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THE COMPLETE STAGNATION OF GMRES FOR N < 4*

GERARD MEURANT'

Abstract. We study the problem of complete stagnation of the genedhlizi@imum residual method for real
matrices of orden < 4 when solving nonsymmetric linear systems = b. We give necessary and sufficient
conditions for the non-existence of a real right-hand $ideich that the iterates azé® = 0, k = 0,...,n — 1,
andz™ = z. We illustrate these conditions with numerical experimeWs.also give a sufficient condition for the
non-existence of complete stagnation for a mattinf any ordem.
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1. Introduction. We consider solving a linear system
(1.1) Ax = b,

where A is a nonsingular real matrix of order with the generalized minimum residual
method (GMRES), which is a Krylov method based on the Arnoltlhogonalization pro-
cess; see Saad and Schultg|[ The initial residual is denoted a8 = b — Ax” wherez® is
the starting vector. Without loss of generality we will clsea® = 0, which givesr® = b,
and we assumgb|| = 1, where|| - || is thels norm. The Krylov subspace of ordkeibased on
A andr?, denoted akC, (A, %), is span{r®, Ar?, ..., A*=1r0}, The approximate solution
z* at iterationk is sought ag’* € 2° + K (A, 7°) such that the norm of the residual vector
r* = b — Az* is minimized.

Complete stagnation of GMRES corresponds|tb|| = ||b]|, ¥ = 0,...,n — 1, and
|lr™|| = 0. Since|r"~!|| # 0 implies that the degree of the minimal polynomial 4fis
equal ton, we assume that the matrik is non-derogatory. This means that, up to the sign,
the characteristic polynomial is the same as the minimalrhial. We are interested in
characterizing the real right-hand sidesvhich give complete stagnation for a given ma-
trix A. We call thosé stagnation vectors. We will give necessary and sufficientitmns
for the non-existence of such vectdr$ n < 4 and only sufficient conditions far > 4.
The problem of GMRES complete stagnation was consideredavprih, O’Leary and El-
man [B0] assuming that the matrix is diagonalizable; see alsBq). Sufficient conditions
for non-stagnation in particular cases were giverdin f8]. We have the well-known general
characterization of complete stagnation that is also wvalidn the matrix4 is complex; see,
for instance, 33] or [60].

THEOREM 1.1. We have complete stagnation of GMRES if and only if the figimel
sideb of the linear systemil(1) satisfies

(1.2) (b, A7) =0, j=1,....,n—1.

The inner product irC" is defined agz,y) = >, 2;4;, where the bar denotes the
complex conjugate. The characterization of Theofiefnrshows that complete stagnation is
not possible if 0 is outside the field of values of any of thenmas A7, j = 1,...,n — 1,
which are powers ofd. This is the case if the symmetric part of any of these matrise
definite. The field of values of a matri® is defined as

W(B) = {(Bz,z), z € C",||z|| = 1}.
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We add the conditiofjb|| = 1to (1.2) since ifb is a solution, themw is also a solution of1(.2).
Note that ifb is a solution, then-b is also a solution. So the number of stagnation vectors
is even. We now have nonlinear equations in unknowns (the components &, and the
guestion is to know if there exists at least a real solutioh, @wentually, how many. Since
we are interested in real vectdrsthe system defined byL(2) andb”b = 1 is a polynomial
system. Study of the solution set of polynomial systemsagittmain of algebraic geometry.
However, most of the problems that are considered in theatitee have integer or rational
coefficients. For polynomial systems with real coefficiestee Stetterq0)].

The content of this paper is as follows. Sectronsiders the problem of existence
of solutions to the complete stagnation problem. For a gegroedern we give a sufficient
condition for the non-existence of stagnation vectors ardpvove that the number of real
stagnation vectors (which is betweemand2™) is a multiple of 4. Sectio gives necessary
and sufficient conditions far = 3 andn = 4. These conditions are based on known results
about the simultaneous annealing of several quadraticsfalgfined by symmetric matrices.
Existence or non-existence of stagnation vectors aretrifitesd by numerical examples in
Sectiond. Finally, Sectiorb provides some conclusions and perspectives.

Throughout the paperdenotes,/—1. For our application, that is, the study of GMRES
stagnation, the matri¥; will denote A’ + (A%)T for integer values of.

2. Existence of solutions.We have already seen a necessary condition for the existence
of solutions in Theorem.1that can be rephrased as follows.
THEOREM2.1. A necessary condition to have a stagnation vector is@hain the field

ofvaluesofd’, j =1,...,n — 1.
Proof. Clearly a solutiorb has to be in the intersection of the inverse imagesfof the
functionsb — (A47b,b), j = 1,...,n — 1. If at least one of these sets is empty, there is no

solution to the nonlinear system. 0O

The converse of this theorem is false for> 3 and real vectors. We will give counter-
examples in Sectiod. There exist matricest with 0 in the fields of values ofd? for
j=1,...,n—1, and no real stagnation vector. The nonlinear syster) can be trans-
formed into a problem with symmetric matrices since withal reatrix B and a real vectay,
we have the equivalence

V'Bb=0<b"(B+B")b=0.

Therefore, whem is real and if we are looking for real vectdrswe can consider the poly-
nomial system

(2.1) VI(AT 4+ (AN =b"Ab=0, j=1,....,n—1, bb=1,

with symmetric matricesl;. The polynomial systen?2(1) corresponds to the simultaneous
annealing ofx — 1 quadratic forms defined by symmetric matrices and a nonzstok We
are only interested in real solutions @.{) since complex ones do not provide a solution of
the stagnation problem. The following straightforwarddien gives a sufficient condition
for the non-existence of real stagnation vectors.

THEOREM 2.2. Let A be a real matrix of ordem. A sufficient condition for the non-
existence of unit real stagnation vectéris that there exist a vectqr with real components
Wi, j =1,...,n — 1, such that the matrix

n—1
Ap) = Z i Aj
j=1

is (positive or negative) definite.
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Proof. Let us assume that the matti¥ 1) is definite for a given choice of coefficients.
If there is a reab satisfying equation2.1), multiply A(x) by b from the right andb” from
the left. Then

n—1 n—1
T A(u)b =" (Y " uiAb =Y ub"Ajb =0,
j=1 J=1

but sinceA () is definite, this give$ = 0 which is impossible sincg’ b = 1. 0

Therefore, to have at least one real stagnation vector, #texm (1) must be indefinite
for any choice of the real numbers. Of course, as we already know, there is no stagnation
vector if any of the matriced; is definite. The converse of Theoreir®2 may not be true in
general and it would be interesting to find counter-exampteavever, as we will see in the
next section, the converse is true for< 4. Therefore, to find counter-examples one has to
consider matrices of order > 5. Moreover, we do not deal with any number of quadratic
forms. For matrices of ordet, we have exactlyn — 1 quadratic forms. Necessary and
sufficient conditions for the existence of stagnation vectitained with different techniques
will be given in a forthcoming papeBp].

For the systemZ.1) we are interested in the existence and the number of sokitd
polynomial systems. There is an extensive literature attipic. One can use, for instance,
reference22] where we have the following results that were obtainedgibimmotopy. They
show that, generically, there exist solutions.

THEOREM 2.3 (Theorem 2.1 of Garcia and L27]). Letw represent the coefficients
of the polynomial syste®(x, w) = 0 of n equations in:» unknowns and lef; be the total
degree of equation. Then for allw except in a set of measure zero, the system has exactly
d = [1:-, d; distinct solutions.

For our problem, the degree of each equatiod; is- 2, and for A andb real we havex
equations. Hence the maximum number of solutions4s2™ as it is well-known. However,
this result is not completely satisfactory since the veétoan be such that the coefficients
are in the set of measure zero.

There is a more precise statement 22][ Let H be the highest order system related
to P. The systent{ is obtained fromP by retaining only the terms of degrégin equation
of P.

THEOREM 2.4 (Theorem 3.1 of Garcia and L2%]). If H(z) = 0 has only the trivial
solutionz = 0, thenP(z) = 0 hasd =[]}, d; solutions.

For our system4.1) and for realb, H is the same a® except for the constant term in
the equatior” b — 1 = 0 since all the other terms are of degree 2. It is clear thasysseem
cannot have a solution different from zero. Hence, the gy¢fel) has exactly2™ solutions.
The number™ is known as the Bzout number, named after the French mathematician Eti-
enne Bzout (1730-1783). However, not much seems to be known d@beuact that the
solutions are real or complex. Unfortunately, the complaxtsons of the system2(1) are
not solutions of the stagnation problem. There are waystatdhe number of real solutions
in the literature, but they are almost as complicated as adimgpall the solutions. However,
we have the following result about the number of real sohgio

THEOREM2.5. Let A be a real matrix of order > 2. The number of real solutions of
the polynomial systen2 (1) is a multiple of 4.

Proof. The total number of solutions &*. If b is a complex solution of 4.1), then
also —b, conj(b), and —conj(b) are solutions whereon;j(b) is a vector with the complex
conjugates of the elements laf Note that we have four different solutions unléss purely
imaginary,b = wc, ¢ € R", because thenonj(b) = —b. But such a vectob cannot be a
solution since the last equation will bB&b = +>c”c = 1 and||¢/|> = —1 which is impossible.
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Hence, the number of complex solutions is a multipletptay4m. The number of real
solutions i2" — 4m = 4(2"~2 —m) for n > 2. This shows that the number of real solutions
is a multiple of 4. a

3. The casen < 4. We start this section by recalling known results about gaihclr
forms and then we use those results for characterizing tegnation fom < 4. The reason
we are restricted tee < 4 is that the results in the literature correspond to two oeehr
quadratic forms and this only yields results for= 3 or n = 4 for the stagnation problem.

3.1. Results on quadratic forms. The simultaneous annealing of two quadratic forms
defined by symmetric matrices of orderhas been studied for a long time. The story of
solutions to this problem seems to begin with Paul Finslet987 1] with what is now
known as Finsler's theorem or Debreu’s lemma. Using Uhiigigation p4, 55, 56], let A,
and A, be two real symmetric matrices (which will be respectivdly- A” and A2 + (A2)7
in our application) and denote y(A;, As) the pencil constructed witi; and A, which
is the set of linear combinations aff; and A, with real coefficients.P(A;, A,) is called a
d-pencil if it contains a definite matrix that is, there exisal A\ andy such thatnA; + Ao
is positive or negative definite. Roughly speaking Finsléreorem states the following.

THEOREM 3.1. Let A; and As be real symmetric matrices of order > 3, then the
following statements are equivalent:

(i) P(A;,As) is ad-pencil,

(i) 27A12 =0= 27 Ay > 0.

Around the same time and independently, this problem wagesigd in the U. S. by
G. A. Bliss and W. T. Reid at the University of Chicago. It wadved by A. A. Al-
bert [1] at the end of 1937 and the paper appeared in 1938. It was alssidered by
W. T. Reid §4)]. This result was generalized by Hestenes and McSHharjeéd more than two
guadratic forms with applications in the calculus of vadas. LetQ;, i = 1,2, be the set
{x € R"| 2T A;x = 0}. Dines [L6] proved in 1940 that the sétz” A, z, 2T Ayz), 2 € R"}
is convex in the two-dimensional plane. Moreovefif N Q, = {0}, then this set is closed
and is either the entire two-dimensional plane or an angdetor of angle less than The
Finsler-Bliss-Albert-Reid result appeared as a corolt#rgne of his results.

Since then, this problem has been extensively studied (ynfon applications in op-
timization with quadratic constraints) and these resudtgelbeen rediscovered or enhanced
again and again. Among others, see the papers by CalgbHestenes36], Donoghue 19],
Uhlig [54, 55, 56], Marcus Bg], Tsing and Uhlig £3], Polyak 41]. An interesting reference
that is only partly devoted to this problem is Ikram@2]. Another paper summarizing re-
sults is Hiriart-Urruty and TorkiZ9). The main result is the following, as formulated in
Uhlig’s papers.

THEOREM 3.2. Let A; and As be real symmetric matrices of order > 3 and Q;,
fori = 1,2, be the set§z € R" |27 A,z = 0}. Then the following statements are equiva-
lent:

(i) P(Ay,As) is ad-pencil,
(i) Q1N Qs ={0},
(iii) trace(Y A;)=trace(Y A,) for Y being symmetric positive semi-definite implies that
Y =0.

The equivalence of (i) and (ii) was formulated in this way bgladbi [L0]. This is
what we will mainly use for our purposes. However, condit{oi is also directly related
to our problem. Note the definition of the inner product of tveal matricesA and B,
(A, B) = trac6 AT B). Also remark that the values of the quadratic forbdsA;b can be
written as(A;,bb"). Hencep” A;b = 0, i = 1,...,n — 1, is equivalent to the matrices;
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being orthogonal to the positive semi-definite rank-onerinab’ . Therefore the existence
of a stagnation vector is equivalent to the existence of atrigial symmetric rank-one ma-
trix orthogonal to4;, « = 1,...,n — 1. Property (iii) implies that if there exists a stagnation
vector forn = 3, thenP(A4;, A2) is not a d-pencil.

The results of Theorerd.2are linked to generalizations of the field of values (or numer
ical range). The joint field of values of two matricds and A is defined as

(3.1) Fr (A1, A2) = {((A1z,z), (Asz,2)), z € K", ||z| = 1},

where K is R or C. Brickman [7] proved in 1961 thatFr(A4;, A2) is convex and also
that Fr (A, Ay) = Fc(Aq, Ag). Moreover, the two set§(z? Az, 27 Ayx),» € R™} and
{(#" Az, 2 Ayz), 2 € C™} are the same convex cone. PolydK][extended some of these
results to three matrices.

THEOREM 3.3 (Theorem 2.1 of Polyakifl]). Let A;, A; and A3 be real symmetric
matrices of ordem > 3 and Q;, i = 1,2,3 be the sef{x € R" |27 A;z = 0}. Then the
following statements are equivalent:

(i) there existuy, pa, s such thatu; Ay + poAs + 3 As is positive definite,

(i) Q1N Q2N Q3= {0} andthe sef{(z? Az, 27 Ay, 27 A3x),» € R"} is an acute

closed convex cone iR3.

However, it is interesting to note that extensions of thelteof TheorenB.2 were al-
ready considered by DinedT, 18] in the 1940’s. In L7] he looked at what is now called
the real joint field of values defined by quadratic forms and proved that it is bounded and
closed. He then considered the convex extension of thistlsisti§ what we now call the
convex hull of the joint field of values). He proved that a sudint and necessary condition to
have a positive definite linear combination of the matridesi = 1, ..., m, is that there is
no set of vectors;, j =1,...,r, such thatZ;:1 mjijAizj =0,i=1,...,m, with posi-
tive coefficientsn;. He also extended these results to the positive semi-detiagte. In1
Dines extended the equivalence of (i) and (iii) in Theorg®to m quadratic forms. He

proved that having a definite linear combination of the nea8#;, i = 1,...,m, iS equiv-
alent to having every matri® orthogonal to the matriced,;, (A;,B) = 0,i = 1,...,m,
indefinite. There exists a definite symmetric matfxorthogonal toA;, i = 1,...,m, if

and only if every linear combination of thé;s is indefinite. This type of results was also
extended to semi-definite matrices. However, the mariz not necessarily rank-one.

There does not seem to exist direct extensions of the rekdlh@orem3.3 to more
than three matrices. This is probably because thé(@étAz, ..., 27 A,,2)), » € R"}is
not always a closed convex cone far > 3. However, there exist a few generalizations of
Finsler's theorem; see Hamburg@?g][, Arutyunov [4], Ai, Huang, and Zhangd]. For the
joint field of values withm matrices and: € C", see Fan and Tit2[)], Gutkin, Jonckheere,
and Karow P4, Proposition 2.10], and Chien and Nakazatd]|[

3.2. The casen = 2. Let us consider red x 2 matrices. This case can be solved
easily. We have only one orthogonality conditio?hAb = 0, to which we add”'b = 1. Such
a vectorb is called an isotropic vector in the literature; sé&,[13, 40, 57] for algorithms
to compute isotropic vectors. However, the problem is semplhenn = 2. As we have
defined before, left; be twice the symmetric part of. ThenA; = QAQT, y = Q™'b, with
@ orthogonal and\ diagonal and

WA =0<bTA1b=0<bTQAQTh=0< yTAy =0.

To have non-trivial solutions, the matri¥ has to be indefinite. So there must be one positive
eigenvalue\; and one negative eigenvalue\,, and the condition” A,b = 0 reads

Aly% - )\295 =0« (\Klyl - \/gm)(\/)\ilyl + \/EyQ) =0.
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The solution set of this equation is the union of two linesspas through the origin with
respective slopes+/\1/v/ 2. The eigenvalues ol are

A=ay1+ a2+ [(a1,1 — az2)? + aiy)'/?,

wherea;21 = a1,2 + a2,1. To obtain the solutions having’ y = 1, we have to intersect the
lines with the unit circle. This gives four solutions with

R RS
Yy = ﬂ:i, Y2 = .
VAL + Ao VAL + Ao

Then we have to rotate the solutions to obtaia QQy. The solutions are entirely determined
by the eigenvalues and eigenvectorsigf The only condition to have solutions far= 2 is
to haveA, indefinite. This happens if?,, — 4aj 1a2.2 > 0.

3.3. The casen = 3. For real matrices of order 3 we have a polynomial system of
degree2 with 3 equations,

VI(A+ AT =0T A0 =0, b7 (A% + (A1) =0T Ab =0, bTb = 1.

There is a real stagnation vector if and onlyif0) is in the (real) joint field of values defined
in (3.1) with K = R. The setF = Fy coincides with the classical numerical rafig& B)

of B = A; +1A4,; see B(]. Since A; and A, are real and symmetric, the matrix is
symmetric but not Hermitian. Hence, the géts not symmetric with respect to the real axis.
Many results are known about the numerical range that carsée 10 study the properties
of F; see, for instance 3P, 35, 43]. In particular, 7 is a compact convex set in the two-
dimensional plane. Therefore, it is closed and bounded r@hdt on the convexity dil’ (B)

is the celebrated Toeplitz—Hausdorff theorem that wasqatdonr 1918. Sincel; and A, are
the Hermitian and skew-Hermitian part Bfand symmetric, we have that

Re [W(B)] W(Al) = [)\min(Al)v A’rrLaaL'(lLll)]a
Im [W(B>] = W(AQ) = [)‘min(AQ)> Amam(AQ)}

Hence,F is enclosed in the rectangl®,,;, (A1), Mnaz(A1)] X [Anin(A2), Amaz (A2)]. The
boundary of the numerical rang® (B) = F can be sketched by considering the matrices
By = € B = (cos(f) + 1sin(0))B for 6 € [0, 27]; see B4]. The Hermitian part of3, is
cos()A; — sin() A;. Note that this matrix is symmetric. Laf, .. be its largest eigenvalue
andzy be the associated eigenvector. Then an (inner) polygomabajnation of W (B) is
obtained by linking the pointseTBxg for0 =60, <6y <--- <8, =2nm Sincexy is real,
the coordinates of these points ar@Alxg andngAgxg. Note that we could have as well
considered the matrixos(0)A; + sin(f) A, and also the smallest eigenvalue instead of the
largest.

The boundary ofF was also characterized in Polyakl] without reference tdV (B).
We will use the following definition for the points on the balamy of 7,

(3.2) {(33(7;141 24, x9TA2 xg), 0 € [0, 27]}.

We will see in the numerical experiments that in some exaspleere is one point on the
boundary ofF in the vicinity of whichF looks like a sector. Those points are called “corners”
or “conical points”. It is well-known that the coordinatettbose points are the real and
imaginary parts of an eigenvalue Bf see B0, 43]. Moreover, the geometric multiplicity of
that eigenvalue is equal to its algebraic multiplicity.
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In many3 x 3 examples, the boundary &f has almost “flat” portions. This phenomenon
has been studied i8] 45]. Conditions are given in35| for the field of values of & x 3
matrix to be the convex hull of a point and an ellipse. Rougilgaking, when the matrix is
not normal, the field of values can have this shape or it camlzdli@se or an ovular set.

In general, there is no known necessary and sufficient dondibr the origin to be a
point of a numerical range. However, for our particular peof, we have the following
necessary and sufficient condition for the non-existen@esthgnation vector.

THEOREM3.4. Let A be a real matrix of order, = 3. There is no real stagnation vector
if and only if there exist real numbepsand . such that\(A + AT) + u(A? + (A%)T) is
definite.

Proof. The result is a direct consequence of TheoBein a

Of course now, the question is to know when\id; + p A, definite. For our small
problem of ordei3, this can be done by direct examination as we will see in threarical
experiments. But this question has been investigated foricea of orderm by several re-
searchers. Uhlig published several papers in the 197@sf5ge55, 56]. An algorithm was
proposed by Crawford and Mooit4, 15 to compute such a paip\, i1); see also32]. This
problem has also been considered by Higham, Tisseur, an®¥%aren P8, Algorithm 2.4].
The following result is well-known. It is in the same spirét @esults of O. Tausskyp[].

LEMMA 3.5. Let A; and As be real symmetric matrices such that there exXistind 1
with AA; 4+ pAs (say) positive definite. Then there exists a real nonsinmgulkatrix X such
thatQ = X7 A, X andl' = X7 4, X are diagonal.

The ratios of the diagonal elements®f 4; X and X” 4, X are the eigenvalues of the
pencil (A;, A2). Note that in order to comput&, we have to know a paif), 1) such that
AA; + pAs is positive definite. Details on the region whevé, + 11 A is definite were given
by Uhlig [56].

THEOREM 3.6 (Theorem 1.1 of Uhligd6]). Let (A4, A2) be a d-pencil. LefX be such
that X7 A1 X = diag(y;) and XT Ay X = diag(w;).

If there exist indices, j such thaty;v; < 0, then

1.

Wi Wj
max — < max —,
vi>0 y; 7i<0 v;
andw; < 0 whenevery; = 0, or
2.

. Wy . Wy
min — > min —,
>0 y; 7:i<0 4
andw; > 0 whenevery; = 0.
In case that all they;’s have the same sign
3. eitherw; < 0 whenevery; = 0 or w; > 0 whenevery; = 0.
If we know +; andw;, we can compute the boundary of the region whede + uA; is
(say) positive definite.
THEOREM 3.7 (Theorem 1.2 of Uhligg6]). Let (A1, A>) be a d-pencil. Using the
notation of Theoren3.6, the matrix\A; + pAs is positive definite if and only if (the cases
correspond to Theorei®.6)

1.
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3. Ifally; > 0, then
-1
W A .
— <max > < — < 0if w; < 0 whenevery; =0,
7i>0 Y M
and
A . Wy -t
0< — < —(min — if w; > 0 whenevery; = 0,
2 7i>0 7y

and ifally; <0, then
-1
W A .
- (max ) > ; > 0if w; < 0 whenevery;, =0,
and

—1
0> é > — (min %) if w; > 0 whenevery; = 0.
iz 7i>0 4

Note that these inequalities define intersections of halfigs in the(\, 1) plane. The
following two algorithms simplify the problem by using onbyne parameter (like it is done
for studying the boundary of) instead of\ andu. A sketch of the algorithm proposed by
Crawford and Moon15] to produce a paif, 1) such thatn A, + A, is positive definite is
the following; see also32]. They consider the function

(A1, 2) + 1(Agz, @)

M) = sz, + A, * €

The functiong is not defined if( Az, z) = 0 and(Azx, x) = 0 simultaneously. Otherwise,
the values ofy belong to an arc of the unit circle. The algorithm is a bisettnethod to
locate the end points of this arc. Having an approximatigrb| of the arc, one considers
the mid-pointc and the corresponding angléormed by the imaginary axis and the segment
[0, ¢]. If B(t) = sin(t)A; + cos(t) A, is positive definite, a paik = sin(¢), u = cos(t) has
been found. Otherwise a vectoisuch that B(t)z, z) < 0 is computed as well as= g(z).
If d belongs to the ar€—a, b], thenb = d; if d belongs to the arfu, —b), thena = d. If
none of these conditions is satisfied, the algorithm hasdaillhe vector: is computed by
using the partial Cholesky decomposition®ft) using the upper triangular matrig;, of the
maximal positive definite principal matrix d#(t).

The algorithm of Higham, Tisseur, and Van Door&8,[Algorithm 2.4, p. 462] computes
the Crawford number

(A1, Ay) = min /(A z,2)2 + (A, )2 withz € C", ||z| = 1.

It also gives the answer to our problem. 2= A; +:1 A5 and compute the eigenvalues of the
quadratic polynomiaP()\) = B — A2 B, whereB" is the conjugate transpose. If there are
2n eigenvalues of modulus one, for each eigenvalpe- 'Y we compute an eigenvector

of Ag = cos(6,)A1+sin(6) A, and the sign of Byv, v), whereBy = cos(6;) Az — sin(0) Ax,
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which gives the sign of the derivative. If there areonsecutive pointé; with the same sign,
there exist\ and i such that\A; + A, is definite. They are given by the angles in the
interval starting at theth point with the same sign and ending at the rtgxtNote that there
exist more general algorithms that will be described in tbet subsection.

Finally, we can obtain conditions for the existence of stdigm vectors using the eigen-
values of the matrix pencild;, A,). Let

(3-3) Ayt = N Aoy,

be the generalized eigenvalues and eigenvectors thatase ¢id; * A, sinceA; is nonsin-
gular.

LEMMA 3.8. LetA1 and A, be real symmetric matrices. Lat be the elgenvalues such
that A;2' = \;A,2% and )\, the eigenvalues such that y* = N (M1 + pAs)y*. Then for
A; # 0, the eigenvectors of both pencils are the same and the eiy@s/are related by

(34) )\1(1 — )\5\,) = /,L;\i.

Proof. Assume); # 0 andA;2' = \;Axz’. Thenz! is an eigenvector of the pencil
(A1, A\A; + nAs) and we have

Arx® = Mi(AAL + pAg)x® = N(A\ + H)Aﬂi-

It gives \; (AN 4 1) = \i. 0

THEOREM 3.9. Let A; and A, be real symmetric matrices of order> 3. If there are
complex eigenvaluey in (3.3), then there is no real and . such that\ A; + 11 A, is definite.
Of course, if there exist real and ;. such that\A; + p A is definite, then the eigenvalues in
(3.3 are real.

Proof. These results were stated in Polydk][without proof. The proof is by contra-
diction. Let us assume that there exist reandy such that\ A, + p A, is positive definite.
First, we reduce the problem to a pencil;, Ag) with Ay = \A; + 1A being symmetric
positive definite. Using Lemma.8, the eigenvalues are related 8/4). Now, since in the
pencil (A, /12) the matrix A, is positive definite, the eigenvalues are all real. This can b
seen using the Cholesky factorizationdf = LL” with L being lower triangular. We have

Ay’ = NAgy' = NLLTy' = (LA LT (LT y') = N(LTy').

Since the matrixLZ—1' A, L~T) is symmetric, the eigenvalué@ are real. This implies that all
the eigenvalues; of the original pencil are also real, which is contradicttrpur hypothesis.
a

The converse of Theoref9is not true. There exist pencils having all the eigenvalues
real for which there is nd andy such that\A; + A, is definite. However, we have the
following sufficient condition for the existence of stagoatvectors.

THEOREM 3.10. Let A be a real matrix of orden = 3. If complex eigenvalues of the
pencil (A + AT A% + (A%)T) exist, then4 has real stagnation vectors.

3.4. The caser = 4. Theoren3.3solves the stagnation problem for= 4. In this case
we have the polynomial system

VI(A+ AT =b"Ab =0, bT (A% + (A)T)b = bT Asb = 0,
bT (A3 + (AT = b Azb = 0, bTh = 1.
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THEOREM3.11.Let A be a real matrix of ordern. = 4. Then there is no real stagnation
vector and the sef = {(zT Az, 2T Ayz, 2T Asz), » € R"} is convex if and only if there
exist realu;, i = 1,2, 3, such thatu; Ay + pus Ao + ugAs is definite.

Proof. The setl" is obviously a cone with vertei. It has been proved to be closed by
Dines [L7] and we assume that it is convex. In Theor8r8, I’ is assumed to be an acute
cone, but this was because equivalence was sought withdhavinear combination that is
positive definite. Considering the proof of Theor8rf, one can handle the cases for positive
and negative definite matrices separately. O

An interesting question (which seems to be an open one) isdw kf the hypothesis on
the convexity ofF' is necessary for our problem. If one looks at the proof of Taeo3.3,
which relies on B6], convexity is not absolutely needed. It is just necessarhdve the
existence of a linear functional which is (say) strictly pige on F'. The setF' has to be on
one side of a plane containing the origin. It is known tiatis convex. This should imply
the convexity of

Fo = {(z Ayz, 2™ Agz, 2 Azz), 2 € C"}.

We also havel” C Fg. Therefore,F is contained in a convex cone R?. This should be
enough to prove that there exists a linear functional whicstiiictly positive on/' (e.g. F' is
on one side of a plane passing through the origin).

To our knowledge, there is no characterization (like theafrighlig for two matrices) of
the regions inuy, po, s Wherep (A+ A™) 4 po (A% + (A%)T) + p3 (A3 + (A3)T) is positive
or negative definite in the literature. However, the boupddrthe joint field of values with
the constrainf|z|| = 1 is known; see37]. One considers two anglés< ¢, ¢ < 27 and the
matricesTy = cos(#)A; + sin(8)As and By, = sin(¢)Ty + cos(¢)As. Letzg 4 be the
eigenvector corresponding to the largest (or smallesgreiglue ofBy ,. The coordinates
of the boundary points are given By, , A1z 4, 24 A2 5, T4 5 A30,5). Psarrakos4Z]
used this characterization to propose an algorithm to aeter if a triple of Hermitian ma-
trices is definite. In case the origin is in the joint field ofues, he also computed the next
definite triple with a given Crawford number.

There exist more general algorithms to compute paramgters. , j.,,, (When they exist)
such thatA(u) = Z;”:l 1 Aj is (say) positive definite. An algorithm denoted as PC was
proposed by Tong, lujiro, and Libp]. Starting from a vectop, = (u;), j = 1,...,m, this
method iteratively updates by du such that

A — (2T Ay, ..., 2T A 2T
e GT Az, . 2T Apa )T’

wherex is the eigenvector corresponding to the smallest eigeavallB = Z;”:l ;.
The iterations are stopped when a positive definite mdirikas been found or when the
maximum number of iterations has been reached. If there & afoefficients such that
A(p) is positive definite, the algorithm converges but sometinvey slowly. Zaidi (8]
proposed the Positive Definite Combination (PDC) algoritkiis goal was to obtain a vector
of coefficientsy such that the smallest eigenvalue 4f.) is larger than a givew > 0.
Finding such a matrixi(x) is formulated as an optimization problem with constraints,

min |[B = Cllp,
subject toB = 377" | 11;A; andC € S where

St ={QDQ"|D = oI + A;Q orthogona},
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andA being a diagonal matrix with diagonal entri&s> 0. The minimization problem is
solved by an alternating algorithm, minimizing the funatguccessively with respect toand
to C. Using an arbitrary vector of coefficients we start fromB = Z;":l wjA; = UAUT
with U orthogonal and\ = ();) diagonal. We choose an arbitrary diagonal maixiwith a
positive diagonal and sé€t = U(oI + A)UT. Then, as long as the smallest eigenvalyg,,
is negative, we iterate: we set

D = diag(max(\;,0)),

andB = P(UDUT) and we compute a new eigendecompositidr= UAUT. Finally the
new matrixC'is C = UDU?. The matrixP(M) is the orthogonal projection ¥/ on the
subspace spanned by the matriggs j = 1, ..., m. This can be computed by vectorization.
Let vec(M) be the vector of lengtm? defined by stacking the columns af and A =
[vec(Ay) -+ wvec(An)]. Conversely, letnat(v) be the matrix of order. constructed
from the vectow of lengthn?. Then

P(M) = mat(A(AT A) " AT vec(M)).

Note that there are some misprints &8]. A similar algorithm was introduced by Cai, Peng,
and Zhang9]. However, they added a constraint on the vegtoior instance|p|| = 1. This
makes the projection phase more difficult, but it allows ttedwine if there is no positive
definite linear combination when > 0. Recently, some other algorithms have been proposed
by Huhtanen and Seiskaf]].

4. Numerical examples.In this section we describe some numerical experiments for
real matrices with small values of to illustrate the theoretical results of the previous sec-
tions. Whemn is small, real stagnation vectdrg€an be computed by solving the polynomial
system 2.1). This can be done in several ways since many methods arkalaleain the
literature although mainly for polynomial systems witheigér or rational coefficients. How-
ever, we are interested in polynomial systems with realfmefits. One possibility is to
use homotopy; see Allgower and Geoff] ind Sommese and Wampletd, particularly
the Matlab software Homlab available on the Web. Anothesitility is a method proposed
by Auzinger and Stetter; seb,[6] and also Stetterq0]. Finally, we devised an elimination
method related to @bner bases, specially tailored to the systémi)( Unfortunately, all
these methods do not allow to solve large systems due totge tamputing times for some
of them and to numerical instabilities for others. The latgg/stems we were able to solve
reliably with IEEE double precision were far= 6.

4.1. The casen = 2. Let us consider & x 2 (rounded) real random matrix,

A - —0.432565 0.125332
~ | —1.66558  0.287676]

This matrix has two complex conjugate eigenvalues and Otfsiffield of values ofd. This is
the first matrix we get usingandn( 2, 2) when starting Matlab 7. The matri, = A+A”
is indefinite since its eigenvalues axe = 1.55544 and— X\, with Ay = 1.84522.

The 4 stagnation vectors of unit norm (rounded) are

0.175136 0.96604 —0.96604 —0.175136
0.984544 ) > \ —0.258394 ) ’ \ 0.258394 / * \ —0.984544 | °
The values ob™ Ab for the 4 solutions are

—5.55112 1077, 3.79904 10~16, 3.24393 10~'6, 5.5511210~'7.
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The study of the problem using the eigenvalues and eigemsngeof A, is illustrated in Fig-
ure 4.1 The blue lines are the solutions dy? — \2y3 = 0. Then they are rotated using
the matrix of the eigenvectors df; to obtain the red lines. The green intersections with the
circle of center(0, 0) and radius one give the solutions (green circles).

T

/
I I I I i I I I I I I
-1 -08 -06 -04 -02 0 02 04 06 08 1

FIG. 4.1. Example withn = 2.

4.2. The casew = 3. Thisis a very interesting case because it is not as trivial as2,
and we can still visualize what happens. The maximum numbegad solutions is 8. Of
course, the most obvious way to know if there are real stégmakectors is to solve the
polynomial system4.1). If all the solutions are complex, there is no real stagmatiector.
However, we will numerically illustrate the theoreticakudts of the previous sections. Let
us consider the following example with a random matrix

0.614463  0.591283 —1.00912
(4.1) A= 10507741 —0.643595 —0.0195107
1.69243  0.380337  —0.0482208

This matrix has a pair of complex conjugate eigenvalues amdabone. The matrices
Ay = A+ AT andA, = A2 + (A?)T are indefinite. The matrid; ' A, has complex eigen-
values and therefore according to TheorgrO there is no), i such that\A; + pAs is
definite. Hence, there exist real stagnations vectors. y$tes @.1) has 8 solutions but only
4 of them are real. The 4 real solutions (rounded) are

—0.47173 0.47173 —0.198789\  /0.198789
—0.867275 | , [ 0.867275 |, | —0.81042 |, [ 0.81042
0.159076 —0.159076 —0.551092) \0.551092

The values of the quadratic forms for the solutions are ofatter of 10~1°. Forn = 3
we can visualize the quadrics defined by equati®ri)( The system for real solutions is
equivalent to

brAb=0, bTAb=0, bTb=1.

The matrixA; has two negative and one positive eigenvalues, but we camgetthe signs to
have only one negative eigenvalue. If we diagonalizenve have the equation

Mz 4+ Aoy? — 322 =0,
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with \; > 0,7 = 1,2,3, and A3 corresponding to the negative eigenvalue. This is the
equation of a cone with an elliptical section whose axis &:zttaxis. We are interested in
the intersection of this cone with the unit sphere. Elimimgt in the previous equation, the
intersection is defined by

A +23)2” + Mo+ A3)y° = A3, 22 =1-2"—y°

The first equation defines an ellipse of semi-ay€%s; /(A1 + A3) and/As/ (A2 + A3). Then
this ellipse is “projected” onto the unit sphere. The inget®on is the union of two smooth
closed curves on the surface of the sphere. They are synométh respect to the origin.
This is shown in Figuré.2. We only show the upper half of the cone. The intersectioh wit
the unit sphere is the blue thick curve. Then we use the e@gtors of A; to rotate the
cone and therefore also the blue curves. Note that angledistahces are preserved in this
rotation. The result is displayed in Figutes.

FIG. 4.2.n = 3, quadratic form forH in z, y, z frame, matrix 4.1).

Then we consider the cone fdp. Note that the valueg/A3 /(A1 + A3) andy/As/ (A2 + A3)
are related to the aperture of the cone. It these numbersrealé the aperture of the cone is
small. This happens X; + A3 and)\; + A3 are large compared to; (the absolute value of the
negative eigenvalue). The fact that the two cones intermecbt depend on their apertures
and also on their respective positions. Nevertheless rgiyé at least one of the two cones
has a small aperture, it is likely that there is no interggc{although this possibility is not
ruled out). It turns out that for this example, after the tiotas, the two cones intersect.
Figure4.4shows the intersections (green circles) of the blue ffgrand red (forAs) curves
on the surface of the unit sphere. We see two intersections. dthe red curves intersect
only one of the blue curves. The two other intersections@atéd on the other side of the
sphere. There are obtained by symmetry. The unfortunatilgimg parts of the curves are
due to an artifact during the translation from Matlab to Bospt.

To obtain an insight about the number of solutions, we mak kidhe two cones in the
frame defined by the eigenvectors 4f. If the two cones intersect, the ellipses defined by
taking z constant must intersect. Twice the number of intersectifivess us the number of
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FIG. 4.3.n = 3, quadratic form forH in b1, b2, b3 frame, matrix 4.1).

FIG. 4.4.n = 3, the solutions (green circles) i, ba, b3 frame, matrix ¢.1).

real stagnation vectors. Let us take- 1. The equation for; is
4.2) Ma? 4 Aoy = As.

Let K = A — AT and Q be the matrix of eigenvectors of,. It is easy to see that
As = (A3 + K?)/2. HereK? is a singular matrix with two negative eigenvalues. The equa
tion for A, is

x
(4.3) M2+ M2+ M+ (@ vy 1)QTK?Q |y | =0
1
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Now, the problem is to know if the two ellipses, defined By and @.3), intersect and,
eventually, how many intersection points we have. The égusidf the ellipses can be con-
sidered as quadratic polynomialsinwith coefficients that are polynomials iy see, for
instance, 23]. These two quadratic polynomials inhave a common root if and only if the
discriminant is zero. Let’ = Q7T K2Q),

ag = 2)\icy 2, a1 =AM (A3 +c22) — XAl +c11), @ =2\cig,
ag = 2)\c 3, s =M(A; +c33) + As(A] + i), a5 = —2Xa2c1 2,
ag =0, o7 = —2A3¢1 2, ag = 2A1c13,
ag =0, 1o = 2A3c1 3,

and

Bo = azag — o,

B1 = apaig + az(ar + ag) — 2az0y4,

B2 = ag(ar + ag) + az(ag — ag) — a3 — 2a;iay,
B3 = ap(as — ag) + aoas — 2003,

Bs = apas — af,

Then we have

(4.4) Bay* + B3y® + Bay® + Bry + Bo = 0.

The roots of this quartic polynomial give thecoordinates of the intersections. Then the
x coordinates can be computed b3). Unfortunately, it does not seem possible to obtain
analytic expressions for the roots. The number of real &gt which can be obtained by
Sturm’s theorem, is half the number of the real stagnatia@hovs.

Of course, for this example the origin is in the fields of valwé A and A2. Otherwise
we would not have a solution. However, it is more interestmdpok at the joint field of
valuesFg (A1, As) in the two-dimensional plane. We can use brute force to limithis set
by plotting values for random unit vectarsas it is shown in Figuré.5with blue plus signs;
here we have 400 points. Note that, even though the pointaaraniformly distributed,
this gives a good idea of the shape of the joint field of valuEise green box is given by
the eigenvalues ofi; and A, whose pairs are displayed as light blue stars. The red star
is (0,0) which is within the joint field of values, meaning that thesdse real stagnation
vectors. The green curve and stars show the boundary of ithiefigld of values as given
by (3.2). They were obtained with a uniform mesh/ 2z]. In many examples with random
matrices of order 3, the joint field of values has such a “gidar” shape. The shape is more
or less the convex hull of an ellipse and a point outside. Tdugrfers” are eigenvalues of
Ay + 145 and also close to pairs of eigenvaluesAf and A;,. Some blue crosses seem
outside the boundary but this is because we do not have enmigts on some parts of
the boundary. We remark that the computed boundary poiete@mncentrated around the
“corners” of the two-dimensional set. There are also twdipos of the boundary that look
like straight lines without any discretization points. Rsmber that the green points are
given by pairs(z(t)T Ay z(t), #(t)T A2 (t)) wherez(t) is the eigenvector corresponding to
the smallest eigenvalue df;, = cos(t) A; +sin(¢) A2. Figure4.6shows the three eigenvalues
of A; as functions of in [0, 2x]. The smallest (resp. largest) eigenvalue is always negativ
(resp. positive). We see thdt is never definite. Figurd.7 displays the values(t)” A,z (t)
(green curve) and(t)” A,x(t)) (magenta curve) as functions ©f There are values affor
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which there is a large increase (or decrease) in the furstibhis corresponds to the parts of
the boundary of the joint field of values that look like sti#tigines. Note that these values
of t are some of the ones for which two eigenvaluesipfire close to each other. The parts
of the boundary where we have an accumulation of points spord to the “flat” parts of
Figure4.7.

b +

-4k | | | | | 1 1 L
0

FIG. 4.5.n = 3, joint field of values{ (zT A1z, zT Asx), = € R3, ||z|| = 1}, matrix @.1).

-4 1 1 1 1 | |
0 1 2 3 4 5 6 7

FIG. 4.6.n = 3, eigenvalues ofl; for ¢t € [0, 2x], matrix (4.1).

Another interesting example is

—0.0786619 —1.23435 0.0558012
(4.5) A= —-0.681657  0.288807 —0.367874
—1.02455  —0.429303 —0.464973
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FIG. 4.7.n = 3, values ofc(t)” A1 z(t) (green) ande(t)T Axz(t)) (magenta), matrix4.1).

This matrix has three real eigenvalues d@ng in the field of values ofd and A%2. The
eigenvalues ofi; ' A, are real but nevertheless there are\randy; such that\ A, + pA, is
definite. There are 8 real solutions to the polynomial system

—0.841489 0.841489 —0.436377 —0.370335
—0.204167 | , | 0.204167 |, [ 0.0701634 |, [ —0.758645 | ,
0.500212 —0.500212 0.897024 0.536012
0.436377 0.370335 —0.0626104 0.0626104
—0.0701634 | , | 0.758645 |, | 0.443589 |, | —0.443589
—0.897024 —0.536012 —0.894041 0.894041

The figure corresponding to this problem4s3. We see that one red curve intersects the
two blue curves. The 4 other solutions are on the other sidieso$phere. Figuré.9 shows
the joint field of values which, like in the previous examphas a triangular-like shape.
The black circles are given by the real and imaginary partb@figenvalues afl; + 1 A,.
Figure 4.10 displays the eigenvalues of; as functions oft. As in the first example the
smallest (resp. largest) eigenvalue is always negatigp (f@ositive). There are no values of
A andp such thathA; + A, is definite.

Now we consider an example for whi6lis in the field of values ofl and A? but without
any real solutions. Here is such a matrix

—0.265607  0.986337  0.234057
(4.6) A= | -1.18778 —0.518635 0.0214661
—2.20232  0.327368  —1.00394

The matrix A has complex eigenvalues, but the matdx' A, has only real eigenvalues.
There is no real solution, as we can see in Figufel, since the blue and red curves do not
intersect. This is because there are real valuesasfd;, for which AA; + 1 As is definite as
shown in Figuret.12 Thex (resp.y) axis isu (resp.\) and there is a magenta (resp. blue)
plus sign when the matrixA4; + A, is positive (resp. negative) definite. The boundaries of
this cone are given by TheoreBn7. The straight lines given by some cases in this result are
shown in green in Figuré.12
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35 ]

25F q

15F q

0.5 q

FIG. 4.9.n = 3, joint field of values{ (zT A1z, zT Asx), = € R3, ||z|| = 1}, matrix @.5).

Figure 4.13 displays the joint field of values. As we can s€8,0) is outside this
set. Moreover, the ovular shape of the set is quite diffefierh the previous examples.
Note that the eigenvalues df; + 1A, (black circles) are not on the boundary. Figdré4
shows the three eigenvalues 4f for ¢ € [0,2n]. The circles are the zeros and their col-
ors display the sign of the derivatives. The positive (remgative) derivatives are shown
in red (resp. black). We see that there are three conseaativelots. This indicates that
there are some values ofsuch thatA, is positive definite. If we compute the middle
point of the interval between the last red circle and the Mtk one, we obtain a pair
(—0.9176,—0.3974) for which AA; + pAs is positive definite. The Crawford-Moon algo-
rithm returns the paif—0.8974, —0.4411). As we have seen in Figudel2there is an infinite
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FIG. 4.10.n = 3, eigenvalues ofi; for t € [0, 27|, matrix 4.5).

05

-05

b, 1

FIG. 4.11.n = 3, no solutions irby , by, bs frame, matrix §.6).

number of such pairs.

It is interesting to collect some statistics about the nunabeeal solutions for random
matrices of order 3 obtained using the Matlab functiandn. Out of 1500 polynomial
systems for real stagnation vectors, 1500 have 8 solut®tisey should, but some have only
complex solutions. The numbers of real solutions are givefable4.1. Remember that
the number of real solutions is a multiple of 4. More than dmedtof the systems do not
have a real stagnation vector. There are 69 systems (re8pf@2which 0 is outside the
field of values ofA (resp.A?%). This gives at most 297 systems. Therefore, there are many
systems for whicld is in the fields of values oft and A2 but without real stagnation vector.
However, it must also be said that, with random right-haddsi most of the random systems
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10p

-1k 4

5F 4

FIG. 4.13.n = 3, joint field of values{ (zT A1z, 2T Asx), x € R3, ||z|| = 1}, matrix (4.6).

without stagnation vectors give almost stagnation with iy @ow decrease of the residual
norm before the last iteration.

TABLE 4.1
Number of real solutions for 1500 random matrices of order 3.

no real sol. | realsol. | 4sol. | 8sol.
603 | 897 | 474 | 423

To conclude with the case = 3, let us consider something else than random matrices,
let

(4.7) A=|5 4 -3
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-5 1 f 1 1 | |
0 1 2 3 4 5 6 7

FIG. 4.14.n = 3, eigenvalues ofi; for t € [0, 27|, matrix (4.6).

This matrix has one real positive eigenvalue and a pair ofptexnconjugate eigenvalues.
The eigenvalues ofl; * A, are real but there are no realand ;. such that\A; + A, is
definite. The apertures of the two cones are large. Each aktheurves intersect the two
blue curves. The 8 real solutions to the stagnation systeamfied) are

—0.97358 —0.764349 0.97358 0.764349
—0.184462 ) , | 0.61782 |, 0.184462 |, | —0.61782 |,
0.134598 —0.184578 —0.134598 0.184578
—0.35124 0.35124 —0.00654408 0.00654408
—0.749866 | , | 0.749866 | , | 0.0751576 |, | —0.0751576
—0.560652 0.560652 0.99715 —0.99715

The solutions are displayed in Figu#el5and the joint field of values in Figu#.16 The
eigenvalues ofd; + A, are (almost) on the boundary. We can check in Figufe that
the matrix A, is never definite. We can see in Figutel8that the values of: ()7 A;x(t)
andz(t)T Ayz(t) are either rapidly increasing (or decreasing) or are almosstant. This
explains the triangular-like shape of the joint field of vedu

4.3. The casen = 4. With n = 4, there is not much to visualize. However, we
can still look at the boundary of the joint field of values 4f, A5 and A3; see an exam-
ple in Figure4.19 This is done using a routine of Chi-Kwong Li available on thveb
(http://vww.math.wm.edu/ckli/). Points on the boundary are given by the eigenvector cor-
responding to the largest eigenvalue of a linear combinatio4;, A> and A;. The green
box is given by the eigenvalues df;, A, and A;. The boundary of the joint field of val-
ues has sometimes strange shapes. Figur@displays an example with 4 real solutions
corresponding to the random matrix

1.36526 —0.310516 0.72768 0.644051

2.26211 0.42492 0.346095  —0.775557
0.0979918 —0.0251637 —0.563292 —1.04728
0.556201 0.235534  0.0501128  —0.06832

(4.8) A=
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FIG. 4.15.n = 3, the solutions (green circles) in , ba, b3 frame, matrix 4.7).
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FIG. 4.16.n = 3, joint field of values{ (z7 A1z,2T Asz), = € R3, ||z|| = 1}, matrix 4.7).

This example has two flat portions on the boundary. The rediss&de the joint field of
values is(0, 0, 0).
The following example has 8 real solutions

—0.432565  —1.14647 0.327292  —0.588317
A —1.66558 1.19092 0.174639 2.18319

0.125332 1.18916 —0.186709 —0.136396

0.287676  —0.0376333  0.725791 0.113931

The matrix A has two real eigenvalues and a pair of complex conjugateneafiges. An
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FIG. 4.17.n = 3, eigenvalues ofi; for t € [0, 27|, matrix @4.7).
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FIG. 4.18.n = 3, values ofc(t)T A1 z(t) (green) ande ()T A2z (t)) (magenta), matrix4.7).

example without real solutions is

1.06677 0.294411 —-0.691776  —1.44096
A - 0.0592815 —1.33618 0.857997  0.571148
~ [ —0.0956484  0.714325 1.254 —0.399886

—0.832349  1.62356  —1.59373  0.689997

This matrix has real eigenvalues and the origin is in thediefdvalues ofd, A5 and A3 but
all the solutions to the stagnation system are complex. B (0, 0, 0) is close but outside
the joint field of values. The algorithm PGJ] finds a positive definite linear combina-
tion 6.97105 A, +0.764442 A, — 1.22452 A5 in 28 iterations. The PDC algorithra§] finds
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H3

FIG. 4.19. n = 4, boundary of joint field of values, (T A1z, 2T Aoz, 2T Azx), = € R4, ||z|| = 1},
matrix (4.8).

a positive definite linear combinatid$4.26 A; + 99.2914 A, — 132.612 A3 in 9 iterations
with a value ofs = 1000.
The matrix

-1 2 =3 1

9 —-10 1 3
-7 9 8 —10

is an example for which we have 16 real solutions which is tagimum forn = 4. In this
example, the number of solutions does not seem to be verijtigerte perturbations of the
coefficients. The matrixl has two real and a pair of complex conjugate eigenvalues.

Forn = 4, we also collected statistics on the number of solutionsdal random matri-
ces. They are displayed in Table2. Again more than one third of the random matrices do
not have a real stagnation vector. For matrices with reaitigols there are more cases with
8 solutions than with, 12 or 16 solutions. It seems difficult to identify which charactéds
of the matrixA have an influence on the number of real solutions. Howevehave seen
that this depends on the eigenvalues and eigenvectots,of; and As.

TABLE 4.2
Number of real solutions for 1500 random matrices of order 4.

no real sol. | realsol. | 4sol. | 8sol. | 12sol. | 16 sol.
597 | 903 | 206 | 523 | 71 | 103

4.4. The casen > 4. We gathered data about the number of real solutions for rando
matrices of ordeb and6. They are displayed in Tables3 and4.4. The balance between
matrices without and with real solutions is more or 1688 to 900. Random matrices with a
large number of real solutions are very uncommon.

Let us consider some matrices of ordewith integer coefficients. For the following
matrix, the origin is in the fields of values @f, j = 1, ..., 5, which have a circle-like shape
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TABLE 4.3
Number of real solutions for 1500 random matrices of order 5.

norealsol.| realsol. | 4s. | 8s.| 12s.| 16s.| 20s. | 24s. | 28s. | 32s.
568 932 | 159 | 298 | 112 | 291 | 29 | 17 | 9 | 17

TABLE 4.4
Number of real solutions for 1500 random matrices of order 6.

norealsol.| realsol. | 4s. | 8s.| 12s.| 16s.| 20s. | 24s.| 28s. | 32s.
599 | 901 | 96 | 165| 123 | 268 | 57 | 64 | 32 | 77

—-10 —6 0 8 5
6 3 -3 7 =2
A=|5 —-10 10 5 -3
16 0O —-18 0 -2
5 0 4 6 —14
Itis difficult to know if there exists any positive definite&ar combinationofl;, i = 1,...,4.

With algorithm PDC and a large number of iterations, we foankhear combination for
which there is only one negative eigenvalug.8488 10~*. Whether or not this matrix can
be considered as being (semi) positive definite is diffiauidé¢cide. It may be that the ori-
gin is close to the boundary of the joint field of values. Thisnce (or non-existence) of
w; such thatA(u) = Zle i A; is positive definite may eventually be decided by using a
symbolic computation package, computing the eigenvalfie§ o) as function of the;s.

Another example without real solutions is

6 —-20 -6 3 -10

-6 -4 =23 9 -1
A=1|5 4 —-12 =21 15
-10 -3 10 —6 0

0 2 -1 -7 12

However, for this example, algorithm PDC has found a pasitiefinite linear combination
0.0289275 A; + 0.00253063 Az + 0.000102243 A3 + 6.39057 10~5 A, in 80 iterations.

5. Conclusions. We have given a sufficient condition for the non-existencgadnation
vectors for any order and necessary and sufficient conditionssior 3 andn = 4. These
conditions have been illustrated with many numerical eXeampAn open and interesting
question is to prove or disprove the converse of the suffidendition for a general > 4.
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