a symmetric row/column
permutation. Then the edges are ordered in a natural, row-wise order. That is, an edgeij
always comes beforekℓ if i < k or, i = k andj < ℓ.

The decomposition treeT obtained from the output from Tarjan’sHD algorithm could be
used for preconditioning without modification, but we postprocess this tree to ensure that all
leaf nodes are as large as they can be but still have fewer thanmbs nodes. For the decom-
position treeT in Figure3.1, the cases formbs = 2 andmbs = 3 are given in Figure3.4.
In T , for the casembs = 2, the vertices1, 2, and3 cannot be combined since the number
of vertices in the combined component will be3, which is greater thanmbs. Hence, there
will be 5 blocks after this phase. However, the vertices1, 2, and3 can be combined for the
casembs = 3 and the number of blocks will be3. Note that for preconditioning, we do not
need to construct the whole tree ofHD. We only need to continue hierarchically decomposing
the blocks until they contain at mostmbs vertices. Hence, for efficiency we modify line10
of HD to check if the current strong component has more thanmbs vertices (instead of a sin-
gle vertex). Hence the modified algorithm will make a recursive call for a strong component
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if and only if the component has more thanmbs vertices.

(a) mbs = 2 (b) mbs = 3

FIG. 3.4. Using the output of theHD algorithm. Two cases,mbs = 2 andmbs = 3, are shown for the
decomposition tree in Figure3.1.

To obtain denser and larger blocks, we incorporate some moremodifications toHD as
follows: first, we modify the definition ofV. Note thatV = {V1,V2} for HD, where the
parts inV1 = V2 are the vertex sets of the strong components ofGj . For preconditioning,
we keep the definition ofV1 but use a finer partitionV2 that contains the vertex sets of strong
components obtained by hierarchically decomposing the strong components of size larger
thanmbs. For example, in Figure3.2, we have 3 strong components of sizes3, 2, and1,
respectively. Hence,V1 = {{1, 2, 3}, {4, 5}, {6}}. If mbs = 2, SC1 will be further divided
so thatV2 = {{1}, {2}, {3}, {4, 5}, {6}}. However, ifmbs = 3, no more decomposition will
occur andV1 will be equal toV2. With this modification, the algorithm will try to combine
the smaller strong components and obtain larger ones with atmostmbs vertices. Note that
settingV = {V2,V2} tries to do the same but will fail since the only components that can be
formed by this approach will be the same as those inV1. Hence, by deleting the edges within
the vertex sets inV1, we eliminate the possibility of obtaining the same components.

A second modification is applied to thecondense operation by deleting the edges be-
tween two verticesνi, νj ∈ V V1 in the condensed graphGV if the total size of the correspond-
ing partsVi, Vj ∈ V2 is larger thanmbs. Note that if we were to retain these edges, they would
only be used to form blocks of size more thanmbs. We call this modifiedcondense oper-
ationpcondense. An example of the difference betweencondense andpcondense is
given in Figure3.5.

As Figure3.5 shows, with this last modification, some of the graphs for therecursive
calls may not be strongly connected. Hence, instead of a whole decomposition tree, we may
obtain a forest such that each tree in the forest, which corresponds to a strong subgraph in
the hierarchical decomposition, has less thanmbs leaves. The modified algorithmHDPRE,
described in Algorithm2, also handles digraphs which are not strongly connected. Note that
for preconditioning, the only information we need is the block structure information. That is,
we need to know which vertex is in which tree in the forest after the modified hierarchical
decomposition algorithm is performed. Instead of a tree (ora forest),HDPRE returns this
information in thescomp array.

The structure of the algorithmHDPRE is similar to that ofHD. In addition toG, σ,
andi, HDPRE requires an additional input arrayvsize which stores the number of vertices
condensed into each vertex ofV . For the initial call withG = (V,E), vsize is an array
containing|V | ones. On the other hand, for the condensed vertices, this value will be equal
to the sum of thevsize-values condensed into that vertex. For the condensed digraph in Fig-
ure3.3(c), vsize = {3, 2, 1} when its vertices are ordered from left to right. To be precise,
for a recursive call withG = (V,E), the total number of simple vertices is

∑

v∈V vsize(v)
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FIG. 3.5. Difference betweencondense and pcondense operations for the strong components
of G7 given in Figure 3.2. Let mbs = 3, so that all of the components have a desired number of
vertices andV1 = V2 = {{1, 2, 3}, {4, 5}, {6}}. Note that the condensed graphs obtained bycondense
and pcondense are the same except that the latter does not have some of the edges that the former has. For
this example, the edges 7, 10, 11, and 13 are missing since thetotal size size ofSC1 andSC2 is 5, which is greater
thanmbs. As a result, for thecondense graph, we obtain 3 blocks of sizes3, 2, and1, respectively, whereas for
thepcondense graph, we have 2 blocks of size 3.

and this number is larger thanmbs for all recursive calls because of the size check in line17
of Algorithm 2.

For each call,HDPRE checks if the problem size|E| − i is equal to one. If this is the
case, it finds the strong componentsSCℓ = (Vℓ, Eℓ) of G. If a strong componentSCℓ

has
∑

v∈Vℓ
vsize(v) > mbs vertices, thenHDPRE considers each vertex inVℓ as a different

strong component. Otherwise, i.e., if the size of a strong component is less than or equal
to mbs, this component is considered as a whole. Following this logic, HDPRE constructs
the scomp array and returns. If the problem size|E| − i is greater than1, as it was done
for HD, HDPRE constructsGj for j = ⌈(i+ |E|)/2⌉ and, if it is strongly connected, the search
for the combining edge among the firstj edges starts with the callHDPRE(Gj , σ, i, vsize). If
not, then for every strong componentSCℓ = (Vℓ, Eℓ) of Gj with

∑

v∈Vℓ
vsize(v) > mbs, it

makes a recursive callHDPRE(SCℓ, σℓ, iℓ, vsizeℓ) and updates the strong component infor-
mation for the vertices inVℓ. This update operation can be considered as further dividing the
strong componentSCℓ hierarchically until all of the strong components obtainedduring this
process contain at mostmbs vertices.

Similarly to HD, at line 33, HDPRE makes one more recursive call for the condensed
graphGV , where the definition of the vertex partitionV (in line 27) is modified as in Fig-
ure3.5. In HD, each vertex in the condensed graph corresponds to a strong component ofGj

which defines a partitionV1. In HDPRE, these components are further divided until all of
them have a size no larger thanmbs. A second partition,V2, is obtained from these smaller
strong components andV = {V1,V2} is defined. After obtaining the condensed graphGV ,
in the algorithmHDPRE it is checked ifGV is acyclic. Note that ifiV = |EV1 |, no strong
component with two or more vertices exists inGV , and hence it is acyclic. IfiV 6= |EV1 |,
after obtainingscompV , HDPRE updatesscomp if a larger strong component is obtained.

For the matrix given in Figure2.1(a), HDPRE generates the blocks for the casesmbs = 2
andmbs = 3 as shown in Figure3.6(a)and Figure3.6(b), respectively. Formbs = 2, the
condensed graph has5 vertices and no edges, hence no combination will occur. Formbs = 3,
as shown in Figure3.6(b), the condensed graph has 3 vertices, where2 of them will combine
with the12th edge inσ0.
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Algorithm 2 scomp = HDPRE(G = (V,E), σ, i, vsize) (mbs is global,i = 0 for the ini-
tial call).

1: if |E| − i = 1 then
2: find strong components ofG
3: for each strong componentSCℓ = (Vℓ, Eℓ) of G do
4: if

∑

v∈Vℓ
vsize(v) > mbs then

5: consider eachv ∈ Vℓ as a strong component
6: else
7: ∀v ∈ Vℓ, scomp(v) = ℓ
8: end if
9: end for

10: return scomp
11: end if
12: j = ⌈(i+ |E|)/2⌉
13: if Gj = (V, {σ(k) : 1 ≤ k ≤ j}) is strongly connectedthen
14: return scomp = HDPRE(Gj , σ, i, vsize)
15: else
16: for each strong componentSCℓ = (Vℓ, Eℓ) of Gj do
17: if

∑

v∈Vℓ
vsize(v) > mbs then

18: σℓ = the permutation ofEℓ ordered with respect toσ
19: computeiℓ as in Algorithm1
20: vsizeℓ(v) = vsize(v), ∀v ∈ Vℓ

21: scompℓ = HDPRE(SCℓ, σℓ, iℓ, vsizeℓ)
22: updatescomp according toscompℓ
23: end if
24: end for
25: V1 = {Vℓ : SCℓ is a strong component ofGj}
26: V2 = {Vℓ′ : SCℓ′ = (Vℓ′ , Eℓ′) is a strong component inscomp}
27: V = {V1,V2}
28: GV = pcondense(G,V,mbs) = (V V2 , EV1)
29: σV = the permutation ofEV1 ordered with respect toσ
30: computeiV as in Algorithm1
31: if iV 6= |EV1 | then
32: vsizeV(vℓ′) =

∑

v∈Vℓ′
vsize(v), ∀Vℓ′ ∈ V2

33: scompV = HDPRE(GV , σV , iV , vsizeV)
34: updatescomp with respect toscompV

35: end if
36: return scomp
37: end if

3.1.3. Combining the blocks.After HDPRE obtains a block diagonal partition,SCPRE
performs a loop on the nonzeros which are not contained in a block on the diagonal to see
if it is possible to put more into the block diagonal by combining original blocks. To do
this,SCPRE first constructs a condensed simple graphH where the vertices ofH correspond
to the diagonal blocks and the inter-block edges ofG in both directions are combined as a
single edge with a weight that is the sum of the weights of the combined edges.

After H is obtained, its edges are visited in an order correspondingto a permutationσH .
This permutation is consistent with the original permutation σ0. That is, if the edges of
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(a) mbs = 2 (b) mbs = 3

FIG. 3.6. Initial block structure of the preconditioner after theHDPRE algorithm. Two cases,mbs = 2

andmbs = 3, are investigated for the matrix in Figure2.1(a).

the original digraph are sorted in descending order with respect to the edge weights,σH

permutes the edges ofH with respect to descending edge weights. On the other hand, if
the initial permutation is based on theRCM ordering, we compute theRCM ordering ofH,
relabel the vertices ofH accordingly, and order the edges with respect to thisRCM ordering.
Let vsize(u) be the number of rows/columns in a block corresponding to thevertexu.

Assume thatSCPRE constructsσ0 by sorting the edges with respect to decreasing weights.
For the matrix given in Figure3.6(a), if w(2) + w(4) > w(1), then the vertices2 and3 are
combined or ifw(2)+w(4) ≤ w(1), then the vertices 1 and 2 are combined. Sincembs = 2
and there is no edge between the vertices1 and6, no further combinations are performed.

3.2. SCPRE: extending to a BTF preconditioner. If the desired structure ofM is block
diagonal,SCPRE stops. Otherwise, while preserving the blocks, it tries to extend the block
diagonal preconditioner to a block upper-triangular one. Note that in this case, the order
of the blocks is important since it changes depending on which nonzeros are in the upper-
triangular part ofM. By permuting the blocks,SCPRE tries to put entries that are larger
in magnitude into the block upper-triangular part. Our preliminary experiments confirmed
that having larger and more nonzeros in aSCPRE preconditioner increases its effectiveness.
Since the nonzeros in the diagonal blocks stay the same whileextending a block diagonal
preconditioner to a block triangular one, we focus on improving the nonzeros in the block
upper-triangular part.

Let G = (V,E) be the digraph associated with the matrix andk be the number of diag-
onal blocks. LetV1 = {V1, V2, . . . , Vk} be a partition ofV such that the vertices inVi corre-
spond to the rows/columns of theith block. LetV = {V1,V1} andGV = condense(G,V)
be the condensed multigraph. Note that ifGV is acyclic, a topological sort inGV gives a
symmetric block permutation such that all of the nonzeros inthe matrix will be in the upper-
triangular part of the permuted matrix. However, this only happens for a reducible matrix
with blocks having no more thanmbs rows/columns.

The problem of finding a good block permutation which maximizes the number of nonze-
ros in the upper part ofM can be reduced to the problem of finding the smallest edge setE′

such thatG
V
= (V V1 , EV1 \ E′) is acyclic. For the weighted version of the problem, i.e., to

maximize the total magnitude in the upper part, we need to findan edge setE′ whereG
V

is
acyclic and the sum

∑

uv∈E′ |w(uv)| is minimal. In the literature, the first problem is called
the directed feedback arc setproblem and the second one is called thedirected weighted
feedback arc setproblem. Both problems are NP-complete [16, 17].

Our simple heuristic proposed for this problem is a greedy algorithm: we first choose
the block row with the largest entries in the off-diagonal blocks and remove the correspond-
ing rows/columns in this block. We then do the same with the remaining block matrix to
obtain the second block row and continue in this way until a single block remains. More
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formally, we letGV be the condensed graph described above. For each vertexu ∈ V V ,
let tweight(u) =

∑

uv∈EV w(uv). The main body of the algorithm is a for-loop where
at theith iteration, the vertexu with maximal tweight is chosen, and this is assigned as
the ith vertex in the permutation. Thenu is removed fromV V , its edges are removed
from EV , and the algorithm continues with the next iteration. Afterpermuting the matrix
with SCPRE, we expect that nonzeros with larger magnitudes are mostly placed in the diag-
onal blocks and some in the upper-triangular part. We display in Figures3.7(a)and3.7(b)
the matrixckt11752tr 0 after scaling usingMC64 and after the reordering fromSCPRE, re-
spectively. In the reordered matrix of Figure3.7(b), it is clear that the larger entries are in the
diagonal blocks.

4. UsingSCPRE with an iterative solver. The iterative solver we use in our experi-
ments is the right-preconditionedGMRES [23] with restarts. A template for this can be found
in [2]. Let A = D +U + L be the scaled and permuted matrix such thatD, U, andL are
the block diagonal, upper, and lower parts, respectively.

If the desired structure is block diagonal, which is suitable for the exploitation of paral-
lelism,M = D is the preconditioner. If this is not the case,M = D+U is the preconditioner
for A. For the latter case, the computationAM−1x becomes

AM−1x = (D+U+ L)(D+U)−1x = x+ L((D+U)−1x).

Note thatSCPRE tries to maximize the total magnitude inD andU. As a consequence and as
experiments not included here show,L usually contains much fewer nonzeros thanA. Hence
computing the vectorz = Ly usually takes very little time and the main operation is to com-
putey = (D+U)−1x = M−1x. In our implementation, in addition toA, we store theLU
factors of the diagonal blocks, i.e., the factorsLi andUi such thatDi = LiUi whereDi is
the ith diagonal block. We reduce the memory requirements for these factors by ordering
the blocks using the approximate minimum degree (AMD) heuristic [1, 7] before using the
MATLAB sparse factorization. We then solve the upper block triangular systemMy = x

using these factors, starting with the last block, so that the off-diagonal partU is only used to
multiply vectors.

4.1. Robustness.The use of theI-matrix scaling viaMC64 helps to reduce the possi-
bility of a singular preconditionerM obtained bySCPRE because all the submatrices on the
diagonal will also beI-matrices. But, although it is very rare, theseI-matrices can be singular
and we still find cases in which some of the blocks on the diagonal ofM are singular.

When using the MATLAB factorization, we guard against this potential problem by using
the simple and cheap stability check proposed and used byXPABLO [14, 15]. That is, ifni is
the dimension ofDi, after computingLi andUi, we check whether

(4.1)

∣

∣

∣

∣

1− ||Ui
−1Li

−1x||
||e||

∣

∣

∣

∣

<
√
ǫM ,

wheree = (1, . . . , 1)T is anni×1 column vector,x = Die, andǫM is the machine epsilon. If
a block does not satisfy (4.1), XPABLO replacesDi either byUi or Li according to whether
it is solving a block upper- or lower-triangular system, respectively. ForSCPRE, we use
the same test asXPABLO but always use the factor having the largest Frobenius norm to
replaceDi, where the Frobenius norm of ann× n matrixB is given by

||B||F =

√

∑

1≤i,j≤n

|Bij |2.
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FIG. 3.7. The matrix ckt11752tr 0 after scaling (a) and afterSCPRE (b), respectively. The nonzeros are
coloured with respect to their magnitudes;mbs is set to5000.
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5. Experiments. All of the experiments are conducted on an Intel2.4Ghz Quad Core
computer, equipped with24GB RAM with a Fedora Linux operating system. For the exper-
iments, we use matrices from the University of Florida Sparse Matrix Collection [8]. The
matrices we use come from circuit simulation problems (CSP), semiconductor device prob-
lems (SDP), electromagnetics problems (EMP), and optimization problems (OPT). We run
three sets of comparisons using these matrices. The first setcontains 45 matrices
with m ≤ 2× 106 nonzeros. For this set, we usembs = 2000 in the experiments. The
second set contains13 relatively large matrices withm ≥ 2× 106 nonzeros. For this set, we
usembs = 5000 since they are larger. The third set contains12 average-size optimization
matrices with106 ≤ m ≤ 2.5 × 106 nonzeros. In constructing the sets, we do not use ma-
trices whose largest blocks in their BTF form have less thanmbs rows/columns. We also
exclude from the tables any matrices on which none of our preconditioned iterative solvers
converged. The lists of the remaining37 matrices in the first set,12 matrices in the second
set, and6 matrices in the third set are given in Table5.1.

In our experiments, we restartedGMRES [23] after every 50 iterations. The desired error
tolerance forGMRES(50) is set toǫ = 10−8 and the stopping criterion we use forGMRES is

||AM−1z− b||
||b|| < ǫ

wherez = Mx, with z the computed solution of the preconditioned system andx the com-
puted solution of the original system. After obtaining the solution x to the original system,
we compute the relative error||Ax− b||/||b|| to the unpreconditioned system. For all cases,
this error is smaller than10−7 and indeed, for most of the cases it is also smaller thanǫ.

The maximum number of outer iterations is set to20, hence the maximum number of
inner iterations is1000. In the tables, we give the inner iteration counts when the stopping
criterion is satisfied. Otherwise, if the criterion is not satisfied, we put“ − ” in the table to
denote thatGMRES did not converge. Also, we put the lowest iteration count foreach matrix
in bold font.

To compare the efficiency of the preconditioner, we used a generic preconditioner,ILUT,
c.f. [21, 22], from MATLAB 7.11 with two drop tolerances,dtol = 10−3 and10−4. In
addition toILUT, we also compared our results with those ofXPABLO [14, 15]. For all of
the preconditioners, we useMC64 and obtain a maximum product transversal by scaling and
permuting the matrix as a preprocessing step.

In the MATLAB implementation ofILUT, for thejth column of the incompleteL andU,
entries smaller in magnitude thandtol × ||A∗j || are deleted from the factor where||A∗j || is
the norm of thejth column ofA. However, the diagonal entries ofU are always kept to
avoid a singular factor. For theILUT based preconditioners, we useAMD before computing
the incomplete factorization of the matrix. ForXPABLO preconditioners, we use theJ variant
for the block Jacobi iterations andLX andUX variants for the forward and backward block
Gauss-Seidel iterations, respectively, with the parameters given in [14, 15]. For the maxi-
mum block size ofXPABLO, we used the samembs as forSCPRE. We note that the authors
of XPABLO recommend a value formbs of 1000 [14], but in our experiments we found the
value2000 to work better and found that it was necessary for our larger problems to avoid
failure inXPABLO.

SCPRE will automatically find the BTF for a reducible matrix. To be fair to the other
algorithms that do not detect this form, we use this reducibility information also for theILUT
andXPABLO preconditioners. That is, when usingILUT (XPABLO) for reducible matrices,
we first compute the BTF form and applyILUT (XPABLO) only to the blocks on the diago-
nal. For smaller blocks, we compute the complete factors. Wethen use these complete and
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TABLE 5.1
Properties of the matrices used for the experiments.n is the dimension of the matrix,m is the number of

nonzeros, andn1 andn2 are the sizes of the largest and second largest blocks in the BTF form. Note thatn2 = 0

means that the matrix is irreducible, i.e.,n1 = n. The column Type shows the application from which the matrix
arises. The sets are sorted first according to the type of the problem and then theirn1 values.

Matrix Group n m n1 n2 Type

Hamrle2 Hamrle 5952 22162 5952 0
rajat03 Rajat 7602 32653 7500 1
circuit 3 Bomhof 12127 48137 7607 1
coupled IBM Austin 11341 97193 11293 1
memplus Hamm 17758 99147 17736 1
rajat22 Rajat 39899 195429 26316 7672
onetone2 ATandT 36057 222596 32211 2
onetone1 ATandT 36057 335552 32211 2
rajat15 Rajat 37261 443573 37243 1
ckt11752tr 0 IBM EDA 49702 332807 49371 44
circuit 4 Bomhof 80209 307604 52005 7
bcircuit Hamm 68902 375558 68902 0
rajat18 Rajat 94294 479151 84507 52 CSP
hcircuit Hamm 105676 513072 92144 4927
ASIC100ks Sandia 99190 578890 98843 2
ASIC100k Sandia 99340 940621 98843 2
ASIC680ks Sandia 682712 1693767 98843 2
rajat23 Rajat 110355 555441 103024 216

SET twotone ATandT 120750 1206265 105740 6
1 trans5 IBM EDA 116835 749800 116817 1

dc2 IBM EDA 116835 766396 116817 1
G2 circuit AMD 150102 726674 150102 0
scircuit Hamm 170998 958936 170493 216
transient Freescale 178866 961368 178823 11
Raj1 Rajat 263743 1300261 263571 5
ASIC320ks Sandia 321671 1316085 320926 6
ASIC320k Sandia 321821 1931828 320926 6
utm5940 TOKAMAK 5940 83842 5794 1
dw4096 Bai 8192 41746 8192 0 EMP
Zhao1 Zhao 33861 166453 33861 0
igbt3 SchenkISEI 10938 130500 10938 0
wang3 Wang 26064 177168 26064 0
wang4 Wang 26068 177196 26068 0
ecl32 Sanghavi 51993 380415 42341 1 SDP
ibm matrix 2 SchenkIBMSDS 51448 537038 44822 1
matrix-new3 SchenkIBMSDS 125329 893984 78672 1
matrix 9 SchenkIBMSDS 103430 1205518 99372 1

ASIC680k Sandia 682862 2638997 98843 2
G3 circuit AMD 1585478 7660826 181343 0
rajat29 Rajat 643994 3760246 629328 71 CSP
rajat30 Rajat 643994 6175244 632151 0
Hamrle3 Hamrle 1447360 5514242 1447360 0

SET memchip Freescale 2707524 13343948 2706851 0
2 offshore Um 259789 4242673 259789 0

tmt sym CEMW 726713 5080961 726713 0 EMP
t2em CEMW 921632 4590832 917300 1
tmt unsym CEMW 917825 4584801 917825 0
para-4 SchenkISEI 153226 2930882 153226 0 SDP
ohne2 SchenkISEI 181343 6869939 181343 0

ex data1 GHS indef 6001 2269500 6001 0
boyd1 GHS indef 93279 1211231 93279 0

SET majorbasis QLi 160000 1750416 160000 0
3 c-73b SchenkIBMNA 169422 1279274 169422 0 OPT

c-big SchenkIBMNA 345241 2340859 345089 2
boyd2 GHS indef 466316 1500397 466316 0
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incomplete factors together while computing a matrix vector product usingM−1. Our ex-
periments show that this approach is almost always better than usingILUT (XPABLO) in a
straightforward manner in terms of the iteration count. We also tried this approach while using
theJ variant of theXPABLO preconditioner. Surprisingly, even for the block Jacobi case, this
approach helps to reduce the iteration counts slightly for most of the reducible matrices. We
call this variantJ-red in the tables below. Note that for the block Gauss-Seidel case, when
we applyXPABLO (or ILUT) only to the large blocks in the BTF form of a reducible matrix,
we keep all of the nonzeros in the preconditioner from the off-diagonal blocks. However, for
block Jacobi iterations, we automatically drop them from the preconditioning matrixM since
its desired structure is block diagonal, not block triangular.

In addition to the number of iterations required for convergence, we compare the perfor-
mance of the preconditioners according to the relative memory requirement with respect to
the number of nonzeros inA. Letnz(B) be the number of nonzeros in a matrixB. ForILUT,
the relative memory requirement is equal to

memILUT =
nz(L) + nz(U)

nz(A)
,

whereL andU are the incomplete triangular factors ofA. On the other hand, the relative
memory requirement forSCPRE andXPABLO is equal to

memSCPRE = memXPABLO =

∑k

i=1 (nz(Li) + nz(Ui))

nz(A)
,

wherek is the number of blocks in the block diagonalD, andLi andUi are the lower-
and upper-triangular factors of the LU-factorization of the ith block in D. Note that the
relative memory requirements of the preconditioners can give an idea for the cost of com-
putingM−1x. Assuming thatx is a dense vector, a preconditionedGMRES iteration will
require approximatelynz(A)(1+memX) operations for the preconditioner generated by the
algorithmX.

There are two parameters for the proposed algorithm: the first is the maximum block
sizembs, the second is the permutation for the nonzeros denoted byσ0. As expected, our
experiments (not reported here) show that increasing the numbermbs usually reduces the
iteration counts and increases the relative memory requirements of the solver.

We conduct some experiments to show the effect of our choice of σ0 on the performance
of our algorithm. Note that inHD, the edges are sorted in increasing order with respect to
their weights. In our implementation, we define the weight ofan edge as the magnitude of
the corresponding nonzero and sort the edges in decreasing order. We test our decision by
comparing its effect with that of a random permutation. As Table 5.2shows, our decision to
sort the edges in decreasing order with respect to the edge weights makes the solver converge
more quickly.

5.1. Experiments with block Gauss-Seidel iterations.Table 5.3 shows the perfor-
mance ofSCPRE and XPABLO for block Gauss-Seidel iterations and their comparison
with ILUT. Note that bothSCPRE(dec) andSCPRE(RCM) are robust, that is, the solvers con-
verge for most of the matrices. Although there are a few matrices for which theSCPRE(RCM)
preconditioned solver converges more quickly than that preconditioned withSCPRE(dec)
(such asASIC680k) and, amongst all preconditioners, onlySCPRE(RCM) converges for ma-
tricesonetone1andonetone2, SCPRE(dec) is almost always better and is our preferred pre-
conditioner.

In general, all the preconditioners work well for the matrices in the first set. How-
ever,SCPRE(dec) is the most robust since the preconditioned solver fails toconverge only
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TABLE 5.2
Effect of the permutationσ0 on the number of iterations. Two options are compared: a decreasing order with

respect to the edge weights and a random order. The maximum block size forSCPRE is set to2000 where the
structure ofM is block upper-triangular. For each case, the ratio of the total magnitude inM to the total magnitude
in A, the relative memory requirement, and the number of inner iterations for preconditionedGMRES are given.

Decreasing Random

Matrix
∑

|Mij |
∑

|Aij |
memSCPRE iters

∑
|Mij |

∑
|Aij |

memSCPRE iters

Hamrle2 0.998 2.03 16 0.993 2.05 157
rajat03 0.999 1.07 2 0.997 1.02 5
circuit 3 0.996 1.45 9 0.987 1.23 445
coupled 0.998 1.57 11 0.992 1.58 34
memplus 0.999 1.03 5 0.998 1.03 7
rajat22 0.973 1.20 21 0.962 1.15 -

for 3 out of 37 matrices, whereas the next best result is9 by the XPABLO variants.
Thus,SCPRE(dec) is the best block preconditioner on this set of matrices. When compar-
ing SCPRE(dec) to ILUT(10−4) on this set, we see that they are comparable in terms of
the number of best performances, butILUT(10−4) is less robust, failing to converge for10
matrices in this set and requiring more memory thanSCPRE(dec).

For the second set,ILUT(10−4) is the best preconditioner in terms of robustness and
iteration count. For the matrices in this set, theILUT(10−4) preconditioned solver fails to
converge in only2 out of 12 matrices, whereasSCPRE(dec) does not converge on4. Al-
thoughILUT(10−4) is better thanSCPRE(dec) for 10 out of 12 matrices in the second set,
its average relative memory usage is9.39 which is almost3 times as much as the relative
memory requirement ofSCPRE(dec). Note that for the second set, evenILUT(10−3) uses
slightly more memory thanSCPRE(dec). However, it fails to converge on7 matrices. Hence,
if memory is the bottleneck,SCPRE(dec) may be a suitable choice for preconditioning.

The performance of theSCPRE-based preconditioners depends on the application. For
example, as Table5.3 shows,SCPRE(dec) preconditionedGMRES fails to converge in3 out
of 7 matrices from electromagnetics applications. On the otherhand, it fails to converge on
only 4 of the remaining42 matrices. Hence its performance is much better for circuit and
device simulation applications. Note that even though someof these matrices are reducible,
they have a large reducible block with a size much larger thanmbs. That is, we still have
a large subproblem to deal with. On the circuit simulation and semiconductor device matri-
ces,SCPRE works better thanXPABLO, which is another block based preconditioner with a
promising performance in practice for several matrix classes [3, 5, 10]. Note that we used
the BTF forms of the reducible matrices for both theXPABLO andILUT preconditioners.
Hence, reducibility alone is not a reason for the good performance ofSCPRE-based precon-
ditioners.

5.1.1. Memory usage.As Table5.3shows, the memory usage ofILUT(10−4) is much
higher than that ofXPABLO andSCPRE. Table5.4 shows the results of additional experi-
ments conducted to further compare the memory usage ofSCPRE andILUT preconditioners.
There are6 optimization matrices in the set.SCPRE-based preconditioned solvers converged
for 5 of them. ForILUT-based solvers with drop tolerance10−3 and10−4, the numbers
of matrices for which the solver converged are4 and5, respectively. Hence, on this matrix
set,SCPRE is as robust asILUT. With respect to the number of iterations,ILUT is much bet-
ter with7–8 iterations on the average instead of36 for SCPRE. The main reason for such a big
difference is the matrixc-73b, where theSCPRE preconditioned solver requires127 inner it-
erations. On the other hand, the average relative memory usage ofILUT is 11–18 times more
than that ofSCPRE. This difference is due to the matricesc-73bandc-big, whereILUT’s
relative memory requirements are28.47 and61.89, respectively. Additionally, for the ma-
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TABLE 5.3
Number of inner iterations forGMRES usingXPABLO, ILUT, andSCPRE preconditioners and block Gauss-

Seidel iterations. ForSCPRE andXPABLO, mbs is set to2000 and5000 for the first and second sets, respectively.
For SCPRE, we give the results using two permutations forσ0, based on descending order andRCM. For XPABLO,
we give the results for both theUX andLX variants. ForILUT, the drop tolerance is set to10−3 and10−4. A ‘-’ sign
indicates that the preconditioned solver did not converge.Average relative memory requirements are computed by
taking the averages over the cases when the solvers converge.

XPABLO SCPRE ILUT
Matrix UX LX dec RCM 10

−3
10

−4

Hamrle2 31 31 16 28 6 4
rajat03 2 2 2 2 2 2
circuit 3 135 137 9 61 - -
coupled 12 12 11 13 6 4
memplus 9 9 5 18 15 9
rajat22 36 37 21 61 36 16
onetone2 - - - 248 - -
onetone1 - - - 297 - -
rajat15 - - 120 467 - 33
ckt11752tr 0 197 188 19 323 - -
circuit 4 100 81 39 346 - -
bcircuit - - 40 620 568 93
rajat18 - - 11 - 393 54
hcircuit 8 9 9 21 9 5
ASIC100ks 9 10 9 10 4 4
ASIC100k 9 9 10 10 4 4
ASIC680ks 3 4 3 4 4 4
rajat23 40 41 16 88 47 18

mbs = twotone - - 25 128 - 48
2000 trans5 9 9 5 7 7 6

dc2 13 12 12 11 10 6
G2 circuit - - 444 834 124 30
scircuit 741 764 317 977 - -
transient - - 33 - - -
Raj1 775 789 636 - 269 39
ASIC320ks 4 4 1 4 2 2
ASIC320k 5 5 2 3 3 3
utm5940 - - - - - 29
dw4096 881 798 13 141 24 10
Zhao1 7 7 4 9 4 3
igbt3 29 29 20 17 94 12
wang3 107 105 54 58 18 9
wang4 39 38 21 36 11 6
ecl32 99 99 30 32 32 13
ibm matrix 2 - 249 10 16 - -
matrix-new3 85 86 30 41 - -
matrix 9 146 90 98 88 - -

Avg. relative memory 2.95 3.04 3.36 3.19 2.12 4.02

ASIC680k 2 2 27 2 3 3
G3 circuit - - 357 422 212 81
rajat29 - - 11 - - -
rajat30 12 12 14 15 7 5
Hamrle3 - - - - - 17

mbs = memchip 26 27 10 20 8 5
5000 offshore 330 327 488 451 - 15

tmt sym - - - - - 69
t2em - - 876 - 132 38
tmt unsym - - - - - 136
para-4 - - - - - 433
ohne2 - - 196 - - -

Avg. relative memory 3.58 3.58 3.23 2.51 3.36 9.39
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TABLE 5.4
Number of inner iterations and relative memory usage ofGMRES usingSCPRE or ILUT preconditioners with

block Gauss-Seidel iterations for optimization matrices.For SCPRE, mbs is set to2000, andσ0 is obtained by
using the descending order. ForILUT, the drop tolerance is set to10−3 and 10

−4. The ‘*’ sign indicates that
the memory of our machine (24 GBytes) is not sufficient to obtain the preconditioner. The ‘-’ sign indicates that the
preconditioner is obtained, but the solver did not convergein fewer than1000 iterations. The average number of
iterations and relative memory requirements are computed by taking the averages over the cases when the solvers
converge.

SCPRE(dec) ILUT-10−3 ILUT-10−4

Matrix iters mem iters mem iters mem

ex data1 14 0.60 - - 23 0.47
boyd1 18 0.19 7 0.77 5 1.03
majorbasis 10 2.50 4 1.20 3 1.87
c-73b 127 0.72 10 14.19 5 28.47
c-big - - 6 30.39 4 61.89
boyd2 13 1.17 * * * *

Avg. 36 1.04 7 11.64 8 18.75

trix boyd2, ILUT could not generate a preconditioner since the maximum memory available
in the system,24GB, is exceeded. Given that only28MB is used to storeboyd2, the relative
memory requirement ofILUT is excessive. This shows that althoughSCPRE-preconditioned
solvers require more iterations thanILUT-preconditioned ones,SCPRE can still be a good
replacement for some matrix classes if the matrices are big and memory is the main bottle-
neck.

5.2. Experiments with block Jacobi iterations. The Table5.5shows the performance
of SCPRE andXPABLO preconditioners for block Jacobi iterations.ILUT is not included
here since it does not explicitly give a block diagonal structure. Similar to the experi-
ments with block Gauss-Seidel iterations, the performanceof SCPRE(dec) is better than that
of SCPRE(RCM) for the matrices in our sets. ForXPABLO, applying the preconditioner only
to the blocks in the BTF form, the variantJ-red reduces the number of iterations on11 ma-
trices. Furthermore, for5 of the matrices,J-red converges, whereasJ does not. Note that
there are32 reducible matrices in the sets andJ-red differs fromJ only for these matrices.
Although J-red required more iterations for convergence for the matricesmatrix new3
andmatrix 9, for the matrices in our experiments,J-red generally performs better thanJ.

As Table5.5 shows,SCPRE(dec) preconditionedGMRES converges for36 matrices,
whereasXPABLO’s J-red variant converges for only24 matrices. TheXPABLO based
preconditioner has the least number of iterations in only 8 cases, whereas theSCPRE variants
are better on 35 matrices. The difference in the performanceis not due to the relative mem-
ory usage of theSCPRE variants. For the first set,SCPRE(dec) uses only8% more memory
thanXPABLO(J-red) on average, and for the second set its memory usage is much less.

On the right-hand side of Table5.5, the execution times of theGMRES solver are given.
As the table shows, for most of the cases the best solver in terms of iteration count has
also the best execution time. Note that there are some exceptions such as thematrix 9,
for which the solver preconditioned byXPABLO(J) requires49 iterations fewer than when
preconditioned bySCPRE, but its execution time is slightly more. This is because forthis
matrix,memXPABLO(J) = 8.43 andmemSCPRE(dec) = 3.69, and the cheaper cost of comput-
ing M−1x more than compensates for the difference in iteration counts. For39 matrices,
a SCPRE variant has the best or very close to the best time. In summary, SCPRE(dec) per-
forms better than theXPABLO variants in our block Jacobi experiments.

5.3. Cost of generating the preconditioner.It has been the aim of this paper to es-
tablish the viability of using hierarchical decompositions to obtain a block preconditioning
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TABLE 5.5
Number of inner iterations and solver times (in seconds) forGMRES usingXPABLO andSCPRE precondition-

ers and block Jacobi iterations. The maximum block sizembs is set to2000 and5000 for the first and second sets,
respectively. ForSCPRE, we give the results using two permutations forσ0, based on descending order andRCM.
For XPABLO, we give the results for theJ variant, which is used with the parameters suggested in [14]. TheJ-red
variant described in the text, also uses the same parameters. A ‘-’ sign indicates that the preconditioned solver did
not converge. Average relative memory requirements are computed by taking the averages over the cases when the
solver converges.

# iterations solver time (in secs.)
XPABLO SCPRE XPABLO SCPRE

Matrix J J-red dec RCM J J-red dec RCM

Hamrle2 99 99 31 96 0.32 0.32 0.08 0.30
rajat03 7 3 4 4 0.03 0.01 0.01 0.01
circuit 3 680 327 19 179 3.72 1.81 0.07 0.93
coupled 43 22 21 25 0.22 0.09 0.08 0.11
memplus 17 17 8 33 0.08 0.08 0.03 0.19
rajat22 190 77 42 124 3.03 1.61 0.63 1.88
onetone2 - - - 627 - - - 9.62
onetone1 - - - 622 - - - 14.95
rajat15 - - 265 - - - 4.85 -
ckt11752tr 0 - 776 36 - - 20.28 0.83 -
circuit 4 - 864 112 - - 27.48 3.33 -
bcircuit - - 107 - - - 3.06 -
rajat18 - - 16 - - - 0.39 -
hcircuit 16 15 16 40 0.43 0.47 0.43 1.55
ASIC100ks 17 17 16 18 0.46 0.50 0.44 0.50
ASIC100k 17 16 17 18 0.48 0.52 0.49 0.51
ASIC680ks - 8 - 8 - 0.72 - 0.74
rajat23 203 140 32 208 9.29 7.65 1.17 9.09
twotone - - 49 322 - - 2.70 17.11
trans5 23 16 9 13 0.75 0.47 0.24 0.36
dc2 76 21 20 20 3.32 0.67 0.64 0.64
G2 circuit - - 833 - - - 56.55 -
scircuit - - 682 - - - 49.25 -
transient - - 186 - - - 13.60 -
Raj1 - - - - - - - -
ASIC320ks 5 6 1 7 0.43 0.70 0.19 0.54
ASIC320k 11 9 3 10 0.91 0.85 0.42 0.61
utm5940 - - - - - - - -
dw4096 - - 24 - - - 0.11 -
Zhao1 12 12 7 16 0.12 0.12 0.08 0.19
igbt3 60 60 32 26 0.52 0.52 0.21 0.17
wang3 263 263 140 138 3.26 3.26 1.96 1.78
wang4 91 91 39 79 1.24 1.24 0.54 1.02
ecl32 - - 79 90 - - 2.50 3.08
ibm matrix 2 - 344 22 30 - 12.29 0.65 1.09
matrix-new3 184 248 71 95 13.21 20.20 4.64 6.79
matrix 9 208 240 257 346 14.85 18.80 14.41 21.83

Avg. relative memory 2.67 3.10 3.35 3.32

ASIC680k - 3 - 3 - 0.54 - 0.54
G3 circuit - - 674 - - - 516.38 -
rajat29 - - 18 - - - 3.03 -
rajat30 43 22 24 27 11.84 4.59 5.12 6.12
Hamrle3 - - - - - - - -
memchip 41 50 17 38 53.39 74.55 14.60 38.82
offshore 883 883 - - 189.98 189.98 - -
tmt sym - - - - - - - -
t2em - - - - - - - -
tmt unsym - - - - - - - -
para-4 - - - - - - - -
ohne2 - - - - - - - -

Avg. relative memory 3.58 2.84 1.81 0.92
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TABLE 5.6
Preconditioner generation times for 10 CSP matrices from the first matrix set in seconds. ForSCPRE

andXPABLO, mbs is set to2000. For XPABLO, theUX variant is used, and forSCPRE, σ0 is obtained by us-
ing the descending order. ForILUT, the drop tolerance is set to10−3. Results are the averages of5 executions.

Matrix XPABLO SCPRE(dec) ILUT-10−3

rajat15 0.23 5.92 0.71
ckt11752tr 0 0.45 3.97 0.23
circuit 4 0.15 8.13 0.11
bcircuit 0.21 3.95 0.12
rajat18 0.23 7.31 0.08
hcircuit 0.28 5.03 0.09
ASIC100ks 0.35 9.65 0.24
ASIC100k 0.43 9.50 0.19
ASIC680ks 1.40 9.96 0.28
rajat23 0.29 7.64 0.08
twotone 1.02 9.09 12.41

matrix that greatly reduces the number of iterations of Krylov solvers without requiring too
much additional memory.

However, the cost of obtaining the preconditioning matrix is also important, especially
if it is being generated for the solution of a single system. The analysis presented in Sec-
tion 3.1.1shows that the complexity of theHD algorithm isO(m log n) which means that it
scales well as the problem sizes increase. However, we note that the complexity ofXPABLO
is O(m+ n), which is thus linear in the order and number of entries in thematrix and could
be expected to have smaller generation execution times thanSCPRE.

A straight comparison of the generation times is not meaningful as our implementation
is fully in MATLAB without any low-level optimization, whereas forXPABLO we used the
available implementation inC, for which the compiler directly optimizes the code for the
machine. It is the intention in future work to develop and optimize the implementation, but it
is certainly outside the scope of this present work.

However, there is no doubt that although our algorithm has good complexity bounds, it
is quite complicated, so we did time the generation of theSCPRE preconditioner on some
of our test matrices. For example, for theCSP matrices of Table5.1, we found thatSCPRE
took between 2.5 and 9.5 seconds, whereasXPABLO required between 0.25 and 1.40 sec-
onds. Thus, although our algorithm takes much longer and would still be slower with an
efficient C implementation (which we estimate would be about5 times faster), the times are
not unreasonable and indicate that our approach is feasibleeven for one-off solutions. Indeed,
if we look at the total cost, we are still faster thanXPABLO on several problems in the one-off
case, and of course the greater robustness of our more costlypreconditioner compensates for
this extra cost.

6. Conclusions and future work. Given a linear systemAx = b, we have proposed
a method to construct generic block diagonal and block triangular preconditioners. The pro-
posed approach is based on Tarjan’s algorithmHD for hierarchical decomposition of a digraph
into its strong subgraphs. Although our preconditionerSCPRE is outperformed byILUT for
electromagnetics matrices, we obtain promising results for many device and circuit simula-
tion matrices, and we suggest using it with these types of problems. In future research, the
structure of graphs for different classes of matrices can beanalysed to try to understand the
reason for the difference in performance.

There are two main parameters for the algorithm: the permutation σ0 of the edges and
the maximum block sizembs. Forσ0 we used two approaches: the first sorts the edges in the
order of decreasing weights. With this approach, we wanted to include nonzeros with large
magnitudes in our preconditioner. The second approach usesthe well known reverse Cuthill-
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McKee ordering. We tested this approach since a sparsity structure with a small bandwidth
may be useful for putting more nonzeros into the preconditioner. The permutation decisions
are validated by the experiments which also show that the first approach is usually better than
the second. In future work, other ways to generateσ0 can be investigated.

The second parameter,mbs, affects the memory requirement of the matrix significantly
and hence the number of iterations required for convergence. The experiments show that for
the preconditionersILUT, SCPRE, andXPABLO, the memory requirement and the number
of iterations are inversely correlated. For the proposed preconditionerSCPRE, mbs needs to
be set by the user without knowing how much memory will be required by the solver. In fu-
ture work, we will look for a self-tuning mechanism which enablesSCPRE to determinembs
automatically given the memory available to store the preconditioner. A straightforward tun-
ing mechanism, which combines the blocks only when sufficient memory for the factors is
available, can be easily implemented and integrated intoSCPRE. However, this simple idea
still needs to be enhanced to optimize the execution time ofSCPRE and further reduce the
number of iterations required for convergence.
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