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NON-STATIONARY PARALLEL MULTISPLITTING AOR METHODS∗

ROBERT FUSTER† , VIOLETA MIGALLÓN‡ , AND JOSÉ PENADÉS‡

Abstract. Non-stationary parallel multisplitting iterative methods based on the AOR method
are studied for the solution of nonsingular linear systems. Convergence of the synchronous and asyn-
chronous versions of these methods is studied for H–matrices. Furthermore, computational results
about these methods on both shared and distributed memory multiprocessors are discussed. The
numerical examples presented cover the non-stationary parallel multisplitting Gauss-Seidel and SOR
methods applied to the solution of the linear system yielded by a finite difference discretization of the
two-dimensional Laplace’s equation on a rectangular domain under Dirichlet boundary conditions.
These results show that non-stationary AOR-type methods (synchronous and asynchronous) are bet-
ter than the corresponding standard parallel multisplitting AOR method. Moreover, asynchronous
versions always behave better than the synchronous ones.

Key words. non-stationary multisplitting methods, AOR method, asynchronous algorithms,
H–matrices, parallel implementation, shared memory, distributed memory.
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1. Introduction. In this paper we present non-stationary synchronous and
asynchronous algorithms based on the multisplitting accelerated overrelaxation
(AOR) method for the solution of large linear systems of the form

Ax = b,(1.1)

where A ∈ IRn×n is a nonsingular matrix and x and b are n-vectors. The multisplitting
iterative method was introduced by O’Leary and White [20] and was further studied
by other authors; see, e.g., Frommer and Mayer [8], [9], Neumann and Plemmons [18],
White [29], [30], [31], and Szyld and Jones [25].

A set {Fj, Gj , Ej}rj=1 is called a multisplitting of A if A = Fj − Gj , j =
1, 2, . . . , r, Fj are nonsingular matrices and Ej , called weighting matrices, are non-

negative diagonal matrices such that
r∑
j=1

Ej = I. The corresponding multisplitting

method is defined as

x(l+1) =
r∑
j=1

EjTjx
(l), l = 0, 1, 2, . . . ,(1.2)

where x(0) is an arbitrary initial vector, and Tj : IRn −→ IRn, 1 ≤ j ≤ r are r
operators defined as

Tjx = F−1
j Gjx+ F−1

j b, j = 1, 2, . . . , r.

Since the calculations represented by each operator Tj are independent of each other,
method (1.2) can be executed in parallel with an appropriated choice of the matrices

∗ Received September 6, 1995 . Accepted for publication March 19, 1996. Communicated by A.
Ruttan
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Ej and Fj . On the other hand, a component of Tjx(l) does not need to be computed
if the corresponding diagonal entry of Ej is zero.

As can be seen, in the multisplitting method (1.2) each local approximation at
the lth global iteration is updated solving the linear system Fjx

(l+1) = Gjx
(l) + b.

However, it is possible to update the local approximation more than once, using
different local iterates on the right hand side, computed earlier. In this case we have
a non-stationary multisplitting method which corresponds to the following algorithm.

Algorithm 1. (Non-stationary Multisplitting).

Given the initial vector x(0)

For l = 0, 1, . . . , until convergence
In processor j, j = 1 to r

y
(0)
j = x(l)

For k = 1 to q(l, j)

Fjy
(k)
j = Gjy

(k−1)
j + b(1.3)

x(l+1) =
r∑
j=1

Ejy
(q(l,j))
j .

Note that the number of times that each processor j solves the system defined by its
operator Tj is defined by q(l, j) which depends on the iteration l and the processor j.

Bru, Elsner and Neumann [2] studied two non-stationary methods (synchronous
and asynchronous) based on the multisplitting method. They used the term chaotic
for their non-stationary methods; however we prefer the term non-stationary, because
in the previous literature chaotic is synonymous with asynchronous (see [7]). They
give sufficient conditions which assure the convergence of both methods when A is
a monotone matrix, i.e., A−1 ≥ O. Later, Mas, Migallón, Penadés and Szyld [14]
showed the convergence of these non-stationary methods in the context of H–matrices.
Further, a background on non-stationary methods can also found in [4], [5], [6], [11],
[15], and [24].

In the context of relaxed parallel multisplitting algorithms, Wang [28] presented
a class of algorithms called parallel multisplitting AOR methods which are a general-
ization of the method given in [8]. Convergence of these methods was established for
H–matrices. Let {D−Lj, Vj , Ej}rj=1 be a multisplitting of A where D = diag(A), and
Lj are strictly lower triangular matrices. Note that the matrices Vj are not generally
upper triangular. Each single splitting induces an iterative method, described by the
operator Pj : IRn −→ IRn, j = 1, 2, . . . , r, defined as

Pjx = (D − µLj)−1 {[(1− ω)D + (ω − µ)Lj + ωVj ]x+ ωb} ,(1.4)

where ω, µ ∈ IR and ω 6= 0. Then, given an initial vector x(0), the parallel multisplit-
ting AOR method [28] produces the sequence of vectors

x(l+1) =
r∑
j=1

EjPjx
(l), l = 0, 1, 2, . . . .(1.5)

Clearly, if r = 1 and −L1,−V1 are the strictly lower and strictly upper triangular
parts of A respectively, then the scheme (1.5) reduces to the well-known AOR method
[12]. Also, it is easy to observe that the scheme (1.5) includes some classic parallel
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multisplitting methods, such as the ones based on the Jacobi, Gauss-Seidel, JOR and
SOR multisplitting methods; see, e.g., [28].

In this paper we study the convergence of the non-stationary parallel multisplit-
ting AOR method and its extension to an asynchronous algorithm, where each pro-
cessor does not need to wait for the completion of the computation of the iterates in
other processors; see Section 3. First, in the next section we present some notation,
definitions and results which we refer to later. The last section contains some nu-
merical experiments which illustrate the performance of the algorithms studied. This
performance is achieved both in shared memory and distributed memory multipro-
cessors.

2. Preliminaries. Given a vector x ∈ IRn, we say that it is nonnegative (pos-
itive), denoted x ≥ 0 (x > 0), if all components of x are nonnegative (positive).
Similarly, if x, y ∈ IRn, x ≥ y (x > y) means that x − y ≥ 0 (x − y > 0). For
a vector x ∈ IRn, |x| denotes the vector whose components are the absolute values
of the corresponding components of x. These definitions carry over immediately to
matrices.

Let x > 0, we consider the vector norm

‖y‖x = inf{β > 0 : |y| ≤ βx}.(2.1)

This vector norm is monotonic and for every matrix B ∈ IRn×n it satisfies ‖ |B|x‖x =
‖B‖x, where ‖B‖x denotes the matrix norm of B induced by the vector norm defined
in (2.1).

By Zn×n we denote the set of all real n× n matrices which have all nonpositive
off-diagonal entries. A matrix A ∈ Zn×n is said to be an M–matrix if A can be
expressed in the form

A = sI −B, with B ≥ O(2.2)

and ρ(B) ≤ s, where ρ(B) denotes the spectral radius of B. In particular, a non-
singular M–matrix is those of the form (2.2) for which ρ(B) < s. We recall that a
matrix A ∈ Zn×n is a nonsingular M–matrix if and only if A is a monotone matrix;
see, e.g., Berman and Plemmons [1] or Varga [26].

For any matrix A = (aij) ∈ IRn×n, we define its comparison matrix 〈A〉 = (αij)
by αii = |aii|, αij = −|aij |, i 6= j. Following Ostrowski [22], [23], A is said to be
an H–matrix if 〈A〉 is a nonsingular M–matrix. We remark that in this notation if A
is an H-matrix, A is nonsingular (see Ostrowski [22] and Neumaier [16]). Of course,
nonsingular M–matrices are special cases of H–matrices. In addition, as was already
noted in [23], important classes of matrices such as strictly or irreducibly diagonally
dominant matrices are H–matrices. See also [27] and the references given therein for
equivalent conditions of H–matrices. H–matrices arise in many applications and were
studied by a number of authors in connection with iterative solutions of linear systems;
see Berman and Plemmons [1], Varga [26], Young [32] or Frommer and Szyld [10] for
an extensive bibliography and for an example that shows that H–matrices need not
be monotone.

Lemma 2.1. If A = D − B is an H–matrix, with D = diag(A), then |D| is
nonsingular and ρ(|D|−1|B|) < 1.
Proof. It is essentially the proof of the first part of Theorem 3.10 of [26]. It can also
be found in [8]. 2
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Lemma 2.2. Let A,B ∈ IRn×n.
(a) If A is an H–matrix, then |A−1| ≤ 〈A〉−1.
(b) If |A| ≤ B then ρ(A) ≤ ρ(B).
Proof. Part (a) follows by Ostrowski [22]; see also, e.g., Neumaier [16], [17]. Part (b)
can be found, e.g., in [21, Theorem 2.4.9] and [26, Theorem 2.8]. 2

Theorem 2.3. Let A ∈ Zn×n which has all positive diagonal entries. A is a
nonsingular M–matrix if and only if ρ(B) < 1, where B = D−1C, D = diag(A), A =
D − C.
Proof. The proof of this theorem can be found, e.g., in Varga [26, Theorem 3.10] and
Young [32, Theorem 7.2]. 2

3. Non-stationary methods. Let {D−Lj , Vj , Ej}rj=1 be a multisplitting of A
satisfying D = diag(A) and Lj are strictly lower triangular matrices. Suppose that
we are interested in solving the nonsingular linear system (1.1) in a multiprocessor
computer using the multisplitting AOR method (1.5). In order to get a good perfor-
mance of all processors and a good load balance among processors, we assume that
the task assigned to each processor j can vary in each iteration l, i.e., we suppose
that the processor j applies q(l, j) times the operator Pj defined in (1.4) in the lth
iteration. Then, given an initial vector x(0) we construct the sequence of vectors

x(l+1) =
r∑
j=1

EjP
q(l,j)
j x(l), l = 0, 1, 2, . . . .(3.1)

The numbers q(l, j) are called non-stationary parameters, and then we call this itera-
tive scheme, non-stationary multisplitting AOR method. Scheme (3.1) corresponds to
the following algorithm.

Algorithm 2. (Non-stationary Multisplitting AOR).

Given the initial vector x(0)

For l = 0, 1, . . . , until convergence
In processor j, j = 1 to r

y
(0)
j = x(l)

For k = 1 to q(l, j)

(D − µLj)y(k)
j = [(1− ω)D + (ω − µ)Lj + ωVj ] y

(k−1)
j + ωb(3.2)

x(l+1) =
r∑
j=1

Ejy
(q(l,j))
j .(3.3)

We remark that the calculations (3.2) correspond to the following scheme.

If µ 6= 0 then

(D − µLj)y(k)
j = [(1− µ)D + µVj ] y

(k−1)
j + µb

y
(k)
j = ω

µy
(k)
j +

(
1− ω

µ

)
y

(k−1)
j .

If µ = 0 then

y
(k)
j =

[
(1− ω)I + ωD−1(Lj + Vj)

]
y

(k−1)
j + ωD−1b.

Clearly, when q(l, j) = 1, Algorithm 2 reduces to the multisplitting AOR method
studied by Wang [28].
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Algorithm 2 is synchronous in the sense that step (3.3) is performed only when
all vectors y(q(l,j))

j , j = 1, 2, . . . , r, are calculated. Alternatively, each part of x(l+1),

i.e., Ejy
(q(l,j))
j , can be updated as soon as the vector y(q(l,j))

j is calculated, without
waiting for the other parts of x(l+1) to be updated. To construct an asynchronous
version of Algorithm 2 we consider a different scheme where all processors are always
working without waiting for information from the other processors.

Let {jl}∞l=0, 1 ≤ jl ≤ r, be a sequence of integers that indicates the processor
which updates the approximation to the solution at the lth iteration. Let rl − 1 be
the number of times that processors other than the jlth processor update the ap-
proximation of the solution during the time interval in which the jlth processor’s
calculations are performed. This implies that rl is the smallest positive integer such
that jl = jl+rl . As is customary in the description of asynchronous algorithms (see,
e.g., [2]) we assume that the sequence of integers {jl}∞l=0, 1 ≤ jl ≤ r, is a regulated
sequence. This means that there exists a positive integer m such that each of the inte-
gers 1, 2, . . . , r appears at least once in every m consecutive elements of the sequence.
With this notation we consider the following asynchronous scheme:

x(l+rl) = (I −Ejl)x(l+rl−1) +EjlP
q(l,jl)
jl

x(l), l = 0, 1, 2, . . . ,(3.4)

which corresponds to the following algorithm.
Algorithm 3. (Asynchronous Non-stationary Multisplitting AOR).

Given the initial vector x(0)

In processor jl, l = 0, 1, . . . , until convergence

y
(0)
jl

= x(l)

For k = 1 to q(l, jl)

(D − µLjl)y
(k)
jl

= [(1− ω)D + (ω − µ)Ljl + ωVjl ] y
(k−1)
jl

+ ωb

x(l+rl) = (I −Ejl)x(l+rl−1) +Ejly
(q(l,jl))
jl

.

Note that when the weighting matrices form a partition of the identity, i.e., when
the following relations hold

EiEj =
{
Ei, if i = j,
O, if i 6= j,

(3.5)

formulation (3.4) can be rewritten as

x(l+rl) = (I −Ejl)x(l+rl−1) +Ejl

r∑
j=1

EjP
q(l,j)
j x(l).(3.6)

However, when relations (3.5) do not hold, schemes (3.4) and (3.6) represent differ-
ent asynchronous algorithms. In formulation (3.4) all processors are always working
without synchronization with other processors, while iteration (3.6) implies a certain
degree of synchronization between groups of processors.

4. Convergence. In this section we show the convergence of the synchronous
scheme (3.1) (or Algorithm 2), and asynchronous schemes (3.4) (or Algorithm 3) and
(3.6).
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The iteration scheme (3.1) can be written as

x(l+1) = H(l)x(l) + c(l), l = 0, 1, 2, . . . ,(4.1)

where H(l) are the iteration matrices

H(l) =
r∑
j=1

EjJ
q(l,j)
j , l = 0, 1, 2, . . . ,(4.2)

with

Jj = (D − µLj)−1 [(1− ω)D + (ω − µ)Lj + ωVj ] , j = 1, 2, . . . , r,

and

c(l) =
r∑
j=1

Ej

q(l,j)−1∑
i=0

J ij

ω(D − µLj)−1b, l = 0, 1, 2, . . . .

Let ξ be the exact solution of (1.1) and let ε(l+1) = x(l+1) − ξ be the error at l + 1
iteration. It is easy to prove that ξ is a fixed point of (4.1). Thus,

ε(l+1) = H(l)ε(l) = · · · = H(l)H(l−1) · · ·H(0)ε(0), l = 0, 1, 2, . . . .

So, the sequence of error vectors {ε(l)}∞l=0 generated by iteration (3.1) converges to
the vector 0, if and only if lim

l→∞
H(l)H(l−1) · · ·H(0) = O. Hence, by Lemma 3 of [3],

it suffices to prove that ‖H(l)‖ ≤ α, l = 0, 1, 2, . . . , for some α < 1 and some matrix
norm ‖ · ‖.

The following theorem shows the convergence of scheme (3.1), or Algorithm 2,
when A is an H–matrix and 0 ≤ µ ≤ ω < 2

1+ρ(|D|−1|B|) , with ω 6= 0, where D =
diag(A) and A = D − B. Clearly from Lemma 2.1, |D| is a nonsingular matrix and
ρ(|D|−1|B|) < 1.

Theorem 4.1. Let A = D − Lj − Vj = D − B, j = 1, 2, . . . , r be an H–matrix,
where D = diag(A) and Lj are strictly lower triangular matrices. Assume that |B| =
|Lj |+ |Vj |, j = 1, 2, . . . , r. If 0 ≤ µ ≤ ω < 2

1+ρ , with ω 6= 0, where ρ = ρ(|D|−1|B|),
and q(l, j) ≥ 1, l = 0, 1, 2, . . . , j = 1, 2, . . . , r. Then the iteration (3.1) converges to
the solution of the linear system (1.1) for all initial vector x(0) ∈ IRn.
Proof. By Theorem 2.3 and part (b) of Lemma 2.2, if 0 ≤ µ < 2

1+ρ , the matrices
〈D − µLj〉 are H–matrices. Then, using part (a) of Lemma 2.2, some manipulations
in (4.2) yield

|H(l)| ≤
r∑
j=1

Ej
[
Mj(µ)−1 |(1− ω)D + (ω − µ)Lj + ωVj |

]q(l,j)
,(4.3)

with

Mj(µ) = |D| − µ|Lj| = 〈D − µLj〉, j = 1, 2, . . . , r.(4.4)

Consider two cases.
(i) 0 ≤ µ ≤ ω ≤ 1, with ω 6= 0. Denoting for j = 1, 2, . . . , r

N1
j (µ, ω) = (1− ω)|D|+ (ω − µ)|Lj|+ ω|Vj | ≥ O,
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we obtain

|H(l)| ≤
r∑
j=1

Ej
(
Mj(µ)−1N1

j (µ, ω)
)q(l,j)

, l = 0, 1, 2, . . . .(4.5)

On the other hand, it is easy to obtain

Mj(µ)−N1
j (µ, ω) = ω〈A〉, j = 1, 2, . . . , r.(4.6)

Consider any fixed positive vector e (e.g., with all components equal to 1), and x =
ω−1〈A〉−1e. Since ω−1〈A〉−1 ≥ O and no row of ω−1〈A〉−1 can have all null entries,
we get x > 0. By the same arguments Mj(µ)−1e > 0, j = 1, 2, . . . , r. We have from
(4.6) that

x−Mj(µ)−1N1
j (µ, ω)x = Mj(µ)−1ω〈A〉x = Mj(µ)−1e > 0.

Then Mj(µ)−1N1
j (µ, ω)x < x, and thus there exists a real constant 0 ≤ α1 < 1, such

that for all j = 1, 2, . . . , r, it satisfies

Mj(µ)−1N1
j (µ, ω) ≤ α1x < x.(4.7)

From (4.5) and (4.7) it follows

|H(l)|x ≤
r∑
j=1

Ej
(
Mj(µ)−1N1

j (µ, ω)
)q(l,j)

x ≤ α1x, l = 0, 1, 2, . . . ,

with 0 ≤ α1 < 1 and x > 0. Then, using the matrix norm induced by the vector norm
(2.1), one obtains ‖H(l)‖x ≤ α1 < 1, l = 0, 1, 2 . . . .
(ii) 0 ≤ µ ≤ ω, 1 < ω < 2

1+ρ . Letting

N2
j (µ, ω) = (ω − 1)|D|+ (ω − µ)|Lj|+ ω|Vj | ≥ O,

by the definition of Mj(µ) in (4.4) we have from (4.3) that

|H(l)| ≤
r∑
j=1

Ej
(
Mj(µ)−1N2

j (µ, ω)
)q(l,j)

, l = 0, 1, 2, . . . .

On the other hand, we have

Mj(µ)−N2
j (µ, ω) = (2− ω)|D| − ω(|Lj |+ |Vj |) = (2− ω)|D| − ω|B|, j = 1, 2, . . . , r.

Obviously, the matrix (2 − ω)|D| − ω|B| ∈ Zn×n with all positive diagonal entries.
Furthermore, as 1 < ω < 2

1+ρ , ρ((2 − ω)−1|D|−1ω|B|) < 1, and then from Theorem
2.3 this implies that (2− ω)|D| − ω|B| is a nonsingular M–matrix.
Consider the vector y = ((2− ω)|D| − ω|B|)−1 e, with e > 0 (e.g., e = (1, 1, . . . , 1)t

as in the previous case). Reasoning as in case (i), there exists 0 ≤ α2 < 1 such that
Mj(µ)−1N2

j (µ, ω)y ≤ α2y < y. Then, ‖H(l)‖y ≤ α2 < 1, l = 0, 1, 2, . . . . 2

Now we study the convergence of asynchronous scheme (3.6) under similar hy-
potheses as those for Theorem 4.1.

Theorem 4.2. Let A = D − Lj − Vj = D − B, j = 1, 2, . . . , r, be an H–
matrix, where D = diag(A) and Lj are strictly lower triangular matrices. Assume
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that |B| = |Lj|+ |Vj |, j = 1, 2, . . . , r. Given a regulated sequence of integers {jl}∞l=0,
if 0 ≤ µ ≤ ω < 2

1+ρ , with ω 6= 0, where ρ = ρ(|D|−1|B|), and q(l, j) ≥ 1, l =
0, 1, 2, . . . , j = 1, 2, . . . , r, the iteration (3.6) converges to the solution of the linear
system (1.1) for all initial vector x(0) ∈ IRn.
Proof. In Theorem 4.1 we have shown that for 0 ≤ µ ≤ ω < 2

1+ρ , with ω 6= 0, there
exists a real constant 0 ≤ α < 1 and a positive vector z such that |H(l)|z ≤ αz. Thus,
the proof follows in the same way as the proof of [14, Theorem 3.2] which in turn is
based on [2, Theorem 2.2]. 2

Remarks:
1. The convergence proof of iteration (3.4) or equivalently Algorithm 3 is similar to
the one used in Theorem 4.2 using that |Jj |z ≤ αz for some positive vector z and a
real constant 0 ≤ α < 1, j = 1, 2, . . . , r.
2. When ω = µ and q(l, j) = 1, iteration (3.1) coincides with [8, Method (4)]. Thus,
Theorems 4.1 and 4.2 also show the convergence of the non-stationary synchronous
and asynchronous versions of [8, Method (4)], under similar hypotheses as in [8,
Theorem 4.2]

5. Numerical Experiments. In this section we implemented non-stationary
synchronous and asynchronous Algorithms 2 and 3 respectively, described in the pre-
vious sections. We considered the problem of Laplace’s equation, ∇2u = uss+utt = 0,
satisfying Dirichlet boundary conditions on the rectangle Ω = [0, a]× [0, b], u(s, 0) =
u(0, t) = u(s, b) = 0, u(a, t) = 100, 0 ≤ s ≤ a, 0 ≤ t ≤ b. We discretized, us-
ing five point finite differences, the domain Ω with J ×K points equally spaced by
h. This discretization yields a linear system Ax = b, where A is block tridiagonal,
A = tridiag[−I, C,−I], where I and C are K × K matrices, I is the identity, and
C = tridiag[−1, 4,−1]. Note that A has J × J blocks of size K ×K. Clearly, A is a
nonsingular M–matrix, and is therefore also an H–matrix.

In order to define the splittings A = D−Lj−Vj , j = 1, 2, . . . , r, withD = diag(A),
we denote Ajj = tridiag[−I, C,−I], j = 1, 2, . . . , r. Then we write A and D − Lj as

−I
−I

−I
−I

−I
−I

A11
@@

@@

A22
@@

@@
· · ·· · ·

· · ·

Arr
@@

@@

A = ,

@
@
@
@

@
@
@
@

@
@
@
@
@
@
@
@
@
@

@@
Lj

D − Lj = ,

where each matrix Lj , j = 1, 2, . . . , r, is the lower triangular part of Ajj . We point
out that matrices Vj , j = 1, 2, . . . , r, are not upper triangular matrices. The matrices
Ej , j = 1, 2, . . . , r, are partitioned according to the structure of A with the jth
block equal to the identity and the remainder blocks are zero. It is easy to prove
that |Lj | + |Vj | = |D − A|, hence Theorems 4.1 and 4.2 assure the convergence for
Algorithms 2 and 3, respectively.

We are especially interested in analyzing the behavior of the non-stationary mul-
tisplitting iterative AOR-type methods as compared to the stationary one. On the
other hand, as Niethammer [19] noted, the question of determining the optimal re-
laxation parameters is of more theoretical than of practical interest. Particularly, in
many applications, such as the model problem of the Laplace’s equation on a rect-



ETNA
Kent State University 
etna@mcs.kent.edu

Robert Fuster, Violeta Migallón, and José Penadés 9

angle, only a very small increase of the rate of convergence can be expected when
one uses the best AOR method instead of the best SOR method; see also Hadjidimos
[13]. We ran several examples of the non-stationary multisplitting AOR methods and
similar conclusions were obtained. Therefore, only numerical experiments based on
the Gauss-Seidel and SOR multisplitting methods are reported here.

Experiments were performed, with matrices of different orders, on a shared mem-
ory multiprocessor Alliant FX/80 with 8 processors, and on a distributed memory
multiprocessor IBM SP2 using 8 processors. Thus, in order to fully utilize the 8
processors, we let r = 8. The stopping criterion used was

n∑
i=1

|x(l)
i − x

(l−1)
i | < 5 · 10−10

and the initial vector was x(0) = (1, 1, . . . , 1)t.
The conclusions are similar on both multiprocessors. So, Table 5.1 shows the

behavior of some synchronous non-stationary models on these multiprocessors, when
ω = µ = 1 and the matrix A is of size 50000. Matrix A has J = 500 diagonal
blocks C of size K = 100. The size of Ajj is 5000 for j = 1, 2, . . . , 6 and 10000 for
the rest. The values of a, b of the domain Ω such that the discretization yields this
coefficient matrix are shown in Figure 5.1.a. We use the notation 6632 to represent the
non-stationary parameters q(l, j) = 6 for j = 1, 2, . . . , 6 and q(l, j) = 3 for j = 7, 8,
for all l = 0, 1, 2, . . ., i.e., to represent that the first six processors update their part
of the vector six times and each of the last two processors updates its part of the
vector three times. Similar notation is used for other values of the non-stationary
parameters. In this paper all times are reported in seconds. The speed-up is calculated
as CPU time of sequential algorithm

Time of parallel algorithm . We note that in shared memory we use the CPU
time for the parallel algorithm, while in distributed memory we use the REAL time.
This is due to the fact that there is communication among processors in the latter
case. Processors achieve about 55 % – 89 % of efficiency for each case.

It can also be observed that the number of global iterations of the non-stationary
algorithms is less when the parameters q(l, j) are increased. Furthermore, if the
decrease in the number of global iterations balances the realization of more inner
updates then less execution time is observed. On the other hand, when q(l, j) = 1, ω =
µ = 1, Algorithm 2 reduces to the well-known parallel multisplitting Gauss-Seidel
method. Then it is interesting to compare the sequential results of Table 5.1 with
the classic Gauss-Seidel algorithm whose results are in Table 5.2. It is observed that
except for some values of q(l, j) the sequential non-stationary multisplitting method
is better than the Gauss-Seidel method. Obviously, this situation is independent of
the computer used.

Now, we report results of non-stationary methods with ω = µ 6= 1 (non-stationary
parallel multisplitting SOR method), for two matrices of size 4096 and 5632. The
matrix of size 4096 has 64 blocks C of size 64, the size of Ajj is 1024 for j = 1, 2,
512 for j = 3, 4 and 256 for the rest. The matrix of size 5632 has 11 blocks C of
size 512, the matrices Ajj are of size 1024 for j = 1, 2 and 512 for the rest. Note
that the bandwidth of the matrix of size 4096 is relatively small compared to its size.
This situation does not hold for the matrix of size 5632. Figures 5.1.b, 5.1.c show the
domains Ω whose discretization yields this matrices of size 4096 and 5632 respectively.

We considered different synchronous non-stationary iterations depending on the
parameters q(l, j), and for each method we recorded the CPU time in seconds on the
Alliant FX/80 as a function of different parameters (ω, µ), ω = µ. Figures 5.2 and 5.3
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Fig. 5.1. Domains Ω = [0, a]× [0, b] yielding the linear systems of the numerical experiments,
where h is the width of the mesh.
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Fig. 5.2. Synchronous algorithms, size of A: 4096.

display the results for the matrices described above. Differences depending upon the
bandwidth of A can be observed. In Figure 5.3 we see that there are cases where the
larger the non-stationary parameters the longer the execution time. This is due to the
fact that the larger the parameters the larger the subsystem that each processor solves
in each local iteration. However, a non-stationary synchronous model better than the
other ones is always obtained. Figure 5.2 shows that a relative small bandwidth
assures better performance when we increase the non-stationary parameters. Results
were similar for all tested matrices and both multiprocessors.

On the other hand, in those synchronous models we can obtain a load balance
among processors by a good choice of the non-stationary parameters. But this is not
easy to achieve. For that purpose we can use asynchronous algorithms, where the work
among processor is balanced dynamically. The experiments performed showed that
the asynchronous non-stationary algorithm behaves better than the synchronous non-
stationary one. Also, we observed that an asynchronous algorithm setting q(l, j) = 1
accelerates any synchronous non-stationary algorithm. Furthermore, similar conclu-
sions about the bandwidth of A are obtained.

In Figure 5.4, the CPU times on the Alliant FX/80 multiprocessor, of some asyn-
chronous models are presented for the matrix of size 4096 described above. We note
that when the bandwidth of A is small, we can choose non-stationary parameters
greater than one, which have a better performance. If the bandwidth is not small,
generally q(l, j) = 1 gives the best asynchronous scheme.

Finally, we note that, the choice of optimal sequences q(l, j) (or simply good
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Fig. 5.3. Synchronous algorithms, size of A: 5632.

ones) is problem dependent, and not very well understood. In our experience, it often
suffices to choose non-stationary parameters a little greater than one to obtain good
overall convergence results. We also note that non-stationary algorithms allow the
use of different local criteria to counterweight dynamically the work in each processor,
producing a good load balance and faster convergence.
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reading and commenting on this paper.

REFERENCES

[1] Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, Third ed., Academic Press, New York, 1979.

[2] Rafael Bru, Ludwing Elsner, and Michael Neumann, Models of parallel chaotic iteration
methods, Linear Algebra Appl., 103 (1998), pp. 175-192.

[3] Rafael Bru and Robert Fuster, Parallel chaotic extrapolated Jacobi method, Appl. Math.
Lett., 3 (1990), pp. 65-69.
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Alliant FX/80 IBM SP2

q(l, j) Iter. Seq. time Par. time Speed-up Seq. time Par. time Speed-up

18 51656 67717.8 13229.3 5.1 2605.5 591.3 4.4
28 26607 40853.1 8091.4 5.0 1499.8 319.3 4.7
48 13706 27489.9 5530.9 5.0 917.7 209.4 4.4
108 5710 20473.2 4124.8 5.0 609.5 107.8 5.7
308 1998 21395.5 4306.2 5.0 673.7 127.6 5.3
6632 15634 35019.2 5852.1 6.0 1462.7 215.1 6.8

1711558191 5936 26556.6 4205.3 6.3 770.4 108.5 7.1
401305181201 2757 26811.3 4470.8 6.0 847.7 123.4 6.9

Table 5.1

Synchronous non-stationary models on multiprocessors Alliant FX/80 and IBM SP2. Size of
matrix A: 50000.

Alliant FX/80 IBM SP2

Iter. CPU time CPU time

51240 27057.7 1066.2
Table 5.2

Sequential Gauss-Seidel algorithm on multiprocessors Alliant FX/80 and IBM SP2. Size of
matrix A: 50000.
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Fig. 5.4. Asynchronous algorithms, size of A: 4096.


