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Abstract. The development of fast solution methods for linear systems of equations with a

Cauchy matrix has recently received considerable attention. This note presents new solution methods
based on a modification of an inversion formula described by Gastinel [8].
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1. Introduction. The present note describes numerical methods for the fast
and accurate solution of linear systems of equations

Cnx = b, Cn ∈ C
n×n , x, b ∈ C n ,(1.1)

where Cn = [cij ]ni,j=1 is a Cauchy matrix, i.e., its entries are of the form

cij =
1

si − tj
, si, tj ∈ C , 1 ≤ i, j ≤ n.(1.2)

We assume throughout this paper that the 2n nodes si and tj are pairwise distinct.
Then it follows from the well-known determinant formula

detCn =

∏
1≤j<i≤n(si − sj) ·

∏
1≤j<i≤n(ti − tj)∏n

i,j=1(si − tj)
,(1.3)

see, e.g., [6, pp. 268-269], that the matrix Cn is non-singular.
Example 1.1. Let a > 0 and b be real scalars such that b/a is not a negative

integer smaller than −1. Define the nodes si = ia + b and tj = −ja. Then Cn is a
real symmetric Hankel matrix. In particular, for a = 1 and b = −1, Cn is a Hilbert
matrix.2

Example 1.2. Let a 6= 0 and b be scalars such that b/a is not an integer. Define
the nodes si = ai+ b and tj = aj. Then Cn is a Toeplitz matrix. 2

A matrix Ĉn = [ĉij ]ni,j=1 is said to be of Cauchy-type if its entries are of the form

ĉij =
uivj
si − tj

,(1.4)

where the nodes satisfy the same conditions as in (1.2), and ui, vj ∈ C are nonvanishing
scalars. Let U = diag(u1, u2, . . . , un) and V = diag(v1, v2, . . . , vn). Then Ĉn can be
factored according to

Ĉn = UCnV,(1.5)

∗ Received February 27, 1996. Accepted for publications August 8, 1996. Communicated by A.
Ruttan.
† Stevens Institute of Technology, Department of Mathematical Sciences, Hoboken, NJ 07030.

Research supported in part by NSF grant DMS-9404692. (na.calvetti@na-net.ornl.gov).
‡ Kent State University, Department of Mathematics and Computer Science, Kent, OH 44242.

Research supported in part by NSF grant DMS-9404706. (reichel@mcs.kent.edu).

125



ETNA
Kent State University 
etna@mcs.kent.edu

D. Calvetti and L. Reichel 126

where Cn is defined by (1.2). The solution methods described in this note can trivially
also be applied to the solution of linear systems of equations with a matrix of Cauchy-
type by using the factorization (1.5).

Linear systems of equations with matrices of Cauchy-type arise from the dis-
cretization of singular integral equations; see, e.g., [9, 20, 22]. Moreover, linear sys-
tems of equations with a Vandermonde or a Chebyshev-Vandermonde matrix can be
transformed into a linear system with a matrix of Cauchy-type by using the discrete
Fourier transform. Accurate solution methods for linear systems with a Cauchy-type
matrix therefore can be used to compute accurate solutions of linear systems with a
Vandermonde or Chebyshev-Vandermonde matrix; see [4, 11, 14].

We remark that linear systems of equations of the form (1.1) also arise from
interpolation at the nodes {si}ni=1 by rational functions with prescribed simple poles
{tj}nj=1 when using the basis {1/(z−tj)}nj=1. However, this basis of rational functions
can be quite ill-conditioned, and the use of the basis {(z − t1)−1, (z − t1)−1(z −
t2)−1, . . . ,

∏n
j=1(z − tj)−1} is preferable since it is often better conditioned; see [19]

for a discussion.
The solution of the linear systems (1.1) by Gaussian elimination with partial

pivoting requires O(n3) arithmetic operations. By using the structure of the matrix
Cn, faster solution methods can be devised. For instance, Gastinel [8] described how
the entries of the inverse C−1

n of the matrix Cn can be computed in only O(n2)
arithmetic operations. This result can also be found in [6, p. 288].

Gerasoulis et al. [9, 10] presented an algorithm that allows the multiplication
of an n × n matrix of Cauchy-type with a vector using only O(n log2 n) arithmetic
operations. Related algorithms have also been considered by Gohberg and Olshevsky
[12]. In view of the fact that the inverse of a Cauchy-type matrix is also a matrix
of Cauchy-type, these algorithms can be used to solve linear systems of equations
with a Cauchy-type matrix in only O(n log2 n) arithmetic operations; see Gohberg
and Olshevsky [12], as well as Bini and Pan [2], for details. Unfortunately, these
algorithms are numerically unstable for many distributions of nodes si and tj .

The multipole method described by Greengard and Rokhlin [13] can be used
to solve Cauchy systems (1.1) in only O(n) arithmetic operations for a prescribed
accuracy. The operation count increases with the desired accuracy and depends on
the distribution of the nodes that define the Cauchy matrix. Multipole methods are
competitive for very large values of n only.

Due to the possible instability of the methods that require O(n log2 n) arithmetic
operations, and the uncompetitiveness of multipole methods for moderate values of n,
the development of algorithms that require O(n2) arithmetic operations continues to
receive considerable attention. Recently, Boros et al. [5] presented several algorithms
for the triangular factorization of a Cauchy matrix, or the inverse of such a matrix,
in O(n2) arithmetic operations. The numerical examples in [5] show that these algo-
rithms give high accuracy for linear systems (1.1) with certain Cauchy matrices and
right-hand sides, but they yield poor accuracy for other Cauchy systems. This is also
demonstrated by the computed examples in Section 4. Given a particular linear sys-
tem of equations with a Cauchy matrix, it is not clear which one of these algorithms
determines the most accurate approximate solution.

The purpose of this note is to present a modification of the inversion formula
described by Gastinel [8] and to discuss solution methods based on this formula. The
solution methods so obtained require O(n2) arithmetic operations and they are well
suited for parallel computation. Section 2 presents the new inversion formula. A
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round-off error analysis for this inversion formula is carried out in Section 3, and
solution methods for Cauchy systems based on this inversion formula are discussed.
These solution methods differ in whether iterative refinement is used. Computed
examples are presented in Section 4, and concluding remarks can be found in Section
5.

2. A new inversion formula. Our solution method is based on the following
inversion formula.

Theorem 2.1. The solution x = (x1, x2, . . . , xn)T of the linear system (1.1) with
right-hand side vector b = (b1, b2, . . . , bn)T and matrix elements (1.2) is given by

xj =
f(tj)
g′(tj)

{
−γ +

n∑
i=1

(
g(si)
f ′(si)

· bi − γ
tj − si

)}
, 1 ≤ j ≤ n,(2.1)

where γ ∈ C is an arbitrary constant, and f and g are the polynomials

f(s) =
n∏
i=1

(s− si), g(t) =
n∏
j=1

(t− tj).(2.2)

Proof. Let h be a polynomial of degree at most n − 1 and let γ ∈ C . Introduce
the partial fraction expansion

h(z)− γf(z)
g(z)

= −γ +
n∑
j=1

xj
z − tj

,(2.3)

xj =
h(tj)− γf(tj)

g′(tj)
,(2.4)

where g′ denotes the derivative of g. In view of f(si) = 0, we obtain from (2.3) that

h(si)
g(si)

= −γ +
n∑
j=1

xj
si − tj

, 1 ≤ i ≤ n.(2.5)

The polynomial h is uniquely determined by the interpolation conditions

h(si) = g(si)(bi − γ), 1 ≤ i ≤ n.(2.6)

Substitution of (2.6) into (2.5) shows that the vector x with components given by
(2.4) solves (1.1). Express the polynomial h determined by (2.6) in Lagrange form

h(z) =
n∑
i=1

g(si)(bi − γ)`i(z), `i(z) =
f(z)
f ′(si)

· 1
z − si

,(2.7)

and substitute (2.7) into (2.4). This establishes the theorem.
Remark 2.1. Setting γ = 0 in (2.1) shows that the elements of C−1

n = [c̃ij ]ni,j=1

are given by

c̃ij =
f(ti)
g′(ti)

· 1
ti − sj

· g(sj)
f ′(sj)

.(2.8)

Formula (2.8) was shown by Gastinel [8] and demonstrates that the inverse matrix
C−1
n is of Cauchy-type. 2
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The parameter γ can be selected so that formula (2.1) yields a very accurate
solution for certain right-hand side vectors b. Introduce the vector e = (1, 1, . . . , 1)T .

Example 2.1. Let b = αe for some constant α. Then letting γ = α in (2.1)
yields xi = −αf(ti)/g′(ti), 1 ≤ i ≤ n. Thus, the solution is obtained by multiplying
b by a diagonal matrix. By Lemma 3.1 below the quotients f(ti)/g′(ti), 1 ≤ i ≤ n,
can be evaluated with high relative accuracy, and therefore so can the entries of the
computed solution. 2

Example 2.2. Assume that

tn < tn−1 < . . . < t1 < s1 < s2 . . . < sn.(2.9)

Then it follows from (2.8) that

sign(c̃ij) = (−1)i+j , 1 ≤ i, j ≤ n.
In particular, the Hilbert matrix considered in Example 1.1 satisfies (2.9). Let the
entries of the vector w = (w1, w2, . . . , wn)T satisfy

sign((−1)kw2i−1) ≥ 0, sign((−1)kw2i) ≤ 0,

for all i and some integer k. Then the matrix-vector product C−1
n w can be evaluated

with high relative accuracy, since no cancellation of significant digits occurs.
The inequalities (2.9) imply that all factors in the determinant formula (1.3) are

positive, and it follows that Cn is totally positive; see, e.g., Minc [17] for properties
of totally positive matrices. 2

Example 2.3. Assume that the nodes satisfy (2.9). Let b = (2, 1, 2, 1, . . . )T

and assume that 1 ≤ γ ≤ 2. Then the vector w = b − γe satisfies the con-
ditions of Example 2.2. The solution x computed by formula (2.1) is the sum
of two vectors. By Lemma 3.1 below the quotients f(ti)/g′(ti) and the elements
c̃ij of C−1

n can be evaluated with high relative accuracy. Therefore the vectors
x(1) = −γ(f(t1)/g′(t1), f(t2)/g′(t2), . . . , f(tn)/g′(tn))T and x(2) = C−1

n w, whose sum
yields the solution, can be evaluated with high relative accuracy. Moreover, if n is
odd, then the corresponding components of the vectors x(1) and x(2) are of the same
sign and their sum can be evaluated with high relative accuracy. 2

Example 2.3 suggests that the parameter γ in (2.1) be chosen so that the vector
b−γe contains entries of different sign. In the computed examples we therefore choose
γ to be the median of the entries of b. This choice guarantees that the number of
nonpositive and nonnegative entries of the vector b − γe differ by at most one. We
remark that another possibility is to let γ be the average of the entries of b. The
latter choice of γ splits the vector b into the orthogonal vectors γe and b − γe. We
found that the former choice often gives slightly higher accuracy than the latter. The
median is computed by first ordering the entries of b monotonically. This can be
done in O(n log n) time steps with one processor and in O(dlog2 ne) time steps with
n processors; see Batcher [1] for details on the latter. Here dse denotes the smallest
integer larger than or equal to s ∈ R.

Given γ, the evaluation of all the components xi of the solution using (2.1) can be
carried out in O(n2) arithmetic operations. The precise operation count depends on
the representation used for the polynomial h. We choose to represent the polynomial
h given by (2.7) in Lagrange form because this yields high accuracy. In order to
avoid overflow and underflow during the computations, we evaluate the quotients
f(ti)/g′(ti) by forming products of the quotients (ti − sj)/(ti − tj) for 1 ≤ j < i and
i < j ≤ n. The quotients g(sj)/f ′(sj) are evaluated analogously. When n processors
are available, these computations can be carried out in O(n) time steps.
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3. Round-off error analysis. The solution computed by formula (2.1) is con-
taminated by propagated round-off errors. This section discusses the effect of the
round-off errors on the accuracy of the computed solution, and we consider the bene-
fits of iterative improvement. All computations were carried out with single precision
arithmetic except when explicitly stated otherwise, and we assume that the standard
model for floating point operations holds, i.e.,

fl(a ◦ b) = (a ◦ b)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ∗, /},(3.1)

for all scalars a and b. Throughout this paper u denotes the unit round-off.
Pairwise summation, also known as Babuska summation, is used to evaluate the

sums that occur in matrix-vector products and in the evaluation of xj according to
(2.1), except when explicitly stated otherwise in Example 4.4. Pairwise summation
evaluates a sum

∑n
j=1 αj by first adding the pairs

α̂j = α2j−1 + α2j , 1 ≤ j ≤ bn/2c,

where bsc denotes the largest integer smaller than or equal to s ∈ R. When n is odd,
we define α̂(n+1)/2 = αn. Pairwise summation is then repeated recursively starting
with the α̂j , 1 ≤ j ≤ b(n+1)/2c. The sum is obtained in dlog2 ne time steps. Pairwise
and other summation methods have recently been discussed by Higham [15].

Let x = (x1, x2, . . . , xn)T denote the solution of (1.1), and let a numerical method
produce an approximate solution x̂. Introduce the associated residual vector r̂ =
b − Cnx̂. Let ‖ · ‖ denote the maximum norm on C

n , as well as the associated
induced matrix norm on C n×n . We define the condition number κ(Cn) = ‖Cn‖ ‖C−1

n ‖.
Following Jankowski and Wozniakowski [16], we say that the numerical method is
stable if

‖x̂− x‖ ≤ ud1(n)κ(Cn)‖x‖,(3.2)

where d1(n) is a function of n only. In particular, d1(n) is independent of Cn and b.
The numerical method is said to be well behaved if

‖r̂‖ ≤ ud2(n)‖Cn‖‖x‖,(3.3)

where d2(n) is a function of n only. It is easy to see that a well-behaved method is
stable, but the converse is in general not true.

Lemma 3.1. Let η̂j denote the computed value of f(tj)/g′(tj), ξ̂i the computed
value of g(si)/f ′(si), and γ̂ij the computed value of the entry c̃ij of C−1

n . Assume
that 4nu < 1. Then

η̂j =
f(tj)
g′(tj)

(1 + θ
(j)
4n−3u), ξ̂i =

g(si)
f ′(si)

(1 + θ̂
(i)
4n−3u), γ̂ij = c̃ij(1 + θ

(i,j)
4n ),(3.4)

where |θ(j)
k |, |θ̂

(i)
k | and |θ(i,j)

k | are bounded by ku/(1− ku) for all i and j.
Proof. Assume that |εk| < u for 1 ≤ k ≤ m, and that mu < 1. Then

m∏
k=1

(1 + εk) = 1 + θm,(3.5)

where |θm| ≤ mu/(1−mu). The equalities (3.4) now follow from application of (3.1)
and (3.5) to (2.2) and (2.8).
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The lemma establishes that the quotients f(tj)/g′(tj) and g(si)/f ′(si), as well
as the entries c̃ij , can be evaluated with high relative accuracy. Therefore, we will
henceforth assume that these quantities are evaluated exactly. The right-hand side
vector b is also assumed to be exact. We will study the propagation of round-off errors
when formula (2.1) is used for different right-hand side vectors b and different choices
of the parameter γ. This sheds light on the numerical properties of formula (2.1)
for general right-hand side vectors. We denote the computed approximate solution
obtained from (2.1) by x̂(0), and define the associated error e(0) = x̂(0) − x and
residual error r(0) = b− Cnx̂(0).

Theorem 3.2. Let b = αe and γ = α in (2.1). Then the error e(0) in the
approximate solution x̂(0) computed by (2.1) and the residual vector r(0) satisfy

‖e(0)‖ ≤ u‖x‖,(3.6)
‖r(0)‖ ≤ u‖Cn‖‖x‖.(3.7)

Let instead b = (b1, b2, . . . , bn)T be such that |
∑n
j=1 c̃ijbj | =

∑n
j=1 |c̃ijbj |, where c̃ij

are the elements of C−1
n and let γ = 0. Then

‖e(0)‖ ≤ u(1 + dlog2 ne+O(u))‖x‖,(3.8)
‖r(0)‖ ≤ u(1 + dlog2 ne+O(u))‖Cn‖‖x‖.(3.9)

Finally, let b ∈ C n be a general vector, and let γ = 0 in (2.1). Then

‖e(0)‖ ≤ u(1 + dlog2 ne+O(u))κ(Cn)‖x‖,(3.10)
‖r(0)‖ ≤ u(1 + dlog2 ne+O(u))κ(Cn)‖b‖.(3.11)

Proof. We first show (3.6). We have bi = α. Introduce ηj = f(tj)/g′(tj).
The components of the exact solution are given by xi = −αηi, and the components
of the computed solution are x̂

(0)
i = −fl(αηi). By (3.1), we have |x̂(0)

i − xi| =
|fl(αηi)− αηi| ≤ u|αηi| = u|xi|, and (3.6) follows.

We turn to the proof of (3.10). From x̂
(0)
i = fl(

∑n
j=1 fl(c̃ijbj)), we obtain

|x̂(0)
i − xi| ≤ |fl(

n∑
j=1

fl(c̃ijbj))−
n∑
j=1

fl(c̃ijbj)|+ |
n∑
j=1

fl(c̃ijbj)−
n∑
j=1

c̃ijbj |.

For pairwise summation we have the bound

|fl(
n∑
j=1

fl(c̃ijbj))−
n∑
j=1

fl(c̃ijbj)| ≤ (1 + u)δn
n∑
j=1

|c̃ijbj |,

where

δn = udlog2 ne/(1− udlog2 ne);(3.12)

see [15]. We obtain

|x̂(0)
i − xi| ≤ (u+ (1 + u)δn)

n∑
j=1

|c̃ijbj |,(3.13)
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and, therefore,

‖e(0)‖ ≤ u(1 + dlog2 ne+O(u))‖C−1
n ‖‖b‖.(3.14)

The inequality (3.10) now follows from ‖b‖ ≤ ‖Cn‖‖x‖.
Under the assumption that

∑n
j=1 |c̃ijbj | = |

∑n
j=1 c̃ijbj | = |xi|, we obtain (3.8)

from (3.13). The inequalities (3.7), (3.9) and (3.11) now follow from (3.6), (3.8) and
(3.14), respectively, and the fact that ‖r(0)‖ ≤ ‖Cn‖‖x̂(0) − x‖.

Theorem 3.2 shows that the computation of an approximate solution by (2.1)
defines a stable method for any nonsingular Cauchy matrix and right-hand side vector.
For certain right-hand side vectors and choices of γ, the error in the computed solution
is independent of κ(Cn), see (3.6) and (3.8). The bounds (3.7) and (3.9) show that
the method in these cases is well behaved.

When formula (2.1) is combined with one step of iterative improvement and
κ(Cn) is bounded appropriately, a well-behaved solution method is obtained. In
order to make this statement more precise we introduce some notation. Let r̂(0) =
(r̂(0)

1 , r̂
(0)
2 , . . . , r̂

(0)
n )T be the computed residual vector associated with x̂(0), i.e.,

r̂
(0)
i = fl(bi − fl(

n∑
j=1

fl(cijx
(0)
j ))).(3.15)

Let ŷ(1) be the computed solution of Cny = r̂(0) obtained by solution method (2.1),
and let x̂(1) = fl(x̂(0) + ŷ(1)). Also define the (exact) residual vector r(1) = b −
Cnx̂

(1), and for future reference the corresponding computed residual vector r̂(1) =
(r̂(1)

1 , r̂
(1)
2 , . . . , r̂

(1)
n )T with components

r̂
(1)
i = fl(bi − fl(

n∑
j=1

fl(cijx
(1)
j ))).(3.16)

Theorem 3.3. Assume that κ(Cn) ≤ 1/u1/2. Then the computation of x̂(1) in
the manner described defines a well-behaved solution method for (1.1). Iterative im-
provement will in general not reduce the error in the computed approximate solution.

Proof. We have to show that the residual vector r(1) satisfies an inequality of the
form (3.3) with r̂ replaced by r(1). This follows by combining Theorem 3.2 with the
analysis presented by Jankowski and Wozniakowski [16]. More precisely, Theorem 3.2
and its proof show that the constants q, c3 and c4 introduced in [16] are given by

q = (δn(1 + u) + u)κ(Cn),(3.17)
c3 = 1, c4 = 1 + dlog2 ne,

where δn is defined by (3.12). Following [16], we define the quantities

σ1 = (1 + q)(1 + u)(c3 + (1 + c3u)c4uκ(Cn) + q + (2 + q)u,
σ2 = (1 + q)(1 + u)(1 + c3u)c4κ(Cn) + 1.(3.18)

To continue the analysis, we require that σ1 < 1. Jankowski and Wozniakowski show
that after i steps of iterative improvement, the computed approximate solution x̂(i)

satisfies

‖x̂(i) − x‖ ≤ (σi1q + (1− σ1)−1σ2u)‖x‖,
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where x denotes the (exact) solution of (1.1). Iterative improvement will not signifi-
cantly reduce the error in the computed approximate solution if

q ≤ (1− σ1)−1σ2u.(3.19)

We now show that this inequality holds. Ignoring O(u2)-terms, we replace (3.17) by

q = u(1 + dlog2 ne)κ(Cn) = uc4κ(Cn).(3.20)

From (3.18) and (3.20), we obtain

σ2u ≥ (1 + q)c4κ(Cn)u = (1 + q)q,

and (3.19) follows. The fact that the computation of x̂(1) defines a well-behaved
method now is a consequence of Theorem 4.1 in [16]. Ignoring lower order terms,
this theorem and the bounds of Theorem 3.2 show that (3.3) holds for d2(n) = 6(1 +
dlog2 ne)2 with r̂ replaced by r(1).

4. Numerical examples. All computations for Examples 4.1-4.3 below were
carried out on a Sun 670 computer in single precision arithmetic, i.e., with u =
6 · 10−8, except for the evaluation of a highly accurate approximate solution x in
quadruple precision arithmetic. The latter vector was computed by evaluating the
entries of the matrix C−1

n and the right-hand side vector b in quadruple precision
arithmetic, forming the matrix-vector product in quadruple precision arithmetic and
then rounding the resulting vector to single precision accuracy. We will assume that
x is the exact solution of (1.1). For future reference, we note that 1/u1/2 = 4.1 · 103.

The purpose of this section is to compare the performance of a few numerical
methods for the solution of (1.1). The vector x̂(0) denotes an approximate solution
computed without iterative improvement and we report the norm of the associated er-
ror vector ê(0) = fl(x̂(0)−x). Also, the norm of the computed residual vector r̂(0) de-
fined by (3.15) is displayed. One step of iterative improvement gives the approximate
solution x̂(1) and we show the norm of the associated error vector ê(1) = fl(x̂(1)−x),
as well as the norm of the residual vector r̂(1) defined by (3.16).

Results for methods based on formula (2.1) with γ chosen to be the median of the
entries of the right-hand side vector of the linear system are reported in the tables in
the columns labeled modgast. When γ = 0 in (2.1), the inversion formula described by
Gastinel [8] is obtained. Results for solution methods based on this inversion formula
are reported in the columns labeled gastinel.

Examples 4.1-4.3 compare these two schemes with solution methods based on the
algorithms cauchy1 and cauchy3 proposed by Boros et al. [5]. These algorithms com-
pute LU-factorizations of Cn and C−1

n , respectively, in O(n2) arithmetic operations.
The algorithm cauchy2, also presented in [5], is closely related to cauchy1 and we
therefore do not include this algorithm in our comparison.

The linear systems (1.1) used in our numerical experiments are also solved by
computing an LU-factorization of Cn by Gaussian elimination with partial pivoting
or by computing the Choleski factorization of the matrix. The results are reported in
columns labeled gepp and choleski. We used the LINPACK [7] subroutines SGEFA
and SGESL for solution by LU-factorization with partial pivoting, and the LINPACK
subroutines SPOFA and SPOSL for solution by Choleski factorization. Both LU and
Choleski factorization of an n× n matrix require O(n3) arithmetic operations.

Example 4.1. Let Cn be the Hilbert matrix of Example 1.1. This matrix is
symmetric and totally positive; see Example 2.2. It is well known that the condition
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Table 4.1

Entries of right-hand vectors used in the numerical experiments

type description

1 bj =
√

2
2 bj = 3

2 −
1
2 (−1)j

3 bj =
√

2(1 + 1/j2)
4 bj =

√
j

5 bj = 1/j2

Table 4.2

Condition numbers of Hilbert matrices

n κ(Cn)

3 7.5 · 102

6 2.9 · 107

9 1.1 · 1012

number κ(Cn) grows rapidly with n; see, e.g., [21, 23]. This is illustrated by Table 2.
However, the backward error for solution methods based on LU or Choleski factor-
ization of Cn can be bounded independently of κ(Cn); see de Boor and Pincus [3]. In
order not to destroy the total positivity of Cn, the algorithms cauchy1 and cauchy3
are implemented without partial pivoting.

The Tables 3-5 compare the accuracy achieved with the different solution methods
for a few values of n and several right-hand side vectors defined by Table 1. Theorem
3.2 shows that the accuracy achieved with the modgast method without iterative
improvement is not proportional to the condition number of Cn, and Tables 3 and
4 are in agreement with this result. Table 5 shows the performance of the method
for a right-hand side vector such that the error bound for the computed solution
is proportional to the condition number. Only for n = 3 does κ(Cn) satisfy the
condition of Theorem 3.3. The tables show that generally iterative improvement
reduces the residual error, but not the error in the computed solution. In Tables
3-5 the solution method modgast without iterative improvement produces the most,
or close to the most, accurate approximate solutions. The subroutine SPOFA for
Choleski factorization exited with an error flag for the Hilbert matrix of order 9 used
for Table 3. 2

Boros et al. [5] propose a partial pivoting method for Cauchy matrices based
on suitably ordering the nodes si before applying a solution method that factors the
Cauchy matrix or its inverse. In Examples 4.2-4.3 we use this pivoting method before
applying the algorithms cauchy1 and cauchy3. The entries of the right-hand side
vector are reordered accordingly. The determination of a suitable ordering of n nodes
si requires O(n2) arithmetic operations.

Example 4.2. Let Cn be the Toeplitz matrix of Example 1.2 with a = 1 and
b = 1/2. It is known that κ(Cn) grows slowly with n, see, e.g., [22]. For instance,
κ(C20) = 2.1 · 101 and κ(C60) = 4.7 · 101. Table 6 compares the accuracy achieved
when solving a few linear systems of equations. The matrices are very well-conditioned
and all solution methods perform well except cauchy3, which yields large errors for
n = 60. 2

Example 4.3. Let Cn be the Cauchy matrix defined by si = i1/2 and tj = 1/2+j.
Table 7 shows the accuracy achieved for two different right-hand side vectors and
n = 6. The matrix C6 is quite ill-conditioned; we have κ(C6) = 1.5 · 106. The
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Table 4.3

Hilbert matrix: si = −1 + i, tj = −j; right-hand side of type 1

n ‖x‖ error modgast gastinel cauchy1 cauchy3 choleski

3 4.2 · 101 ‖ê(0)‖ 0 7.6 · 10−6 7.6 · 10−6 7.6 · 10−6 9.2 · 10−5

‖ê(1)‖ 2.8 · 10−4 8.0 · 10−5 3.8 · 10−5 6.5 · 10−5 9.2 · 10−5

‖r̂(0)‖ 1.1 · 10−6 8.2 · 10−6 9.5 · 10−7 1.9 · 10−6 0

‖r̂(1)‖ 6.0 · 10−7 6.0 · 10−7 0 0 0

6 8.9 · 103 ‖ê(0)‖ 9.8 · 10−4 5.9 · 10−1 2.2 · 10−1 5.1 · 10−2 6.7 · 102

‖ê(1)‖ 6.6 · 10−1 3.6 · 102 3.8 · 102 4.5 · 102 1.0 · 102

‖r̂(0)‖ 3.2 · 10−5 7.0 · 10−3 1.2 · 10−4 1.5 · 10−4 1.2 · 10−4

‖r̂(1)‖ 9.3 · 10−5 1.5 · 10−4 6.1 · 10−5 1.2 · 10−4 1.2 · 10−4

9 1.8 · 106 ‖ê(0)‖ 9.5 · 10−7 1.5 · 104 5.3 · 103 5.5 · 103

‖ê(1)‖ 4.7 · 108 1.2 · 109 8.6 · 108 3.8 · 108

‖r̂(0)‖ 1.9 · 10−2 2.2 · 102 1.8 · 10−2 3.3 · 10−2

‖r̂(1)‖ 8.1 · 100 7.1 · 104 9.0 · 100 5.5 · 100

Table 4.4

Hilbert matrix: si = −1 + i, tj = −j; right-hand side of type 2

n ‖x‖ error modgast gastinel cauchy1 cauchy3 choleski

3 2.4 · 102 ‖ê(0)‖ 0 0 1.5 · 10−5 3.1 · 10−5 7.0 · 10−4

‖ê(1)‖ 0 0 1.5 · 10−5 8.5 · 10−4 1.4 · 10−3

‖r̂(0)‖ 0 0 0 3.8 · 10−6 3.8 · 10−6

‖r̂(1)‖ 0 0 0 3.8 · 10−6 0

6 5.9 · 106 ‖ê(0)‖ 0 5.0 · 10−1 5.0 · 100 2.5 · 10−1 5.0 · 105

‖ê(1)‖ 3.4 · 105 3.3 · 105 2.0 · 104 7.3 · 104 3.1 · 105

‖r̂(0)‖ 6.3 · 10−2 1.3 · 10−1 3.1 · 10−2 3.1 · 10−2 6.3 · 10−2

‖r̂(1)‖ 0 0 3.1 · 10−2 1.6 · 10−2 6.3 · 10−2

methods modgast, gastinel and cauchy1 without iterative improvement give the
highest accuracy in the computed approximate solution. 2

Pairwise summation is optimal in a certain sense, see Vitenko [24], and is well
suited for parallel computation. However, there are other summation methods, such as
compensated summation due to Kahan, see [15], and doubly compensated summation
presented by Priest [18], that can give higher accuracy. In view of that the accuracy
achieved when computing the sums (2.1) is important for the performance of the
algorithm modgast, we will compare several summation methods in the following
example.

Example 4.4. In this example we replace the pairwise summation of the sums
(2.1) used in the method modgast in the Examples 4.1 -4.3 by other summation meth-
ods. Tables 8 and 9 display the error ‖ê(0)‖ in the computed solution obtained by
modgast when different schemes are used to evaluate the sums in (2.1). Straight-
forward summation in the order implied by the sums (2.1) is referred to as ss, and
pairwise summation as ps. Kahan’s compensated summation (cs) seeks to capture
the round-off errors in straightforward summation by using auxiliary variables. A
detailed description can be found in [15]. Here we only note that the evaluation of a
sum with n terms by cs requires 4(n−1) arithmetic operations. A small forward error
in the computed sum can be achieved by using doubly compensated summation (dcs)
described by Priest [18] if the terms are ordered in decreasing magnitude prior to
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Table 4.5

Hilbert matrix: si = −1 + i, tj = −j; right-hand side of type 3

n ‖x‖ error modgast gastinel cauchy1 cauchy3 choleski

3 4.9 · 101 ‖ê(0)‖ 3.8 · 10−6 2.3 · 10−5 1.1 · 10−5 7.6 · 10−6 1.3 · 10−4

‖ê(1)‖ 1.7 · 10−4 3.8 · 10−6 1.1 · 10−4 1.6 · 10−4 5.0 · 10−5

‖r̂(0)‖ 1.2 · 10−6 7.9 · 10−6 1.9 · 10−6 9.5 · 10−7 9.5 · 10−7

‖r̂(1)‖ 1.2 · 10−6 9.5 · 10−7 1.9 · 10−6 9.5 · 10−7 9.5 · 10−7

6 8.5 · 103 ‖ê(0)‖ 4.4 · 10−1 9.9 · 10−1 4.2 · 10−1 7.7 · 10−1 6.3 · 102

‖ê(1)‖ 2.6 · 102 2.6 · 102 1.4 · 102 4.4 · 102 3.1 · 102

‖r̂(0)‖ 3.0 · 10−3 1.1 · 10−1 6.1 · 10−5 1.2 · 10−4 1.2 · 10−4

‖r̂(1)‖ 3.1 · 10−4 7.5 · 10−3 1.2 · 10−4 1.5 · 10−4 9.2 · 10−5

Table 4.6

Toeplitz matrix: si = 1/2 + i, tj = j; right-hand side of type 3

n ‖x‖ error modgast gastinel cauchy1 cauchy3 gepp

20 4.1 ‖ê(0)‖ 4.8 · 10−7 4.8 · 10−7 4.8 · 10−7 2.5 · 10−6 4.8 · 10−7

‖ê(1)‖ 4.8 · 10−7 4.8 · 10−7 1.2 · 10−7 1.2 · 10−7 6.0 · 10−8

‖r̂(0)‖ 4.8 · 10−7 6.0 · 10−7 1.6 · 10−6 9.7 · 10−6 9.2 · 10−7

‖r̂(1)‖ 7.2 · 10−7 1.2 · 10−6 3.0 · 10−7 2.7 · 10−7 2.4 · 10−7

60 6.7 ‖ê(0)‖ 9.5 · 10−7 9.5 · 10−7 4.8 · 10−7 5.0 · 101 4.8 · 10−7

‖ê(1)‖ 4.8 · 10−7 2.4 · 10−7 2.4 · 10−7 6.4 · 106 2.4 · 10−7

‖r̂(0)‖ 1.9 · 10−6 1.9 · 10−6 1.5 · 10−6 1.5 · 102 1.2 · 10−6

‖r̂(1)‖ 3.6 · 10−7 1.2 · 10−6 8.8 · 10−7 2.0 · 107 1.1 · 10−6

summation. The evaluation of a sum of n terms by dcs requires 10(n− 1) arithmetic
operations in addition to the O(n logn) comparisons for the sorting. dcs simulates
double precision arithmetic. We also implemented straightforward summation in dou-
ble precision arithmetic. Error bounds for the latter summation method can be found
in [18]. The terms in all sums were computed in single precision arithmetic.

Tables 8 and 9 show that the accuracy achieved by the different summation meth-
ods depends both on the matrix and the right-hand side of the linear system. The
tables illustrate that straightforward summation in single precision arithmetic can
give a significantly larger error than the other summation methods. Pairwise summa-
tion is seen to yield high accuracy, as does Kahan’s compensated summation. Except
for straightforward summation in single precision arithmetic, all summation methods
gave roughly the same error. We remark that the accuracy of the approximate so-
lutions computed by modgast was nearly the same for all summation methods when
applied to the linear systems of Examples 4.1-4.3. The computed examples suggest
that the use of double precision arithmetic in the summation or the application of the
dcs with sorting is, in general, not worthwhile for the present application. 2

5. Conclusion. A modification of the inversion formula proposed by Gastinel
yields a fast and accurate solution method for linear systems of equations with an n×n
Cauchy matrix. The method makes it possible to determine the condition number
in O(n2) arithmetic operations. The theory indicates, and the computed examples
confirm, that iterative improvement should be used only when the condition number
is not too large and a small residual error is more important than a small error in the
approximate solution. Pairwise summation and compensated summation are good
choices of summation methods for the evaluation of the sums in the right-hand side
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Table 4.7

Cauchy matrix: si = i1/2, tj = 1/2 + j, n = 6

rhs-type ‖x‖ error modgast gastinel cauchy1 cauchy3 gepp

1 1.4 · 102 ‖ê(0)‖ 2.3 · 10−5 9.2 · 10−4 9.6 · 10−4 1.3 · 10−2 8.3 · 10−2

‖ê(1)‖ 2.1 · 10−2 1.2 · 10−1 1.3 · 10−2 1.1 · 10−1 3.1 · 10−3

‖r̂(0)‖ 1.1 · 10−5 1.0 · 10−4 9.5 · 10−6 5.7 · 10−6 1.9 · 10−6

‖r̂(1)‖ 7.3 · 10−6 3.5 · 10−6 3.8 · 10−6 3.8 · 10−6 1.9 · 10−6

3 6.8 · 103 ‖ê(0)‖ 3.9 · 10−3 2.4 · 10−3 5.4 · 10−3 1.2 · 10−2 4.6 · 100

‖ê(1)‖ 2.3 · 100 5.1 · 10−1 2.9 · 100 4.0 · 100 4.3 · 100

‖r̂(0)‖ 6.0 · 10−4 7.8 · 10−4 2.4 · 10−4 1.2 · 10−4 1.2 · 10−4

‖r̂(1)‖ 2.3 · 10−4 1.3 · 10−4 2.4 · 10−4 2.4 · 10−4 3.7 · 10−4

Table 4.8

modgast applied to Cauchy systems with Toeplitz matrix: si = 1/2 + i, tj = j, n = 20

rhs-type error single precision arithmetic double prec. arithm.
ss ps cs dcs ss

3 ‖ê(0)‖ 4.8 · 10−7 4.8 · 10−7 4.8 · 10−7 4.8 · 10−7 4.8 · 10−7

4 ‖ê(0)‖ 1.4 · 10−6 2.4 · 10−7 3.6 · 10−7 3.6 · 10−7 3.6 · 10−7

5 ‖ê(0)‖ 6.0 · 10−8 7.5 · 10−9 3.0 · 10−8 3.0 · 10−8 3.0 · 10−8

of (2.1).
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